
MICRO 2023 Submission #XXX – Confidential Draft – Do NOT Distribute!!

Towards Large Language Models at the Edge on Mobile,
Augmented Reality, and Virtual Reality Devices with Unity

ABSTRACT

This year, there has been a surge in applications powered
by Large Language Models (LLMs). Modern LLMs often
demand extensive memory and computation for inference.
However, ongoing research in quantization and model dis-
tillation continues to reduce these processing requirements.
Alongside advancements in hardware, it’s now becoming
feasible to run LLMs on mobile devices, Augmented Real-
ity (AR), and Virtual Reality (VR) platforms. This paper
explores developing state-of-the-art LLAMA2 LLM’s mod-
els across various devices, including laptops, mobiles, AR,
and VR systems. We introduce a Unity-based project that
enables the compilation of the LLAMA2 model for diverse
platforms, marking a novel contribution to the field. Further-
more, we benchmark performance, share best practices to
optimize token generation rates and discuss potential future
directions.

1. INTRODUCTION
The landscape of technology and artificial intelligence has

been rapidly reshaped by the advent of Large Language Mod-
els (LLMs). Their capabilities, ranging from natural language
processing to complex task completions, have ushered in a
new era of applications and tools that stand at the forefront
of innovation. Yet, the intrinsic complexity of these mod-
els, often requiring vast amounts of computational power
and memory, has historically restricted their deployment to
high-end servers and data centers.

However, a paradigm shift is on the horizon. As the de-
mand for on-the-go intelligence grows, so does the need to
bring the power of LLMs to edge devices. These include
everyday mobile devices, as well as more specialized plat-
forms like Augmented Reality (AR) and Virtual Reality (VR)
systems. The benefits are manifold: real-time processing,
reduced data transfer, enhanced user privacy, and the ability
to operate without constant internet connectivity.

Recent advancements in quantization and model distilla-
tion techniques are making this dream a closer reality, pro-
gressively lowering the computational footprint of LLMs.
Concurrently, the hardware industry is not lagging, with
significant leaps in the processing capabilities of portable
devices.

Within this context, our study dives into the potential of
the state-of-the-art LLAMA2 LLM. We aim to assess its
adaptability and performance across a range of platforms,
especially focusing on how it fares in the ever-evolving mo-

bile, AR, and VR ecosystems. By utilizing a Unity-based
compilation technique, we hope to bridge the gap between
complex LLM architectures and varied device specifications.

2. BACKGROUND AND RELATED WORK
The history of computational linguistic models traces back

to the mid-20th century with ELIZA, one of the first ever
computer programs designed for simulating typed conver-
sation. Developed by Joseph Weizenbaum in 1966, ELIZA
was a groundbreaking endeavor that emulated Rogerian ther-
apist, primarily through pattern matching and substitution
methodology [14]. Though rudimentary by today’s standards,
ELIZA set the stage for the exploration of man-machine com-
munication via natural language.

Fast forward a few decades, and the landscape of natural
language processing experienced a seismic shift with models
like BERT, which utilized deep bidirectional transformers for
enhanced language understanding [4]. Following BERT, mod-
els such as LLAMA2 were introduced, signifying marked
advancements in capabilities [12]. As these models became
increasingly sophisticated, they have found application across
a diverse range of industries. However, deploying these mod-
els, especially on edge devices, presented challenges due to
their computational demands.

Quantization naturally was viewed as one approach to ad-
dress these challenges. Early neural network quantization
work by Jacob et al. [9] was later followed by efforts that con-
tinue to focus on improving the efficiency of transformers and
large language models [1, 2, 3]. Recently, GPTQ introduced
a novel one-shot weight quantization method for GPT mod-
els, addressing their computational and storage challenges by
compressing large models with minimal accuracy loss while
maintaining the essence of their original capabilities [6].

