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Abstract

In this paper, we present a comprehensive analysis and monitoring framework for the im-
pact of Large Language Models (LLMs) on Wikipedia, examining the evolution of Wikipedia
through existing data and using simulations to explore potential risks. We begin by ana-
lyzing article content and page views to study the recent changes in Wikipedia and assess
the impact of LLMs. Subsequently, we evaluate how LLMs affect various Natural Language
Processing (NLP) tasks related to Wikipedia, including machine translation and retrieval-
augmented generation (RAG). Our findings and simulation results reveal that Wikipedia
articles have been affected by LLMs, with an impact of approximately 1% in certain cate-
gories. If the machine translation benchmark based on Wikipedia is influenced by LLMs,
the scores of the models may become inflated, and the comparative results among mod-
els could shift. Moreover, the effectiveness of RAG might decrease if the knowledge has
been contaminated by LLMs. While LLMs have not yet fully changed Wikipedia’s language
and knowledge structures, we believe that our empirical findings signal the need for careful
consideration of potential future risks in NLP research.1

1 Introduction

The creation of Wikipedia challenged traditional encyclopedias (Giles, 2005), and the rapid development and
wide adoption of Large Language Models (LLMs) have sparked concerns about the future of Wikipedia (Wag-
ner & Jiang, 2025; Vetter et al., 2025). Researchers have begun examining the influence of LLMs on
Wikipedia, and it is unlikely that Wikipedia has remained unaffected. For example, Reeves et al. (2024) an-
alyze Wikipedia user metrics such as page views and edit histories. Meanwhile, Brooks et al. (2024) estimate
the proportion of AI-generated content in newly created English Wikipedia articles using Machine-Generated
Text (MGT) detectors. Given the richness and significance of Wikipedia, the impact of LLMs on Wikipedia
requires a more comprehensive and detailed investigation.

Wikipedia is widely recognized as a valuable resource (Singer et al., 2017), and its content is extensively
utilized in AI research, particularly in Natural Language Processing (NLP) tasks (Johnson et al., 2024b).
For instance, Wikipedia pages are among the five datasets used to train GPT-3 (Brown et al., 2020). The
sentences in the Flores-101 evaluation benchmark are extracted from English Wikipedia (Goyal et al., 2022).
Lewis et al. (2020)’s work on Retrieval-Augmented Generation (RAG) treated Wikipedia as a source of factual
knowledge. Therefore, we aim to investigate the influence of LLMs on machine translation and knowledge
systems using Wikipedia as a key resource.

Figure 1 illustrates the various tasks and research topics discussed in this paper. Our first objective is to
evaluate the direct impact of LLMs on Wikipedia, focusing on word frequency, linguistic style, and page views.
Then we explore the indirect effects on the broader NLP community, particularly in relation to machine
translation benchmarks and RAG, both of which rely heavily on Wikipedia content for their corpora. Thus,
we are in a better position to observe and assess the evolutions and risks of Wikipedia in the era of LLMs.
Our analysis yields a number of significant insights:

• Some Wikipedia articles have been influenced by LLMs, and the overall impact has so far been quite
limited.
1We will release all the code and data to the public.
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Figure 1: Our work analyze the direct impact of LLMs on Wikipedia, and exploring the indirect impact of
LLMs generated content on Wikipedia: Have LLMs already impacted Wikipedia, and if so, how
might they influence the NLP community and human society?

• There has been a slight decline in page views for certain scientific categories on Wikipedia, although the
connection to LLMs remains uncertain.

• If the sentences in machine translation benchmarks are drawn from Wikipedia content influenced by LLMs,
the scores of machine translation models are likely to be inflated, potentially reversing the outcomes of
comparisons between different models.

• Wikipedia content processed by LLMs could appear less effective for RAG compared to real Wikipedia
content.

Based on these findings, we underscore the importance of carefully assessing potential risks and encourage
further exploration of these issues. The key contributions of this paper are three-fold, as we are the first
to: (1) quantify the impact of LLMs on Wikipedia pages across various categories; (2) analyze the impact
of LLMs on Wikipedia based on word usage and provide the corresponding estimates; and (3) examine how
LLM-generated content affects machine translation evaluation and the efficiency of RAG systems.

This is also very likely the first paper to comprehensively analyze the impact of LLMs on Wikipedia based
on data and simulations. It is important to note that, while some changes are not obvious at the moment,
the methods and perspectives we have proposed can be employed for long-term detection of the impact of
LLMs on Wikipedia in the future.

2 Related Work

Wikipedia for NLP. Wikipedia has long been utilized in various NLP applications (Strube & Ponzetto,
2006; Mihalcea & Csomai, 2007; Zesch et al., 2008; Gabrilovich & Markovitch, 2009; Navigli & Ponzetto,
2010). In the era of LLMs, Wikipedia also plays an important role, such as in fact-checking (Hou et al.,
2024) and reducing hallucinations (Semnani et al., 2023). Writing Wikipedia-like articles is also one of the
LLM applications (Shao et al., 2024).

LLMs for Wikipedia. Researchers are trying to use LLMs to enhance Wikipedia, including articles (Adak
et al., 2025), Wikidata (Peng et al., 2024; Mihindukulasooriya et al., 2024) and edit process (Johnson et al.,
2024a). Some researchers have compared LLM-generated or rewritten Wikipedia articles with human-written
ones, yielding differing conclusions Skarlinski et al. (2024); Zhang et al. (2025a).

Estimation of LLM Impact. There are studies on the impact of LLMs on its page views (Reeves et al.,
2024; Lyu et al., 2025). The detection of AI-generated content has been a hot research topic in recent
years (Wu et al., 2025; Wang et al., 2025; Zhang et al., 2024), including its application to Wikipedia ar-
ticles (Brooks et al., 2024). But MGT detectors have notable limitations (Doughman et al., 2024), and
researchers are also exploring other methods for estimating the LLM impact, such as word frequency analy-
sis (Liang et al., 2024; Geng & Trotta, 2024). Moreover, the emergence of LLM-assisted edits on Wikipedia
has raised concerns about preserving the encyclopedia’s style and editorial standards (Ashkinaze et al.,
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2024). Contamination of its articles with LLM-generated text can create harmful feedback loops in model
training (Shumailov et al., 2023).

3 Data Collection

In this paper, we focus on data from Wikipedia and Wikinews, both under the Wikimedia Foundation.

Wikipedia uses a hierarchical classification system for articles. It begins with top-level categories that cover
broad fields, which are then divided into more specific subcategories. Only pages four or five levels away
from our target category were included in our study. Then we scrape the Wikipedia page versions from 2018
to 2025, using the January 1 snapshot of each year. To minimize the impact of topic-specific words, only
those rank within the top 10,000 in the Google Ngram dataset2 are included in the calculations.

We are interested in Wikipedia pages that belong to the following categories: Art, Biology, Computer Science
(CS), Chemistry, Mathematics, Philosophy, Physics, Sports. Among them, Philosophy has the smallest
number of articles (31,132), and CS leads with the largest number (55,121). More details on data collection
and processing are shown in Appendix A.1. For a better comparison, we also collect 6,690 Featured Articles
(FA), along with their corresponding 2,029 simple English versions (where available) as Simple Articles (SA).

While Wikipedia is the main focus of this paper, we also collect Wikinews articles from 2020 to 2024 to
generate questions in Section 5.2. There are over a hundred news per year, covering a wide variety of topics.

