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Abstract

Diffusion models undergo phase transitions during the generative process where data features
suddenly emerge in the final stages. The current study aims to elucidate this critical
phenomenon from the geometrical perspective. We employ the concept of “injectivity radius”,
a quantity that characterises the structure of the data manifold. Through theoretical
and empirical evidence, we demonstrate that phase transitions in the generative process
of diffusion models are closely related to the injectivity radius. Our findings offer a novel
perspective on phase transitions in diffusion models, with potential implications for improving
performance and sampling efficiency.
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1 Introduction

Generative models (Bond-Taylor et al., 2022) address the fundamental challenge of approximating and
sampling from complex probability distributions. Diffusion models (Sohl-Dickstein et al., 2015; Ho et al.,
2020; Song et al., 2021), a prominent class of generative models, incorporate two primary processes: a
forward (diffusion) process, wherein data points are perturbed by incrementally adding noise to the data,
mapping a complex distribution into an analytically tractable prior distribution, and a backward (reverse
diffusion) process, where noise is denoised back into a sample from the data distribution by reversing the noise
perturbation. The reverse process involves estimating the “score vector”, the gradient of the log-density of
the perturbed data distribution, typically using neural networks. Despite their remarkable empirical success,
a comprehensive theoretical understanding of the geometric and topological mechanisms underlying these
models remains elusive.

Recent findings reveal that diffusion models undergo a sudden emergence of distinctive data features—often
described as a “critical phenomenon”—during the generative process (Ho et al., 2020; Meng et al., 2022; Choi
et al., 2022; Zheng et al., 2023; Raya & Ambrogioni, 2023; Georgiev et al., 2023; Sclocchi et al., 2024; Biroli
et al., 2024; Li & Chen, 2024; Li et al., 2025). We refer to this abrupt change as a “phase transition” (see
Figure 2 for a CIFAR-10 example at around step 400). Elucidating these phase transitions helps to distinguish
between irrelevant noise and the distinctive features that emerge from the model’s learned distribution,
offering valuable insights into optimizing the sampling process and guiding the design of conditional diffusion
models (e.g., language-conditioned image generation). Although multiple studies have empirically reported
such critical behaviours, theoretical frameworks for explaining the underlying geometry remain limited (Raya
& Ambrogioni, 2023). In particular, Raya & Ambrogioni (2023) proposed a local energy analysis restricted to
simpler data manifolds (e.g., hyperspheres). In this work, we extend these ideas to more complex geometries
via the concept of “tubular neighbourhoods,” aiming to shed light on phase transitions in broader settings
(see Section 4).

Building on this observations, we propose a novel geometric interpretation of phase transitions in diffusion
models, grounded in the behaviour of the score vectors. As demonstrated in prior research (Stanczuk et al.,
2024), the score vectors at the final time step of the generative process are orthogonal to the tangent plane
of the underlying data manifold. This orthogonality implies that the diffusion dynamics effectively push
noisy data points toward their nearest locations on the manifold at the final stage of the generative process.
However, such nearest points need not be unique if the manifold has complex curvature, and the uncertainty of
generative trajectories generally increases as one moves farther from the manifold. To formalize this geometric
view, we leverage the concept of the “injectivity radius” — the supremum distance within which the nearest
point on the data distribution is always uniquely determined. We define the region within the injectivity
radius as the tubular neighbourhood (Fig. 1). We hypothesise that the boundary of this neighbourhood
plays a crucial role in the generative dynamics and is intimately connected to phase transitions. In the next
sections, we test this hypothesis through synthetic experiments and theoretical analysis.

To test our hypothesis, we conduct experiments using synthetic data and demonstrate that, under conditions of
constant curvature, the hypothesis holds true. In contrast, in scenarios where the curvature of the data manifold
is non-constant, singularities corresponding to varying curvatures can emerge, leading to the possibility of
multiple phase transitions. Moreover, we show that the concept of the tubular neighbourhood corresponds to
the final phase transition in the generative process. Finally, we experimentally demonstrate that by embedding
the original data distribution into a hypersurface, the theory of the tubular neighbourhood can be leveraged
to achieve more efficient sampling. Our code can be found at https://github.com/yagumana/lateinit.

Contributions

• As a core part of our geometric approach, we propose an algorithm to estimate the injectivity radius
of the data manifold (Section 3). This allows us to define and quantify the tubular neighbourhood,
providing a practical tool for characterizing the manifold’s geometric properties in diffusion models.

• We analyse the diffusion dynamics through the theory of tubular neighbourhoods and empirically
demonstrate that phase transitions occur around these regions (Sections 4 and 5). This combined
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Figure 1: Conceptual diagram of our perspective. The
orange path represents the generative process from Gaussian
noise to the data manifold M. A singularity occurs at the
endpoint of this path. The grey region represents the tubular
neighbourhood of the data manifold M. We hypothesise that
transitions of particles within the grey region play a crucial role
in the generative process.

Figure 2: Example of phase transitions
in CIFAR-10 late-initialisation gener-
ation.: Around step 400, the generated
images undergo a marked change in qual-
ity—an event we associate with the critical
phenomena of phase transitions or symmetry
breaking—where distinctive data features
begin to emerge from the initially random
patterns.

theoretical and experimental approach strengthens our geometric interpretation of diffusion models
and offers a potential method for optimising sampling efficiency by identifying critical points in the
generative process.

2 Preliminaries

In this section, we briefly introduce some basic mathematical concepts related to the paper.

2.1 Diffusion models

In Song et al. (2021), score-matching (Hyvärinen, 2005) and diffusion-based generative models (Sohl-Dickstein
et al., 2015; Ho et al., 2020) have been unified into a single continuous-time score-based framework where the
diffusion is driven by a stochastic differential equation (SDE) or Langevin dynamics. In this context, xt ∈ Rd

represents the data at time t, which evolves through time t ∈ [0, T ]. This framework relies on Anderson’s
Theorem (Anderson, 1982), which states that under certain Lipschitz conditions on the drift coefficient
f : Rd ×Rd → Rd and on the diffusion coefficient g : Rd ×R → Rd ×Rd and an integrability condition on the
target distribution p0(x0), a forward diffusion process governed by the SDE

dxt = ft(xt)dt+ gt(xt)dwt (1)

has a reverse diffusion process governed by the SDE

dxt = −
[
ft(xt) − gt(xt)2

2 ∇xt
ln pt(xt)

]
dt+ gt(xt)dwt, (2)
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where wt is a standard Wiener process in reverse time. The probability distribution pt(x) of the SDE satisfies
the Fokker-Planck equation

∂

∂t
pt(xt) = −∇xt

· (pt(xt)ft(xt)) + 1
2∆xt

[
gt(xt)2pt(xt)

]
. (3)

Diffusion models are trained by approximating the score function ∇xt
ln pt(xt) with a neural network sθ(xt, t)

parametrised by θ.

2.2 From the Manifold Hypothesis to Tubular Neighbourhoods

Empirical studies show that data observed in high-dimensional spaces often concentrate near a manifold
of much lower intrinsic dimensionality, a claim commonly referred to as the manifold hypothesis. Early
support came from non-linear dimensionality-reduction techniques such as Locally Linear Embedding and
Isomap (Roweis & Saul, 2000; Tenenbaum et al., 2000). Subsequent theoretical analyses (e.g. Fefferman et al.
(2013); Loaiza-Ganem et al. (2024)) have formalised testable conditions for the existence of such manifold
structure.
Assumption 2.1 (Compact smooth data manifold). Throughout this paper we assume that any data manifold
M is a compact C∞ submanifold of the Euclidean space Rd with the standard metric.

Why embrace the hypothesis? Accepting manifold regularity provides a powerful geometric guarantee:
any sufficiently small neighbourhood of the manifold becomes a tubular neighbourhood, that is, every point
in the neighbourhood admits a unique nearest-point projection onto the manifold. If the data support fails to
satisfy the hypothesis one may still appeal to the theory of stratified sets and their associated tube systems;
however, such objects possess corners or singular strata that render the normal-projection map far more
complicated and, in practice, computationally unusable.

Scope. Assumption 2.1 is indispensable for the differential-geometric machinery developed below. Specif-
ically, it guarantees that the manifold admits a well-defined tubular neighbourhood and a unique normal
projection map within radius R(M). Real-world datasets, however, may violate these regularity conditions
because their underlying distributions often exhibit sharp edges, occlusions and other non-manifold artefacts.
We therefore regard the forthcoming analysis as most reliable for data manifolds that satisfy (or can be
embedded into spaces that satisfy) the above conditions, such as the synthetic examples in Section 5.

Tubular neighbourhoods in a nutshell. A tubular neighbourhood of a manifold is roughly speaking a
set of points near the manifold and every point of the set has a unique projection onto it (see Appendix C.3
for the formal definition). It is theoretically known that every manifold embedded in Rd has a tubular
neighbourhood. In fact if we take a sufficiently small neighbourhood of a manifold, we may find a tubular
neighbourhood. On the other hand, it is easy to imagine that we cannot take a too large neighbourhood as a
tubular neighbourhood. See also Appendix A for previous studies which inspired our perspective.

3 Injectivity radius of a data manifold

In this section, we present how to estimate the supremum of possible radii of tubular neighbourhoods — the
injectivity radius — of a given data manifold. Based on the theoretical argument below, we establish the
algorithm for the estimation (see Algorithm 1 in Appendix F). Throughout this section, let M denote an
n-dimensional manifold (data manifold) in the Euclidean space Rd. For the terminologies of Manifold Theory,
see Appendices C.2 and C.3.

We refer to (Litherland et al., 1999) for some notions and the case where (n, d) = (1, 3), i.e., the manifold M
is a knot. The first crucial claim of this section is that many theoretical facts proven in their paper work for
general dimensions as well. The second claim is that the quantities appearing in their paper can be estimated
from a given data cloud and its data manifold. For simplicity, we will explain the former briefly and focus on
the latter.
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3.1 Endpoint maps and Tubular neighbourhoods

We explain how to realise a tubular neighbourhood of a manifold embedded in the Euclidean space.
Definition 3.1. The ϵ-neighbourhood of M in Rd is the set

M(ϵ) =
⋃

x∈M
{y ∈ Rd | ∥y − x∥ < ϵ}.

Definition 3.2. The normal bundle to M in Rd is the set

NM = {(x,v) ∈ Rd × Rd | x ∈ M,v ⊥ TxM},

where TxM denotes the tangent space to M at x.

Notice that the set NM forms a d-dimensional manifold. (The dimensions in the direction to M and its
normal are n and d− n, respectively.)
Definition 3.3. Let E0 : Rd × Rd → Rd, (x,v) 7→ x + v be the addition map. We call its restriction

E = E0|NM : NM → Rd, (x,v) 7→ x + v

the endpoint map (or the exponential map).
Proposition 3.4 (cf. Theorem C.11). Let ϵ > 0 and consider the subset

NMϵ = {(x,v) ∈ NM | ∥v∥ < ϵ} ⊂ NM.

Then the image E(NMϵ) coincides with the ϵ-neighbourhood M(ϵ) of M in Rd. Furthermore, this image
forms a tubular neighbourhood of M if and only if the map E|NMϵ

is an embedding.

3.2 Injectivity radius and its estimation

Definition 3.5. The injectivity radius R(M) of M is the supremum of numbers ϵ > 0 such that the
ϵ-neighbourhood of M in Rd is also a tubular neighbourhood. If such ϵ does not exist, define R(M) = 0. We
also define the following two quantities.

(1) The first injectivity radius R1(M) of M is the infimum of the set{
∥v∥

∣∣ (x,v) ∈ NM is a critical point of the map E for some point x ∈ M
}
.

(2) The second injectivity radius R2(M) of M is the infimum of the set{
1
2∥x1 − x2∥

∣∣∣∣ x1,x2 ∈ M,x1 ̸= x2,
x1 − x2 ⊥ Tx1M and x1 − x2 ⊥ Tx2M

}
.

Roughly saying, R1(M) is the radius that the endpoint map fails to be regular at some point; R2(M) is the
radius at which two separated tubes touch each other (see Figure 3). Thanks to the following assertion, these
quantities precisely measure the injectivity radius, i.e., where the first singularity for the ϵ-neighbourhoods
occurs.
Theorem 3.6 (§2 of Litherland et al. (1999)). It holds that R(M) = min{R1(M), R2(M)}.