In recent times, the focus has been on enhancing the porta-
bility and accessibility of foundational LLM research across
various devices. Leading this initiative is the llama.cpp li-
brary, which facilitates the execution of Llama2 on a diverse
range of devices [8]. Augmenting this, llama.cpp-dotnet
brought C# wrappers into the mix, extending the reach of
the Llama2 suite of LLMs into the .NET landscape [11].
llama.cpp leverages ggml [7], a C-oriented tensor library
specifically designed for machine learning, aiming to maxi-
mize model performance on conventional hardware.

The Unity Engine [13] stands out as a versatile multiplat-
form development tool, bridging the gap between innovative
ideas and diverse platforms. It empowers developers to craft
immersive experiences that seamlessly transition from An-
droid smartphones to the captivating realms of virtual reality

1



(VR) and augmented reality (AR). Such adaptability ensures
that content reaches a wider audience, no matter their de-
vice or platform of choice, reaffirming Unity’s pivotal role in
modern application development.

3. UNITY.LLAMA

3.1 Integrating LLMs and Unity
Unity.LLAMA connects the capabilities of the LLAMA2

LLM with Unity’s diverse platform support. The aim is to
make advanced language models available across various
devices, from mobile phones to AR and VR systems, using
Unity’s well-established cross-platform features.

3.2 Implementation Details
The core of Unity.LLAMA’s integration is the dotnet-

llamacpp library. This library, designed to link the LLM with
.NET ecosystems, was modified to meet the .NET Standard
2.1 specification, facilitating its use within Unity.

3.3 Device-Specific Optimizations
Different devices have varied capabilities, which necessi-

tated tailored approaches for each platform. Unity.LLAMA
is designed to load model parts dynamically, considering the
device’s computational and memory resources.

On mobile devices, which often have more limited re-
sources than desktop systems. For performance, Unity.LLAMA
supports asynchronous operations and a streamlined render-
ing process to give users faster results.

3.4 User Interface & Experience
Unity.LLAMA isn’t just about backend operations. The

research interface we’ve provided allows users to explore
and test the system in various ways. One example project
integrates whisper.cpp, letting users issue voice commands
to the LLAMA2 model. The interface is designed to be
accessible, whether it’s on a mobile device or a VR headset.

4. RESULTS

4.1 AR/VR Voice Assistant
As a reference project for bringing the capabilities of Large

Language Models to practical applications, we developed a
voice assistant application by leveraging both whisper.cpp
for voice command processing and llama.cpp for natural
language understanding. This integration allowed users to
communicate with the Unity environment interactively and
can be found at the path below.

Assets\
Scenes\

SageScene.scene
...

When users pose questions or commands vocally, whis-
per.cpp captures and processes the audio data, converting
spoken words into text. This transcribed text is then fed to the
Llama2 model via llama.cpp to generate relevant responses.

Figure 1: Model parameters exposed to unity inspector

Figure 2: Reference Project scene answering user query

4.2 Model Selection
As the application does not have a simple performance

metric, we ran models that gave qualitatively reasonable re-
sults and compared timing performance below on a Core(TM)
i9-12900H, 32GB PC. The Models used can be found at hug-
gingface’s model repository [5, 10] and utilize llama.cpp for
quantization. A key for the quantization methods used is
provided below:

• Q2_K - 2-bit quantization

• Q3_K_M - 3-bit quantization

• Q4_K_M - 4-bit quantization

2



Llama2 7B Benchmarks
Model RAM GB Threads Mean Med Min Max STD
Q2_K 5.33 2 294.9 294 268 322 8.9

