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Abstract

Adapting machine learning (ML) solutions in the PHY layer to new wireless
configurations is hindered by the prohibitive cost of data collection for each unique
configuration. While existing methods attempt to transform data from a reference
to a target configuration, their reliance on large, hard-to-obtain paired datasets is a
significant bottleneck. We propose a physics-based transformation framework that
leverages a parametric latent space in which channel transformations can be mapped
to relatively simple translations. Our model pre-trains on readily available, unpaired
data to learn this space, then fine-tunes with only a fraction of paired labeled data to
learn the required translation. We demonstrate the effectiveness of our framework
through experiments on different modalities of channel transformation and through
improvements in downstream tasks relevant to wireless communication.

1 Introduction

Machine learning (ML) solutions for challenges in wireless communication such as, channel com-
pression, estimation, equalization, and beamforming have seen extensive interest in the past few
years |Guo et al.|[2022], |[Kassir et al.|[2022], Mao et al. [2018]], Sant et al. [2022]]. A fundamental
challenge for machine learning (ML) in the wireless PHY layer is that models are highly sensitive to
the specific physical configuration of the environment. An ML model trained for one setup defined by
parameters such as the carrier frequency, system bandwidth, or antenna geometry may not be directly
usable or often fails to generalize to other settings. This lack of transferability implies that for any
change in the operational environment, the entire data collection process must be repeated in order to
retrain the model to adapt to the new configuration. This presents a significant practical barrier, as
acquiring the necessary over-the-air (OTA) channel data is a manual, time-consuming, and extremely
resource-intensive endeavor Ju and Rappaport [2023]], Ju et al.|[2022]], Kumar et al.| [2024].

Prior methods address this issue by training black-box deep learning models to directly map a channel
matrix from a source configuration to the associated channel in the target configuration |Alrabeiah
and Alkhateeb| [2019]], Liang and Li|[2024], |Liu et al|[2019] . However, such methods require paired
channel measurements from both source and target environments for training. This requirement of
paired data is often impractical and contradicts the very goal of reducing the burden of data collection.
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In contrast, the key insight of this work is that channel transformations can be modeled more efficiently
as translations of physical parameters. We introduce a physics-based meta-learning framework that
operationalizes this idea. First, the model is pre-trained on abundant, unpaired data from the source
configuration to learn an effective mapping from the complex channel space into the structured
parameter space. Next, using only a small number of paired samples, the model is fine-tuned to
learn the precise, and often sparse, translation from source to target parameters. As this translation is
much simpler to learn than a direct, high-dimensional channel transformation, our method drastically
reduces the requirement for paired data, providing significant savings in time and resources.

2 System Model and Approach

We consider a wireless communication system with N; transmit and /N, receive antennas in a Uniform
Linear Array (ULA) pattern. For a given carrier frequency f, the associated channel model defined
by M : R*" — CNexNr|Alkhateeb et al.[[2014], maps a set of parameters s € R*” to a matrix
H; € CNt*Nr, where P is the number of constituent channel multipaths. The model M considers
H; to be a superposition of the channel responses for each of the P paths, and can be described as

P
Hy = M({oy, 6%, %}a Tp}gzlv f)= Z O‘p€27rjpraT(95)at(65)H- ey

p=1

S

Where «, is the gain, 7, is the delay, and 6% and 0% are the angles of departure and arrival of the p-th
path respectively. a;(+),a,.(+) are the array response vectors of the transmit and receive antennas.

In this work we consider two modalities of channel transformation, namely (i) transformation due to
a change in carrier frequency from f; to fa, and (ii) uplink-downlink (UL-DL) transformation, from
the uplink subband Fyyi. to the downlink subband Fpy, both of which are described next.

2.1 Physics-based Channel Transformation

Based on the channel model in @]) a channel transformation can be interpreted as a translation of
the parameters s used to describe the channel. Such translations are less complex mappings than
transformations in the channel space CV¢* N~ and are thus easier to learn. To learn these mappings,
we leverage the the discretized, ML-compatible reformulation of the physics-based channel model as
described in[Wagle et al.|[2025]], wherein the channel in (T)) is expressed as H = W oDy, where

Dy is an array response dictionary with RIT'l entries, each being a complex matrix of size N, x N,
. . . . . . . IT|
R is the user-defined discretization resolution, I" is the set of discretized parameters and W € R~

is a sparse weight tensor. We adapt I" and D for the channel transformation task as discussed next.