In this paper, the estimation of R2(M) is performed following the definition. See Appendix D.3 for some
ideas which may make the estimation easier. Therefore we here argue how to estimate R1(M). This quantity
is closely related to the curvature of M (cf. Fefferman (2020)). Also, it is simple if we consider the case
that n = 1 — the manifold M is a curve in Rd (see Appendix D.2). In general case, it seems to be difficult.
However we show the following (see also Theorem C.7).
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(a) R1(M) (b) R2(M)

Figure 3: Sketches of the first and second injectivity radii

Theorem 3.7. Assume that the manifold M ⊂ Rd is expressed by M = F −1(0) = {x ∈ Rd | F (x) = 0},
where F : Rd → Rd−n is a differentiable map of which 0 ∈ Rd−n is a regular value. In addition, assume
that we have vector fields t1, t2, . . . , tN (n ≤ N) defined near M such that for every x ∈ M the vectors
t1(x), t2(x), . . . , tN (x) are tangent to M and span the tangent space TxM. Then the first injectivity radius
R1(M) coincides with the infimum of the Euclidean norms ∥v∥ of vectors v ∈ Rd such that v ⊥ TxM and
the d× (d+N − n)-matrix

LM(x,v) =
[
∂F

∂x
(x)

T (
∂φ1

∂x
(x,v) − ∂φ1

∂v
(x,v)

)T

· · ·
(
∂φN

∂x
(x,v) − ∂φN

∂v
(x,v)

)T
]

(4)

is degenerate for some point x ∈ M, where

φi : Rd × Rd → R, φi(x,v) = ⟨ti(x),v⟩

for i = 1, 2, · · · , N .

This assertion is proven by an application of the Method of Lagrange Multiplier. See Appendix D.1 for its
precise proof. We here note some remarks.
Remark 3.8. The condition that the matrix L(x,v) degenerates at (x,v) ∈ NM is equivalent to that the
determinant of the d× d-minor[

∂F

∂x
(x)

T (
∂φi1

∂x
(x,v) − ∂φi1

∂v
(x,v)

)T

· · ·
(
∂φin

∂x
(x,v) − ∂φin

∂v
(x,v)

)T
]

(5)

of L(x,v) vanishes for every n-tuple (i1, . . . , in) satisfying that 1 ≤ i1 < · · · < in ≤ N . Indeed, the matrix
∂F

∂x
(x) is of full-rank for every point x ∈ M = F −1(0).

Remark 3.9. It is crucial to find vector fields ti satisfying the above condition. For example, (small
extensions of) the gradient vector fields ti = gradxi (i = 1, . . . , d) satisfies the condition, where xi : M → R
denotes the projection to the i-th axis in Rd. In general, we have to take the number N greater than n.

3.3 Example (unit circle S1)

Let us verify Theorem 3.7 through the most typical manifold — the unit circle S1. Define a function
F : R2 → R by

F (x, y) = x2 + y2 − 1.

Then we have S1 = F−1(0). One of the normal vector field on S1 is given as grad(F ) = ( ∂F
∂x ,

∂F
∂y ) = (2x, 2y),

so (−y, x) is a tangent vector field which spans the tangent space to S1 at each point (x, y) ∈ S1. Applying
Theorem 3.7, the first injectivity radius R1(S1) is calculated as follows. For a point (x, y) ∈ S1, the matrix

LS1((x, y), (v1, v2)) =
[
2x v2 + y
2y −v1 − x

]

6
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is degenerate (i.e., its determinant is zero) if and only if (v1, v2) = (−x,−y). Thus, we obtain

R1(S1) =
√

(−x)2 + (−y)2 = 1.

By definition, R2(S1) is also equal to 1, so the injectivity radius R(S1) is equal to 1.

This result is utilised in Section 5.2 for the experimental validation.

3.4 A pilot numerical experiment to validate the proposed algorithm

We perform a pilot experiment to verify the algorithm. The detailed setting and the results are present in
the Appendix F.1. The estimated R for S1 is 0.999 ± 0.006.

4 Tubular neighbourhoods and diffusion dynamics

In this section, we investigate the relation between tubular neighbourhoods and diffusion dynamics.

4.1 The proportion of particles within the tubular neighbourhood

Let ϵ > 0. Let M(ϵ) be the ϵ-neighbourhood of a compact oriented manifold M in the Euclidean space Rd

as defined in Definition 3.1. Suppose pt(x) is a smooth solution to the Fokker-Planck equation (3) with an
initial condition p0(x) = δM(x) here δM(x) is Dirac’s density function with its support M. We define a
function ΓM(ϵ)(t) as follows:

ΓM(ϵ)(t) :=
∫

M(ϵ)
pt(x)dx. (6)

Remark 4.1. The readers may understand this function represents the proportion of particles within the
tubular neighbourhood (see also Section 5.2 for the specific cases in numerical experiments).
Proposition 4.2. Assume β(t) : R≥0 → R is a smooth function and ft(x) = 1

2β(t)f(x), gt(x) =
√
β(t) in

(3) (f(x) is some smooth vector field). We have:

limt→0
∂
∂tΓM(ϵ)(t) = 0 and limt→∞

∂
∂tΓM(ϵ)(t) = 0. Thus there exists at least one tc in (0,+∞) such that

∂2

∂t2
ΓM(ϵ)(tc) = 0. Moreover if β(t) > 0 and

(∇x ln pt(x) − f(x)) · n < 0 (7)

for any x ∈ ∂M(ϵ) and any t ∈ R>0 then ΓM(ϵ)(t) is strictly monotonically decreasing. Here n is an unit
outward pointing normal vector field along ∂M(ϵ).
Remark 4.3. In other words, the first term of the SDE (2) at the boundary of the tubular neighbourhood is
closely related to the behaviour of ΓM(ϵ)(t). We can write ΓM(ϵ)(t) in terms of free energies on the boundary
of the tubular neighbourhood. Refer to Appendix H for a comprehensive analysis and additional details.

4.2 The score vector fields and tubular neighbourhoods

The marginal distribution pt(x) arising from a Variance-Preserving stochastic differential equation (VP-SDE;
also known as DDPM) can be written as

pt(x) =
∫

M
N(y|θtx, (1 − θ2

t )I)p0(y)dy, (8)

where θt = e
− 1

2

∫ t

0
β(τ)dτ and p0(y) is the distribution at time t = 0. As a score vector field characterises the

diffusion dynamics, one should analyse its behaviour. In this section, we investigate how three quantities
(dimension, injectivity radius, and time step) affect the behaviour of the score vector fields ∇x ln pt(x). Let
us first consider the case of spheres.
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Proposition 4.4. Suppose M = Sn is a n-sphere of radius R in Rd. Let ϵ be as R > ϵ > 0. Let n be a unit
outward pointing normal vector to the boundary of ϵ-neighbourhood ∂M(ϵ). Assume

ϵ+ (1 − θt)(R− ϵ)√
1 − θ2

t

≥
√
d, (9)

x ∈ ∂M(ϵ) and p0(y) is constant C greater than 0 on M. Then the inner product of the score vector and n
(a unit outward pointing normal vector to the boundary) at the boundary of ϵ-neighbourhood is less than zero:

∇x ln pt(x) · n ≤ 0.

Example 4.5. Let M = S1 in R2 with radius 1 and |x| = 0.99 (i.e., ϵ = 0.99). Compute (9) and we
understand that ∇x ln pt(x) points toward S1 if θt > 0.712. Similar things can be observed for S2 in R3.
Therefore this explains the Figure 21 and Figure 22.
Remark 4.6. In the previous study (Theorem D.1 by (Stanczuk et al., 2024)), it is claimed that when
the step time θt is large enough, the score vector points in the normal direction. In this work, we claim
that when an inequality (9) involving the number of time steps, the dimension of the ambient space,
and the injectivity radius, is satisfied, the score vector points toward the manifold side. This is a kind of
generalisation of Theorem D.1 in (Stanczuk et al., 2024). This indicates that geometry of data governs the
behaviour of the score vector.

We generalise the statement as follows:
Proposition 4.7. Suppose M is a compact oriented manifold embedded in Rd. Let ϵ0 be an injectivity radius.
Let ϵ0 > ϵ > 0. Let n be a unit outward pointing normal vector to the boundary of ϵ-neighbourhood ∂M(ϵ).
Assume

ϵ+ |x|(1 − θt)√
1 − θ2

t

≥
√
d, (10)

x ∈ ∂M(ϵ) and p0(y) is constant C greater than 0 on M. Finally, assume a line segment with x and the
origin as its vertices do not intersect M. Then the inner product of the score vector and n at the boundary
of ϵ-neighbourhood is less than zero:

∇x ln pt(x) · n ≤ 0.

Remark 4.8. This is a simplified statement, see Appendix I.2 for details. The smaller the injectivity radius
slower time of the turning of the score vector field becomes. This explains phenomena in Section 5.3.

5 Experiments

In this section, we empirically demonstrate the presence of phase transitions at the boundary of the tubular
neighbourhood during the generative process of diffusion models. Specifically, we use two main indicators:
(1) the proportion of particles outside the tubular neighbourhood at each time step, and (2) the Wasserstein
distance between the training data distribution and the generated distribution. We also adopt the late
initialization scheme (Raya & Ambrogioni, 2023), in which generation starts from different initial time steps,
allowing us to capture abrupt changes more clearly. After describing our general methodology (Section 5.1),
we present experimental results on various synthetic manifolds (hyperspheres, ellipses, tori, and disjoint arcs),
and finally apply our approach to real datasets by embedding them into hyperspheres.
Remark 5.1. Throughout this section, given a manifold M embedded in Rd, the term tubular neighbourhood
of M refers to the set of points within the injectivity radius R(M) of M.

5.1 General Methodology

Diffusion Model Setup. We employ the DDPM framework (Ho et al., 2020) with T = 1000 diffusion
steps in the forward and reverse processes. Let {x0,x1, . . . ,xT } denote a trajectory under Gaussian noise
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perturbation; we follow the standard parametrisation where xT ∼ N (0, I) and each intermediate xt is
obtained by adding Gaussian noise according to a fixed variance schedule. All experiments share the same
neural network architecture for score estimation and use the Adam optimizer. The batch size, learning rates,
and number of training iterations are kept consistent across experiments unless stated otherwise. Additional
hyperparameter details are provided in Appendix J.

Late Initialisation. In a standard DDPM sampling procedure, we typically begin with xT ∼ N (0, I) at
T = 1000 and run the reverse diffusion steps down to t = 0. By contrast, late initialization modifies this
procedure such that we start the reverse diffusion from a chosen time Tinit (ranging from 1 to 1000), while
still sampling the initial state as xTinit ∼ N (0, I). In other words, rather than varying the “noise level” per
se, we effectively shorten the reverse diffusion process and thus shift which segment of the generative process
is observed. By examining how the model behaves for different values of Tinit, we can reveal abrupt changes
in the generated samples (i.e. phase transitions) that occur at particular stages of the reverse diffusion.

Evaluation Metrics. We track two main quantities in our experiments:

• Proportion of Particles Outside Tubular Neighbourhood. At each diffusion time step t, we
record the fraction of sample points xt whose distance to M exceeds the injectivity radius R(M).

• Wasserstein Distance. We also compute the 1-Wasserstein distance between the generated
distribution and the training distribution. We use 1-Wasserstein distance as a qualitative, parameter-
free indicator of how the generated distribution changes under late initialisation. Due to space
constraints, we only provide a brief overview here; the formal definition (including cost matrices and
the optimal transport formulation) can be found in Appendix J.2.

5.2 Relationship between tubular neighbourhood and phase transition in unit hypersphere

In this subsection, we investigate how phase transitions occur when the data manifold is a unit hypersphere.
Since the injectivity radius of a unit hypersphere is 1, the boundary of the tubular neighbourhood is simply
all points at distance 1 from the manifold surface.

Setup. We consider three cases: S1, S2, and S20, each embedded in a suitable ambient space Rd. For each
manifold, we measure (1) the proportion of particles outside the tubular neighbourhood (red line) at each
time step, and (2) the Wasserstein distance (blue line) under late initialization. We use Tinit from 1 to 1000,
following the DDPM setup described in Section 5.1.

Results. As shown in Figure 4, a sharp increase in the Wasserstein distance consistently appears after
the majority of particles enter the tubular neighbourhood (the purple dashed line indicates the time when
99% of particles have crossed the boundary). This observation supports our hypothesis that crossing the
injectivity-radius boundary triggers or coincides with the onset of phase transitions. Table 1 presents the
Wasserstein distances at selected proportions of particles outside the tubular neighbourhood; we see that as
ρproportion decreases (i.e., more particles move inside), the Wasserstein distance tends to increase sharply.

Table 1: Wasserstein distances W for different late initialisation times. ρproportion represents the proportion
of particles outside the tubular neighbourhood.

Dataset
ρproportion 0.1 0.5 0.9 0.95 0.99 0.999 1.0

S1 embedded in R16 0.283 0.073 0.020 0.019 0.018 0.019 0.018
S2 embedded in R16 1.344 0.343 0.058 0.038 0.030 0.030 0.031
S20 embedded in R24 3.895 1.858 0.970 0.882 0.807 0.781 0.759

9



Published in Transactions on Machine Learning Research (07/2025)

(a) S1 embedded in R16 (b) S2 embedded in R16 (c) S20 embedded in R24

Figure 4: The blue line (left axis) depicts the Wasserstein distance between the training data distribution
and the generated distribution, measured as a function of the shifted initial diffusion time T . The red line
(right axis) indicates the proportion of particles outside the tubular neighbourhood at each diffusion time in
a standard diffusion model. The purple dashed line marks the diffusion time when 99% of particles exit the
tubular neighbourhood. Notably, a sharp increase in the Wasserstein distance is observed as particles enter
the tubular neighbourhood.

