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ABSTRACT

Monocular 3D object detection is one of the most challenging tasks in 3D scene
understanding. Due to the ill-posed nature of monocular imagery, existing monoc-
ular 3D detection methods highly rely on training with the manually annotated 3D
box labels on the LiDAR point clouds. This annotation process is very laborious
and expensive. To dispense with the reliance on 3D box labels, in this paper we
explore the weakly supervised monocular 3D detection. Specifically, we first de-
tect 2D boxes on the image. Then, we adopt the generated 2D boxes to select
corresponding RoI LiDAR points as the weak supervision. Eventually, we adopt
a network to predict 3D boxes which can tightly align with associated RoI LiDAR
points. This network is learned by minimizing our newly-proposed 3D alignment
loss between the 3D box estimates and the corresponding RoI LiDAR points. We
will illustrate the potential challenges of the above learning problem and resolve
these challenges by introducing several effective designs into our method. Codes
are available at https://github.com/SPengLiang/WeakM3D.

1 INTRODUCTION

3D object detection is essential for many applications in the real world, such as robot navigation and
autonomous driving. This task aims to detect objects in 3D space, bounding them with oriented 3D
boxes. Thanks to a low deployment cost, monocular-based methods Chen et al. (2016); Mousavian
et al. (2017); Roddick et al. (2018); Liu et al. (2019); Manhardt et al. (2019); Ma et al. (2020;
2021) are drawing increasing attention in both academia and industry. In recent years, monocular
3D detection has achieved remarkable progress. However, it also requires numerous 3D box labels
(locations, dimensions, and orientations of objects) for training. These labels are labeled on LiDAR
point clouds, where the manually annotating process is quite time-consuming and expensive. The
high annotation cost encourages us to dispense with the reliance on the 3D box annotations.

To this end, in this paper we propose WeakM3D, a novel method towards weakly supervised monoc-
ular 3D object detection. Considering the well-developed 2D detection technology Redmon &
Farhadi (2018); Ren et al. (2015); He et al. (2017); Qi et al. (2018); Zhou et al. (2019), we use
an off-the-shelf 2D detector Qi et al. (2018) to obtain 2D boxes, which are then lifted to 3D boxes
by predicting required 3D box parameters. To learn the 3D information desired in the lifting process,
we employ the LiDAR point cloud as the weak supervision since it provides rich and accurate 3D
points within the scene. Specifically, given a raw LiDAR point cloud, we select LiDAR points if
their projections are inside the 2D object on the image plane. We term these points object-LiDAR-
points, which describe a part outline of the object in 3D space. Therefore, as shown in Figure 1
(a), object-LiDAR-points can be used for aligning with 3D box predictions in loss functions, conse-
quently endowing the network with the ability of being trained without any 3D box label.

However, how to formulate the loss between 3D box predictions and object-LiDAR-points is con-
siderably challenging. We pose and summarize the main challenges and our solutions.

• Challenge 1 (Section 3.2): as shown in Figure 1 (a), the alignment gap between 3D box estimates
and object-LiDAR-points should be measured appropriately. We address this challenge by introduc-
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Figure 1: We use the LiDAR point cloud as the weak supervision in training. (a): the aligning
process; (b): the alignment ambiguity problem; (c): unevenly distributed LiDAR points.

ing a geometric point-to-box alignment loss, to minimize spatial geometric distances from 3D box
predictions to object-LiDAR-points. This loss allows the network to learn the object’s 3D location.

• Challenge 2 (Section 3.3): as shown in Figure 1 (b), an alignment ambiguity problem is caused
if only geometrically aligning 3D box predictions with object-LiDAR-points. Regarding object-
LiDAR-points that are captured from only one surface of an object, it is not clear which surface
of the 3D box prediction should be used for aligning, thus causing an alignment ambiguity issue.
Inspired by the constraints of camera imaging and LiDAR scanning, we eliminate this ambiguity
by proposing a ray tracing loss. In particular, we track each object-LiDAR-point from the camera
optical center and use the resulting ray to make collision detection with predicted 3D boxes to find
the surface correspondence. In this way, the alignment ambiguity issue can be alleviated greatly.

• Challenge 3 (Section 3.4): as shown in Figure 1 (c), LiDAR point clouds distribute in 3D space
unevenly. Considering that both geometric alignment and ray tracing losses are calculated point-
wisely, unevenly distributed points can cause unbalanced point-wise losses in training, which is
harmful since losses produced by sparse yet important points are overwhelmed by losses of dense
points. We use the point density to balance point-wise losses to resolve this problem.

• Challenge 4 (Section 3.5): a 3D box is parameterized by many estimates (locations, dimensions,
and orientations). Such entangled 3D box estimates result in a heavy learning burden during training.
To resolve this issue in training, we disentangle the learning of each group of estimates by freezing
the object dimension and heuristically obtaining the orientation from object-LiDAR-points.

Such challenges and our method are detailed in the following sections. Extensive experiments vali-
date the effectiveness of our method. In summary, our contributions can be listed as follows: Firstly,
we explore a novel method (WeakM3D) towards weakly supervised monocular 3D detection, remov-
ing the reliance on 3D box labels. Secondly, we pose the main challenges in WeakM3D and corre-
spondingly introduce four effective strategies to resolve them, including geometric alignment loss,
ray tracing loss, loss balancing, and learning disentanglement. Thirdly, evaluated on the KITTI
benchmark, our method builds a strong baseline for weakly supervised monocular 3D detection,
which even outperforms some existing fully supervised methods which use massive 3D box labels.

2 RELATED WORK

2.1 LIDAR-BASED 3D OBJECT DETECTION

The LiDAR device is able to provide point clouds with precise depth measurements for the scene.
Thus, LiDAR-based methods Shi et al. (2019b); Lang et al. (2019); He et al. (2020); Shi et al.
(2020); Shi & Rajkumar (2020); Shi et al. (2019a); Zheng et al. (2021) attain high accuracy and
can be employed in autonomous driving. Early methods project point clouds into the bird’s-eye-
view Chen et al. (2017b) or front-view Li et al. (2016), ignoring the nature of point clouds, thus
resulting in sub-optimal performances. LiDAR-based 3D detectors can be roughly divided into two
categories: voxel-based methods Zhou & Tuzel (2018); Yan et al. (2018); Kuang et al. (2020) and
point-based methods Shi et al. (2019a); Qi et al. (2018); Yang et al. (2019). The former partition the
3D space into voxel grids, transforming the irregular raw point cloud to regular voxels so that 3D
convolutions can be employed to extract more discriminative features. Point-based methods directly
design the network tailored to the raw point cloud representation. Both two types of methods have
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achieved great success, but are inherently limited by the main shortcomings of the LiDAR device,
i.e., the high price and limited working ranges.