2.1.1 Frequency Transformation

For channel transformations due to a shift in the transmission frequency, we consider I' = {7,6,, 64}
and dictionary D; with R? entries, where D¢[l, m,n] = e*™/7a,(0,,)a.(0,,)", where 7;,0,,, 0,
are discretized as per|Wagle et al.| [[2025]. Now, for such a transformation, the geometric propagation
paths are considered largely invariant and a significant part of the transformation is caused by changes
in the gain a, frequency f and the path delay 7,,. Thus, given a change in frequency from f; to f,
we can construct the corresponding dictionaries D¢, , D¢,. Now, the overall channel transformation
can be interpreted as a change in oy, and 7, in (I).

Thus, given a channel Hy, in the reference frequency f;, we train a physics-based transformation

model (PBTM) gy (+) : R2xNrxNe _, RE® parametrized by v, to produce a weight tensor W =
g (Hy,) and calculate the target channel Hy, in the target frequency fs as

R R
Hy, = Gw(anng) = Z Wik, 1, m] ©Dy, [k, l,m] = Z gw(Hh)[kvlvm] ©Dy, [k, l,m]. (2)
k,l,m=0 k,l,m=0

Thus, as the dictionary D, in the transformation pipeline corresponds to the target frequency f, the
PBTM gy (-) learns the translation to f; by estimating the appropriate parameter discretizations.
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Figure 1: In the pre-training stage of our method, we leverage the physics-based latent space and
abundant channel data from the reference configuration Dges to learn a suitable initialization. In the
fine-tuning stage, we learn the channel transformations as translations in the consistent physics-based
latent space, which requires fewer paired channel data Dp,;r.q from both configurations.

2.1.2 Uplink to Downlink Transformation

For UL-DL transformations, to ensure tractability of models, we consider a MISO system, with receive
antennas NV, = 1 and 6, = 7. For this modality, we consider I' = {7,604} and a dictionary Dy with
R? entries, where D ¢[l,m] = €™/ 7 a,(0,,,), where 7, 0, are discretized as perWagle et al.|[2025)].
We consider the channels for each subcarrier across an uplink subband Fy, = {f3i" + kA f}Zié{ -1
where Ay is the change in frequency between subcarriers, and K is the total number of subcarriers
in the band. This results in the uplink channel Hyy € R2*Nr*Nex[Fuil - Similarly, we consider a

downlink channel Hpy, € R2XNrxNex[FoL| where Fy; is the downlink subband.

Now, based on the characteristics of the channel model , the channel parameters
{ap, 1p, 02, 02}5:1 remain largely constant across the subband. Secondly, we observe that a channel

transformation from the subcarrier fi" to another subcarrier fJi" + kA ¢ can be expressed as

R R
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m,n=1 m,n=0
e
min

This indicates that, if path parameters are known, the channel Hy, " can be extrapolated across the

remaining subbands by scaling it by e2™™m*2s where k, 7,,, and A ¢ are known. Thus, similar to
(), a neural network can be trained to predict the downlink channel from the uplink channel as

R K—1
Hp. = Gy(Hu, DpL) = Z gy (Hur)[m, n] © D gy, m] - e27947m A NG
m,n=0 k=0

Similar to Sec. as the dictionary Dpy in this pipeline corresponds to the downlink subband
FuL, the PBTM gy (-) learns the translation to Fyy, through suitable parameter estimation.

3 Training Pipeline

We consider a neural-network based PBTM g (-), unpaired channel data belonging to the reference
configuration, given by Dg.r such that Hgres € Dger, and paired data from the reference and target
configurations, given by Dpyireq such that {Hger, HTrg} € Dhpaired, and the associated dictionaries for
both configurations Dger, D1r,. As mentioned in Sec. E], collecting and annotating paired data is
extremely resource intensive in practical scenarios. Thus, we assume that |Dpyired| << |DRef]-

3.1 Pre-Training on Reference Configuration Data

First, we pre-train the PBTM g, (-) purely on reference data Dg¢ using the loss function