Discussion. These results indicate that, for manifolds with constant curvature (such as a unit hypersphere),
the tubular boundary serves as a clear geometric marker for the transition. In Section 5.3, we explore whether
a similar relationship holds for manifolds with varying curvature, such as ellipses and tori. For more detailed
descriptions of the hypersphere experimental setup, please see Appendices J.3 and J.4.

5.3 Phase Transitions in High-Dimensional and Mixed-Curvature Manifolds

In the previous section, we showed that when the data manifold is a unit hypersphere (with constant curvature),
the tubular boundary closely aligns with the onset of phase transitions. However, natural data often have
more complex geometry, and high-dimensional embeddings can introduce additional challenges. In this
subsection, we investigate two scenarios that deviate from the constant-curvature setting:

5.3.1 High-Dimensional Hypersphere. We first consider S20 embedded in R48, thus increasing the
ambient dimension compared to Section 5.2. As shown in Figure 5a, the hypothesis breaks down: the
Wasserstein distance begins to rise well before most particles enter the tubular neighbourhood. This
discrepancy can be attributed to the fact that a higher-dimensional Gaussian is typically concentrated farther
from the origin, while the data manifold (a unit hypersphere) remains at a fixed radius of 1. Consequently,
under late initialization, the sampled points deviate substantially from where the model expects them to be
at that time step, making accurate reconstruction difficult. These observations indicate that high-dimensional
embeddings can create a significant mismatch between the data manifold and the initial Gaussian distribution.

5.3.2 Ellipses and Tori (Mixed Curvatures). Next, we consider ellipses and tori, which exhibit non-
constant curvature. Specifically, we examine an ellipse with major axis 2R, minor axis 2r, and injectivity
radius r2/R, as well as a torus with major radius R, minor radius r, and injectivity radius min{R − r, r}
(see Appendix J.5). Figure 5 illustrates that the Wasserstein distance undergoes multiple rises under late
initialization. By systematically varying Tinit from 1000 down to lower values, we observe several partial
transitions, culminating in a final pronounced increase when particles cross into the region of highest curvature.
This suggests that multiple phase transitions can occur for manifolds with varying curvature, and the last
transition consistently aligns with the boundary crossing of the region of highest curvature.

Discussion. Table 2 summarizes how the Wasserstein distance changes as the proportion of particles
outside the tubular neighbourhood decreases. For the high-dimensional sphere (S20 in R48), the mismatch is
pronounced, indicating that late initialization may not reliably capture the true transition point. For ellipses
and tori, multiple rises in the Wasserstein distance suggest multiple partial transitions, culminating in a final
transition where particles cross into the region of greatest curvature. These findings imply that the injectivity
radius is tightly linked to the largest curvature on the manifold, and thus serves as a key geometric quantity
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for understanding phase transitions on more general shapes. In the next subsection (Section 5.4), we delve
further into the link between curvature and transitions using disjoint arcs with different radii.

Table 2: Wasserstein distances W for different late initialisation times. ρproportion represents the proportion
of particles outside the tubular neighbourhood.

Dataset
ρproportion 0.1 0.5 0.9 0.95 0.99 0.999 1.0

S20 embedded in R48 21.754 13.380 7.964 6.978 5.366 3.900 0.752
Ellipse (R = 3, r = 1) embedded in R16 7.762 5.893 4.016 3.601 2.936 2.184 0.479
Torus (R = 3, r = 1) embedded in R16 2.597 1.888 1.433 1.335 1.167 0.872 0.272

(a) S20 embedded in R48
(b) Ellipse with R = 3, r = 1 embed-
ded in R16

(c) Torus with R = 3, r = 1 embedded
in R16

Figure 5: (Blue, left axis) and (Red, right axis) show the Wasserstein distance and the proportion of particles
outside the tubular neighbourhood, respectively, as described in Figure 4. The purple dashed line marks the
99% threshold. Unlike Figure 4, the Wasserstein distance increases before the particles enter the tubular
neighbourhood.

5.4 Disjoint Arcs with Multiple Curvatures

In the previous sections (e.g., Section 5.3), we observed that when a manifold has regions of distinct curvature,
each region can exhibit its own timing for phase transitions. To verify this hypothesis more directly, we
construct a simplified manifold consisting of two disjoint arcs of different curvatures in R16.

Setup. As illustrated in Figure 6, one arc has radius 1 (higher curvature) and the other has radius 2 (lower
curvature). The injectivity radius of each individual arc is its own radius; however, when these arcs are
combined into a single manifold, the overall injectivity radius is determined by the smaller radius (i.e., the
higher curvature). We apply the same late-initialization scheme described in Section 5.1, tracking both the
proportion of particles outside each arc’s tubular neighbourhood and the Wasserstein distance over time.

Results. Figure 7 shows that the Wasserstein distance undergoes two distinct rises: the first corresponds
to the arc of radius 2, and the second occurs when particles begin entering the tubular neighbourhood of the
arc with radius 1. Table 3 quantifies these two “phase transitions,” demonstrating that each arc’s curvature
indeed induces a separate transition timing. Although the manifold’s global injectivity radius is ultimately
determined by the smaller arc (radius 1), this experiment confirms that multiple curvatures can lead to
multiple transition events within the same manifold.

Discussion. These results support our hypothesis that each distinct curvature region in a manifold can
trigger its own phase transition. While many real-world datasets may only exhibit one dominant curvature
scale (leading to a single noticeable transition), this disjoint-arcs example demonstrates how multiple abrupt
transitions can emerge when different parts of the data manifold have substantially different curvature. In
the next section (Section 5.5), we explore how these insights can be extended to real-world data embedded
into a hypersphere.
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Table 3: Wasserstein distances W for different late initialisation times. ρproportion represents the proportion
of particles outside the tubular neighbourhood.

Dataset
ρproportion 0.1 0.5 0.9 0.95 0.99 0.999 1.0

Disjoint arcs 0.283 0.073 0.020 0.019 0.018 0.019 0.018

Figure 6: Projection of the 1st
and 2nd dimensions of data em-
bedded in R16.

Figure 7: A second rise in the
Wasserstein distance occurs, indicat-
ing phase transitions.

Figure 8: Fashion MNIST S20 em-
bedded in R24.

5.5 Exploring Tubular Neighbourhoods in Real Datasets

As shown in Section 5.4, the injectivity radius of a manifold is determined by the region of highest curvature.
However, directly applying this concept to natural datasets like MNIST or Fashion MNIST can be problematic,
because their local geometry can vary significantly across different samples. Such diverse curvature often
leads to an extremely small injectivity radius when computed in the raw data space, making it difficult to
capture meaningful phase transitions.

Hyperspherical Embedding. To address this limitation, we embed each dataset into a unit hypersphere
using a Hyperspherical VAE (Davidson et al., 2018). This procedure maps all data points onto S20 in
R24, thereby constraining their global geometry to a fixed radius. While this embedding does not yield
a uniform distribution on the hypersphere, it simplifies the analysis of phase transitions by ensuring that
large-scale curvature effects are more tractable. The detailed setup of the Hyperspherical VAE is provided in
Appendix J.7.

Experimental Results. After embedding, we apply the same late-initialisation scheme (Section 5.1),
measuring the proportion of particles outside the tubular neighbourhood at each diffusion time step and the
corresponding Wasserstein distance to the embedded training distribution. Figure 8 shows that for Fashion
MNIST, the Wasserstein distance starts to rise soon after particles begin to enter the tubular neighbourhood
in the latent space. Table 4 presents the quantitative results for both MNIST and Fashion MNIST, indicating
an increase in the Wasserstein distance once T (the reverse diffusion start time) falls below a certain threshold.

Table 4: Measured Wasserstein distances W for different late initialisation times. The variable ρproportion

represents the proportion of particles outside the tubular neighbourhood, and the corresponding W at the
respective time points are shown in the table.

Dataset
ρproportion 0.1 0.5 0.9 0.95 0.99 0.999 1.0

MNIST S20 embedded in R24 2.254 1.060 0.668 0.632 0.592 0.576 0.559
Fashion MNIST S20 embedded in R24 2.697 1.295 0.673 0.590 0.509 0.472 0.453
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Figure 9: Fashion MNIST images decoded using SVAE after diffusion times of 1000, 500, 200, 100, and 1
(from left to right) in the latent space.

Discussion. These findings highlight that while real-world datasets exhibit diverse local curvature, embed-
ding them in a hyperspherical manifold enables us to observe and interpret phase transitions more cleanly.
The mapping aligns with our earlier analysis of synthetic manifolds, where entering the tubular neighbourhood
correlates with a notable rise in the Wasserstein distance. Further exploration of this approach—including
faster sampling, multi-modal embeddings, and applications to other data modalities—is left to future work.

6 Discussion and conclusion

In this study, we employed the concept of the injectivity radius to understand the generative process of
diffusion models and analysed it theoretically and experimentally from the perspective of the geometric
structure of data manifolds. Specifically, we provided a new perspective on a phenomenon where certain
features emerge rapidly over a short time interval, referred to as a phase transition.

However, our theoretical results rely on the assumption that the data manifold M is a compact smooth
submanifold of Rd. While this assumption is satisfied by the synthetic datasets in Section 5, real-world
image distributions often contain edges, occlusions, and other singular structures that violate smoothness.
Extending the injectivity-radius analysis to stratified spaces, or developing numerical schemes that remain
stable in the presence of such singularities, therefore remains an open research direction..

In addition, the concept of the injectivity radius, which may correspond to the region of the manifold with
the largest curvature, only partially explains the phase transition phenomenon. To address this limitation,
defining a mathematical quantity that corresponds to the smallest curvature of the manifold may remove the
assumption of constant curvature, potentially leading to a more general theory applicable to a wider range of
datasets. This would allow for more efficient sampling methods that better reflect the geometric properties of
the data manifold, thereby enhancing the overall performance of diffusion models. From the perspective of
nonequilibrium thermodynamics, the system’s free energy, defined by weighting the energy at each point with
the probability distribution function, can provide a more comprehensive macroscopic understanding of phase
transitions (for details, see Appendix G). This approach could enable a more accurate discussion of phase
transitions as a macroscopic phenomenon, complementing the microscopic geometric analysis.

By exploring the relationship between the data’s geometric structure and the score vectors, as discussed in
Section 4.2, it may also be possible to design optimal noise scheduling strategies that are tailored to the
geometry of the data manifold. Clarifying how score vectors interact with the manifold’s geometric properties
could further optimise the generative process. In addition, our experiments with real-world datasets suggest
that modifying the architecture or objective used for VAE embedding into hyperspheres could extend the
applicability of the tubular neighbourhood concept to more complex datasets. This modification is expected
to improve sampling efficiency and increase the flexibility of diffusion models in handling a wider variety of
real-world data.

These discussions lie at the intersection of concepts from differential geometry, particularly singularities,
statistical physics, especially phase transitions in non-equilibrium thermodynamics, and computer science,
specifically diffusion models. This interdisciplinary approach represents an important step forward, and
further theoretical development and practical applications in this direction hold promising potential.
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A Related work

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021) have emerged as a powerful
class of generative models (Bond-Taylor et al., 2022), demonstrating remarkable performance in various
domains including text-to-image synthesis (Nichol & Dhariwal, 2021; Dhariwal & Nichol, 2021; Ding et al.,
2021; Ramesh et al., 2022; Nichol et al., 2022; Rombach et al., 2022; Saharia et al., 2022; Yu et al., 2022; Ho
et al., 2022a), text-to-speech (Chen et al., 2021; Kong et al., 2021; Liu et al., 2023), video generation (Ho
et al., 2022b; Singer et al., 2023; Xing et al., 2023), natural language processing (Li et al., 2022; Lou et al.,
2023; Li et al., 2023b), robot manipulations (Janner et al., 2022; Zhu et al., 2023), inverse problems (Daras
et al., 2024), and protein interactions modelling (Abramson et al., 2024).

Motivations and related works. Our work is motivated by several recent theoretical advancements (Yeğin
& Amasyalı, 2024) and practical challenges (Chen et al., 2024; Yang et al., 2024):

• Optimisation of Diffusion Time: Some empirical studies report existence of an optimal diffusion
time that enhances model efficiency (Franzese et al., 2023).