4 Direct Impact from LLMs

4.1 Direct Impact 1: Word Frequency

Since LLMs are extensively applied to writing-related tasks, we aim to investigate whether the text in
Wikipedia articles has changed as well. For example, we found that the frequency of certain words favored
by LLMs has indeed increased, such as “crucial” and “additionally” (Geng & Trotta, 2024; Kobak et al.,
2024) in Figure 2.
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Figure 2: Word frequency before and after LLM processing, and its evolution in Wikipedia articles.

To further investigate whether the changes in word frequency are coincidental or part of a collective shift, we
calculate the frequency changes of more words and estimate the impact of LLMs η in one set of Wikipedia
articles S based on the following formula (Geng et al., 2025):

η̂(S) =
∑

i∈I

(
fd

i (S) − f∗
i (S)

)
f∗

i (S)r̂i∑
i∈I

(
f∗

i (S)r̂i

)2 , (1)

r̂i = fi(S2) − fi(S1)
fi(S1) , (2)

2Google Ngram dataset: https://www.kaggle.com/datasets/wheelercode/english-word-frequency-list
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(a) Different word combinations.
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(b) Same word combinations.

Figure 3: Impact of LLMs on Wikipedia pages, estimated based on simulations of Featured Articles.

where fd
i (S) represents the frequency of word i in the set of texts S, f∗

i (S) represents the one if LLMs do
not affect the texts, I is the set of words used for estimation, fi(S1) and fi(S2) represent the frequency of
word i for another set of articles before and after LLM processing, respectively.

We take the average of the word frequencies from the 2018, 2019, and 2020 versions of the page as f∗
i (S).

To construct word frequency data f(S2) reflecting the impact of LLMs, we use GPT-4o-mini to revise the
January 1, 2022, versions of Featured Articles, with the prompt “Revise the following sentences:”.

By setting thresholds for f∗ and r̂, we can select commonly-used and LLM-sensitive word combinations I
to estimate the impact of LLMs. We perform a grid search over the parameter space used for vocabulary
selection. Specifically, f∗ ranges from 500 to 20,000 with a step size of 500, and r̂ ranges from 0.05 to 1.0
with a step size of 0.05. For each (f∗, r̂) combination, we begin by estimating the LLM impact over the
pre-LLM period (2018–2022). Using only these pre-LLM estimates, we fit a linear regression to model the
natural evolution trend of Wikipedia articles.

We then evaluate each parameter combination according to two criteria: (i) how well the linear model fits
the data, measured by the coefficient of determination R2, and (ii) the stability of the pre-LLM baseline,
measured by the absolute value of the fitted slope. Parameter combinations with R2 close to 1 and slopes
close to 0 indicate a good baseline before LLM adoption. To avoid reliance on a single criterion, we select
the intersection of the TOPK parameter combinations ranked by R2 and by slope.

For the f∗ value, we propose two strategies: First, the target words should frequently appear in the first
section of Featured Articles, as we use this part of the articles for LLM simulation when estimating r̂; second,
the target words should frequently appear in the target category. For the first strategy, when calculating the
impact of the LLM on different pages, the selected vocabulary combination remains the same. For the second
strategy, the influence on pages of different categories will be estimated using the vocabulary combination
corresponding to each category.

Finally, we use the selected words to estimate impacts for the post-LLM period (2023–2025). We subtract
the extrapolated pre-LLM linear trend from the estimates to separate causality. When setting TOPK = 250,
the LLM impact is approximately 1% for the articles in certain categories, as illustrated in Figures 3. But
different texts still lead to different estimations, and using different words for estimation will also produce
different results. Detailed results of parameter selection and impact estimation are shown in Appendix A.2.

Finding 1: While the estimation results vary, the influence of LLMs on Wikipedia is likely to become
more significant over time. In some categories, the impact has exceeded 1%.
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4.2 Direct Impact 2: Linguistic Style

We also investigate the current and future impact of LLMs on Wikipedia from more linguistic perspectives. In
this section, we conduct qualitative rather than quantitative analysis, examining the evolution of Wikipedia
content at Word, Sentence, and Paragraph levels, by comparing the texts before and after LLM processing
under the same standards.

Criteria LLM-driven trends Trends in real data Figures

Auxiliary Verb Rate % ↘ ↘ 4a, 4d
To be Verb Rate % ↘ ↘ 15
Corrected Type-Token Ratio (CTTR) ↗ ↗ 16
Long Words Rate % ↗ ↗ 17
Conjunction Rate % − ↗ 18
Noun Rate % ↗ ↗ 19
Preposition Rate % − ↗ 20
Pronouns Rate % ↘ − 21
One-syllable Word Rate % ↘ ↘ 22
Average Syllables per Word ↗ ↗ 23

Passive Voice Rate % ↘ ↗ 4b, 4e
Long Sentence Rate % ↗ ↗ 24
Average Sentence Length ↗ ↗ 25
Average Parse Tree Depth ↗ ↗ 26
Clause Rate % ↗ ↗ 27
Pronoun-initial Sentence Rate % ↘ ↗ 28
Article-initial Sentence Rate % − ↗ 29

Dale-Chall Readability ↗ ↘ 4c, 30a
Automated Readability Index ↗ ↗ 4c, 30b
Flesch-Kincaid Grade Level ↗ ↗ 4c, 4f
Flesch Reading Ease ↘ − 4c, 30c
Coleman-Liau Index ↗ − 4c, 30d
Gunning Fox Index ↗ ↗ 4c, 30e

Table 1: Summary of linguistic style trends. The second column indicates the effects of LLM processing.
The third column shows Wikipedia trends over time.

Word Level. In addition to word frequency used before, we can also consider it from a broader perspective
at the level of words. For instance, the frequency of auxiliary verbs indicates the ability of a model to convey
complex reasoning and logical relationships (Yang et al., 2024). Lexical diversity, often measured by the
corrected type-token ratio (CTTR), reflects the variety of words (Wróblewska et al., 2025). Herbold et al.
(2023) revealed that the lexical diversity of humans is higher than that of ChatGPT-3 but lower than that
of ChatGPT-4, suggesting newer models have surpassed human writing in that metric. Furthermore, the
proportion of specific parts of speech (POS) is commonly used as a stylistic feature in assessing the quality
of Wikipedia articles (Moás & Lopes, 2023). Georgiou (2025) showed that LLM-generated text employed
more nouns, while human-written text employed more auxiliaries and pronouns.

Sentence Level. In terms of sentence structure, we focus on sentence length and the use of passive
voice (AlAfnan & MohdZuki, 2023). Regarding sentence complexity, we analyze both the depth of the entire
syntactic tree and the clause ratio (Iavarone et al., 2021). Reinhart et al. (2025) revealed that LLMs use
present participial clauses at 2 to 5 times the rate of human text while use the passive voice at roughly half
the rate as human texts.
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(f) Change in Flesch–Kincaid.

Figure 4: The results of linguistic style comparison, including the real Wikipedia pages and LLM-simulated
pages. The three subplots below represent the differences compared to the data from 2020.

Paragraph Level. For the paragraph dimension, which is essential for Wikipedia’s educational mis-
sion (Johnson et al., 2024b), we seek guidance from readability evaluation (Moás & Lopes, 2023; Trokhy-
movych et al., 2024), where six traditional formulas are included in our study: Automated Readability
Index (Mehta et al., 2018), Coleman-Liau Index (Antunes & Lopes, 2019), Dale-Chall Score (Patel et al.,
2011), Flesch Reading Ease (Eleyan et al., 2020), Flesch–Kincaid Grade Level (Solnyshkina et al., 2017),
and Gunning Fog index (Świeczkowski & Kułacz, 2021). The detailed definitions of all metrics are provided
in Appendix A.3.3.