Algorithm 1 Training Pipeline for Physics-based Channel Transformation

Pre-training on Reference Data
Given: PBTM g, (+), Dataset of reference configuration channels Dg.r, Reference configuration array
response dictionary Dges.
1: Sample Hger € Dger and produce the weight tensor W as W = gy, (Hger).
2: Construct reference channel using Gy, (Hgef, Drer) via (@) or (@) depending on modality.
3: Calculate the loss using (3)) and update ).
Output: Pretrained PBTM gy ().
Fine-tuning on Paired Data
Given: Pretrained PBTM g, (-), Dataset of paired channels Dpyireq, Target configuration array
response dictionary Dry,.
1: Sample Hgef, Hryy € Dpaired and produce the weight tensor W as W = gy (Hger).
2: Construct target channel using Gy (Hgef, DTrg) via (2) or depending on modality.
3: Calculate the loss using () and update )’
Output: Trained PBTM g,;(-)

1
Loe == Y |I>_ Gy(Hrer, Drer) — Hrerl |, )
|DR3f| Hgoo
Ref € DRef

where Dgey is the array response dictionary associated with the reference configuration. For frequency
transformation, Drer = Dy, , and for UL-DL transformation, Drer = Dy

The purpose of the pre-training stage is to have the PBTM g, (-) converge to a suitable initialization
gy (+) for the channel transformation task. The pre-training stage enables this as the parameters of a
target configuration channel are largely similar to those of the corresponding reference configuration
channel. For example, from ([I]), we can observe that for a transformation due to shift in carrier
frequency, the angles of arrival and departure, {62, Hg 2:1 remain largely constant. The pre-training
procedure on unpaired data from the reference domain implicitly learns these consistencies in the
parameter space, resulting in a suitable initialization point for fine-tuning, described next.

3.2 Fine-tuning on Paired Reference-Target Data

The next step of the training pipeline involves fine-tuning the pretrained PBTM gy (-) using the
paired data Dp,ireq from both reference and target configurations using the loss function

1
EFine P Z H Z G’L[)/ (HRef7 DTrg) - HTrg| ‘%‘7 (6)

DP, M d
| are ‘ HRgef, Hrvg € Dpaired

where Hger, Hrye are paired channel samples from the reference and target domain respectively,
and Dry, is the array response dictionary associated with the target configuration. For frequency
transformation, D1, = Dy,, and for UL-DL transformation, Dy, = Dp.

As the PBTM gy (-) has been pretrained to a suitable initialization, only a few paired datapoints
Draireq are needed to learn useful translations in the parameter space, as it is an easier task. Thus, the
pre-training stage of the two-stage channel transformation pipeline extracts transformation-critical
information from the unpaired reference data, and uses it to converge to a suitable initialization for
the fine-tuning task in the second stage. A summary of the training pipeline is given in Algo. [I]

4 Experimental Results

For our experiments, we use the DeepMIMO framework |Alkhateeb| [2019] to generate ray-tracing
datasets for two real-life scenarios, namely (i) the indoor office scenario (Indoor), and (ii) a street
crossing with blocking and reflecting surfaces (Outdoor). For the PBTM, we use a transformer
architecture with a convolutional encoder, and compare it against a black-box FSR-CNN model
(FSRCNN) Dong et al.| [2016] with approximately the same number of parameters. FSRCNN
does not use the physics-based latent space, and can only be trained with paired datapoints. We
consider a MIMO system for frequency transformation, with N; = N, = 8, and a MISO system
for UL-DL transformation, with N; = 8, V,, = 1 with at most 8 channel multipaths. For frequency
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Figure 2: Our method outperforms similar black-box architectures for both frequency (Left) and
UL-DL transformation (Right) for various amounts of paired samples Dp,ireq. In both cases, the pre-
training stage of our training pipeline allows the PBTM to learn transformation-critical information,
thus resulting in improved performance despite the small amount of paired data.

Testing Dataset || Ref. Only | Ref+Paired | Best Case | Transformed (Ours)
DRet 0.018 0.02 0.012 0.014
Drrg 0.312 0.1 0.018 0.038
Table 1: In the context of a downstream compression task, given a small number of paired datapoints,
using them to train a PBTM (Transformed) rather than directly training a compression model (Ref +
Faired) results in performance similar to when all paired datapoints are available (Best Case).

transformation, we consider reference frequency f1 = 3.5 GHz and target frequency f2 = 28 GHz.
For UL-DL transformation, we consider a central frequency of 2.4 GHz, with 128 subcarriers of width
40 Mhz spread uniformly around it. We consider the lower 64 subcarriers for the uplink channel, and
the upper 64 subcarriers for the downlink channel. For the PBTM, we use resolution R = 64.