• Critical Phenomena and Statistical Thermodynamics of Diffusion Models: There are some
empirical and theoretical studies report heterogeneity/non-uniformity, critical phenomena during gen-
eration (Ho et al., 2020; Meng et al., 2022; Choi et al., 2022; Zheng et al., 2023; Raya & Ambrogioni,
2023; Georgiev et al., 2023; Sclocchi et al., 2024; Biroli et al., 2024; Li & Chen, 2024; Yu & Huang, 2024;
Kadkhodaie et al., 2024; Zhang et al., 2024). Raya & Ambrogioni (2023) reveals a spontaneous symmetry
breaking in diffusion models, dividing the generative dynamics into two phases: a linear steady-state
around a central fixed point and an attractor dynamics towards the data manifold. They linked the fixed
points of the Fokker-Planck equations to moments of spontaneous symmetry breaking in the Hessian
of the potential functions and demonstrated an end-to-end asymptotic analysis in a simple discrete
distribution supported on two points and some other toy examples. The authors also propose a Gaussian
late initialisation scheme which improves model performance, generation efficiency, and increases sample
diversity. The concurrent work (Li & Chen, 2024) introduces a theoretical framework to understand
phase transitions (they coined the term “critical windows” to describe the narrow time intervals in
the generation during which specific features of the final image sample emerge, such as image class or
background colour). The authors propose a formal non-asymptotic framework to study these windows,
focusing on data from a mixture of strongly log-concave densities. They show that these windows can
be provably bounded in terms of certain measures of inter- and intra-group separation. Biroli et al.
(2024) employs statistical physics to identify three distinct dynamical regimes: initial noise, “speciation”
transition, and “collapse” transition. Sclocchi et al. (2024) examines the hierarchical structure of data in
diffusion models and identifies phase transitions in the generative process with sudden drops in high-level
feature reconstruction probability whereas the smooth evolution of low-level feature reconstruction.
Georgiev et al. (2023) focuses on data attribution to provide a framework for identifying specific training
examples that influence generated images. These previous approaches, ranging from empirical studies to
theoretical frameworks, provide valuable insights into phase transitions in generative dynamics; however,
many of these methods face the challenge of requiring assumptions about the data. Our method offers
new insights into phase transitions derived uniquely from the geometric structure of arbitrary data
manifolds. Furthermore, our framework is essentially parallel to prior approaches, and therefore we
expect to advance our understanding of phase transitions by deepening the relationship between the
findings of previous research and our theoretical framework. A yet another recent work (Ikeda et al.,
2024), while not explicitly addressing phase transitions, outlines connection between diffusion models and
non-equilibrium thermodynamics, featuring interesting discussions on the relationships between noise
scheduling, generation quality, entropy generation rates, and optimal transport. Other intriguing studies
from a physics perspective include path integral interpretation of stochastic trajectories (Hirono et al.,
2024) and Bayes-optimal denoising interpretation incorporating a spin-glass perspective (Ghio et al.,
2023).

• Geometrical approaches: There are some geometrical perspectives on diffusion models inspired our
work (Chung et al., 2022; Wenliang & Moran, 2023; Chen et al., 2023a; Park et al., 2023; Ghimire et al.,
2023; Chen et al., 2023c; Okawa et al., 2023; Oko et al., 2023).
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• Other theories to understand diffusion and generation processes: A deeper understanding
of these processes is essential for advancing theoretical research and practical applications, such as
generation control through prompting and interpolation. Recent studies have delved into the underlying
mechanisms of diffusion and generation trajectories to identify optimal intervention points during the
generation process, which can help achieve desired data outputs. While flow-matching algorithms have
shown promise, in the practical user cases, diffusion models surprisingly sometimes outperform the
flow-matching, underscoring the need to understand the factors contributing to this superior performance.
There are several works on convergence guarantees for diffusion models (Bortoli et al., 2021; Bortoli,
2022; Block et al., 2020; Chen et al., 2023b; Lee et al., 2022; Liu et al., 2022; Pidstrigach, 2022; Wibisono
& Yang, 2022; Chen et al., 2023e; Lee et al., 2023; Li et al., 2023a; Benton et al., 2023a;b; Chen et al.,
2023d; Li et al., 2024).

• Flow matching techniques: Flow matching algorithms (Lipman et al., 2023; Tong et al., 2024)
are yet another prominent techniques in generative modelling. They are closely related to diffusion
models as flow matching often leverages diffusion paths for training, in which optimal transport via
ordinary differential equations (ODEs) yields straighter trajectories. It is very interesting to consider
the influence on the quality and diversity of generated samples or critical dynamics such as spontaneous
symmetry breaking. Our method may have the potential to analyse these aspects. Such generative
models considering a transport from one distribution to another are expected to continue to develop, and
geometric interpretations will further contribute to improving interpretability, efficiency, and control to
ensure safety.

B Social Impacts
• Green AI (Environmental Impact): Reducing the high energy consumption of diffusion models

during both training and generation is crucial. The exponential increase in computational demands due
to the growing use of diffusion models in industry poses significant environmental concerns. Optimising
these models can lead to more sustainable AI practices, addressing the urgent need for eco-friendly AI
technologies. Recent studies emphasise the need for environmental sustainability in AI, focusing on
reducing the energy consumption and carbon footprint of AI models Verdecchia et al. (2023).

• Fairness, AI Safety and Alignment: Ensuring AI safety and alignment is critical. This includes
improving the mechanistic interpretability of diffusion models, optimising control to prevent undesirable
behaviours, and mitigating risks such as hallucinations and adversarial attacks. Effective control
mechanisms and interpretability can enhance trust and safety in AI applications. Matsumoto et al. (2023)
report that the diffusion time is the crucial for mitigating the membership inference attacks (MIAs) on
diffusion models (Pang et al., 2023; Pang & Wang, 2023; Duan et al., 2023; Tang et al., 2023; Fu et al.,
2023; Dubinski et al., 2024; Kong et al., 2023). Raya & Ambrogioni (2023) and Li & Chen (2024) show
that phase transitions help understanding and controlling diversity in generation and Li & Chen (2024)
also examines some relationship between phase transitions and MIAs.

C Mathematical Supplementaries

In this appendix, we quickly recall basic mathematical concepts and facts concerned with Linear Algebra and
Manifold Theory. See, e.g., Lee (2013) for a detail of Manifold Theory.

C.1 Formal operations in Linear Algebra

For the Euclidean space Rd and its linear subspace V ⊂ Rd, let V ⊥ denote the orthogonal complement of V
in Rd.
Proposition C.1. Let V and W be subspaces of Rn. Then the following hold:

(1) V ⊂ W if and only if V ⊥ ⊃ W⊥;

(2) V ⊥ ∩W⊥ = (V +W )⊥.
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C.2 Differentiable manifolds

In this paper, as manifolds, we treat only ‘submanifolds of the Euclidean space Rd’. So we adapt the following
definition.
Definition C.2. A subset M of Rd is called an n-dimensional manifold, if for each point x ∈ M, there is an
open neighbourhood U of x in Rd, an open subset of V in Rd = Rn ×Rd−n, and a diffeomorphism ϕ : U → V
such that ϕ(M ∩ U) = V ∩ (Rn × {0}). We call the map ϕ a chart on M around x.
Definition C.3. Let M ⊂ Rd be a manifold and x ∈ M be a point. Then the tangent space TxM to M at
x is defined as the set consisting of all velocity vectors of curves on M through x, that is,

TxM =
{
dγ

dt
(0)

∣∣∣∣ γ : (−ϵ, ϵ) → M, γ(0) = x

}
.

Notice that the tangent space forms a linear subspace of Rd.
Definition C.4. Let M ⊂ Rd and M′ ⊂ Rd′ be manifolds, and let F : M → M′ be a differentiable map
(i.e., there is an extension F̃ : U → Rd′ of F which is a differentiable map on an open set U of Rd). Then the
differential dFx of F at x is defined as the linear map

dFx : TxM → TF (x)M′, dFx

(
dγ

dt
(0)
)

= d(F ◦ γ)
dt

(0).

Remark C.5. Take charts ϕ : U → V and ψ : U ′ → V ′ on M and M′, respectively. Also let (x1, . . . , xn)
and (y1, . . . , yn′) denote the coordinate on V ⊂ Rn and V ′ ⊂ Rn′ , respectively. Then the differential dFx is
represented by the Jacobi matrix

∂(ψ ◦ F ◦ ϕ−1)
∂x

(x) =
[
∂(ψ ◦ F ◦ ϕ−1)i

∂xj
(x)
]

of the map ψ ◦ F ◦ ϕ−1 : V → V ′ at the point x ∈ M.
Definition C.6. Let F : M → M′ be a differentiable map between manifolds. A point x ∈ M is called a
regular point (resp. a critical point) if the differential dFx : TxM → TF (x)M′ is surjective (resp. not surjective).
A point y ∈ M′ is called a regular value (resp. a critical value) if every point x ∈ M satisfying that F (x) = y
is a regular point of F (resp. or not).

The following is essentially a consequence of Implicit Function Theorem.
Theorem C.7 (cf. Lee (2013)[Corollary 5.14]). Let F : Rd → Rd′ be a differentiable map and y ∈ Rd′ a
regular value of F . Then the level set

F −1(y) = {x ∈ Rd | F (x) = y} ⊂ Rd

forms a (d− d′)-dimensional manifold.
Remark C.8 (explicit description of the tangent spaces to a manifold). Consider the same setup of Theorem
C.7 and denote F = (F1, . . . , Fd′). Then the normal to the tangent space TxM coincides with〈

∂F1

∂x
(x)T , · · · , ∂Fd′

∂x
(x)T

〉
R
,

which is spanned by the gradient vectors of components of F . Therefore the tangent space itself is noting but
its orthogonal complement, i.e.,

TxM =
〈
∂F1

∂x
(x)T , · · · , ∂Fd′

∂x
(x)T

〉⊥

R
.

Definition C.9. A differentiable map F : M → M′ is called an embedding if its differential dF : TxM →
TF (x)M′ is injective for every point x ∈ M and the restriction F : M → f(M) is a topological homeomorphism
(i.e. there is the inverse map F−1, and both F and F−1 are continuous).
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Figure 10: Image under E and tubular neighbour-
hood of the cosine curve in R2

x

y

z

Figure 11: Tubular neighbourhood of S1 embed-
ded in R3

C.3 Tubular neighbourhoods

Let M ⊂ Rd be a manifold. Recall the normal bundle

NM = {(x,v) ∈ Rd × Rd | x ∈ M,v ⊥ TxM}

to M and the endpoint map
E : NM → Rd, E(x,v) = x + v,

which are defined in §3 (Definitions 3.2 and 3.3).
Definition C.10 (Tubular neighbourhood). A tubular neighbourhood of M is a neighbourhood of M in Rd

that is the diffeomorphic image under E of an open subset V ⊂ NM of the form

V = {(x,v) ∈ NM | ∥v∥ < δ(x)}

for some positive continuous function δ : M → R.

Theorem C.11 (Theorem 6.24 in Lee (2013)). Every manifold embedded in Rd has a tubular neighbourhood.

Proof. Let M0 denote the subset {(x, 0) | x ∈ M} ⊂ NM. Fix a point x ∈ M. Since both dif-
ferentials dE|T(x,0)M0 : T(x,0)M0 → TxM and dE|NxM : NxM → NxM are isomorphisms, we have
that dE : T(x,0)NM → Rd is also an isomorphism. By Inverse Function Theorem, the map E is a dif-
feomorphism on a neighbourhood of (x, 0) ∈ NM. We can take the neighbourhood to be of the form
Vδ(x) = {(x′,v′) ∈ NM | ∥x − x′∥ < δ, ∥v′∥ < δ} for some δ > 0. Let ρ(x) denote the supremum of all such
δ < 1. We can prove that the function ρ : M → R is positive and continuous.

Now consider the open subset V = {(x,v) ∈ NM | ∥v∥ < 1
2ρ(x)} of NM. Then the map E is injective on

V , and hence E|V : V → Rd is a smooth embedding. Thus E(V ) is a tubular neighbourhood of M.

D Theoretical supplementaries of Section 3

D.1 Proof of Theorem 3.7

Under the setup of Theorem 3.7, put k = d− n and we define a map φ : Rd × Rd → RN+k by

φ(x,v) = (F (x), φ1(x,v), · · · , φN (x,v)).
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Notice that the normal bundle NM to M is expressed by

NM = φ−1(0) = {(x,v) ∈ Rd × Rd | φ(x,v) = 0}.

Hence the tangent space T(x,v)NM ⊂ Rd × Rd to NM at a point (x,v) coincides with the orthogonal
complement of 〈[

∂F1
∂x

T

0

]
, · · · ,

[
∂Fd

∂x

T

0

]
,

[
∂φ1
∂x

T

∂φ1
∂v

T

]
, · · · ,

[
∂φN

∂x

T

∂φN

∂v

T

]〉
R

in Rd × Rd (cf. Remark C.8).

We now employ the Method of Lagrange multiplier. That is, we paraphrase the condition that a point
(x,v) ∈ NM is a critical point of the endpoint map

E = E0|NM : NM → Rd

(i.e., the differential dE(x,v) : T(x,v)NM → Rd, which is a linear map, is degenerate) as follows. First, the
condition is equivalent to that there exists a non-zero vector of T(x,v)NM which vanishes by the differential
(dE0)(x,v) : Rd × Rd → Rd, i.e.,

T(x,v)NM ∩ Ker(dE0)(x,v) ⊋ {0}.
Moreover, we have the following:

T(x,v)NM ∩ Ker(dE0)(x,v) ⊋ {0}

⇐⇒

〈[
∂F1
∂x

T

0

]
, · · · ,

[
∂Fk

∂x

T

0

]
,

[
∂φ1
∂x

T

∂φ1
∂v

T

]
, · · · ,

[
∂φN

∂x

T

∂φN

∂v

T

]〉⊥

R

∩
〈[

e1
e1

]
, · · · ,

[
ed

ed

]〉⊥

R
⊋ {0}

⇐⇒

〈[
∂F1
∂x

T

0

]
, · · · ,

[
∂Fk

∂x

T

0

]
,

[
∂φ1
∂x

T

∂φ1
∂v

T

]
, · · · ,

[
∂φN

∂x

T

∂φN

∂v

T

]〉
R

+
〈[

e1
e1

]
, · · · ,

[
ed

ed

]〉
R
⊊ Rd × Rd,

where {e1, · · · , ed} denotes the standard basis of Rd. Here we used a property on orthogonal complements
(see Appendix C.1).