Q3_K_M 5.8 2 294.5 293.5 267 468 12.5
Q4_K_M 6.58 2 302.7 302 284 351 11.2
Q5_K_M 7.28 2 351.7 351 327 395 10.8

Q8_0 9.66 2 421.9 420 394 466 10.1
Q2_K 5.33 4 242.2 241 222 261 7.8

Q3_K_M 5.8 4 243.5 243 215 268 8.8
Q4_K_M 6.58 4 223 225 205 235 7.3
Q5_K_M 7.28 4 278.3 279 251 300 7.8

Q8_0 9.66 4 314.5 315 301 324 5
Q2_K 5.33 8 169.8 169 160 185 4.3

Q3_K_M 5.8 8 172 171 162 190 4.1
Q4_K_M 6.58 8 160.1 160 142 178 5.5
Q5_K_M 7.28 8 196.8 196 185 222 4.9

Q8_0 9.66 8 235 234 227 248 4.2
Q2_K 5.33 16 136.3 135 124 232 8.8

Q3_K_M 5.8 16 141 140 127 259 9
Q4_K_M 6.58 16 139.3 139 121 167 6.4
Q5_K_M 7.28 16 162.4 161 146 208 7.2

Q8_0 9.66 16 200.2 199 183 243 7.6
Llama2 13B Benchmarks

Q2_K 7.93 16 230 230 217 257 7.4
Q3_K_M 8.84 16 232 233 204 298 16.9
Q4_K_M 10.37 16 252.6 251 233 397 12.7
Q5_K_M 11.73 16 297.9 297 276 429 13.8

Q8_0 16.33 16 402.1 390 361 692 39

Table 1: Benchmarks Taken from Core(TM) i9-12900H, 32GB PC. Mean, Med, Min, Max, STD are all measured in
milliseconds per token.

• Q5_K_M - 5-bit quantization

• Q8_0 - 8-bit quantization

Upon analyzing the results from table 1, we identified the
LLama7B_Q4_K_M model as the most suitable for deploy-
ment on the 12GB Snapdragon XR2+ processor found in the
Meta Quest 2. The rational comes down to the Q2 models
being unreliable in qualitative performance. Therefore, given
that perplexity rises as we further quantize, it appears that 4-
bit quantization consistently strikes the best balance between
speed improvement and reduced memory usage. Although
the 13B model may offer higher performance, there was no
noticeable qualitative difference in the context of our sim-
ple Q&A application. Moreover, the 13B model demanded
significantly more memory.

4.3 Parameters for Inference
Parameters used are defined below:

Context Size 512
Batch Size 512
Memory Mapping True
Memory Locking True
Gpu Layers 0
Rope Frequency Base 10000
Rope Frequency Scale 1
PThread Count 8

Top K (Not Used) 40
Top P 0.95
Temperature 0.8
Repeat Penalty 1.4
Last token Count Penalty 64
Penalize New Line True
Tfs Z 1
Typical P 1
Frequency Penalty 0
Prescence Penalty 0
Mirostat (Sampling Method) 2
Mirostat TAU 5
Mirostat ETA 0.1

A full description of each parameter can be found at the
llama.cpp repository [8].

4.4 Mobile VR/AR APPs
As a proof of concept we developed the scene to be com-

patible with Android and Meta Quest (AR/VR) deployment.
The app is visible in figure 3.

5. CONCLUSION AND FUTURE WORK
In this study, we introduced a Unity-based multiplatform

development tool designed for the research community. This
tool aims to bridge the gap between Large Language Models
like LLAMA2 and a variety of edge devices. In testing on the

3



Figure 3: Running the application on the Meta Quest Pro

Meta Quest Pro, we found that current inference times and
delays make for a suboptimal user experience. Despite this,
the tool’s ability to quickly test and benchmark on different
devices makes it valuable for iterative research and devel-
opment. We also demonstrated that the 4-bit quantization
appears to consistently give the best tradeoff in performance,
most likely due to cache coherence on the architecture uti-
lized.

5.1 Future Work
Our focus moving forward will be to refine the library,

making it less tied to specific models. By integrating lower-
level tensor frameworks such as ggml, we aim to enhance
compatibility with a broader range of models within Unity.
Additionally, there’s potential to incorporate optimization
tools that fine-tune deployments for specific platforms, espe-
cially targeting architectures like ARM64. Finally, we would
like to provide more tools needed for edge device compilation
as the current unity workflow can be challenging.

ACKNOWLEDGMENTS

We thank the llama.cpp project and the broader open-source
community for providing foundational tools that enabled our

research. Special thanks to Bjorn Askew, Zander Brumbaugh,
and Pedro Silva for their insights on our submission.