LLM Simulation. Wikipedia articles are not static, and their linguistic styles are difficult to remain the
same under different measurement metrics. To understand the link between these trends and LLMs, we
simulate the real Wikipedia with GPT-4o-mini and Gemini-1.5-Flash, then compare the changes before
and after the process. Specifically, we instruct both models to revise Featured and Simple articles using
prompt mentioned in Section 4.1, and additionally use GPT-4o-mini to generate Wikipedia-style articles
using prompt “Generate a Wikipedia-style article titled {title} and return only the article body in plain text.”

Results. Table 1 presents the summary of the trends in linguistic style in real Wikipedia articles and LLM
simulations. The detailed outcomes are illustrated in Figure 4 and Appendix A.3. Although we have plotted
the results from 2020 in the these figures, the trends summarized in the table are based on the data in the
LLM era, that is, after 2023. For example, our simulation results reveal that LLMs substantially reduce the
use of auxiliary verbs, with Gemini employing even fewer than GPT, as shown in Figure 4a. Consistent with
this tendency, the usage of auxiliary verbs on real Wikipedia pages shows a marginal decline from 2020 to
2025, as depicted in Figure 4d. However, the trends of passive voice proportion in Figures 4b and 4e are not
the same. For paragraph level, Figure 4c presents the results of six readability metrics, all of which indicate
that LLM-generated texts tend to be less readable. The Flesch–Kincaid score in Figure 4f initially decrease
and then rises, and the score after LLM simulation also increases.
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Finding 2: The trends of changes in Wikipedia articles are largely consistent with the preferences of
LLMs under most metrics.

4.3 Direct Impact 3: Page View

The analysis of Wikipedia’s page view data (i.e., the number of times a Wikipedia page is accessed by users)
can yield many interesting conclusions (Piccardi et al., 2021; 2024). Similar to the work of Reeves et al.
(2024), we transform the page view counts of Wikipedia articles using the inverse hyperbolic sine function.
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(a) Page views Across Different Categories in English Wikipedia.
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Figure 5: Daily page views of Wikipedia pages. The y-axis represents page view values after smoothing with
a seven-day time window and being transformed via the Inverse Hyperbolic Sine (IHS) function.

Figure 5a shows page views across different categories in English Wikipedia. Notably, there was a slight
decline in page views across some scientific categories since 2024. Reeves et al. (2024) examined changes in
Wikipedia page views across various languages from up to January 1, 2024, but our analysis covers pages
from different scientific categories and extends to 2025. The latest data actually leads to different findings,
and one recent study has reached a similar conclusion (Lyu et al., 2025).

To generalize our findings beyond English (EN) Wikipedia, we further analyze the page views of Featured
Articles in four major language editions, German (DE), Spanish (ES) and French (FR), as shown in Figure 5b.
The page views of Wikipedia articles in these languages also exhibit a decline from 2024, with the drop being
especially sharp in the Spanish edition. Detailed data for different language editions is shown in Table 3,
and the means of the page view values are plotted in Figures 31 in the appendix.

Finding 3: In the second half of 2024, there was a slight decline in page views across some scientific
categories, and its connection to the use of LLMs requires further investigation.
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5 Indirect Impact from LLMs

5.1 Indirect Impact 1: Machine Translation

Overall. Sentences of some machine translation benchmarks are derived from Wikipedia. If these bench-
marks are also influenced by LLMs, what impact would it have on the evaluation results?
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Figure 6: Facebook-NLLB BLEU scores on the original benchmark and the LLM-Influenced benchmark.
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Figure 7: Helsinki-NLP BLEU scores on the original benchmark and the LLM-Influenced benchmark.

Benchmark Construction. We utilize the Flores dataset3, which consists of multiple sentence sets, each
containing parallel translations of the same Wikipedia sentence across many languages. For our experiments,
we keep the original English (EN ) sentence in each set, and use GPT-4o-mini to translate this English
sentence into the remaining languages with the prompt “Translate the following text to {target language}”.
We then replace the original non-English sentences with these LLM-generated translations, forming an LLM-
influenced version of the benchmark. The following 11 widely used languages are used in our simulations:
Modern Standard Arabic (AR), Mandarin (ZH ), German (DE), French (FR), Hindi (HI ), Italian (IT ),
Japanese (JA), Korean (KO), Brazilian Portuguese (PR), Russian (RU ), Latin American Spanish (ES).

Evaluation Pipeline. We use different machine translation models to translate machine-translated sen-
tences into other languages, then evaluate them with four metrics: BLEU (Post, 2018), COMET (Rei et al.,
2020), ChrF (Popović, 2015), and BERTScore (Zhang et al., 2019).

3https://huggingface.co/datasets/openlanguagedata/flores_plus
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Models. We compare the translation results from three models: Facebook-NLLB4, a multilingual model
supporting 200+ languages (Costa-Jussà et al., 2022); Google-T5 (mT5)5, pre-trained on data covering
101 languages (Xue et al., 2021); and Helsinki-NLP’s bilingual Transformer models6 trained on OPUS
corpus (Tiedemann & Thottingal, 2020; Tiedemann et al., 2023).

Results. In most cases, machine translation models achieve higher scores on the GPT-processed bench-
mark, as shown in Figures 6 and 7. Moreover, the results of the comparison between machine translation
models could be reversed. For example, in France Facebook-NLLB gets a lower BLEU score (87.04) than
Helsinki-NLP (88.39) in the original benchmark, but a better score in the GPT-processed benchmark (96.75
vs 89.40). More results are listed in the Appendix.

Finding 4: The impact of LLMs on the benchmark could not only inflate the translation scores across
different languages but also distort the comparison of translation abilities between models, making it fail
to truly reflect their translation effectiveness.

5.2 Indirect Impact 2: RAG

Direct Ask

Ask with Full Content

Ask with Full 
LLM-Revised Content

RAG Based on the
Original Content

RAG Based on the 
LLM-Revised ContentNews Collection

Original
Content

LLM-Revised
Content

Question
Generation

LLM Simulation Questioning Method

Which country's President questioned the protection of  Kharkiv without targeting missile launch sites?

A) Germany B) United Kingdom C) Ukraine D) France

President Emmanuel Macron of  France questioned how the Ukrainians were expected to protect 

Kharkiv without targeting “the point from which the missiles are fired? ”. … The United Kingdom 

also expressed a desire for Ukraine to have the ability attack inside Russia.

A U.S. official confirmed Ukraine's use of  U.S. weapons for counter-fire, but denied permission for 

strikes deep within Russia. This follows a Ukrainian request and aligns with statements from 

French President Macron and the U.K. supporting Ukraine's ability to target launch sites.

D

B

Figure 8: GPT-4o-mini and Gemini-1.5-flash are used to generate multiple-choice questions (MCQs) based
on the extracted Wikinews data. Various questioning methods are employed with GPT-4o-mini, GPT-3.5,
and DeepSeek-V3 to evaluate the specific impact of LLM-generated texts on the RAG process.

Overall. RAG can provide more reliable and up-to-date external knowledge to mitigate hallucination in
LLM generation (Gao et al., 2023). Wikipedia is one of the most commonly applied general retrieval sets in
previous RAG work, which stores factual structured information in scale (Fan et al., 2024). In the process of
translation using LLMs, some information may also be lost or distorted (Mohamed et al., 2025). Therefore,
we are curious how the effectiveness of RAG might change if Wikipedia pages are influenced by LLMs. Our
experiment procedure is illustrated in Figure 8 and the detailed steps are listed below.