Finally, it is equivalent to that the matrix[
∂F
∂x

T ∂φ1
∂x

T
· · · ∂φN

∂x

T
Ed

On,d
∂φ1
∂v

T
· · · ∂φN

∂v

T
Ed

]
is degenerate. Performing elementary row and column operations, and by the definition of R1(M), the
conclusion of Theorem 3.7 follows.

D.2 Curvature and the first injectivity radius of a curve

Let M be a curve in Rd, i.e., a one-dimensional manifold embedded in Rd. We see that, in this case, the first
injectivity radius R1(M) is derived from the curvature of M as follows.

Definition D.1. Let γ : R → Rd be an arc-length parametrization of the curve M, i.e.,
∥∥∥∥dγds

∥∥∥∥ ≡ 1. Then the

curvature κ of M at a point p = γ(s) ∈ M is defined by the Euclidean norm of the second order derivative
d2γ

ds2 (s).

Proposition D.2. Assume that n = 1. Let γ : R → Rd be an arbitrary regular parametrization of the curve
M. Then the curvature κ of M is computed by

κ(γ(u)) =
√

∥γ′(u)∥2∥γ′′(u)∥2 − ⟨γ′(u), γ′′(u)⟩2

∥γ′(u)∥3 , (11)

where ′ denotes the differential by u.
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Although this is a well-known fact, we show it briefly as follows.

Proof. Let s and u denote an arc-length parameter and an arbitrary regular parameter of the curve M. Since
it holds that

γ′ = s′ dγ

ds
, (12)

we also have that

γ′′ = s′′ · dγ
ds

+ (s′)2
κ · ν, (13)

where ν denotes the normalization of the vector d
2γ

ds2 . Since two vectors dγ
ds

and ν form an orthonormal frame
of the curve M, it holds that

∥γ′′∥2 = (s′′)2 + (s′)4 · κ2. (14)

Now notice the following: it holds that

∥γ′∥2 = (s′)2 (15)

by Equation (12), and hence

⟨γ′, γ′′⟩ = s′ · s′′. (16)

Applying Equations (15) and (16) to Equation (14), we have the claim.

Theorem D.3. Assume that n = 1. Let κ denote the curvature of M. Then R1(M) coincides with the
infimum of radii of curvature 1/κ.

Proof. See Lemma 1 of Litherland et al. (1999).

D.3 Comments on the computation of the second injectivity radius

In this paper we used the definition of R2(M) as-is for the numerical estimation.

We note that one can weaken the condition appearing to the definition of R2(M) as follows.
Proposition D.4. The second injectivity radius R2(M) coincides with the infimum of the set{

1
2∥x1 − x2∥

∣∣∣∣ x1,x2 ∈ M,x1 ̸= x2,
and x1 − x2 ⊥ Tx1M

}
.

Proof. See §4 of Litherland et al. (1999).

We also have a comment on R2(M). Numerically, it seems to be possible to compute R2(M) by using the
persistent homology of the given data cloud. Indeed, the topology of the ϵ-neighbourhood of the data cloud
might change when two tubes touch each other.

E Other examples of injectivity radii

We have already seen that Theorem 3.7 works in the case that a data manifold is the unit circle S1 ⊂ R2. In
this appendix, we verify the theorem by observing other typical manifolds.
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E.1 Torus T 2

Let r′ > r > 0, and define a function F : R3 → R by

F (x, y, z) = (
√
x2 + y2 − r′)2 + z2 − r2.

Then we have a torus T 2 = F−1(0) embedded in R3. We can see that vector fields

t1 = (−y, x, 0), t2 = (xz, yz, r′
√
x2 + y2 − x2 − y2)

satisfy the assumption in Theorem 3.7. Then the matrix LT 2((x, y, z), (v1, v2, v3)) is calculated as follows:

LT 2((x, y, z), (v1, v2, v3))

=


2(
√
x2 + y2 − r′) x√

x2+y2
v2 + y zv1 − 2xv3 − xz + r′xv3√

x2+y2

2(
√
x2 + y2 − r′) y√

x2+y2
−v1 − x zv2 − 2yv3 − yz + r′yv3√

x2+y2

z 0 xv1 + yv2 + x2 + y2 − r′
√
x2 + y2

 .
We now parametrise the torus T 2 by (x, y, z) = ((r′ + r cos t) cosu, (r′ + r cos t) sin u, cos t) of T 2 ⊂ R3. Then
the vector (v1, v2, v3) makes LT 2((x, y, z), (v1, v2, v3)) degenerate if and only if

(v1, v2, v3) = −(r cos t cosu, r cos t sin u, r sin t) or

(v1, v2, v3) = −r′ + r cos t
r cos t (r cos t cosu, r cos t sin u, r sin t)

(
t ̸= ±π

2

)
.

Hence we obtain R1(T 2) = min{r, r′ − r}. Moreover we can see that R2(T 2) = min{r, r′ − r}. Thus the
injectivity radius is R(T 2) = min{r, r′ − r}.

E.2 Unit Sphere S2

Define a function F : R3 → R by
F (x, y, z) = x2 + y2 + z2 − 1.

Then we have S2 = F−1(0). Considering the rotation in R3 around coordinate axes, we see that vector fields

t1 = (−y, x, 0), t2 = (−z, 0, x), t3 = (0,−z, y).

satisfy the assumption of Theorem 3.7. (Here notice that the number of vector fields which we desire is
needed to be greater than 2, by topological reason.) Then the matrix LS2((x, y, z), (v1, v2, v3)) is calculated
as follows:

LS2((x, y, z), (v1, v2, v3))

=

2x v2 + y v3 + z 0
2y −v1 − x 0 v3 + z
2z 0 −v1 − x −v2 − y

 .
This matrix is degenerate on ((x, y, z), (v1, v2, v3)) ∈ NS2 if and only if (v1, v2, v3) = (−x,−y,−z). Hence we
obtain R1(S2) =

√
(−x)2 + (−y)2 + (−z2) = 1. Moreover it is clear that R2(S2) = 1. Thus the injectivity

radius is R(S2) = 1.

E.3 Unit n-Sphere Sn

As the final example, we observe the unit n-sphere. Define a function F : Rn+1 → R by

F (x1, x2, . . . , xn+1) = x2
1 + x2

2 + · · · + x2
n+1 − 1.
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Table 5: Estimated injectivity radii of various manifolds.

Data set R1 R2

S1 1.005± 0.003 0.999±0.006
S2 1.063± 0.032 0.997±0.038
S128 1.068± 0.023 0.922±0.056

Then we have Sn = F−1(0). Considering gradient vector fields of the height functions (x1, x2, . . . , xn+1) 7→ xj

(j = 1, 2, . . . , n+ 1), we see that vector fields

tj = (−x1xj , . . . ,−xj−1xj , 1 − x2
j ,−xj+1xj , . . . ,−xn+1xj) (j = 1, 2, . . . , n+ 1)

satisfy the assumption of Theorem 3.7. Then the matrix LSn(x,v) is calculated as follows:

LSn(x,v)

=


2x1 −2x1 −

∑
i ̸=1 xivi + x2

1 − 1 −xn+1v1 + xn+1x1
... −x1v2 + x1x2

. . .
...

...
...

. . . −xn+1vn + xn+1xn

2xn+1 −x1vn+1 + x1xn+1 −2xn+1vn+1 −
∑

i ̸=n+1 xivi + x2
n+1 − 1

 ,

where x = (x1, x2, · · · , xn+1),v = (v1, v2, · · · , vn+1). Now notice that for a point x ∈ Sn and a normal vector
v to x, there exists a scalar c ∈ R such that v = cx. Using it and performing the elementary row and column
operations, the matrix LSn(x,v) is transformed as follows:

x1 −c
∑

i x
2
i − 1 0 · · · 0

... 0
. . . . . .

...
...

...
. . . . . . 0

xn+1 0 · · · 0 −c
∑

i x
2
i − 1

 .

Hence the vector v makes the matrix LSn(x,v) degenerate if and only if c = −1. Hence we obtain
R1(Sn) = ∥ − x∥ = 1. Moreover it is clear that R2(Sn) = 1. Thus the injectivity radius is R(Sn) = 1.

F Algorithm for Estimating the injectivity radius

In this appendix, we show the pseudo-algorithm for estimating the injectivity radius (see Algorithm 1) and
some preliminary numerical experiments to verify the proposed algorithm.

F.1 Numerical experiments to validate AIER

For the S1, S2, S128 cases, the estimated R1 and R2 using the proposed algorithm are shown in Table 5. We
first generate dataset using the exact generative equations and add some Gaussian noise. The F is then
approximated using a neural network. The following Step 1 to Step 4 are executed using the neural network
approximation F . We note that we use the cosine similarity instead of inner products for the discrimination
condition defined in the Step 4.
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Algorithm 1 Algorithm for estimating the injectivity radius (AEIR)

Input: data D ⊂ Rd

Step 0: Estimate a map F = (F1, . . . , Fd−n) : Rd → Rd−n such that the point 0 is a regular value of F
and the manifold F −1(0) ⊂ Rd approximates data D. Put M := F −1(0).
Step 1: Estimate vector fields t1, t2, . . . , tN (n ≤ N) defined near M such that for every x ∈ M the
vectors t1(x), t2(x), . . . , tN (x) span the tangent space TxM.
Step 2: Put gi : Rd × Rd → R, gi(x,v) := ⟨v, ti(x)⟩ (i = 1, 2, . . . , N). Calculate the matrix

[A1, · · · , Ad−n, B1, · · · , BN ] :=


∂F1
∂x1

· · · ∂Fd−n

∂x1

∂φ1
∂x1

− ∂φ1
∂v1

· · · ∂φN

∂x1
− ∂φN

∂v1
...

. . .
...

...
. . .

...
∂F1
∂xd

· · · ∂Fd−n

∂xd

∂φ1
∂xd

− ∂φ1
∂vd

· · · ∂φN

∂xd
− ∂φN

∂vd

 ,
where x = (x1, · · · , xd),v = (v1, · · · , vd).
Step 3: Collect sufficient amount of samples from the set(x,v) ∈ Rd × Rd

∣∣∣∣∣∣
F (x) = 0, gi(x,v) = 0 (i = 1, 2, · · · , N),
det[A1, . . . , Ad−n, Bi1 , . . . , Bin

] = 0
(1 ≤ i1 < · · · < in ≤ N)

 ,

and estimate min ∥v∥ on the set. Put this value R1.
Step 4: Collect sufficient amount of samples from the set(x1,x2) ∈ Rd × Rd

∣∣∣∣∣∣
F (x1) = F (x2) = 0,x1 ̸= x2,
⟨x1 − x2, ti(x1)⟩ = ⟨x1 − x2, ti(x2)⟩ = 0
(i = 1, 2, · · · , N)

 ,

and estimate min ∥x1 − x2∥ on the set. Put this value R2.
Step 5: Calculate R := min{R1, R2}.
Output: R, which estimates R(M).

G Non equilibrium thermodynamics and phase transitions

In Song et al. (2021), score-matching Hyvärinen (2005) and diffusion-based (Sohl-Dickstein et al., 2015;
Ho et al., 2020) generative models have been unified into a single continuous-time score-based framework
where the diffusion is driven by a stochastic differential equation. This framework relies on Anderson’s
Theorem (Anderson, 1982), which states that under certain Lipschitz conditions on the drift coefficient
f : Rd ×Rd → Rd and on the diffusion coefficient g : Rd ×R → Rd ×Rd and an integrability condition on the
target distribution p0(x0), a forward diffusion process governed by the SDE

dxt = ft(xt)dt+ gtdwt (17)

where wt is a standard Wiener process. The probability distribution pt(x) of the forward SDE 17 satisfies
the Fokker-Planck equation:

∂

∂t
pt(x) = ∇x · [pt(x)∇xut(x)] (18)

= pt(x)
(
∇2

xut(x) + ∇x ln pt(x) · ∇xut(x)
)

(19)

where the potential ut(x) is defined as follows Raya & Ambrogioni (2023):

ut(x) = −
∫ x

x0

ft(z)dz + g2
t

2 ln pt(x) (20)

Here, we naturally consider the free energy for non-equilibrium thermodynamics Esposito & den Broeck
(2011):
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Definition G.1. Non-equilibrium free energy in the system

Fneq(t) :=
∫
Rd

pt(x)ut(x)dx. (21)

Theorem G.2. The non-equilibrium free energy can be rewritten as follows.