2.2 MONOCULAR-BASED 3D OBJECT DETECTION

In recent years, monocular 3D object detection has achieved significant improvements Qin et al.
(2019); Brazil & Liu (2019); Ma et al. (2021). Prior works such as Mono3D Chen et al. (2016)
and Deep3DBox Mousavian et al. (2017) mainly take advantage of geometry constraints and aux-
iliary information. More recently, Monodle Ma et al. (2021) resorts to reducing the localization
error in monocular 3D detection by three tailored strategies. Furthermore, with the development
of depth estimation, some other monocular methods attempt to use the explicit depth information
generated from an off-the-shelf depth estimator. Pseudo-LiDAR Wang et al. (2019); Weng & Kitani
(2019) converts the image-only representation, to mimic the real LiDAR signal to utilize the existing
LiDAR-based 3D detector. PatchNet Ma et al. (2020) rethinks the underlying mechanism of pseudo
LiDAR, pointing out the effectiveness comes from the 3D coordinate transform. Although recent
monocular 3D object detection methods obtain exciting results, they heavily rely on a large number
of manually labeled 3D boxes.

2.3 WEAKLY SUPERVISED 3D OBJECT DETECTION

To alleviate heavy annotation costs, some weakly supervised methods are proposed. WS3D Meng
et al. (2020) introduces a weakly supervised approach for LiDAR-based 3D object detection, which
still requires a small set of weakly annotated scenes and a few precisely labeled object instances.
They use a two-stage architecture, where stage one learns to generate cylindrical object proposals
under horizontal centers click-annotated in bird’s-eye-view, and stage two learns to refine the cylin-
drical proposals to get 3D boxes and confidence scores. This weakly supervised design does not
fully get rid of the dependence on 3D box labels and only works well for LiDAR point clouds input.
Another weakly supervised 3D detection method Qin et al. (2020) also takes point clouds as input.
It proposes a 3D proposal module and utilizes an off-the-shelf 2D classified network to identify
3D box proposals generated from point clouds. Both two methods cannot be directly applied to fit
the single RGB image input. Also, Zakharov et al. Zakharov et al. (2020) propose an autolabel-
ing pipeline. Specifically, they apply a novel differentiable shape renderer to signed distance fields
(SDF), leveraged together with normalized object coordinate spaces (NOCS). Their autolabeling
pipeline consists of six steps, with a curriculum learning strategy. In contrast to WeakM3D, their
method is not end-to-end and rather complicated.

3 METHODS

3.1 PROBLEM DEFINITION

Given an RGB image captured from a single calibrated camera and the corresponding projection
matrix P , the task, i.e., monocular 3D object detection, aims to classify and localize objects within
the scene in 3D space, where each object is represented by its category cls, 2D bounding box b2d,
and 3D bounding box b3d. In particular, we utilize a separate 2D detector to achieve 2D bounding
boxes of objects, eliminating the extra attention on this well-developed area. This simple design
enables us to focus on solving the 3D bounding box, which is the most important and challenging in
monocular 3D detection. Note that we do not use any 3D box label during training. Specifically, the
3D bounding box b3d is parameterized by the location (x3d, y3d, z3d), the dimension (h3d, w3d, l3d),
and the orientation (θy), which are all described at the camera coordinate system in 3D space.

We show our network architecture in Figure 2, and the forward pass is as follows: deep features are
firstly extracted from a single RGB image via an encoder. At the same time, the image is fed into
an off-the-shelf 2D detector Qi et al. (2018) to generate 2D bounding boxes. The 2D boxes are then
used to obtain specified object features for every object from deep features. Finally, we achieve the
3D box b3d by regressing the required 3D box parameters from object features.

Object-LiDAR-points. Object-LiDAR-points contain only LiDAR points located on the object sur-
face, indicating much 3D information. Thus they are ideal weakly supervised signals for monocular
3D detection. We achieve object-LiDAR-points from raw LiDAR point clouds and an off-the-shelf
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Figure 2: Network architecture. In the inference stage, we require only a single RGB image as
input and output corresponding 3D boxes. In the training stage, we use LiDAR point cloud and 2D
boxes estimated from a pre-trained model to obtain object-LiDAR-points, which are used to build
losses with 3D box predictions to train the network. Best viewed in color.

2D detector. First, the ground plane is estimated from the raw LiDAR point cloud via RANSAC Fis-
chler & Bolles (1981), which is used to remove ground points in the raw point cloud. The remaining
LiDAR points whose projections on the image within the 2D box are selected as the initial object
point cloud, which contains some points of no interest such as background points. Alternatively, we
can also use 2D instance masks from a pre-trained network to select the initial object point cloud.
Then, we obtain object-LiDAR-points by filtering the initial point cloud via an unsupervised density
clustering algorithm Ester et al. (1996), which is detailed in the appendix.

3.2 GEOMETRICALLY ALIGNED 3D BOX PREDICTIONS

Figure 3: Adverse impacts if
using only the center loss. Blue
points refer to object-LiDAR-
points. Even given an ideal ini-
tial 3D box that is close to the
groundtruth, the network con-
ducts a much worse prediction
after training. Best viewed in
color with zoom in.

Without loss of generality, 3D object boxes should contain object-
LiDAR-points and align with them along box edges. To facilitate the
learning of the object’s 3D location, we impose the location con-
straint between 3D box predictions from the network and object-
LiDAR-points. A naive solution refers to minimizing the euclidean
distance from the object center to each LiDAR point. Nevertheless,
this trivial loss misleads the network due to its inaccurate nature for
localization. As shown in Figure 3, this center distance loss Lcenter
would push the predicted object center to the point cloud as close as
possible. Unfortunately, object-LiDAR-points are typically captured
from visible surfaces of objects, meaning that the predicted center
using only Lcenter tends to be close to the groundtruth box edge, but
not the groundtruth box center.