4https://huggingface.co/facebook/nllb-200-3.3B
5https://huggingface.co/google/mt5-small
6https://github.com/Helsinki-NLP/Opus-MT

9

https://huggingface.co/facebook/nllb-200-3.3B
https://huggingface.co/google/mt5-small
https://github.com/Helsinki-NLP/Opus-MT


Under review as submission to TMLR

Question Generation. GPT-4o-mini and Gemini-1.5-flash are used to generate multiple-choice questions
(MCQs) based on Wikinews articles. In order to generate some questions that are not too easy for LLMs,
we refer to the prompt in the work of Zhang et al. (2025b), shown in Figure 9.

Prompt
You are to generate three self-contained multiple-choice questions based on the facts mentioned in the
following content. Avoid questions that reference the content directly. Each question should include
all relevant context and directly name any referenced items, avoiding pronouns like “it,” “the game,”
or “the person.” Do not include phrases that reference the source or context, such as “mentioned in
the article” or “according to the text.”

Figure 9: Prompt for Wikinews-based questions.

Prompt: Asking with a knowledge base
prompt = (

f“Use context to answer user questions.”
f“Question: {question}\n”
f“Reference context: {topk_ans}\n”
f“Only need to give the correct option without explanation.”

)

Figure 10: Prompt used in the asking with a knowledge base setting.

Knowledge Base. We construct the knowledge base using Wikinews articles from 2020 to 2024. Each
article is preprocessed and split into smaller text segments, then vectorized via BERT7 (Devlin et al., 2019).
We then indexed these vectors using FAISS, a library for efficient similarity search and clustering of dense
vectors, for efficient retrieval (Douze et al., 2024).

Retrieval and Generation. The questions are vectorized using BERT and a similarity search is conducted
with FAISS. The three most relevant segments are retrieved and used as contextual information. These
segments are then combined with the question in a prompt template to query GPT-3.5 and GPT-4o-mini.
The final answer is generated based on both the LLMs’ prior knowledge and the retrieved content.

Questioning Methods. We conduct experiments using three types of queries. First, we can query the
LLMs directly to obtain answers, using the prompt shown in Figure 36 (Direct Ask). Second, the Wikinews
articles used to generate the question is included in the prompt, as shown in Figure 37. To explore the
impact of LLM-generated text, we apply the prompt “Revise the following news” to Wikinews articles.
We consider three versions of each article: the original text (Full (Original)), and revisions processed by
GPT-4o-mini (Full (GPT)) or Gemini-1.5-Flash (Full (Gemini)). Finally, in the RAG-based setting,
relevant information is first retrieved from a constructed knowledge base, after which the models are queried
using the prompt shown in Figure 10. The knowledge base can be built from original Wikinews articles
(RAG (Original)) or from articles revised by GPT-4o-mini (RAG (GPT)) or Gemini-1.5-Flash (RAG
(Gemini)).

Results. Figure 11 illustrates the summary of the accuracy rates of the LLM responses under different
scenarios, with more detailed results provided in Appendix A.6. The analysis based on these results leads
to the following conclusions:

• Higher Accuracy with Knowledge Base. Providing external knowledge greatly improves perfor-
mance. With a knowledge base, the accuracy of responses often exceeds 80%. This confirms the effec-
tiveness of RAG in enhancing factual accuracy.
7https://huggingface.co/bert-base-uncased
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Figure 11: The accuracy rate of LLM responses under different settings. For each case, more than 1,800
questions based on Wikinews articles from 2020 to 2024 are used for simulations. More detailed results are
presented in Appendix A.6.

• Maximal Performance with Full Content. Providing the full news as context yields the highest
accuracy, demonstrating the limitations of retrieval-based approaches in selecting the most relevant in-
formation. In most cases with GPT-4o-mini, the full content approach exceeded 93% accuracy, setting a
benchmark for ideal retrieval performance.

• Impact of LLM-Revised Content. Compared to the cases using real Wikinews articles, the accuracy
of responses based on ChatGPT-processed pages shows little change and responses based on Gemini-
processed pages show a clear drop in accuracy. This suggests that Gemini’s rewriting may lead to the
loss of some key information.

• Declining Accuracy for Recent Events. In the absence of RAG, all models exhibit lower accuracy
when answering questions derived from recent Wikinews articles (e.g., GPT-4o-mini shown in Table 10
of the appendix: 66.67% in 2024, GPT-3.5 : 61.25% in 2024), while their accuracy is much better for
older events (e.g., 2020–2022). The reason is also straightforward: these news events are not included
in their training data. Moreover, DeepSeek-V3 achieves the highest accuracy, which may be attributed
to its later knowledge cutoff date. In addition, Table 10 also report results rewritten using the newly
released Gemini-3. Compared to outputs rewritten with Gemini 1.5, both RAG (Gem3) and Full
(Gem3) exhibit performance improvements. This suggests that as LLMs continue to advance, the risk
of information loss introduced by LLM-based rewriting may be partially mitigated.

Case Study. To explore the impact of LLM-generated texts, we focus on cases in which the
model answers correctly with the original content but fails with the LLM-revised version. Fig-
ure 8 has provided one interesting example. The original passage8 contained an unambiguous clue,
“President Emmanuel Macron of France questioned how the Ukrainians were expected to protect Kharkiv
. . . ,” which directly supports the correct answer “France.” However, in the LLM-revised ver-
sion, the model reformulated the information into a more abstract and compressed form:
“. . . aligns with statements from French President Macron and the U.K. . . . ” This revision removes
the explicit verb “questioned,” merges multiple entities, and relocates key details. As a result, RAG systems
relying on the revised text may incorrectly associate the query with “the U.K.” due to lexical proximity.
This illustrates how LLM-style rewriting can distort relational information and impair factual grounding

8https://en.wikinews.org/wiki/Ukraine_permitted_to_strike_Russian_territory_near_Kharkiv
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in RAG systems. More examples are included in Appendix A.6.3, and LLM-generated texts may decrease
accuracy in RAG tasks for several reasons:

• Information Fusion Misleading: When LLMs merge multiple distinct and clear pieces of information
into a single sentence, it can lead to misinterpretation as shown in Figure 8.

• Keyword Replacement and Omission: LLM might replace or omit key terms, altering the original
meaning and causing misinterpretation in Figures 38, 39 and 40.

• Abbreviation Ambiguity Misleading: LLMs use abbreviations inappropriately, leading to misinter-
pretation as shown in Figure 41.

• Introduction of Modifiers: Adding adjectives or modifiers can change the context and impact the
text’s accuracy, as illustrated in Figure 42.

• Retrieval Mismatch: Revised texts may either reduce the similarity between the question and the
correct news or increase the similarity with irrelevant ones. In some cases, even small edits to the article
lead to a failure in matching.

Finding 5: The results suggest that LLM-processed content could perform less effectively in RAG
systems compared to human-created texts. If such content has impacted high-quality communities like
Wikipedia, it raises concerns about the potential decline in information quality in knowledge bases.

