
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

INVERSE GFLOWNETS FOR GENERATIVE IMITATION
LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Sequential generative models are typically trained by maximizing the evidence
lower bound (ELBO), which optimizes the likelihood of predicting the next ob-
servation given the current one. While ELBO-based training is simple and scal-
able, in sequential settings it suffers from compounding errors. In this work, we
reinterpret ELBO training as an imitation learning problem for modeling data dis-
tributions. We show that prior formulations suffer from an entropy bias that is
misaligned with the objectives of generative modeling. To address this issue, we
leverage the GFlowNet framework to eliminate the bias and derive algorithms that
can be viewed as regularized ELBO objectives. Our approach assigns positive
rewards to data samples and negative rewards to policy-generated samples, corre-
sponding to minimization of the χ2-divergence between the data distribution and
the policy mixture. We further establish theoretical connections to existing imi-
tation learning methods, providing transferable insights across domains. Empir-
ically, our approach eliminates entropy bias and achieves improved performance
on a range of generative modeling tasks by combining with previous methods.

1 INTRODUCTION

Framing generative modeling through the lens of imitation learning offers several advantages. For
example, recent work has applied maximum entropy inverse reinforcement learning (MaxEnt IRL)
to language modeling (Cundy & Ermon, 2023; Wulfmeier et al., 2024), which has been shown the-
oretically to mitigate compounding errors (Xu et al., 2020). However, unlike in language modeling,
where maximum likelihood estimation (MLE) naturally aligns with an imitation learning perspective
by treating each data sequence as a unique demonstration, there is no equally principled imitation
learning framework for generative models trained by maximizing evidence lower bound (ELBO). In
ELBO-based training, the model passes through a series of intermediate objects, with many possible
paths leading to the same final outcome. These intermediate objects are not directly observed in the
data but are introduced as auxiliary constructs that provide the structure needed to generate objects.

We argue that previous imitation learning based on MaxEnt IRL is not directly applicable to ELBO-
based training. First, in MaxEnt IRL the policy is encouraged to select actions uniformly, which
can bias the sampling distribution, as we demonstrate in Section 3.1. Second, existing imitation
learning frameworks do not consider the variational distribution, as they assume trajectories are
fixed demonstrations provided by an optimal expert. In contrast, ELBO-based training samples
trajectories from a variational distribution that can be jointly optimized with the generative model,
allowing both components to adapt during training.

In this paper, we develop alternative formulations based on Generative Flow Networks (GFlowNets)
(Bengio et al., 2021). GFlowNets have been shown to have close connections to variational inference
(Malkin et al., 2022b) and to maximum entropy reinforcement learning (MaxEnt RL) (Tiapkin et al.,
2024), which provide useful analytical tools for our work. Similar to MaxEnt IRL, our approach
first recovers the reward function inherent in the dataset and then trains a policy using the recovered
reward. This perspective unifies several prior methods, ranging from energy-based GFlowNets (EB-
GFN) (Zhang et al., 2022) to soft Q imitation learning (SQIL) (Reddy et al., 2019). Building on
this framework, we propose algorithms that can be interpreted as regularized ELBO objectives,
assigning positive rewards to data samples and negative rewards to policy-sampled data. The main
contributions of this paper are as follows:

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

• We extend the imitation learning framework to ELBO-based sequential generative mod-
eling, where only terminal data points are observed. We show that existing frameworks
are misaligned with the objectives of generative modeling and introduce biases into the
sampling distribution.

• We establish new theoretical connections between MaxEnt IRL, energy-based models
(EBMs), and GFlowNets. In particular, we show that EBMs can be reinterpreted as regu-
larized ELBO objectives, which can be optimized through two competing GFlowNet ob-
jectives. This perspective further reveals an equivalence to MaxEnt IRL with an additional
posterior regularization term.

• We empirically demonstrate the versatility of our framework across diverse generative
modeling tasks, and show how previous approaches can be adapted and unified within
our formulation.