Based on the above analysis, we propose a geometric alignment loss
between the predicted 3D box and associated object-LiDAR-points,
in which the major obstacle lies in appropriately measuring the dis-
tance from points to the 3D box. Aiming this, we create a ray from
the 3D box center P3d to each object-LiDAR-point P , where the ray
intersects with the edge of the box prediction at PI . Therefore, the
geometric alignment loss at each point among object-LiDAR-points
is as follows:

Lgeometry = ‖P − PI‖1 = ‖P − Intersect(RayP3d→P , b3d)‖1 (1)
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Figure 4: Loss design. We introduce geometric alignment loss (Section 3.2) and ray tracing loss
(Section 3.3) with loss balancing (Section 3.4) for each object-LiDAR-point and the corresponding
3D box prediction. The geometric alignment loss focuses on tightly aligning 3D box predictions
with object-LiDAR-points. The ray tracing loss further takes occlusion constraints of camera imag-
ing/LiDAR scanning into consideration, to eliminate alignment ambiguity (See Figure 5) in the
scene. Best viewed in color with zoom in.

where Intersect(RayP3d→P , b3d) refers to the intersection point PI . In particular, we do not di-
rectly predict the absolute object’s 3D center P3d, but its projection [tx, ty] on the image plane
and the object instance depth z. Thus, P3d = [ (tx−cx)fx

z,
(ty−cy)
fy

z, z]T , where fx, fy, cx, cy are the
parameters from the camera projection matrix P .

We illustrate the geometry alignment loss in Figure 4. This loss forces 3D box predictions to align
with object-LiDAR-points in terms of geometry.

3.3 RAY TRACING FOR ALIGNMENT AMBIGUITY ELIMINATING

Figure 5: Alignment ambiguity when
aligning with object-LiDAR-points.
Both box 0 and 1 produce the same
geometric alignment losses. Best
viewed in color with zoom in.

Although the geometric alignment bounds 3D box predic-
tions and object-LiDAR-points, The ambiguity happens when
object-LiDAR-points fail to represent an adequate 3D outline
of the object, e.g., object-LiDAR-points are captured from
only one surface of an object. Specifically, the ambiguity
refers to how to semantically decide the correspondence be-
tween each object-LiDAR-point and edges of the box predic-
tion in the aligning process. We call this problem the align-
ment ambiguity.

Figure 5 shows an example. Both the BEV box 0 and 1 com-
mendably align with object-LiDAR-points by the edge 4 and
2, respectively. They conduct the same geometric alignment
losses, while their 3D locations are quite different. However,
we cannot decide which box is a better prediction if only con-
cerning the geometric alignment because existing geometric
clues cannot indicate the semantic correspondence of object-
LiDAR-points. In other words, there is a dilemma in choosing
the correspondence between box edges and object-LiDAR-
points. This ambiguity brings adverse impacts in training,
especially for hard samples (their associated object-LiDAR-
points usually carry poor information).
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Generally, we resolve the alignment ambiguity by considering occlusion constraints. Similar to the
process of camera imaging, when scanning a scene, the signal of a LiDAR device will be reflected if
meeting obstacles. Considering the reflected LiDAR signal inside the camera FOV (field of view),
we propose to implement ray tracing from the camera optical center Pcam to each object-LiDAR-
point, minimizing the distance from each object-LiDAR-point to the intersection point on the object
box. As shown in Figure 4, the LiDAR point is P and the intersection point is PR (with Z buffering,
namely, the closer intersection point is chosen), the ray tracing loss is as follows:

Lray−tracing =

{
‖P − PR‖1 if RayPcam→P intersects with b3d,

0 otherwise.
(2)

{P1, P2} = Intersect(RayPcam→P , b3d), and PR = P1 if P1 is closer to the camera, or P2 other-
wise. Note that the ray tracing loss is zero if the ray does not intersect with the predicted 3D box,
meaning that this loss here does not contribute to the gradient descent in back-propagation. In this
way, we eliminate the alignment ambiguity, encouraging 3D box predictions to follow occlusion
constraints in parallel to geometrically aligning with object-LiDAR-points. Let us back to the ex-
ample shown in Figure 5. The ray tracing losses produced by box 1 are much larger than losses of
box 0, consequently leading the network to conduct a reasonable and precise result.

3.4 POINT-WISE LOSS BALANCING

The varied spatial distribution of object-LiDAR-points is also an obstacle, i.e., the point density is
somewhere high while somewhere low. Point-wise losses such as the geometric alignment loss and
ray tracing loss all suffer from the unevenly distributed nature. Specifically, the loss produced by the
dense region can dominate the total loss, ignoring the loss conducted by other relatively sparse yet
essential points. To balance the influence, we normalize the density of object-LiDAR-points when
calculating loss. Let us calculate the number of LiDAR points Ei in the neighborhood at point Pi as
follows:

Ei =
M∑
j

1(‖Pi − Pj‖2 < R) (3)

where M is the number of object-LiDAR-points. From Equation 3, we can know that points within
the spatial range R towards the point Pi are counted for the density. Thus we balance point-wise
losses by weighting each point with the density, as follows:

Lbalancing =
1

M

M∑
i

(
Lgeometryi + Lray−tracingi + λLcenteri

Ei
) (4)

We illustrate an example in Figure 4. The balanced loss alleviates the adverse impact brought by
the unevenly distributed LiDAR point clouds. Here we employ the center loss for regularization and
empirically set λ to 0.1, and set the coefficients of geometric alignment and ray tracing loss to 1 by
default.

3.5 LEARNING DISENTANGLEMENT FOR 3D BOX ESTIMATES

As mentioned in Simonelli et al. (2019), complicated interactions of 3D box estimates take a heavy
learning burden during training. Prior fully supervised methods can easily deal with this issue by
disentangling the learning of each group of 3D box estimates, i.e., imposing losses between each
group of predictions and corresponding labels, respectively. However, it is not trivial for the weakly
supervised manner due to the absence of 3D box labels. To disentangle the learning, we extract
object orientations from LiDAR point clouds. In addition, we use a-priori knowledge about dimen-
sions on the specified category and freeze them because objects that belong to the same class have
close sizes, e.g., cars. Such information allows us to solve each group of estimates independently,
largely reducing the learning burden.