6 Discussion and Conclusion

The relationship between Wikipedia and LLMs is bidirectional. On the one hand, Wikipedia content has
been a key factor in the growth of LLMs. On the other hand, researchers have used NLP methods, including
LLMs, to improve Wikipedia (Lucie-Aimée et al., 2024). Humans and LLMs are coevolving (Geng & Trotta,
2025), and Wikipedia may be one of the bridges in this process. Our study also provides new insights into
the risks associated with work that uses Wikipedia data.

In this paper, we collect a large amount of real-world data and conduct comprehensive experimental simula-
tions. Our findings suggest that LLMs are impacting Wikipedia and the impact could extend indirectly to
some NLP tasks through their dependence on Wikipedia content. For instance, the target language for ma-
chine translation may gradually shift towards the language style of LLMs, albeit in small steps. In addition,
the accuracy of RAG tasks may decline when LLM-revised Wikipedia pages are used, indicating potential
risks of using LLMs to support Wikipedia or similar knowledge systems.

Although some of the changes may not be immediately apparent, our work offers a framework for extended
monitoring longer-term monitoring. These results will also serve as excellent illustrations of the impact of AI
on society, given the significant amount of human engagement with Wikipedia. This kind of social impact
is already taking place, but has not been adequately addressed by the AI community.

Limitations

Although we conduct several experiments to evaluate the impact of LLMs on Wikipedia, our study has
certain limitations. First, some analyses are primarily correlational, identifying patterns but not definitively
attributing observed changes to LLMs. The causal relationships of some impacts, such as the pages views,
require more detailed discussion.

Second, the lack of field experiments limits our insights into the actual machine-in-the-loop editing processes
behind Wikipedia article creation. Real-world editing involves complex interactions between humans and
sophisticated LLM-based tools. These dynamics may not be fully captured by our simulated studies.

Additionally, when assessing the readability of Wikipedia pages, we rely only on traditional metrics based
on formulas, such as the Flesch-Kincaid score. However, recent advances in NLP have shifted towards
computational models (François, 2015). Moreover, in the RAG task, our Wikinews dataset is not large
enough compared to the Wikipedia page dataset, which may limit the generalization of our findings.
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A Appendix

A.1 Data Collection and Processing

The detailed classification in Wikipedia poses a problem in our data crawling process: When iteratively
querying deeper subcategories without limit, the retrieved pages may become less relevant to the original
topic (i.e., the root category). To address this issue, we select an appropriate crawl depth for each category
to balance the number of pages with their topical relevance, as shown in Table 2.

We also exclude redirect pages, as they do not contain independent content but link to other target pages.
After crawling the pages, we clean the data by extracting the plain text and removing irrelevant sections such
as “References,” “See also,” “Further reading,” “External links,” “Notes,” and “Footnotes.” For Wikinews,
we use the TextExtracts extension9, which provides an API to retrieve plain-text extracts of page content.

Category Art Bio Chem CS Math Philo Phy Sports

Crawl Depth 4 4 5 5 5 5 5 4
Number of Pages 50,810 41,237 49,516 55,121 43,888 31,132 38,144 48706

Table 2: Number of Wikipedia articles crawled per category.

Languages German Spanish English French

Number of Pages 2943 1363 6690 2254

Table 3: Number of Wikipedia Featured Articles in different language.

9TextExtracts extension: https://www.mediawiki.org/wiki/Extension:TextExtracts#query+extracts
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A.2 LLM Impact

Here we present the detailed process of parameter selection. The original parameter combinations are:

• 1
f∗ : 500, 1000, 1500, ..., 20000

• r̂: 0.05, 0.10, 0.15, ..., 1.00 (corresponding values of r̂+1
r̂2 )

When setting TOPK = 250 to estimate the full texts of Wikipedia articles, 18 (f∗, r̂) combinations that
satisfy the conditions are: (5500, 0.45), (6000, 0.45), (5000, 0.4), (4500, 0.35), (5000, 0.35), (7500, 0.45),
(7000, 0.45), (6500, 0.45), (8000, 0.45), (8500, 0.5), (9000, 0.5), (9500, 0.5), (15000, 0.5), (10000, 0.5), (15500,
0.5), (10500, 0.5), (16500, 0.5), (17500, 0.5).

Specifically, when we take 1
f∗ < 5500 and r̂+1

r̂2 > 0.45, 115 words that satisfy the conditions are: “moved,”
“run,” “called,” “players,” “taken,” “largely,” “seen,” “struck,” “remains,” “mainly,” “press,” “make,” “ap-
peared,” “long,” “launched,” “sometimes,” “earlier,” “like,” “form,” “wide,” “player,” “sent,” “subsequently,”
“brought,” “had,” “upon,” “despite,” “significant,” “killed,” “making,” “us,” “can,” “given,” “parts,” “lead-
ing,” “see,” “came,” “primarily,” “important,” “throughout,” “worked,” “failed,” “this,” “p,” “very,” “saw,”
“large,” “due,” “features,” “usually,” “just,” “however,” “attempt,” “built,” “different,” “because,” “vic-
tory,” “popular,” “men,” “across,” “commonly,” “out,” “there,” “placed,” “mostly,” “went,” “particularly,”
“serving,” “often,” “having,” “following,” “operations,” “died,” “established,” “wrote,” “forced,” “so,” “al-
most,” “where,” “but,” “whose,” “lived,” “next,” “helped,” “served,” “various,” “generally,” “soon,” “while,”
“number,” “written,” “win,” “people,” “initially,” “considered,” “used,” “these,” “rest,” “along,” “located,”
“won,” “role,” “limited,” “numerous,” “use,” “fought,” “about,” “result,” “opened,” “up,” “subsequent,”
“then,” “ended,” “caused,” “within.”

Figures 12, 13, and 14 illustrate LLM impact estimated using different TOPK .
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(b) Same word combinations.

Figure 12: Impact of LLMs on the first section of Wikipedia pages, estimated when setting TOPK = 250.
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(b) Same word combinations.

Figure 13: Impact of LLMs on the full texts of Wikipedia pages, estimated when setting TOPK = 300.
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Figure 14: Impact of LLMs on the first section of Wikipedia pages, estimated when setting TOPK = 300.
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A.3 Linguistic Style

A.3.1 Word Level

“To Be” Verbs Figure 15 illustrates that LLMs significantly reduce the usage of “To Be” verbs (e.g.,
replacing “is important” with “demonstrates significance”), with Gemini using fewer such verbs than GPT.
Moreover, a marginal decline in the usage of these verbs is observed in actual Wikipedia pages.
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Figure 15: “To Be” Verbs.

Lexical Diversity As shown in Figure 16, revised articles display a slightly higher CTTR, with texts
revised by GPT exhibiting greater lexical diversity than those revised by Gemini. When tasked with gener-
ating wiki-style articles, GPT achieves the highest lexical diversity. Over time, the vocabulary used across
different Wikipedia categories has become increasingly varied.
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Figure 16: Corrected Type-Token Ratio (CTTR).

Long Words Figure 17 shows that LLM-revised texts generally contain a higher proportion of long words
than human-written pages, with Gemini producing the most pronounced increase. From 2020 to 2025, a
substantial increase in the usage of long words is observed in the first section of Wikipedia pages.
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Figure 17: Long Words Rate.
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Parts of Speech Figures 18, 19, 20, and 21 show that LLMs lead to a slight increase in the use of nouns,
accompanied by a corresponding decrease in pronouns. Prepositions and conjunctions remain stable after
LLM simulation. On Wikipedia pages, the proportion of prepositions has steadily increased, while the
proportions of other parts of speech have remained stable.
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Figure 18: Conjunctions Proportion.
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Figure 19: Nouns Proportion.
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Figure 20: Prepositions Proportion.
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Figure 21: Pronouns Proportion.