2 BACKGROUND

2.1 GENERATIVE FLOW NETWORKS

Given a state space S and a set of terminal states X ⊂ S, sequential generative models aim to gen-
erate samples from X by following a sequence of transitions (s0, . . . , sT), where the intermediate
states are denoted by τ = (s0, . . . , sT−1) and the terminal state by x = sT . The forward dynamics
are governed by a policy π, which specifies the probability of transitioning to the next state. In
addition, we define a backward policy q (interpreted as a variational distribution), which samples
trajectories in reverse from terminal states, thereby inducing two Markov chains:

π(x, τ) := π0(s0)

T∏
t=1

π(st|st−1), q(τ |x) :=
T∏
t=1

q(st−1|st).

where we extend the notation π and q to also denote their induced trajectory-level distributions. The
probability of a terminal state under π is obtained by marginalizing all intermediate states πX (x) =∑
τ π(x, τ). The goal of GFlowNets is to match a given reward function r : X → R such that

πX (x) = exp(r(x))/Z, where Z is a normalizing constant. Since the direct evalutaion of πX (x)
is generally infeasible, GFlowNets are trained by jointly optimizing π and q using the Trajectory
Balance (TB) objective:

TB(x, τ) := (logZ + log π(x, τ)− log q(τ |x)− r(x))
2

While the TB objective is widely used for its improved credit assignment capability (Malkin et al.,
2022a), it suffers from high gradient variance (Madan et al., 2023) and may become computationally
impractical in long-horizon settings. Alternatively, the Detailed Balance (DB) objective is defined
at the transition-level (s, s′) as

DB(s, s′) := (logF (s) + log π(s′|s)− log q(s|s′)− logF (s′))
2

where F denotes the learned state-flow function, interpreted as an unnormalized state distribution.
For a terminal state x, we set logF (x) = r(x), while for initial state s0, logF (s0) is set to logZ +
log π0(s0), where π0 is the initial distribution. The main result from GFlowNets theory is that
TB and DB induces a policy that samples from the distribution with density πX (x) ∝ exp(r(x))
(Malkin et al., 2022a), with a analogous result holding in continuous spaces (Lahlou et al., 2023).

In GFlowNets, rewards are defined only on terminal states X , whereas MaxEnt RL specifies per-step
rewards r̄ : S × S → R, and trains a policy to sample trajectories in proportion to their cumulative
rewards: π(x, τ) ∝ exp(

∑T
t=1 r̄(st−1, st)). However, if the per-step rewards are augmented with

log q, MaxEnt RL also induces policies whose terminal distribution satisfies πX ∝ exp(r(x)) (Tiap-
kin et al., 2024). This correspondence allows us to express the GFlowNet procedure as the following
maximum entropy optimization problem:

GFNq(r) = argmax
π

Ex,τ∼π(x,τ)[r(x) + log q(τ |x)] +H(π)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

where H(π) = Eπ[− log π(x, τ)] denotes the trajectory-level entropy. The resulting policy samples
trajectories according to π(x, τ) ∝ q(τ |x) exp(r(x)), inducing the marginal πX (x) ∝ exp(r(x)).
Unlike MaxEnt RL, however, GFlowNets also allow the backward policy q to be trained jointly with
π so as to approximate the posterior q(τ |x) ≈ π(x, τ)/πX (x).

2.2 MAXIMUM ENTROPY INVERSE REINFORCEMENT LEARNING

In MaxEnt IRL, the algorithm has access to a set of demonstrations consisting of state-action pairs
assumed to be sampled from an expert. For consistency with sequential generative modeling, we
assume a finite-horizon, deterministic, no-discount, acyclic setting. The objective is to learn a per-
step reward function r̄ such that the expert outperforms all other policies, with a convex regularizer
ψ, by solving the following optimization problem:

max
r̄

min
π

Ex,τ∼πE(x,τ) [r̄(x, τ)]− Ex,τ∼π(x,τ) [r̄(x, τ)]−H(π)− ψ(r̄) (1)

where πE is the expert policy and r̄(x, τ) is the cumulative reward. The policy learned from
the reward recovered by Equation 1 is given by argminπ ψ

∗(πE − π) − H(π), where ψ∗(x) =
supy∈RS×S xT y − ψ(y) is the convex conjugate of ψ (Ho & Ermon, 2016, Proposition 3.2).

2.3 EVIDENCE LOWER BOUND (ELBO)

For a given data distribution pdata, the ELBO objective is defined as

Ex∼pdata(x),τ∼q(τ |x)[log π(x, τ)− log q(τ |x)].

In language modeling that generates tokens sequentially from left to right, each sequence x corre-
sponds to a unique trajectory. In this case, log q(τ |x) = 0, and the trajectory probability reduces to
the induced state distribution: π(x, τ) = πX (x). Consequently, the ELBO objective coincides with
MLE. While MLE and ELBO objectives are widely used for generative modeling, they are prone to
compounding errors (Ross et al., 2011). This issue is tied to the divergence they minimize: for fixed
q, the ELBO objective corresponds to minimizing the KL divergence, DKL(pdata · q∥π). Under KL
divergence, even when pdata(x) ≈ 0 but π(x, τ) is large, the loss remains small. As a result, such
objectives permit small errors and tend to exhibit mode-covering behavior. Furthermore, because
KL divergence trains the model only on finite data in practice, its behavior is left undetermined on
out-of-distribution inputs.