REFERENCES

[1] T. Dettmers, M. Lewis, Y. Belkada, and L. Zettlemoyer, “Llm.int8():
8-bit matrix multiplication for transformers at scale,” 2022.

[2] T. Dettmers, A. Pagnoni, A. Holtzman, and L. Zettlemoyer, “Qlora:
Efficient finetuning of quantized llms,” 2023.

[3] T. Dettmers and L. Zettlemoyer, “The case for 4-bit precision: k-bit
inference scaling laws,” 2023.

[4] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” 2019.

[5] J. Durbin, “jondurbin/airoboros-l2-7b-2.1,”
https://huggingface.co/jondurbin/airoboros-l2-7b-2.1, 2023.

[6] E. Frantar, S. Ashkboos, T. Hoefler, and D. Alistarh, “GPTQ: Accurate
post-training compression for generative pretrained transformers,”
arXiv preprint arXiv:2210.17323, 2022.

[7] G. Gerganov, “ggml,” https://github.com/ggerganov/ggml, 2023.

[8] G. Gerganov, “llama.cpp,” https://github.com/ggerganov/llama.cpp.git,
2023.

[9] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam,
and D. Kalenichenko, “Quantization and training of neural networks
for efficient integer-arithmetic-only inference,” 2017.

[10] T. Jobbins, “Thebloke/airoboros-l2-7b-2.1-gguf,”
https://huggingface.co/TheBloke/Airoboros-L2-7B-2.1-GGUF, 2023.

[11] D. Ranger, “llama.cpp-dotnet,”
https://github.com/dranger003/llama.cpp-dotnet, 2023.

[12] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei,
N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale, D. Bikel, L. Blecher,
C. C. Ferrer, M. Chen, G. Cucurull, D. Esiobu, J. Fernandes, J. Fu,
W. Fu, B. Fuller, C. Gao, V. Goswami, N. Goyal, A. Hartshorn,
S. Hosseini, R. Hou, H. Inan, M. Kardas, V. Kerkez, M. Khabsa,
I. Kloumann, A. Korenev, P. S. Koura, M.-A. Lachaux, T. Lavril,
J. Lee, D. Liskovich, Y. Lu, Y. Mao, X. Martinet, T. Mihaylov,
P. Mishra, I. Molybog, Y. Nie, A. Poulton, J. Reizenstein, R. Rungta,
K. Saladi, A. Schelten, R. Silva, E. M. Smith, R. Subramanian, X. E.
Tan, B. Tang, R. Taylor, A. Williams, J. X. Kuan, P. Xu, Z. Yan,
I. Zarov, Y. Zhang, A. Fan, M. Kambadur, S. Narang, A. Rodriguez,
R. Stojnic, S. Edunov, and T. Scialom, “Llama 2: Open foundation and
fine-tuned chat models,” 2023.

[13] Unity Technologies, “Unity.” [Online]. Available: https://unity.com/

[14] J. Weizenbaum, “Eliza—a computer program for the study of natural
language communication between man and machine,” Commun. ACM,
vol. 9, no. 1, p. 36–45, jan 1966. [Online]. Available:
https://doi.org/10.1145/365153.365168

4

https://huggingface.co/jondurbin/airoboros-l2-7b-2.1
https://github.com/ggerganov/ggml
https://github.com/ggerganov/llama.cpp.git
https://huggingface.co/TheBloke/Airoboros-L2-7B-2.1-GGUF
https://github.com/dranger003/llama.cpp-dotnet
https://unity.com/
https://doi.org/10.1145/365153.365168

	Introduction
	Background and Related Work
	unity.llama
	Integrating LLMs and Unity
	Implementation Details
	Device-Specific Optimizations
	User Interface & Experience

	Results
	AR/VR Voice Assistant
	Model Selection
	Parameters for Inference
	Mobile VR/AR APPs

	Conclusion and Future Work
	Future Work