Syllables Figures 22 and 23 illustrates that the proportion of one-syllable words declines in articles revised
by LLMs, with Gemini employing even fewer such words. Meanwhile, the average syllables per word increase,
suggesting a preference for polysyllabic words by LLMs. However, these two metrics remain relatively stable
across different Wikipedia categories.

SA SA-GPT SA-Gem FA FA-GPT FA-Gem Wiki-style
Corpus

0.0

0.2

0.4

0.6

0.8

On
e-

Sy
lla

bl
e 

W
or

ds
 P

ro
po

rti
on

One-Syllable Words Proportion

2018 2019 2020 2021 2022 2023 2024 2025
0.3

0.2

0.1

0.0

0.1

Re
la

tiv
e 

Va
lu

e 
(%

)

One-Syllable Words Proportion Trend (First)

Math
Bio

CS
Sports

Chem
Philosophy

Art
Phy

2018 2019 2020 2021 2022 2023 2024 2025

0.05

0.00

0.05

0.10

0.15

0.20

Re
la

tiv
e 

Va
lu

e 
(%

)

One-Syllable Words Proportion Trend (Full)

Chem
Phy

Art
Sports

Math
Philosophy

Bio
CS

Figure 22: One-Syllable Words Proportion.
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Figure 23: Average Syllables per Word.

A.3.2 Sentence Level

Sentence Length Figure 25 shows that both the average sentence length and the proportion of long
sentences show a significant increase after being processed by the LLM. Additionally, the period from 2020
to 2025 has seen a notable rise in these two metrics across Wikipedia pages, indicating a trend towards
longer sentence structures.
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Figure 24: Long Sentence Rate.

SA SA-GPT SA-Gem FA FA-GPT FA-Gem Wiki-style
Corpus

0

10

20

30

40

50

Av
er

ag
e 

Se
nt

en
ce

 L
en

gt
h

Average Sentence Length

2018 2019 2020 2021 2022 2023 2024 2025

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Re
la

tiv
e 

Va
lu

e

Average Sentence Length Trend (First)

Math
Bio

CS
Sports

Chem
Philosophy

Art
Phy

2018 2019 2020 2021 2022 2023 2024 2025

0.00

0.05

0.10

0.15

0.20

0.25

Re
la

tiv
e 

Va
lu

e

Average Sentence Length Trend (Full)

Chem
Phy

Art
Sports

Math
Philosophy

Bio
CS

Figure 25: Average Sentence Length.

Sentence Complexity According to Figures 26 and 27, after revisions by GPT, Simple Articles show an
increase in complexity, while Featured Articles exhibit only minor changes. This may suggest that LLMs do
not generate sentences at the highest possible complexity, but instead maintain complexity at a certain level.
For real Wikipedia pages, a steady year-on-year increase in these two metrics has been observed, indicating
a shift towards more complex sentence structures.

SA SA-GPT SA-Gem FA FA-GPT FA-Gem Wiki-style
Corpus

2

4

6

8

10

12

14

16

Av
er

ag
e 

Pa
rs

e 
Tr

ee
 D

ep
th

Average Parse Tree Depth

2018 2019 2020 2021 2022 2023 2024 2025

0.00

0.02

0.04

0.06

0.08

Re
la

tiv
e 

Va
lu

e

Average Parse Tree Depth Trend (First)

Math
Bio

CS
Sports

Chem
Philosophy

Art
Phy

2018 2019 2020 2021 2022 2023 2024 2025
0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Re
la

tiv
e 

Va
lu

e

Average Parse Tree Depth Trend (Full)

Chem
Phy

Art
Sports

Math
Philosophy

Bio
CS

Figure 26: Average Parse Tree Depth.
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Figure 27: Clause Proportion

Pronoun and Article-Initial Sentences LLMs tend to avoid starting sentences with pronouns (e.g.,
“It”) or articles (e.g., “The”), as shown in Figures 29 and 28. For example, it might replace “The team
worked hard to finish the project on time.” with “Hard work from the team ensured the project was completed
on time.” However, in real Wikipedia pages, Article-initial sentences have increased, while pronoun-initial
sentences remain stable from 2020 to 2025.
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Figure 28: Proportion of Sentences Starting with Pronoun.
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Figure 29: Proportion of Sentences Starting with Article.

A.3.3 Paragraph Level

We use Textstat10 to calculate six paragraph metrics. Textstat is an easy-to-use library to calculate statistics
from the text. It provides a range of functions to analyze readability, sentence length, syllable count, and
other important textual features. Through the LLM simulation process, we discover that LLMs tend to
generate articles that are harder to read. Figure 30 suggests that the readability of Wikipedia pages has
shown only slight variation over the years and does not appear to be influenced by LLMs at this stage.

10https://github.com/textstat/textstat
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Dale-Chall Readability: uses the concept of difficult words, combining it with the average sentence size
to estimate readability.

DC = 0.1579 ∗ (difficultwords

words
∗ 100) + 0.0496 words

sentences
(3)

Automated Readability Index: Estimates readability by combining the average word length with the
average sentence size.

ARI = 4.71characters

words
+ 0.5 words

sentences
− 21.43 (4)

Coleman-Liau Index: Similarly to ARI, estimates readability by combining the average word length with
the average sentence size.

CL = 5.88characters

words
− 29.6sentences

words
− 15.8 (5)

Flesch Reading Ease: Using the average sentence size and amount of syllables per word, computes a value
between 0 and 100, where 0 indicates the text is difficult to understand.

FRE = 206.835 − 1.015 words

sentences
− 84.6syllables

words
(6)

Flesch-Kincaid Grade Level: Same as FRE, but provides US grade levels instead of values between 0
and 100.

FK = 0.39 words

sentences
− 11.8syllables

words
− 15.59 (7)

Gunning Fog Index: Uses the concept of complexwords, which is the number of words with three or more
syllables. The higher its value, the more difficult is the text to read.

GFI = 0.4( words

sentences
+ 100complexwords

words
) (8)
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(b) Automated Readability.
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(c) Flesch Reading Ease.
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(d) Coleman-Liau Index.
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(e) Gunning Fog Index.

Figure 30: Changes in readability metrics of Wikipedia pages.
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A.4 Page views
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(a) Page views Across Different Categories in English Wikipedia.
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(b) Page views Across Wikipedia of Different Languages

Figure 31: Daily page views of Wikipedia pages. The y-axis represents page view values after smoothing
with a seven-day time window and being transformed via mean aggregation.

A.5 Machine Translation

These are the 12 languages in our benchmarks: English (eng-Latn-stan1293), Modern Standard Arabic (arb-
Arab-stan1318), Mandarin (cmn-Hans-beij1234), German (deu-Latn-stan1295), French (fra-Latn-stan1290),
Hindi (hin-Deva-hind1269), Italian (ita-Latn-ital1282), Japanese (jpn-Jpan-nucl1643), Korean (kor-Hang-
kore1280), Brazilian Portuguese (por-Latn-braz1246), Russian (rus-Cyrl-russ1263), Latin American Spanish
(spa-Latn-amer1254).

For Google-T5 shown in Table 6, German (DE) initially has a BLEU score of 30.24, which rises to 44.18 in
the GPT-processed benchmark, marking another substantial improvement.