Fneq(t) = g2
t

2

∫
Rd

pt(x)
[
ln pt(x)
peq(x) + ln peq(x0)

]
dx. (22)

Proof. By the definition of the potential 20:

∇xut (x) = −ft(x) + g2
t

2 ∇x ln pt (x) (23)

When the target system is in equilibrium, the solution peq(x) of the Fokker-Planck equation 18 that satisfies
the following equation exists:

∂

∂t
peq(x) = ∇x ·

[
peq (x)

(
−ft(x) + g2

t

2 ∇x ln peq(x)
)]

= 0 (24)

Therefore, we can rewrite the drift coefficient of the forward SDE 17 using peq(x) as follows:

ft(x) = g2
t

2 ∇x ln peq (x) (25)

From the above, we obtain the following relation.

ut (x) = −
∫ x

x0

ft(z)dz + g2
t

2 ln pt (x) (26)

= g2
t

2

[
ln pt (x)
peq (x) + ln peq (x0)

]
(27)

On the other hand, the free energy in equilibrium thermodynamics is given by:

Definition G.3. Equilibrium free energy in the system

Feq(t) := g2
t

2 ln peq(x0) (28)

Therefore, the two free energies have the following relationship:

Theorem G.4. From the non-negativity of KL-divergence, the following inequality is obtained.

Fneq(t) − Feq(t) = g2
t

2 DKL [pt(x)∥peq(x)] ≥ 0 (29)

When the target system is in equilibrium at time t = teq, i.e., ∂
∂tpt(x)

∣∣
t=teq

= ∂
∂tpeq(x) = 0, the following

equality holds:

Fneq(teq) − Feq(teq) =
g2

teq

2 DKL [peq(x)∥peq(x)] = 0 (30)

According to Landau theory of phase transitions, phase transitions in equilibrium thermodynamics are
identified when the higher-order derivatives of equilibrium free energy with respect to the order parameters
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λ1, λ2, . . . , λn exhibit discontinuities or divergences. This criterion serves as a fundamental indicator for
detecting phase transitions within the framework of equilibrium statistical mechanics:

∂nFeq

∂λn
i

= 0 (31)

On the other hand, it remains unclear whether a simple criterion for critical points, like the one mentioned
above, exists for phase transition phenomena in non-equilibrium systems such as the diffusion processes
represented by diffusion models.

In recent research Raya & Ambrogioni (2023), it has been demonstrated that the spontaneous symmetry
breaking of the potential ut(x), plays a central role in understanding phase transition phenomena in the
diffusion processes represented by diffusion models. Specifically, the spontaneous symmetry breaking of
the potential ut(x) occurs when the first derivative ∇xut(x) and the second derivative ∇2

xut(x) vanishes
∇xut(x) = ∇2

xut(x) = 0 at the critical point of the space-time (x, t) = (xc, tc), where the fixed point of the
Fokker-Planck equation appear.

For instance, we consider a simple one-dimensional example Raya & Ambrogioni (2023) with a dataset
consisting of two points y−1 = −1 and y1 = −y−1 = 1 sampled with equal probability. Up to terms that are
constant in x, the potential is given by the following expression:

ut(x) = β(t)
(

−1
4x

2 − ln
(
e

− (x−θt)2

2(1−θ2
t ) + e

− (x+θt)2

2(1−θ2
t )
))

(32)

where β(t) = βmin + t(βmax − βmin), βmax = 20, βmin = 0.1. At the critical point (x, t) = (0, tc), tc = 0.293,
the first derivative ∇xut(x) and the second derivative ∇2

xut(x) vanishes ∇xut(x) = ∇2
xut(x) = 0.

Lemma G.5. By the definition of the Fokker-Planck equation 18, the Fokker-Planck equation satisfies the
following relations at the critical point (x, t) = (xc, tc) Raya & Ambrogioni (2023):

∂

∂t
pt(0)

∣∣∣∣
t=tc

= ptc(0)

∇2
xutc(0)︸ ︷︷ ︸

=0

+∇x ln ptc(0) · ∇xutc(0)︸ ︷︷ ︸
=0

 = 0 (33)

The key insight is that the fixed point of the Fokker-Planck equation (xc, tc) = (0, tc) can be interpreted
as spontaneous symmetry breaking in the potential function ut(x). This phenomenon not only elucidates
the emergence of phase transitions but also highlights the role of symmetry breaking as a mechanism that
governs such transitions in generative diffusion models.

Here, we discuss the universal properties of diffusion models that hold under more general potentials ut(x).

Lemma G.6. By the intermediate value theorem, there exists xc(t) (t ∈ [0, 1]) such that∫
Rd

∂

∂t
pt(x)dx =

∫
Rd

pt(x)
[
∇2

xut(x) + ∇x ln pt(x) · ∇xut(x)
]
dx (34)

= ∇2
xut(xc(t)) + ∇x ln pt(xc(t)) · ∇xut(xc(t)) (35)

= 0 (36)

where
∫
Rd

∂
∂tpt(x)dx = ∂

∂t

∫
Rd pt(x)dx = ∂

∂t 1 = 0 and (x, t) = (xc(t), t).

Lemma G.7. By the definition of the Fokker-Planck equation 18:

∂

∂t
pt(x) = pt(x) ∂

∂t
ln pt(x) (37)

= pt(x)
[
∇2

xut(x) + ∇x ln pt(x) · ∇xut(x)
]

(38)

We get the following equation:

∂

∂t
ln pt(x) = ∇2

xut(x) + ∇x ln pt(x) · ∇xut(x) (39)
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Proposition G.8. We introduce the Fisher information I(t) of time:

I(t) :=
∫
Rd

pt(x)
[
∂

∂t
ln pt(x)

]2
dx (40)

We propose the criterion to identify the critical points (x, t) = (xh(th), th) at which phase transitions appear
in the diffusion processes:

∂2

∂t2
ln pt(xh(t))

∣∣∣∣
t=th

= 0 (41)

In other words, the phase transition in diffusion models occurs at a critical point in space-time (xh(th), th),
where the Fisher information degenerates.

Proof. By the intermediate value theorem, there exists xh(t) (t ∈ [0, 1]) such that

I(t) =
∫
Rd

pt(x)
[
∂

∂t
ln pt(x)

]2
dx (42)

=
[
∂

∂t
ln pt(xh(t))

]2
(43)

According to the Cramér-Rao inequality for an arbitrary stochastic function θt(x), the Fisher information
I(t) has a positive lower bound Nicholson et al. (2020); Yoshimura & Ito (2021); Ito (2023):∣∣ ∂

∂t ⟨θt(x)⟩
∣∣2

Var [θt(x)] ≤ I(t) (44)

We define the extremum of the Fisher information as follows:

∂

∂t
I(t)

∣∣∣∣
t=th

= 2 ∂

∂t
ln pt(xh(t))

∣∣∣∣
t=th

∂2

∂t2
ln pt(xh(t))

∣∣∣∣
t=th

= 0 (45)

The two conditions that yield the extremum of the Fisher information 45, ∂
∂t ln pt(xh(t))

∣∣
t=th

= 0 and
∂2

∂t2 ln pt(xh(t))
∣∣∣
t=th

= 0, cannot hold simultaneously, as demonstrated in the following discussion.

∂2

∂t2
ln pt(xh(t)) =

∂2

∂t2 pt(xh(t))
pt(xh(t)) −

[
∂

∂t
ln pt(xh(t))

]2
(46)

If we assume ∂
∂t ln pt(xh(t))

∣∣
t=th

= 0, it would result in I(t) = 0, which contradicts the Cramér-Rao inequality
that generally imposes a positive lower bound 44. Therefore, the extremum of the Fisher information is
determined by ∂2

∂t2 ln pt(xh(t))
∣∣∣
t=th

= 0.
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(a) The time dependence of the Fisher information I(t)
(Overview)

(b) The time dependence of the Fisher information I(t)
(Zoom in)

Figure 12: The time dependence of the Fisher information I(t). The red dashed line represents the time
tc = 0.293 at which the potential breaks symmetry in Raya & Ambrogioni (2023). On the other hand, the
magenta dotted line indicates the time th = 0.312 when the Fisher information predicted by our proposed
method degenerates. While these two values are close, they do not match exactly.

H Theoretical analysis on the empirical results

H.1 ΓM(ϵ)(t)

Let ϵ > 0. Let M(ϵ) be the ϵ-neighbourhood of a compact oriented manifold M in the Euclidean space Rd

as defined in Definition 3.1. Suppose pt(x) is a smooth solution to the Fokker-Planck equation (3) with an
initial condition p0(x) = δM(x) here δM(x) is Dirac’s density function with its support M. We define a
function ΓM(ϵ)(t) as follows:

ΓM(ϵ)(t) :=
∫

M(ϵ)
pt(x)dx. (47)

Roughly speaking, this is understood as a counting function of particles within the ϵ-neighbourhood of M .

Proposition H.1. Assume β(t) : R≥0 → R is a smooth function and ft(x) = 1
2β(t)f(x), gt(x) =

√
β(t) in

(3) (f(x) is some smooth vector field). We have:

lim
t→0

∂

∂t
ΓM(ϵ)(t) = 0

and
lim

t→∞

∂

∂t
ΓM(ϵ)(t) = 0.

Thus there exists at least one tc in (0,+∞) such that ∂2

∂t2
ΓM(ϵ)(tc) = 0. Moreover if β(t) > 0 and

∇xpt(x) · n − pt(x)f(x) · n < 0 (48)

for any x ∈ ∂M(ϵ) and any t ∈ R>0 then ΓM(ϵ)(t) is strictly monotonically decreasing. Here n a unit
outward pointing normal vector field along ∂M(ϵ). In particular we can express the derivative of the function
ΓM(ϵ)(t) in terms of the free energy u defined in (20):

∂

∂t
ΓM(ϵ)(t) =

∫
∂M(ϵ)

pt(x)∇xut(x) · ndx.
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Proof. (informal) We may compute for t > 0:

∂

∂t
ΓM(ϵ)(t) =

∫
M(ϵ)

∂

∂t
pt(x)dx

= β(t)
∫

M(ϵ)
(∇x · pt(x)f(x) + ∆xpt(x)) dx

= β(t)
(

−
∫

∂M(ϵ)
pt(x)f(x) · nds+

∫
∂M(ϵ)

∇xpt(x) · nds

)
(49)

t→0−−−→ 0.

The second equality follows since pt(x) satisfies the Fokker-Planck equation (3). The third equality follows
from the divergence theorem where n is the unit outward pointing normal vector field along ∂M(ϵ). The last
limit follows since lim

t→0
pt(x) = δM(x) and in particular lim

t→0
pt(x) = 0 and lim

t→0
∇xpt(x) = 0 in ∂M(ϵ). To be

more precise the convergence of the limit we could make use of the following chain of inequalities:∣∣∣∣∣β(t)
(

−
∫

∂M(ϵ)
pt(x)f(x) · nds+

∫
∂M(ϵ)

∇xpt(x) · nds

)∣∣∣∣∣
≤ |β(t)|

(
max

x∈∂M(ϵ)
{|f(x)|}

∫
∂M(ϵ)

|pt(x)|ds+
∫

∂M(ϵ)
|∇xpt(x) · n|ds

)

≤ |β(t)|
(

max
x∈∂M(ϵ)

{|f(x)|} sup
x∈∂M(ϵ)

|pt(x)|
∫

∂M(ϵ)
1ds+ sup

x∈∂M(ϵ)
|∇xpt(x)|

∫
∂M(ϵ)

1ds
)

= |β(t)|
∫

∂M(ϵ)
1ds

(
max

x∈∂M(ϵ)
{|f(x)|} sup

x∈∂M(ϵ)
|pt(x)| + sup

x∈∂M(ϵ)
|∇xpt(x)|

)
.

When t → ∞, pt(xt) tends to be stationary i.e., lim
t→∞

∂

∂t
pt(xt) = 0. Therefore

lim
t→∞

∂

∂t
ΓM(ϵ)(t) = 0.

The existence follows from the mean value theorem. Finally let us show it is strictly monotonically decreasing.
The negativity of ∂

∂t ΓM(ϵ)(t) follows from (49) and (48).

I The time when the score vector field reverses

In this section we discuss the details of Section 4.

I.1 Variance Preserving SDE and score vector field

We consider the widely used Variance Preserving (VP-SDE) (DDPM):

dYs = −1
2β(s)Ysds+

√
β(s)dŴs (50)

with corresponding generative dynamics:

dXt =
[
β(T − t)∇x log p(Xt, T − t) + 1

2β(T − t)Xt

]
dt+

√
β(T − t)dWt. (51)

One expresses marginal distribution ps(x) of Variance Preserving (VP-SDE) (DDPM) as follows:

ps(x) =
∫

M

N(y|θsx, (1 − θ2
s)I)p0(y)dy, (52)

36



Published in Transactions on Machine Learning Research (07/2025)

where θs = e
− 1

2

∫ s

0
β(τ)dτ and p0(y) is the distribution at time at 0. The score at point x is given by

∇x ln ps(x) = θs

(1 − θ2
s)ps(x)

∫
M

(y − θsx)N(y|θsx, (1 − θ2
s)I)p0(y)dy. (53)

I.2 Analysis of the behaviour of the score vector field at the boundary of the tubular neighbourhood of
a hypersphere

Proposition I.1. Suppose M = Sn is a n-sphere of radius R in Rd. We predict the following observation:
Let ϵ be as R > ϵ > 0. Let n be a unit outward pointing normal vector to the boundary of ϵ-neighbourhood
∂M(ϵ). Assume

ϵ+ (1 − θs)(R− ϵ)√
1 − θ2

s

≥
√
d, (54)

x ∈ ∂M(ϵ) and p0(y) is constant C greater than 0 on M. Then:

∇x ln pt(x) · n ≤ 0.