4.1 Generalization to Various Transformation Modalities

In Fig. 2] we illustrate the ability of our framework to adapt to different modalities of transformation,
namely, transformations caused by a change in frequency and the UL-DL channel. We show our
results for the Indoor scenario using different sizes of paired dataset Dpyireqd-

We observe that for both modalities, our method significantly outperforms similarly sized black-box
models, with the performance advantage increasing as the number of paired datapoints decrease.
Our model also converges faster than the black-box models. This is because, firstly, the pre-training
stage of our framework allows the model to converge to a suitable initialization by extracting relevant
information from the reference configuration data, and secondly, the transformation model learns the
translations in the parameter space, which is easier than learning the changes in the channel itself,
thus requiring fewer datapoints to train. This illustrates that our method can effectively learn the
channel transformation for different modalities while requiring a much smaller amount of paired data.

4.2 TImpact on Downstream Compression Tasks

In Table[T] we illustrate the efficacy of our transformation framework in the context of a downstream
compression task. We consider a set of 30,000 channels from the reference configuration (Dges),
and a smaller set of 300 paired channels from both the reference and target configurations (Dpyjreq)-
We consider a CSINet compression model |Wen et al.|[2018]] in four training scenarios, namely, (i)
training CSINet using only Dger (Ref. Only), (ii) training CSINet using Dger as well as Dpyjreq (Ref
+ Paired) , (iii) using the Dget and Dpyireq to train a transformation model, which then transforms
Dres to ﬁpaired, and use Dger and f)paired to train CSINet (Transformed), and finally (iv) assuming the
best case scenario, where |Dpyired| = 30, 000, and use it to train CSINet (Best Case). We evaluate the
trained CSINet model on ground truth channels from the target configuration.

We observe that, in the Ref. Only case, CSINet cannot generalize to the target configuration Dryg, as
no data from the target distribution is available during training. In the Ref + Paired case, CSINet
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Figure 3: The pre-training stage of our training pipeline extracts transformation-critical information
from source configuration data, resulting in a better initialization for the fine-tuning task. It also
requires fewer paired datapoints to achieve comparable performance with the best-case scenario of
having a large amount of paired data from both environment configurations (a). The ideal operating
resolution R for the array response dictionary D balances the angular resolution of the dictionary D
and the expressiveness of the learnable parameters of the transformation model (b).

performs better on channels from Dry,, but the accuracy is still significantly poorer than for the
reference configuration Drer, as the number of datapoints available from Dry is small. For the
Transformed case, we observe that CSINet shows significant improvements in performance on Dryg,
indicating that the transformed channels produced by our method are very similar to the ground truth
data from the target configuration. Secondly, comparing Transformed and Best Case, we observe that
the difference between them is not significant, indicating that by using our transformation framework,
even a small number of paired datapoints can be leveraged to approach the best case performance.

4.3 Effect of pre-training

In Fig. we study the impact of the pre-training stage in terms of (i) the NMSE loss for fine-tuning
with and without pre-training for a given number of paired datapoints (green), and (ii) the number of
paired datapoints required to match the performance for an ideal scenario where all datapoints are
paired (| Dpairea| = 30, 000) (red). We consider UL-DL transformation for the Outdoor scenario.

We observe that for a given number of paired datapoints, the pretrained model converges significantly
faster than the non-pretrained model, with a lower NMSE loss at the end of training. This is
because pre-training enables the model to learn transformation critical information which allows it
to converge faster in the fine-tuning stage. We also observe that for an ideal scenario with 30, 000
paired datapoints, our pretrained model requires only 1000 paired datapoints to achieve performance
parity. This is because the pre-training stage leverages the abundant information in the reference data
Dref, thus requiring fewer paired datapoints in the fine-tuning stage to achieve similar performance.

4.4 Effect of Increasing Dictionary Size

In Fig. 3(b)l we observe the impact of changing the resolution R of the array response dictionary D.
We keep the number of parameters in the transformation model constant by changing the number of
convolutional kernels. We consider carrier frequency transformation for the Outdoor scenario.

We observe a clear optimal operating point at a resolution of R = 64. This is because, for larger R,
fewer learnable parameters limit the representational variety that the model is able to learn, while for
smaller R, the coarseness of the dictionary limits the range of channels that can be expressed.

5 Conclusion

In this paper, we propose a physics-based channel transformation model to learn channel transforma-
tions between environment configurations. We leverage the physics-based latent spaces learned by
the model in conjunction with the large number of unpaired data from the reference configuration to



develop a two-stage training process that learns a suitable initialization, thus requiring fewer paired
datapoints to achieve performance parity with state-of-the-art methods.
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