We also evaluate our results using BERTScore, as shown in Tables 4, 5, and 7. Precision measures how
many tokens in the candidate sentence are similar to tokens in the reference sentence, capturing how much
of the candidate sentence is relevant to the reference. Recall measures how many tokens in the reference
sentence are similar to tokens in the candidate sentence, capturing how much of the reference sentence is
represented in the candidate. As for F1 Score, BERTScore combines precision and recall into an F1 score,
the harmonic mean of the two. This balanced measure provides a single metric that reflects the accuracy
and completeness of the candidate sentence relative to the reference.

Overall, our conclusion that LLM-influenced benchmarks inflate translation scores across different languages
still holds when using BERTScore as the evaluation metric.
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Figure 32: Facebook-NLLB ChrF scores on the original benchmark and the LLM-Influenced benchmark.
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Figure 33: Facebook-NLLB COMET scores on the original benchmark and the LLM-Influenced benchmark.

Precision Recall F1

O G O G O G

AR 0.869 0.891 0.854 0.880 0.861 0.886
DE 0.890 0.915 0.874 0.900 0.882 0.907
ES 0.885 0.953 0.867 0.943 0.876 0.948
FR 0.919 0.944 0.902 0.930 0.910 0.937
HI 0.876 0.900 0.865 0.892 0.870 0.896
IT 0.883 0.936 0.865 0.925 0.874 0.930
JA 0.829 0.850 0.808 0.824 0.818 0.836
KO 0.849 0.878 0.842 0.869 0.845 0.873
PT 0.923 0.946 0.913 0.937 0.918 0.941
RU 0.875 0.908 0.858 0.892 0.866 0.899
ZH 0.839 0.861 0.778 0.797 0.806 0.827

Table 4: BERTScore evaluation results on the
Facebook-NLLB translation outputs.

Precision Recall F1

O G O G O G

AR 0.861 0.872 0.854 0.869 0.857 0.870
DE 0.896 0.923 0.888 0.916 0.892 0.919
ES 0.884 0.952 0.871 0.949 0.877 0.951
FR 0.919 0.944 0.911 0.941 0.915 0.942
HI 0.812 0.822 0.785 0.798 0.798 0.809
IT 0.880 0.935 0.869 0.931 0.874 0.933
JA 0.608 0.612 0.625 0.629 0.617 0.620
KO 0.610 0.614 0.602 0.605 0.605 0.609
PT 0.929 0.954 0.926 0.951 0.927 0.952
RU 0.868 0.896 0.859 0.889 0.863 0.892
ZH 0.852 0.870 0.825 0.845 0.838 0.857

Table 5: BERTScore evaluation results on the
Helsinki-NLP machine translation outputs.
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Figure 34: Helsinki-NLP ChrF scores on the original benchmark and the LLM-Influenced benchmark.
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Figure 35: Helsinki-NLP COMET scores on the original benchmark and the LLM-Influenced benchmark.

BLEU ChrF COMET

O G O G O G

DE 71.52 80.09 84.27 93.62 83.91 85.63
FR 68.33 65.93 87.86 86.32 85.49 87.01

Table 6: Google-T5 results on BLEU, ChrF, and COMET metrics.

Precision Recall F1

O G O G O G

DE 0.873 0.898 0.845 0.869 0.858 0.883
FR 0.887 0.907 0.849 0.869 0.867 0.887

Table 7: BERTScore evaluation results (Precision, Recall, F1) on the Google-T5 translation outputs.
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A.6 RAG

A.6.1 Experiment Setup

Table 8 presents the LLM parameters employed in RAG simulations, such as the knowledge cutoff date,
temperature, and top-p. Table 9 shows the annual number of questions generated by different LLMs.

Models Knowledge Cutoff Temperature Top-p

GPT-3.5 September 2021 1.0 1.0
GPT-4o-mini October 2023 1.0 1.0
Gemini-1.5-flash May 2024 1.0 0.95
DeepSeek-V3 July 2024 1.0 1.0
Gemini 3 Pro January 2025 1.0 1.0

Table 8: LLM parameters Used in RAG simulations.

Year 2020 2021 2022 2023 2024

Number of GPT genertated Questions 348 453 390 426 240
Number of Gemini genertated Question 348 453 393 426 240

Table 9: Annual Number of Questions Generated by Different LLMs.

Prompt: Direct Asking
prompt = (

f“Answer the following questions. The format should be as per 1. C)...”
f“Need to answer all questions and mark the question number.”
f“Only need to give each answer without explanation. Questions: {text}”
f“The format should be as per 1. C)...\n2. C)...”
f“All questions are required to be answered. Don’t skip any.”

)

Figure 36: Prompt used in the direct asking setting.

A.6.2 Detailed Results

Tables 10, 11, 12, 13, 14, and 15 present detailed RAG results. Questions generated from Wikinews in 2024
are likely the most up-to-date; therefore, we focus on their results, which correspond to the last row in each
table. The results indicate that LLM-revised content tends to be less effective as a knowledge source, as
accuracy based on LLM-revised texts is often lower than that based on the original texts.

Y Direct RAG R (GPT) R (Gem1.5) RAG (Gem3) Full (Original) Full (GPT) Full (Gem1.5) Full (Gem3)

20 75.86% 85.34% 85.63% 79.60% 85.63% 95.98% 95.40% 87.36% 94.25%
21 71.74% 86.31% 88.96% 79.69% 82.56% 96.03% 96.03% 88.08% 93.38%
22 80.00% 89.49% 87.18% 84.10% 85.90% 95.64% 95.64% 88.97% 93.85%
23 77.46% 87.09% 87.09% 83.33% 84.98% 96.01% 94.84% 87.09% 93.19%
24 66.67% 83.33% 84.58% 82.08% 83.33% 95.83% 95.83% 88.75% 90.42%

Table 10: GPT-4o-mini performance on RAG task (problem generated by GPT).

A.6.3 Case Study
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Prompt: Full Texts Provided
prompt = (

f“Use context to answer user questions.”
f“question: {question}”
f“Reference context: {content}”
f“Only need to give the correct option without explanation. Don’t miss ‘)’ or

option.”
f“If there is no answer in the content, just return None. Don’t give a

string.”
)

Figure 37: Prompt used in the full texts provided setting.

Year Direct Ask RAG RAG (GPT) RAG (Gem) Full (Original) Full (GPT) Full (Gem)

2020 66.95% 82.76% 82.47% 75.86% 93.68% 91.38% 84.20%
2021 64.68% 81.90% 82.34% 75.06% 94.04% 93.82% 82.12%
2022 73.54% 86.01% 85.75% 78.88% 94.66% 93.89% 83.21%
2023 69.95% 82.39% 83.10% 78.40% 92.49% 92.25% 83.57%
2024 61.25% 79.58% 75.42% 75.42% 92.92% 92.92% 82.92%

Table 11: GPT-4o-mini performance on RAG task (problem generated by Gemini).

Year Direct Ask RAG RAG (GPT) RAG (Gem) Full (Original) Full (GPT) Full (Gem)

2020 68.68% 77.59% 78.16% 74.14% 86.21% 87.93% 87.36%
2021 67.11% 79.25% 79.25% 74.17% 87.42% 88.30% 84.99%
2022 70.26% 82.82% 80.77% 78.97% 88.46% 90.51% 88.46%
2023 64.08% 74.88% 76.06% 71.83% 86.85% 88.73% 84.27%
2024 60.42% 77.92% 75.83% 75.83% 92.08% 89.17% 83.75%

Table 12: GPT-3.5 Performance on RAG task (problem generated by GPT).