Proof. (this proof is yet informal. Although we only perform this proof for the case d = 2 and M is a 1-sphere
of radius 1, we hope it can be done in general dimensions). Since ∇x ln pt(x) = ∇xpt(x)

pt(x) , it is enough to prove
∇xpt(x) · n ≤ 0. Performing a change of variables w = y−θsx√

1−θ2
s

we have:

∇xpt(x) · n = C
θs

(1 − θ2
s)

∫
M

(y − θsx)N(y; θsx, (1 − θ2
s)I)dy · n

= C

∫
M−θsx√

1−θ2
s

wN(w; 0, I)dw · n

= C

∫
M−θsx√

1−θ2
s

w

|w|
· n|w|N(w; 0, I)dw

= C

∫
N−

w

|w|
· n|w|N(w; 0, I)dw +

∫
N+

w

|w|
· n|w|N(w; 0, I)dw

= C

∫
R2

z

|z|
· n|z|N(z; 0, I)δN−(z)dz

+ C

∫
R2

z

|z|
· n|z|N(z; 0, I)δN+(z)dz, (!)

where M−θsx√
1−θ2

s

is the image of the manifold M by a diffeomorphism y 7→ y−θsx√
1−θ2

s

and N− (resp. N+) is

{w ∈ M−θsx√
1−θ2

s

;w · n < 0(resp. > 0)}. dz is a volume form of Rd. Let θ be the angle between z/|z|
and n. If we use the polar coordinates (|zθ|, θ) ∈ (0,∞] × [0, 2π), since cos(θ + π) = − cos(θ), (put
Nz(θ) := {(|z|, θ) ∈ (0,∞] × [0, 2π); z ∈ N for some θ s.t. cos θ = z

|z| · n)}) we may estimate (!) as follows:

(!) =
∫ −π/2

π/2
cos θ

(∫ ∞

0
|zθ|2N(zθ : 0, I)δNz(θ)(|zθ|)d|z|

)
dθ (55)

+
∫ π/2

−π/2
cos θ

(∫ ∞

0
|zθ|2N(zθ : 0, I)δNz(θ)(|zθ|)d|z|

)
dθ

=
∫ π/2

−π/2
cos θ

(
|zθ+ |2N(zθ+ : 0, I) − |zθ− |2N(zθ− : 0, I)

)
dθ, (

∫
)
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where we set zθ+ ∈ N+, zθ− ∈ N− and zθ+ = −cθzθ− for some cθ > 0. This integral (
∫

) is negative or zero if(
|zθ+ |2N(zθ+ : 0, I) − |zθ− |2N(zθ− : 0, I)

)
≤ 0 (56)

for any θ. Since x ∈ ∂M(ϵ), |zθ+ | ≥ |zθ− | ≥ ϵ+(1−θs)(R−ϵ)√
1−θ2

s

holds. Since |z|2N(z : 0, I) is strictly monotonically

decreasing if |z| ≥
√

2, the inequality holds for |zθ+ | ≥ |zθ− | ≥
√

2. Thus when ϵ+(1−θs)(R−ϵ)√
1−θ2

s

≥
√

2 the
assertion follows.

Example I.2. Let M = S1 in R2 and |x| = 0.99. Compute (54) and we understand that ∇x ln pt(x) points
toward S1 if θs > 0.712. Similar thing can be observed for S2 in R3. Therefore Proposition I.1 explain the
Figure 21 and Figure 22.

Remark I.3. Conjecture 4.4 is a kind of generalisation of Theorem D.1 in Stanczuk et al. (2024). The
authors predict we can formulate more general conjecture by using concept of injectivity radii for more general
manifolds to illustrate and explain the behaviour of the score vector field of more general diffusion models.

Proposition I.4. Suppose M is a compact oriented manifold embedded in Rd. We predict the following
observation: Let ϵ be an injectivity radius. Let n be a unit outward pointing normal vector to the boundary of
ϵ-neighbourhood ∂M(ϵ). Assume

ϵ+ |x|(1 − θs)√
1 − θ2

s

≥
√
d, (57)

x ∈ ∂M(ϵ) and p0(y) is constant C greater than 0 on M. Finally assume a line segment with x and the
origin as its vertices does not intersect M. Assume moreover the following condition.

(i) For any y ∈ M with (y − θsx) · n > 0 there exists y′ ∈ M and some c > 0 such that −c(y − θsx) =
(y′ − θsx).

(ii) Assume that for each y ∈ M such that (y − θsx) · n < 0, there exists ỹ ∈ M and c > 0 such that
−c(ỹ − θsx) = (y − θsx). Then c ≤ 1.

(iii) For any y ∈ M, {c(y − θsx)|c > 0} ∩ M is a finite set.

Then:
∇x ln pt(x) · n ≤ 0.

Proof. (this proof is yet informal. Although we only perform this proof for the case d = 2 and M is a
curve, we hope it can be done in general dimensions). Since ∇x ln pt(x) = ∇xpt(x)

pt(x) , it is enough to prove
∇xpt(x) · n ≤ 0. Performing a change of variables w = y−θsx√

1−θ2
s

we have:

∇xpt(x) · n = C
θs

(1 − θ2
s)

∫
M

(y − θsx)N(y; θsx, (1 − θ2
s)I)dy · n

= C

∫
M−θsx√

1−θ2
s

wN(w; 0, I)dw · n

= C

∫
M−θsx√

1−θ2
s

w

|w|
· n|w|N(w; 0, I)dw

= C

∫
N−

w

|w|
· n|w|N(w; 0, I)dw +

∫
N+

w

|w|
· n|w|N(w; 0, I)dw

= C

∫
R2

z

|z|
· n|z|N(z; 0, I)δN−(z)dz

+ C

∫
R2

z

|z|
· n|z|N(z; 0, I)δN+(z)dz, (!)
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where M−θsx√
1−θ2

s

is the image of the manifold M by a diffeomorphism y 7→ y−θsx√
1−θ2

s

and N− (resp. N+) is

{w ∈ M−θsx√
1−θ2

s

;w · n < 0(resp. > 0)}. dz is a volume form of Rd. Let θ be the angle between z/|z|
and n. If we use the polar coordinates (|zθ|, θ) ∈ (0,∞] × [0, 2π), since cos(θ + π) = − cos(θ), (put
Nz(θ) := {(|z|, θ) ∈ (0,∞] × [0, 2π); z ∈ N for some θ s.t. cos θ = z

|z| · n)}) we may estimate (!) as follows:

(!) =
∫ −π/2

π/2
cos θ

(∫ ∞

0
|zθ|2N(zθ : 0, I)δNz(θ)(|zθ|)d|z|

)
dθ +

∫ π/2

−π/2
cos θ

(∫ ∞

0
|zθ|2N(zθ : 0, I)δNz(θ)(|zθ|)d|z|

)
dθ

=
∫ π/2

−π/2
cos θ

(∑
|zθ+ |2N(zθ+ : 0, I) −

∑
|zθ− |2N(zθ− : 0, I)

)
dθ

≤ C ′
∫ π/2

−π/2
cos θ

(
|zθ+ |2N(zθ+ : 0, I) − |zθ− |2N(zθ− : 0, I)

)
dθ, (

∫
)

where zθ+ ∈ N+, zθ− ∈ N− and zθ+ = −cθzθ− for some cθ > 0. If there is no such zθ+ , we set zθ+ = 0.
Also we set |zθ+ |N(zθ+ : 0, I) := max{|zθ+ |2N(zθ+ : 0, I)} and |zθ− |N(zθ− : 0, I) := min{|zθ− |2N(zθ− : 0, I)}.
Thus by the assumption (ii) we may obtain (

∫
). This integral (

∫
) is negative or zero if(

|zθ+ |2N(zθ+ : 0, I) − |zθ− |2N(zθ− : 0, I)
)

≤ 0 (58)

for any θ. Since x ∈ ∂M(ϵ) and by the assumption (ii), by the lemma below |zθ+ | ≥ |zθ− | ≥ ϵ+|x|(1−θs)√
1−θ2

s

holds.

Since |z|2N(z : 0, I) is strictly monotonically decreasing if |z| ≥
√

2, the inequality holds for |zθ+ | ≥ |zθ− | ≥
√

2.
Thus when ϵ+|x|(1−θs)√

1−θ2
s

≥
√

2 the result follows.

Lemma I.5. In the situation of the proof above, we have the estimate:

|zθ+ | ≥ |zθ− | ≥ ϵ+ |x|(1 − θs)√
1 − θ2

s

.

Proof. The assumption (ii), |zθ+ | ≥ |zθ− | is evident. For any ỹ such that |ỹ − x| = ϵ we have

|y − θsx| ≥ |ỹ − θsx|. (59)

Since max
ỹ∈{ỹ|ϵ=|ỹ−x|}

|ỹ − θsx| = ϵ+ (1 − θs)|x|, we have the result.

Remark I.6. The smaller the injectivity radius slower time of the turning of the score vector field becomes.
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J Experimental Details

J.1 experiments detail for ddpm

In previous studies (Raya & Ambrogioni (2023)), the training of diffusion models was performed using DDPM.
The number of time steps is set to 1000, and the noise schedule coefficient β linearly increases from 1.0 × 10−4

to 2.0 × 10−2. A key difference from prior work is that, for denoising, the MLP layers have been replaced
with a 1D U-Net. This adjustment is necessary to handle higher-dimensional data, such as 16D, 24D, and
48D, where a more complex model is required.

The model is trained using the mean squared error (MSE) loss function, with AdamW as the optimizer. The
learning rate is set to 1 × 10−3, and the batch size is 32. For toy data experiments, the training dataset
consists of 50,000 points sampled from a uniform distribution. The model is trained without using any
advanced samplers like DDIM, relying solely on the standard DDPM reverse process.

J.2 Wasserstein Distance Computation

Definition. Let X = {x1, . . . , xn} and Y = {y1, . . . , ym} be the sets of generated and training samples,
respectively. We regard each as a discrete distribution:

µ = 1
n

n∑
i=1

δxi
, ν = 1

m

m∑
j=1

δyj
.

Then, the 1-Wasserstein distance (Earth Mover’s Distance) is defined by

W1(µ, ν) = min
π∈Π(µ,ν)

n∑
i=1

m∑
j=1

∥xi − yj∥πij , (60)

where

Π(µ, ν) =
{
π |

m∑
j=1

πij = 1
n ,

n∑
i=1

πij = 1
m , πij ≥ 0

}
.

We use the POT library to solve this optimal transport problem in practice.

J.3 experiments detail for the analysis of tubular neighbourhood in circle

In Section 5.2, we conducted experiments using a uniform distribution on the unit circle embedded in a
higher-dimensional Euclidean space. The red line plot shows the proportion of particles outside the tubular
neighbourhood at each time step when generation is performed over 1000 time steps, the same as during
training. Here, the injectivity radius that defines the tubular neighbourhood is set to 1. Therefore, being
outside the tubular neighbourhood means that a particle’s distance from the unit circle exceeds 1. In the
generation process, a point is first sampled from Gaussian noise. When the ambient space is sufficiently large,
the proportion of particles outside the tubular neighbourhood is 1. As the time steps progress during the
generation process, each data point approaches the data manifold, which in this case is the unit circle. Thus,
at the final time step, all particles are expected to lie within the tubular neighbourhood.

The blue line plot evaluates the accuracy of data generation using the Wasserstein distance when initialisation
is delayed during the generation process of the diffusion model. The horizontal axis, Diffusion Time, indicates
the number of time steps performed out of the usual 1000-step generation process. For example, in the case
of 800 steps, the initialisation is delayed by 200 steps, with the generation beginning from Gaussian noise and
proceeding for the remaining 800 time steps. Following previous studies, we refer to this as late initialisation.

We can calculate the calculation of the injectivity radius as 1 (see. 3.3).

J.4 experiments detail for the analysis of tubular neighbourhood in hypersphere

In Section 5.2, experiments were conducted using a uniform distribution on a unit hypersphere embedded
in a higher-dimensional Euclidean space. The experimental setup is the same as in J.3. Given that the
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injectivity radius of the unit hypersphere is 1(see E.3), being outside the tubular neighbourhood implies that
the distance from the unit sphere is greater than or equal to 1.