Orientation Estimated from Object-LiDAR-points. We propose a simple yet effective method
to obtain the global object orientation from object-LiDAR-points. Intuitively, object-LiDAR-points
describe a part 3D outline of the object, implicitly indicating the object orientation θy . We obtain
the object orientation from the directions of paired points. Specifically, as shown in Figure 6, we
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Figure 6: Orientation distribution. We calculate the direction of each pair of points among object-
LiDAR-points and draw the histogram. We can observe that the direction that is highest in the
histogram is highly related to the object orientation. Best viewed in color with zoom in.

calculate the direction of each pair of object-LiDAR-points, drawing a histogram with respect to the
direction range from 0 to π. The direction of paired points varies near the object orientation, and the
direction α that is highest in histogram refers to θy or θy ± π/2. The object orientation is further
decided by the spatial offset dx of object-LiDAR-points along x axis in 3D space. A low offset
indicates the orientation close to π/2 while a high offset denotes the orientation close to 0. We set
the offset threshold to 3.0 meters by default. Therefore, we heuristically obtain the global object
orientation, which can be used as the supervised signal for orientation estimates and employed in
the process of 3D box alignment. More details can be found in the appendix.

3.6 NETWORK TRAINING

We conduct point-wise losses on the bird’s-eye-view (BEV) to simplify the task. We can train the
network to learn the object’s location (x3d, z3d) by Lbalancing , which is the most challenging and
crucial. To further obtain the 3D location, we averaging coordinates among object-LiDAR-points
along y axis, denoted by yL, building the loss: Llocy = SmoothL1(ŷ, yL), where ŷ is the network
prediction. Thus, we obtain the overall loss formulation as:

L = Lbalancing + Llocy + Lorient (5)

We empirically set coefficients for each loss item to 1 by default. For the orientation, only the
local orientation, i.e., the observation angle, can be directly estimated from the RGB image. Thus
the network conducts local orientation estimates and then converts to global orientations using the
predicted 3D center (x3d, z3d). The orientation loss Lorient follows Deep3DBox Mousavian et al.
(2017). We provide more details in the appendix.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Our method is implemented by PyTorch Paszke et al. (2019) and trained on a Titan V GPU. We use
the Adam optimizer Kingma & Ba (2014) with an initial learning rate of 10−4. We train our network
for 50 epochs. To obtain an initial object point cloud, we adopt Mask-RCNN He et al. (2017) pre-
trained on COCO Lin et al. (2014). Alternatively, we can use an off-the-shelf 2D detector Qi et al.
(2018). Both manners lead comparable and satisfactory performance. For the frozen dimensions for
cars, we empirically adopt 1.6, 1.8, 4.0 meters as the height, width, and length, respectively. R for
the point density in Equation 3 is set to 0.4-meter. We adjust y coordinate in the location according
to 2D-3D consistency Brazil & Liu (2019). We provide more experimental results and discussion in
the appendix due to the space limitation.

4.2 DATASET AND METRICS

Like most prior fully supervised works do, we conduct experiments on KITTI Geiger et al. (2012)
dataset. KITTI object dataset provides 7,481 images for training and 7,518 images for testing, where
groundtruths for testing are kept secret and inaccessible. Following the common practice Chen et al.
(2017a), the 7,481 samples are further divided into training and validation splits, containing 3,712
and 3,769 images, respectively. To utilize raw LiDAR point clouds since our method does not require
3D box labels, we use raw sequences for training that does not overlap with the validation and test
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Table 1: The experimental results on KITTI validation set for car category. We can observe that
our method even outperforms some fully supervised methods. All the methods are evaluated with
metric AP |R11 , as many prior fully supervised works only provided AP |R11 results.

Approaches Supervision APBEV /AP3D (IoU=0.7)|R11

Easy Moderate Hard

Mono3D Chen et al. (2016)

Full

5.22/2.53 5.19/2.31 4.13/2.31
Deep3DBox Mousavian et al. (2017) 9.99/5.85 7.71/4.10 5.30/3.84
OFTNet Roddick et al. (2018) 11.06/4.07 8.79/3.27 8.91/3.29
RoI-10D Manhardt et al. (2019) 14.50/10.25 9.91/6.39 8.73/6.18
MonoDIS Simonelli et al. (2019) 24.26/18.05 18.43/14.98 16.95/13.42
FQNet Liu et al. (2019) 9.50/5.98 8.02/5.50 7.71/4.75
MonoPSR Ku et al. (2019) 20.63/12.75 18.67/11.48 14.45/8.59
M3D-RPN Brazil & Liu (2019) 25.94/20.27 21.18/17.06 17.90/15.21
Pseudo-Lidar Wang et al. (2019) 31.88/24.12 20.84/15.74 18.92/14.96
D4LCN Ding et al. (2020) 26.00/19.38 20.73/16.00 17.46/12.94
RTM3D Li et al. (2020) 25.56/20.77 22.12/16.86 20.91/16.63
PatchNet Ma et al. (2020) 32.30/25.76 21.25/17.72 19.04/15.62
Monodle Ma et al. (2021) 30.77/23.29 24.53/20.55 23.32/17.90

WeakM3D Weak 24.89/17.06 16.47/11.63 14.09/11.17
WeakM3D-PatchNet 29.89/20.51 18.62/13.67 16.06/12.02

Table 2: Comparisons on KITTI testing set for car category.

Approaches Supervision APBEV /AP3D (IoU=0.7)|R40

Easy Moderate Hard

FQNet Liu et al. (2019) Full 5.40/2.77 3.23/1.51 2.46/1.01
ROI-10D Manhardt et al. (2019) 9.78/4.32 4.91/2.02 3.74/1.46

WeakM3D Weak 11.82/5.03 5.66/2.26 4.08/1.63

set. We do not perform data augmentation during the training. Also, prior fully supervised mainly
evaluate their methods on the category of car, and we follow this line. For evaluation metrics, AP11

is commonly applied in many prior works, while AP40 Simonelli et al. (2019) is suggested to use
recently. Most fully supervised methods use IOU 0.7 and weakly supervised methods use IOU 0.5
criterion, thus we follow them for comparisons, respectively.