Year Direct Ask RAG RAG (GPT) RAG (Gem) Full (Original) Full (GPT) Full (Gem)

2020 66.95% 72.70% 72.41% 68.97% 77.87% 79.31% 77.59%
2021 58.72% 73.73% 71.74% 68.21% 81.02% 79.47% 74.17%
2022 62.09% 74.05% 72.77% 69.47% 82.44% 82.19% 80.41%
2023 56.57% 73.24% 74.88% 67.14% 77.46% 79.58% 74.65%
2024 55.00% 71.67% 70.00% 65.00% 77.92% 80.42% 76.67%

Table 13: GPT-3.5 Performance on RAG task (problem generated by Gemini).

Year Direct Ask RAG RAG (GPT) RAG (Gem) Full (Original) Full (GPT) Full (Gem)

2020 89.66% 81.03% 81.90% 78.45% 98.28% 97.70% 90.52%
2021 84.55% 77.26% 79.25% 69.09% 97.57% 97.79% 87.20%
2022 90.00% 80.77% 81.54% 75.90% 97.69% 97.44% 90.00%
2023 83.57% 73.00% 76.29% 69.72% 96.71% 95.54% 88.03%
2024 82.08% 75.42% 72.50% 75.42% 97.08% 96.67% 86.25%

Table 14: DeepSeek-V3 Performance on RAG task (problem generated by GPT).
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Year Direct Ask RAG RAG (GPT) RAG (Gem) Full (Original) Full (GPT) Full (Gem)

2020 83.62% 74.14% 75.57% 69.54% 94.54% 95.11% 83.05%
2021 54.97% 69.98% 72.41% 63.36% 95.81% 94.70% 81.68%
2022 84.48% 78.12% 78.37% 65.39% 96.18% 94.91% 84.99%
2023 65.02% 73.00% 74.88% 64.55% 95.54% 94.37% 83.33%
2024 75.83% 74.17% 70.42% 70.00% 95.42% 93.75% 84.58%

Table 15: DeepSeek-V3 Performance on RAG task (problem generated by Gemini).

Example 1 - Keyword Replacement
Title: NASA says object that hit Florida home is from International Space Stationa

Question: On which date did NASA release a pallet containing old nickel–hydride batteries from
the International Space Station?
A) March 8, 2021 B) March 11, 2021 C) April 22, 2024 D) March 8, 2020
Original Context: . . . A pallet containing old nickel–hydride batteries was released from the ISS on
March 11, 2021, after new batteries were installed. . . .
LLM Revised Context: . . . The debris, part of a 5,800-lb cargo pallet released from the ISS in
March 2021, unexpectedly survived atmospheric re-entry. . . .

ahttps://en.wikinews.org/wiki/NASA_says_object_that_hit_Florida_home_is_from_International_Space_
Station

Figure 38: The news revised by LLMs omits key information about the specific date NASA released the
pallet, causing the RAG system unable to determine the correct date and ultimately selecting A.

Example 2 - Keyword Replacement
Title: Latin American expedition of Viktor Pinchuk: meeting with the traveler took place in Yaltaa

Question: What hobby involves collecting recordings of ethnic performers and is practiced by Viktor
Pinchuk?
A) Philophony B) Ethnomusicology C) Hobo tourism D) Cultural preservation
Original Context: . . . From every trip or an expedition, Viktor Pinchuk brings CDs with record-
ings of ethnic performers; the traveler’s collection has already accumulated a significant number of
them (not counting several hundred digital editions of world-famous musicians). The hobby is called
“philophony”, and the subject of it is called a philophonist. . . .
LLM Revised Context: . . . Pinchuk, a self-described “philophonist,” has amassed hundreds of
CDs and digital recordings of ethnic and world music. . . .

ahttps://en.wikinews.org/wiki/Latin_American_expedition_of_Viktor_Pinchuk:_meeting_with_the_
traveler_took_place_in_Yalta

Figure 39: The RAG system mistakenly selects B when using the LLM-revised text because the revision
omits key details, such as the explicit mention of the hobby’s name, “philophony.”
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Example 3 - Keyword Replacement
Title: New Zealand Navy ship HMNZS Manawanui capsizes one nautical mile from shorea

Question: What was the name of the Royal New Zealand Air Force aircraft that assisted in the
evacuation of the crew from HMNZS Manawanui?
A) Boeing P-8 Poseidon B) Airbus A320 C) Lockheed Martin C-130J D) Boeing 737,
Original Context: . . . They were rescued with assistance from the Rescue Coordination Centre
(RCCNZ) and a Royal New Zealand Airforce Boeing P-8 Poseidon. . . .
LLM Revised Context: . . . All 75 crew were safely evacuated with assistance from the Rescue
Coordination Centre and the Royal New Zealand Air Force.

ahttps://en.wikinews.org/wiki/New_Zealand_Navy_ship_HMNZS_Manawanui_capsizes_one_nautical_mile_from_
shore

Figure 40: LLMs omit key information, such as the aircraft’s name.

Example 4 - Abbreviation Ambiguity Misleading
Title: At least 20 die in Odesa in Russian missile strike, Ukraine reportsa

Question: How many employees of the State Emergency Service of Ukraine were reported as victims
of the missile strikes in Odesa?
A) One B) Five C) Seven D) Ten
Original Context: . . . Among the dead are an employee of the State Service of Ukraine for Emer-
gency Situations (SSES) and a paramedic. . . . Among the victims are seven employees of the
State Emergency Service. . . .
LLM Revised Context: . . . Among the deceased are a staff member of the State Service of Ukraine
for Emergency Situations (SSES) and a paramedic. . . . Seven SSES personnel were among the
injured, and medical workers also sustained injuries. . . .

ahttps://en.wikinews.org/wiki/At_least_20_die_in_Odesa_in_Russian_missile_strike,_Ukraine_reports

Figure 41: The original text use the full name “seven employees of the State Emergency Service,” allowing
the RAG system to correctly select C. However, the LLM’s revised text abbreviated this to “seven SSES
personnel,” causing the RAG system to incorrectly choose A.
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Example 5 - Introduction of Modifiers
Title: Arizona bans abortion for genetic abnormalitiesa

Question: What does Senate Bill 1457 in Arizona classify as a Class 6 felony?
A) Seeking or performing an abortion because of a severe fetal abnormality
B) Seeking or performing an abortion due to the presence of a genetic abnormality in the child
C) Distributing abortion-inducing drugs via courier
D) Soliciting funds for an abortion
Original Context: . . . The bill makes it a Class 6 felony, the least severe, to seek or perform an
abortion “because of a genetic abnormality of the child”, defined as “the presence or presumed
presence of an abnormal gene expression in an unborn child,” but not a “severe fetal abnormality”
considered “incompatible with life.” . . .
LLM Revised Context: . . . Arizona Governor Doug Ducey signed Senate Bill 1457 into law on
Tuesday, effectively banning abortions sought solely due to fetal genetic abnormalities. The
bill, which passed the Republican-controlled legislature after twice stalling and undergoing amend-
ments to secure necessary votes, classifies seeking or performing such abortions as a Class 6 felony.
. . .

ahttps://en.wikinews.org/wiki/Arizona_bans_abortion_for_genetic_abnormalities

Figure 42: Although both the original and revised text explicitly excludes “severe fetal abnormalities”, the
revised text change “genetic abnormality” to “fetal genetic abnormalities”, which leads LLMs to misinterpret
the information. As a result, LLMs mistakenly select A based on the revised text.
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