In Fig. 5 (see Section 5.3), we discussed that the discrepancy between the proportion of particles outside
the tubular neighbourhood and the rise in Wasserstein distance can be attributed to the increasing distance
between the distributions. To support this hypothesis, we conducted an experiment where we initialized the
Gaussian noise using the lateinit scheme, with xt ∼ N (0, I/

√
d), where d is the dimension of the ambient

space. Corresponding to the experiment shown in Fig. 5, we performed another experiment on S20 with an
ambient space of R48. As shown in Fig. 13, we observed that the Wasserstein distance starts increasing as
particles begin entering the tubular neighbourhood.

Figure 13: S20 embedded in R48

J.5 experiments detail for the analysis of tubular neighbourhood in ellipse, torus

In Section 5.3, experiments were conducted using uniform distributions on an ellipse and a torus, both
embedded in a higher-dimensional Euclidean space. The experimental setup is consistent with that described
in J.3.

For the ellipse, given the semi-major axis 2a and the semi-minor axis 2b, the injectivity radius is calculated
as b2

a . In this experiment, we tested two cases: one with a semi-major axis of 4 and a semi-minor axis of 2,
and another with a semi-major axis of 6 and a semi-minor axis of 2. The injectivity radii for these cases are
1
2 and 1

3 , respectively. We can calculate the injectivity radius of ellipse as follow. Let us verify Theorem 3.7
through ellipse, given the semi-major axis a and the semi-minor axis b. Define a function F : R2 → R by

F (x, y) = x2

a2 + y2

b2 − 1.

Then we have M = F−1(0). One of the normal vector field on M is given as grad(F ) = ( ∂F
∂x ,

∂F
∂y ) = ( 2x

a2 ,
2y
b2 ),

so ( y
b2 ,− x

a2 ) is a tangent vector field which spans the tangent space to M at each point (x, y) ∈ M .

Applying Theorem 3.7, the first injectivity radius R1(M) is calculated as follows. For a point (x, y) ∈ M , the
matrix

LM ((x, y), (v1, v2)) =
[ 2x

a2 − v2
a2 − y

b2
2y
b2

v1
b2 + x

a2

]
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Dataset
ρproportion 0.1 0.5 0.9 0.95 0.99 0.999 1.0

Ellipse (R = 2, r = 1) embedded in R16 3.690 2.351 1.110 0.926 0.593 0.441 0.211
Torus (R = 2, r = 1) embedded in R16 1.328 0.816 0.563 0.520 0.440 0.333 0.149

is degenerate (i.e., its determinant is zero) if and only if (v1, v2) = (− b4x2+a4y2

a2b2x+ a4y2
x

,− b4x2+a4y2

b4 x2
y +a2b2y

). Let (x, y) =

(a cos θ, b sin θ), then, (v1, v2) = (− b2 cos2 θ+a2 sin2 θ

a cos θ+a sin2 θ
cos θ

,− b2 cos2 θ+a2sin2 θ
b cos2 θ

sin θ +b sin θ
). The L2 norm of (v1, v2) is minimized

at θ = 0 when a > b, and in this case, R1(M) = b2

a .

For the torus, the injectivity radius is given by min(r′ − r, r), where r′ is the major radius and r is the minor
radius (see E.1). In this experiment, we used two cases: one with a major radius of 2 and a minor radius of 1,
and another with a major radius of 3 and a minor radius of 1. In both cases, the injectivity radius is 1.

These calculations provide the injectivity radii used in our experiments on both the ellipse and the torus,
guiding the analysis of the tubular neighbourhoods in these geometric settings.

In the experiments presented in Section 5.3, we included figures for an ellipse with a major axis of 6 and
a minor axis of 2, as well as a torus with a major radius of 3 and a minor radius of 1. Here, we provide
additional figures for an ellipse with a major axis of 4 and a minor axis of 2, and a torus with a major radius
of 2 and a minor radius of 1.

Figure 14: ellipse R = 2, r = 1 embedded in R16 Figure 15: torus R = 2, r = 1 embedded in R16

J.6 experiments detail for the analysis of tubular neighbourhood in DisjointArcs cases

In Section 5.4, we conducted experiments using a data distribution composed of segments from two circles with
different curvatures, both embedded in a higher-dimensional Euclidean space. The dataset was constructed
by uniformly sampling 50,000 points from two regions: one segment from a circle with radius 1, covering the
angle range from π/6 to π/3, and another segment from a circle with radius 2, covering the angle range from
7π/6 to 4π/3.

Next, we consider appropriate values for the injectivity radius. For the submanifold A, the injectivity radius
is considered to be 1 (although, strictly speaking, the injectivity radius is undefined at the endpoints where
the tangent plane cannot be properly defined, we exclude these points for our analysis). On the other hand,
for the submanifold B, since it is a part of a circle with radius 2, the injectivity radius is considered to be 2.
Therefore, the injectivity radius for the combined manifold formed by these two segments is determined to be
1.

J.6.1 Additional Experiments

To further investigate the behaviour of the score vector field under different curvature settings, we conducted
additional experiments using new datasets. These datasets include:
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1. A segment from a circle with radius 3, covering the angle range from π/6 to π/3, and a segment
from a circle with radius 1, covering the angle range from 7π/6 to 4π/3. See Figure 16 for the
experimental result. To further analyse the behaviour of the proportion of particles outside the tubular
neighbourhood (depicted as the red solid line in the experimental results), we conducted additional
experiments to investigate how this behaviour changes with different values of the neighbourhood
radius. Specifically, we considered a neighbourhood radius of R = 3 (which is different from the
injectivity radius r = 1). The proportion of particles outside this larger neighbourhood region is
plotted as a red dashed line in Figure 18. This result demonstrates that the behaviour of the red line
varies depending on the chosen value for the neighbourhood radius.

2. A segment from a circle with radius 3/2, covering the angle range from π/6 to π/3, and a segment
from a circle with radius 1/2, covering the angle range from 7π/6 to 4π/3. See Figure 17 for the
experimental result.

Figure 16: Disjoint arcs case R = 3, r = 1 embed-
ded in R16

Figure 17: Disjoint arc case R = 3/2, r = 1/2
embedded in R16

Figure 18: Disjoint arc case R = 3, r = 1 embed-
ded in R16

J.7 experiments detail for the analysis of tubular neighbourhood in natural dataset

In Section 5.5, we performed experiments by embedding real-world datasets such as MNIST and Fashion
MNIST onto a hypersphere, subsequently mapping them into a high-dimensional Euclidean space. For
efficient generation and sampling in diffusion models, it is a common practice to reduce the dimensionality
into a latent space—similar to the approach in Latent Diffusion—and consider the transitions of the diffusion
model within this space. While Latent Diffusion utilizes VQ-VAE for embedding, we employ a Hyperspherical
VAE in our methodology.

In our approach, several key modifications were made to the original hyperspherical VAE (sVAE) (Davidson
et al., 2018) setup used in prior studies. One significant change was transitioning from binary data represen-
tation, where data was handled as binary values, to continuous data representation. As a result, we replaced
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the Binary Cross-Entropy (BCE) loss function with the Mean Squared Error (MSE) loss function. This
modification allows for more accurate modelling and reconstruction of continuous data, particularly when
working with datasets such as MNIST and Fashion MNIST.

Furthermore, to address the limitations of the previously used MLP layers for reconstructing natural images,
we enhanced the model by adopting CNN-based layers. This adjustment is particularly beneficial for
reconstructing images from higher-dimensional latent spaces.

To demonstrate the improvements, we present a comparison between the normal VAE (nVAE) and the
hyperspherical VAE (sVAE), focusing on the ELBO (Evidence Lower Bound) and log-likelihood (LL) values
for different latent space dimensions (10, 15, and 20). Additionally, we compare the performance of both
nVAE and sVAE when using MLP-based and CNN-based architectures. The results are summarized in the
following tables:

ELBO (↓) / LL (↓) nVAE sVAE
dim 10 -23.7 / -22.9 -25.5 / -24.0
dim 15 -23.8 / -23.1 -26.7 / -24.5
dim 20 -23.8 / -23.1 -27.6 / -25.0

Table 6: Comparison of ELBO and LL for nVAE and sVAE with different latent space dimensions, using
MLP-based models on the Fashion MNIST dataset.

ELBO (↓) / LL (↓) nVAE (CNN) sVAE (CNN)
dim 10 -22.8 / -22.1 -24.4 / -22.7
dim 20 -23.1 / -22.2 -26.8 / -23.9

Table 7: Comparison of ELBO and LL for nVAE and sVAE with different latent space dimensions, using
CNN-based models on the Fashion MNIST dataset.

In Section 5.5, we explored the effectiveness of late initialisation in accelerating image generation by embedding
natural images onto a hypersphere and sampling on the hypersphere. It is crucial for practical applications to
ensure that points sampled through late initialisation in the latent space can generate realistic images when
passed through the decoder. Here, we present generated images obtained by passing points sampled using late
initialisation during the generation process of the diffusion model through the decoder of the hyperspherical
VAE, and qualitatively evaluate the results.
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Figure 19: MNIST images decoded using SVAE after diffusion times of 1000, 500, 200, 100, 50, and 1
(arranged from left to right, top to bottom) in the latent space.

Figure 20: Fashion MNIST images decoded using SVAE after diffusion times of 1000, 500, 200, 100, 50, and 1
(arranged from left to right, top to bottom) in the latent space.
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There are limitations regarding embedding onto hyperspheres. Previous studies have shown that as the
dimensionality of the embedding onto the hypersphere increases beyond a certain value, the accuracy of
the embedding decreases. This phenomenon is related to the fact that the surface area of a hypersphere
approaches zero in the high-dimensional limit. Therefore, although we conducted experiments with MNIST
and Fashion MNIST, for larger datasets, the accuracy of the embedding would deteriorate to the point where
considering a diffusion model would no longer be meaningful.

However, despite these current challenges, there are potential solutions. Previous research focused on
embeddings onto unit hyperspheres, but it is possible to consider hyperspheres with a radius of

√
n. When

the dimensionality is n, the surface area of a hypersphere with a radius of
√
n increases monotonically,

suggesting that the embedding could remain effective even as the dimensionality increases. In this case,
efficient generation using diffusion models that leverage the concept of tubular neighbourhoods could become
meaningful.

K Analysis of score vector

K.1 Score Vector field

We present additional experiments detailing the score vectors of DDPM. This section includes two experimental
setups concerning the score vector field. Firstly, for the S1 case, the experimental setup includes a grid size
of 32 × 32 and a trained DDPM with T = 1000. The training data is S1, with the red circle at the centre
representing S1. See Figure 21 for the corresponding visualization.
Secondly, for the S2 case, the experimental setup includes a grid size of 16 × 16 × 16 and a trained DDPM
with T = 1000. The training data is S2. Except for the grid size and training data, all other settings remain
the same. See Figure 22 for the corresponding visualization.

Thirdly, for the ellipse case described in Section 5.3, we visualized the score vector field for the initial two
dimensions of a 16-dimensional latent space. The experimental setup involves training data generated from
an ellipse with radii R = 2 and r = 1. The grid size is 32 × 32, and the visualization highlights the behaviour
of the score vectors in these two dimensions. See Figure 23 for the corresponding visualization.

Finally, for the disjoint arcs case described in Section 5.4, we visualized the score vector field for the initial
two dimensions of a 16-dimensional latent space. The experimental setup involves training data composed of
two disjoint arcs, one from a circle with radius R = 2 and the other from a circle with radius r = 1. The grid
size is 32 × 32, and the visualization illustrates the interactions between the two arcs. See Figure 24 for the
corresponding visualization.
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(a) T=0, S1
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(b) T=500, S1
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(c) T=785, S1
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(d) T=1000, S1

Figure 21: Time evolution of score vectors in the backward process of DDPM, S1

K.2 Square of the Jacobian J of the Score Vector Field

In this section, we extend our analysis to the square of the Jacobian J of the score vector field. We utilise
updated experimental setups for both the 2D S1 and the 3D S2 cases. For the 2D S1 case, the grid size is
128 × 128 with a trained DDPM using T = 1000. The training data remains S1, and we compute and analyse
the square of the Jacobian of the score vector field for this setup (Figure 25).
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(d) T=1000, S2

Figure 22: Time evolution of score vectors in the backward process of DDPM, S2

Similarly, for the 3D S2 case, the grid size is 128 × 128 × 128 with a trained DDPM using T = 1000. The
training data remains S2, and we compute and analyse the square of the Jacobian of the score vector field for
this setup (Figure 26).
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(a) T=0 (b) T=500

(c) T=700 (d) T=800

(e) T=900 (f) T=1000

Figure 23: Time evolution of score vectors in the backward process of DDPM, Ellipse (R = 2, r = 1)
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(a) T=0 (b) T=500

(c) T=700 (d) T=800

(e) T=900 (f) T=1000

Figure 24: Time evolution of score vectors in the backward process of DDPM, Disjoint arcs case (R = 2, r = 1)
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(a) T=0, S1
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(b) T=500, S1
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(c) T=785, S1
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(d) T=1000, S1

Figure 25: Time evolution of the squared Jacobian of score vectors in the backward process of DDPM, S1
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(a) T=0, S2
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(b) T=500, S2
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(c) T=823, S2
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(d) T=1000, S2

Figure 26: Time evolution of the squared Jacobian of score vectors in the backward process of DDPM, S2
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