4.3 COMPARING WITH OTHER APPROACHES

Comparing with monocular-based fully supervised methods. As shown in Table 1, although our
method does not use any 3D box annotation, it outperforms some prior fully supervised methods.

Table 3: Comparisons on CenterNet for car category.
We apply our method to CenterNet for comparisons.

Supervision APBEV /AP3D (IoU=0.7)|R40

Easy Moderate Hard

Full 3.47/0.60 3.31/0.66 3.21/0.77
Weak (Ours) 5.27/1.23 3.99/0.79 3.36/0.71

For instance, WeakM3D outperforms
FQNet Liu et al. (2019) by 8.45 APBEV
under the moderate setting. Table 2 also
shows that our method outperforms some
prior SOTA fully supervised methods. We
can also observe that there still remains a
considerable gap between WeakM3D and
current SOTA fully supervised methods
Ma et al. (2021), we have faith in greatly
pushing the performance of weakly supervised methods in the future due to the rapid development
in the community. Furthermore, we apply our method to PatchNet Ma et al. (2020) in Table 1
and CenterNet Zhou et al. (2019) in Table 3 while keeping other settings the same. Interestingly,
our weakly supervised method achieves comparable performance compared to the fully supervised
manner, demonstrating its effectiveness.

Comparing with other weakly supervised methods. We compare our method with other weakly
supervised methods. We report the results in Table 4. To make fair comparisons, we employ our
baseline network for Autolabels Zakharov et al. (2020). Note that the original VS3D Qin et al.
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Table 4: Comparisons of different weakly supervised methods on KITTI validation set for car category.

Approaches Input Supervision APBEV /AP3D (IoU=0.5)|R40

Easy Moderate Hard

VS3D Qin et al. (2020) Point cloud
Weak

31.59/22.62 20.59/14.43 16.28/10.91
Autolabels Zakharov et al. (2020) Single image 50.51/38.31 30.97/19.90 23.72/14.83
Ours Single image 58.20/50.16 38.02/29.94 30.17/23.11

Table 5: Ablation study. ”Disten.” in the table refers to the learning disentanglement, and ”Geo. alignment” is
the geometric alignment.

Disten. Geo. alignment Ray tracing Loss balancing APBEV /AP3D (IoU=0.5)|R40

Easy Moderate Hard

0.11/0.08 0.16/0.10 0.15/0.04√
16.16/11.55 11.98/8.16 9.21/6.04√ √
51.36/45.04 33.08/26.34 26.42/21.19√ √ √
55.31/48.35 36.28/28.48 29.03/22.18√ √ √ √
58.20/50.16 38.02/29.94 30.17/23.11

(2020) takes advantage of the per-trained network Dorn Fu et al. (2018) to estimate image-based
depth maps. As mentioned in Simonelli et al. (2020); Peng et al. (2021), Dorn utilizes the leaked
data on the KITTI 3D object dataset. Therefore we use the fixed split Peng et al. (2021) and keep
the number of LiDAR point clouds the same as our method for fairness. We can observe that our
method performs the best, validating its effectiveness.

4.4 ABLATION STUDY

Table 6: Comparisons of different weak supervisions in training.

Weak supervisions APBEV /AP3D (IoU=0.5)|R40

Easy Moderate Hard

2D box + LiDAR 55.94/47.52 34.11/26.46 25.56/19.88
2D mask + LiDAR 58.20/50.16 38.02/29.94 30.17/23.11

To investigate the impact of each
component in our method, we
conduct extensive ablation stud-
ies. As shown in Table 5, the
accuracy of the baseline is very
low, indicating that the weakly
supervised manner is challeng-
ing. By adding the learning disentanglement and geometry alignment between 3D box predictions
and object-LiDAR-points, we obtain significant progress. When employing ray tracing, which con-
siderably eliminates the alignment ambiguity, the performance is further improved. Finally, the
balancing at point-wise losses in favor of accuracy and stability makes the network perform the best.
These results validate the power of our method. We also compare the weakly supervised manner us-
ing different requirements in Table 6. We can see that both requirements lead to good performance.

5 LIMITATIONS AND FUTURE WORK

There are also some limitations in our work. The loss for 3D localization is a little complicated, and
the accuracy can be further improved by a more elegant design. As an emerging area, there is ample
room for improving the accuracy of weakly supervised monocular 3D object detection. Therefore,
we resort to alleviating the label reliance further and boosting the performance in future work.

6 CONCLUSIONS

In this paper, we explore a novel weakly supervised monocular 3D object detection method. Specif-
ically, we take advantage of 2D boxes/masks to segment LiDAR point clouds to obtain object-
LiDAR-points, which are employed as the weakly supervised signal for monocular 3D object detec-
tion. To learn the object’s 3D location, we impose alignment constraints between such points and 3D
box predictions. Aiming this, we point out the main challenges of the weakly supervised manner,
introducing several novel strategies to deal with them. Extensive experiments show that our method
builds a strong baseline for weakly supervised monocular 3D detection, which even outperforms
some prior fully supervised methods.
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Andrea Simonelli, Samuel Rota Bulò, Lorenzo Porzi, Peter Kontschieder, and Elisa Ricci. Demys-
tifying pseudo-lidar for monocular 3d object detection. arXiv preprint arXiv:2012.05796, 2020.

Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien Chouard, Vijaysai Patnaik, Paul Tsui,
James Guo, Yin Zhou, Yuning Chai, Benjamin Caine, et al. Scalability in perception for au-
tonomous driving: Waymo open dataset. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pp. 2446–2454, 2020.

Yan Wang, Wei-Lun Chao, Divyansh Garg, Bharath Hariharan, Mark Campbell, and Kilian Q Wein-
berger. Pseudo-lidar from visual depth estimation: Bridging the gap in 3d object detection for
autonomous driving. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 8445–8453, 2019.

Xinshuo Weng and Kris Kitani. Monocular 3d object detection with pseudo-lidar point cloud. In
Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 0–0, 2019.

Yan Yan, Yuxing Mao, and Bo Li. Second: Sparsely embedded convolutional detection. Sensors,
18(10):3337, 2018.

Zetong Yang, Yanan Sun, Shu Liu, Xiaoyong Shen, and Jiaya Jia. Std: Sparse-to-dense 3d object
detector for point cloud. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 1951–1960, 2019.

Sergey Zakharov, Wadim Kehl, Arjun Bhargava, and Adrien Gaidon. Autolabeling 3d objects with
differentiable rendering of sdf shape priors. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 12224–12233, 2020.

Wu Zheng, Weiliang Tang, Li Jiang, and Chi-Wing Fu. Se-ssd: Self-ensembling single-stage object
detector from point cloud. arXiv preprint arXiv:2104.09804, 2021.

Xingyi Zhou, Dequan Wang, and Philipp Krähenbühl. Objects as points. arXiv preprint
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Appendix
Due to the space limitation, we provide details omitted in the main text in this appendix, which is
organized as follows:

• Section A : Network and the running time.

• Section B : Detailed ablation studies.

• Section C : Performance on Waymo.

• Section D : Generalization ability.

• Section E : Details of object-LiDAR-points.

• Section F : Qualitative results.

• Section G : Orientation analysis.

• Section H : Statistics on 3D object labels.

• Section I : Discussion on viewpoint differences.

• Section J : Discussion on difficult cases.

• Section K : Discussion on different baselines.

• Section L : Results on NuScenes.

A NETWORK AND RUNNING TIME

Figure 7: Regression network. nb
denotes the number of objects, and
no denotes the number of required
3D box parameters.

For the feature encoder, we adopt different backbones includ-
ing ResNet18, ResNet34, and ResNet50 He et al. (2016). We
train our network with a batch size of 8 by default. Specif-
ically, we remove the output layer and the last convolution
stage of ResNet, and obtain 7×7 RoI Aligned He et al. (2017)
object features from extracted deep features. As shown in
Figure 7, we reshape each output tensor to a 1-dim tensor,
passing fully connected layers to regress corresponding out-
puts. We show the quantitative results on different backbones
in Table 7. Under the APBEV /AP3D (IoU=0.3) metric, dif-
ferent backbones all show satisfactory and comparable accu-
racy, demonstrating the robustness of our method. If using
the stricter APBEV /AP3D (IoU=0.5) metric, a better backbone is more beneficial for the overall
performance as it encodes richer features for object 3D localization.

Table 7 shows the running time for the forward pass at different backbones. Thanks to our
lightweight design, the time-cost is little. The adopted 2D detector takes extra 60ms in inference,
meaning that the overall running time of our method is less than 80ms, meaning that our method is
efficient.

Table 7: The experimental results on different backbones on KITTI validation set.

Backbone Time
(ms)

APBEV /AP3D (IoU=0.3)|R40 APBEV /AP3D (IoU=0.5)|R40

Easy Moderate Hard Easy Moderate Hard

ResNet18 5.90 75.53/70.87 56.45/51.20 46.83/42.33 50.92/44.78 33.17/25.57 26.23/20.41
ResNet34 8.77 80.92/77.61 59.55/55.10 48.69/44.85 57.15/48.39 36.00/27.14 27.90/21.53
ResNet50 11.97 81.17/78.44 59.87/56.42 48.98/45.81 58.20/50.16 38.02/29.94 30.17/23.11

B DETAILED ABLATION STUDIES

We conduct extensive experiments to validate the effectiveness of each component in WeakM3D.
As shown in Table 8, the baseline (Experiment a) using only the center loss shows an extremely low
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Table 8: Detailed ablation study. ”Disten.” in the table refers to the learning disentanglement, and
”Geo. align.” is the geometric alignment.

Exp. Disten. Geo. align. Ray tracing Loss balancing APBEV /AP3D (IoU=0.5)|R40

Easy Moderate Hard

a 0.11/0.08 0.16/0.10 0.15/0.04

b
√

16.16/11.55 11.98/8.16 9.21/6.04

c
√

49.09/37.79 24.86/17.73 18.24/12.60

d
√

32.39/24.79 14.56/10.34 10.67/7.38

e
√

0.77/0.26 0.45/0.13 0.28/0.11

f
√ √

51.36/45.04 33.08/26.34 26.42/21.19

g
√ √

49.92/41.91 32.90/25.24 27.32/20.50

h
√ √

17.79/12.75 12.04/7.38 9.03/5.60

i
√ √

53.02/44.12 34.53/27.07 26.96/21.90

j
√ √

51.56/44.11 33.77/27.05 26.73/21.10

k
√ √

51.44/43.79 32.07/26.29 25.86/20.69

l
√ √ √

55.31/48.35 36.28/28.48 29.03/22.18

m
√ √ √

52.50/47.58 33.45/27.93 26.31/21.60

n
√ √ √

56.25/49.78 34.34/27.30 26.82/20.76

o
√ √ √

56.60/49.03 37.37/29.43 28.68/21.77

p
√ √ √ √

58.20/50.16 38.02/29.94 30.17/23.11

detection accuracy, indicating the difficulty for the weakly supervised manner. When only employ-
ing one of the components, we can observe that the geometric alignment (Experiment c) brings the
most improvements, as it enables the network to learn the most 3D information. When employing
two of the components, we can know that the combination of geometric alignment and ray tracing
(Experiment i) performs the best. Such two strategies mutually reinforce each other, allowing the
network to effectively learn the object’s 3D location. Also, after applying loss balancing (Experi-
ment o), unevenly distributed point-wise losses can be balanced to facilitate the learning process.
Finally, if we use all proposed strategies (Experiment p), we can achieve the best performance. Fur-
thermore, instead of freezing the object dimension, we let the network learn the dimension and show
the results in Table 9. We can see that adding more entangled learning objectives brings a heavier
learning burden, thus making the network perform slightly worse. Our detailed ablation studies
comprehensively show the power of our method and how such strategies interact.

Table 9: Ablation study for dimension.

Dimension APBEV /AP3D (IoU=0.5)|R40

Easy Moderate Hard

Learned 56.24/48.37 37.04/29.41 29.45/22.74
Frozen 58.20/50.16 38.02/29.94 30.17/23.11

C PERFORMANCE ON WAYMO

We also evaluate our method on Waymo Sun et al. (2020) dataset, which is a considerably large
dataset, and provide the results in Table 10. Waymo dataset provides many annotations, thus the fully
supervised manner method M3D-RPN Brazil & Liu (2019) is supposed to perform much better than
our method. However, we can observe that our method obtains comparable performance compared
to M3D-RPN. Especially for medium and far objects, our method outperforms it with a significant
margin. It indicates that our weakly supervised manner is more suitable on massive data. Also,

14



Published as a conference paper at ICLR 2022

Table 10: Comparisons on Waymo. We compare our method with the fully supervised method
M3D-RPN. We obtain comparable performance.

Difficulty Approaches APBEV (IOU=0.5) AP3D (IOU=0.5)
Overall 0−30m 30−50m 50m−∞ Overall 0−30m 30−50m 50m−∞

LEVEL 1 M3D-RPN 8.01 24.04 3.92 0.40 5.87 19.22 2.40 0.19
WeakM3D 8.72 20.39 7.73 1.14 4.81 12.20 3.78 0.46

LEVEL 2 M3D-RPN 7.51 23.96 3.81 0.35 5.50 19.15 2.33 0.17
WeakM3D 8.18 20.31 7.50 0.99 4.50 12.16 3.67 0.40

Figure 8: Details of obtaining Object-LiDAR-points. Best viewed in color.

prior point-cloud-based weakly supervised methods and many fully supervised monocular methods
do not evaluate their results on Waymo, thus our method sets a good baseline for future works.

Notably, in this comparison, the performance of WeakM3D is still limited by the number of training
samples. Such samples can be easily collected in real applications, as we do not require the extra
manual annotating process. In other words, our method is inherently suitable for the autonomous
driving scenario, which automatically produces more and more unlabeled data, therefore it has much
potential to be explored.

D GENERALIZATION ABILITY

Our method is robust and works well for most object categories. We follow a basic assumption
adopted by almost all 3D detection works, i.e., all objects in 3d detection are represented as cuboids.

Table 11: Performance on other cate-
gories.

Categories APBEV (IoU=0.25)|R40

Easy Moderate Hard

Pedestrain 3.79 3.21 3.12
Cyclist 5.16 3.60 3.33

Please consider the underlying mechanism of human an-
notating. People annotate each object by finding a reason-
able minimum 3d bounding box. Correspondingly, our
loss functions exactly aim to learn this reasonable mini-
mum 3D bounding box for the object. Our method there-
fore works well for most object types. To demonstrate
this, we conduct experiments on pedestrian and cyclist cat-
egories in Table 11, and we obtain promising results. To
the best of our knowledge, we are the first weakly super-
vised method that works for the two classes.

E DETAILS OF OBJECT-LIDAR-POINTS

As mentioned in the main text, we can obtain an initial object point cloud by using the raw LiDAR
point cloud and 2D boxes/masks. This initial point cloud contains some noisy or background points,
which should be removed. As shown in Figure 8, we cluster the initial object point cloud using
an unsupervised clustering algorithm Ester et al. (1996), in which points are divided into different
clusters in terms of the density. Therefore, we select the cluster with most points as object-LiDAR-
points and remove other points. In particular, we further remove the points if their coordinates y3d
are lower than the median of object-LiDAR-points. These inner points from the bird’s-eye-view
perspective do not contribute to the object’s 3D location. Then, we randomly sample 100 object-
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Figure 9: Qualitative results. Best viewed in color.

LiDAR-points. Such points precisely describe a part outline of an object in 3D space, and they are
ideal weak supervisions for corresponding 3D box prediction.

F QUALITATIVE RESULTS

We provide some qualitative results in KITTI validation set in Figure 9. We can see that our method
works well for most cases, while it can fail for the hard cases, e.g, truncated, heavily occluded, and
far samples. This inspires us to further improve the performance in future work.

G ORIENTATION ANALYSIS

Figure 10: Local orientation δy and global orien-
tation θy . The same object with the same global
orientation at different viewpoints shows different
appearances on the image.

In monocular 3D detection, the orientation con-
sists of two types of orientations, i.e., the
global orientation θy and the local orientation
δy , where the local orientation is also named
the observation angle. We show the relation-
ship between θy and δy in Figure 10. For
monocular 3D detection, the global orienta-
tion θy is hard to reason directly. Even hold-
ing the same global orientation θy , the ap-
pearance of an object shown on the image
can change as the viewpoint varies. We give
an example in Figure 10. For the location
1, 2, and 3, the mainly captured visible sur-
faces by the camera are different, consequently
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Figure 12: Distribution of directions of paired points. The red line on the box refers to the
mainly captured surface, meaning that LiDAR points captured from this surface dominate the object-
LiDAR-points. A low offset dx refers to the orientation close to π/2 while a high offset indicates
the orientation close to 0 or π. Best viewed in color with zoom in.

showing varied appearances on the image. In light of this, instead of directly regressing the
global orientation θy , we estimate the local orientation δy and then convert it to θy by tak-
ing the camera viewpoint into account. More details can be found in Mousavian et al. (2017).

𝑃! 𝑃"

𝑃#

𝑃$

Figure 11: Illustra-
tions of paired points.
We connect each pair of
points and then calculate
the direction of the re-
sulting line.

Also, we provide details for obtaining the global orientation from
Object-LiDAR-points. Object-LiDAR-points denote a part outline of the
object, which is highly related to the global orientation θy . Specifically,
we calculate the direction of each pair of object-LiDAR-points and then
draw the corresponding histogram. We show the paired points and the
histogram in Figure 11 and Figure 12, respectively. The direction αy
that is highest in histogram refers to θy or the perpendicular direction
of θy . To further determine the orientation, we use the spatial offset dx
of object-LiDAR-points along x axis in 3D space. Since a car in motion
usually faces forward, we first convert αy to the range (π4 ,

3π
4 ) by adding

or subtracting π
2 , thus θy is derived as follows:

θy =


αy − π

2 if dx > C and αy ≥ π
2 ,

αy +
π
2 if dx > C and αy <

π
2 ,

αy otherwise.

(6)

where C is the offset threshold. C is set to 3.0 meters by default. From Figure 12 and Equation 6,
we can know that a low offset indicates the orientation close to π/2 while a high offset denotes the
orientation close to 0 or π.

H STATISTICS ON 3D OBJECT LABELS

We conduct statistics on 3D object labels for the car in KITTI Geiger et al. (2012) and show the
results in Figure 13. Please note, we do not use the statistics on 3D box labels as the dimension
priors. Specifically, we draw the histogram for the object dimension and 3D location. As mentioned
in the main text, objects that belong to the same class usually have close sizes. We can observe that
the height of cars mainly varies from 1.4 to 1.6 meters. Similarly, the width of cars mainly varies
from 1.5 to 1.7 meters, and the width of cars mainly varies from 3.3 to 4.5 meters. In contrast to the
low-range varied dimensions, the object’s 3D locations vary a lot, especially for {x3d, z3d}, e.g., the
object depth (z3d) varies from 0 to 80 meters. Considering the IoU (Intersection over Union) cri-
terion and the ill-posed nature of monocular imagery, improving the localization accuracy is much
more important than obtaining more precise object dimensions. The satisfactory performance of our
method also indicates that the manner of taking a fixed object dimension is acceptable for weakly su-
pervised monocular 3D detection. Intuitively, in future work we can attempt to obtain more accurate
object dimensions to further improve the accuracy.
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Figure 13: Statistics on 3D object labels on KITTI.

Figure 14: Theoretical failure cases caused by viewpoint differences between the LiDAR and
camera. A well known yet important fact is that the LiDAR and camera are installed in the same
car/robot, which indicates that their viewpoint differences are marginal compared to the extensive 3D
space. We summarize the theoretical failure cases caused by the viewpoint differences. For case 1, it
cannot happen since the camera and LiDAR always face towards objects. The occlusion constraints
for surface 1 and 3 are the same for the camera and LiDAR. For case 2, the object width Wobject

is lower than Wcam−>lidar (the offset between camera and LiDAR along X axis) meanwhile the
object center is very close to the ego-car/robot center along X axis. Such objects are few. Also, the
adverse impact brought by this type of mismatching can be ignored since Wobject is very small. For
case 3, the conditions are similar to case 2, but the object can have a bigger Wobject. In this case, the
LiDAR mainly captures points from surface 3, such points dominate the loss since points captured
from surface 2 are very few. Thus mismatches on surface 2 can also be ignored in the overall loss.
Best viewed in color with zoom in.
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I DISCUSSION ON VIEWPOINT DIFFERENCES BETWEEN LIDAR AND
CAMERA

In the real world, the LiDAR and camera have different viewpoints, which may have some impacts
on the proposed losses. Therefore, in this section we discuss the impact brought by viewpoint
differences. First, if an object exists in one sensor while invisible in the other sensor, we cannot
obtain the associated object-LiDAR-points. In this case, we directly ignore this object. Second, if
an object is visible in both camera and LiDAR, the viewpoint differences may bring some impacts
in some conditions. For this case, we provide a detailed discussion Figure 14. In sum, we can ignore
the impact brought by viewpoint differences.

J DISCUSSION ON DIFFICULT CASES

Potential noises and sparsity can exist in clustered points from faraway and small objects. Such
faraway and small objects are typical dilemmas for most 3D detection methods due to the inadequate
visual clues on the image or few LiDAR points. Unfortunately, our method is a general design and
does not introduce special components for such objects. We may use depth completion to enhance
the raw LiDAR point cloud, to alleviate this issue. This solution can be explored in future works.

Also, when only one object surface (e.g., only the back of a car) is observed, the network cannot
learn the complete object dimensions, and the learning of object locations is also affected by object
dimensions. In other words, such LiDAR point clouds only provide part of weak supervision, thus
the network trained with them performs suboptimally compared to using more complete LiDAR
point clouds. Fortunately, not all LiDAR point clouds are incomplete, and other good LiDAR points
provide accurate and complete object 3D information, including object 3D locations and dimensions.
Therefore, the network still works well after being trained with different types of LiDAR point
clouds.

Table 12: Comparisons on different supervised manners on KITTI validation set for car category when using
the our baseline network.

Supervision APBEV /AP3D (IoU=0.5)|R40

Easy Moderate Hard

Full 53.61/44.78 34.84/28.64 29.59/23.90
Weak (Ours) 58.20/50.16 38.02/29.94 30.17/23.11

Table 13: Comparisons on different supervised manners on KITTI validation set for car category when using
PatchNet Ma et al. (2020) baseline.

Supervision APBEV /AP3D (IoU=0.5)|R40

Easy Moderate Hard

Weak (Ours) 59.41/54.10 37.01/32.47 28.53/24.27
Full Ma et al. (2020) 64.31/57.94 39.45/35.25 34.76/30.07

K DISCUSSION ON DIFFERENT BASELINES

It is interesting to see the performance gap between the fully supervised and our weakly supervised
manner on different baselines. For the proposed baseline network in the paper, we report the results
in Table 12. Interestingly, on this baseline network, we can see that our method performs better
than using the full supervision. This tendency is the same as Table 3, since our method takes more
geometry and scene constraints into consideration, benefiting simple baselines. On the other hand,
when using more advanced baselines, our method performs worse than using the full supervision
(e.g., WeakM3D-PatchNet vs. PatchNet in Table 1). It is because advanced baselines weaken the
usefulness of geometry and scene constraints of our method. To comprehensively investigate the
performance on advanced baselines, we report the results on PatchNet Ma et al. (2020) under the
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Table 14: Results on NuScenes validation set on the car category. We provide a baseline for future
works.

Category AP ATE ASE AAE

Car 0.214 0.814 0.234 0.682

IoU 0.5 criterion in Table 13. We can observe that the advanced baseline can adequately use the full
supervision, thus showing better results than our method.

L RESULTS ON NUSCENES

To encourage future works on weakly supervised monocular 3D detection, we further provide results
on the NuScenes dataset, which can serve as a baseline for future works. We report the results in
Table 14. We use the pre-trained Mask-RCNN, to obtain RoI LiDAR points in training, and to obtain
2D detections in inference. Please note that the pre-trained Mask-RCNN cannot output all classes
annotated in NuScenes, we only conduct experiments on the car category. Additionally, we do not
report the AVE (Average Velocity Error) and AOE (Average Orientation Error) because we can not
obtain supervision of the velocity and the moving direction in the weakly supervised method.
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