3 GENERATIVE IMITATION LEARNING WITH GFLOWNETS

3.1 ON THE LIMITATIONS OF MAXENT IRL FOR GENERATIVE MODELING

While it may be tempting to apply the MaxEnt IRL framework directly to sequential generative mod-
eling, it introduces bias in the sampling distritbution. Figure 1 illustrates this effect in the Pascal’s
triangle environment. A policy starts from the topmost hexagons and repeatedly chooses between
two actions, left or right, until it reaches a bottom state. The data distribution pdata is uniform
over the bottom states, so ideally the policy should also terminate uniformly (Figure 1b). However, a
policy trained with SQIL (Reddy et al., 2019) assigns higher probability to the middle states, which
admit a larger number of trajectories (Figure 1a). This bias arises from the entropy bonus, which
encourages uniform action probabilities and is reflected in the smoother color transitions at the top
of the triangle. This issue does not appear in recent work on applying the MaxEnt IRL framework
to language modeling (Wulfmeier et al., 2024), since in those tasks each trajectory corresponds to a
unique terminal states.

Another limitation of MaxEnt IRL is the absence of a principled framework for learning the back-
ward policy q(τ |x). Without a learnable backward policy, the model cannot adapt q to approximate
the true posterior over trajectories, which restricts its expressiveness and can introduce additional
bias in practice (Figure 1c). In contrast, GFlowNets explicitly incorporate the learning of both π and
q, enabling more accurate modeling of the data distribution (Figure 1d).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

(a) SQIL, Uniform q (b) Ours, Uniform q (c) Ours, Uniform q (d) Ours, Learned q

Figure 1: Example experiments in the Pascal’s triangle environment, with states colored by visitation
probability. (a, b) While SQIL concentrates probability mass in the center, our method distributes it
uniformly, as desired. (c, d) The initial distribution is fixed as π0(s0) = [0.3, 0.4, 0.3] over the top
three states, which limits the modeling capacity of π(x, τ). Nonetheless, jointly learning π and q
recovers the uniform data distribution at the bottom states.

3.2 GENERATIVE IMITATION LEARNING FRAMEWORK

In this section, we derive an generative imitation learning framework based on GFlowNets. Anal-
ogous to inverse reinforcement learning, which first recovers the reward function underlying expert
demonstrations to train an imitating policy, our formulation relies on reward function that underlies
the dataset. Proofs of all Propositions and Lemmas are provided in Appendix A.

Since our focus in this paper is on imitating the data distribution, the rewards assigned to terminal
states play a much more critical role than in prior approaches. We therefore derive an alternative
formulation in which only the terminal rewards are learned to discriminate between samples from
the data and those generated by the policy.

max
r

min
π
Lq(r, π) = Ex∼pdata(x)[r(x)]− Ex,τ∼π(x,τ) [r(x) + log q(τ |x)] +H(π)− ψ(r)

= Ex∼pdata(x)[r(x)]− Ex∼πX (x) [r(x)] +K(π, q)− ψ(r) (2)

where K(π, q) = Eπ[log π(x, τ) − log q(τ |x)]. The inner minimization corresponds to the
GFlowNet procedure, which induces πX (x) = 1

Z exp(r(x)). The overall optimization problem
can be interpreted as energy-based model (EBM) training, with π as the generative sampler and −r
as the energy function. In particular, EB-GFN (Zhang et al., 2022) trains the energy function jointly
with a GFlowNet sampler in order to approximate the normalizing constant Z. Further details on
these connections are provided in Appendix D.

The posterior regularization term K can be decomposed into a posterior KL divergence and the
entropy of the terminal distribution: EπX [DKL(π(·|x)∥q(·|x))] − H(πX) (See Appendix A.1). In
other words, K(π, q) encourages the policy to align its posterior with the reference backward dis-
tribution q, while the entropy term promotes diversity over the outcome space X . To characterize
Equation 2, we first establish the convexity of K, followed by a proposition describing the policy
induced by the recovered reward.

Lemma 1 (Convexity of K) K(π, q) is convex in both π and q.

Proposition 1 (Induced policy under Lq) If r⋆ ∈ argmaxrminπ Lq(r, π) is the recovered reward,
then the policy induced by r⋆ is: GFNq(r

⋆) = argminπ ψ
∗(pdata − πX) +K(π, q)

Proposition 1 shows that the optimization problem seeks a policy whose distribution over terminal
states X closely matches the data distribution, as measured by ψ∗, while simultaneously aligning
the trajectory distribution with q. By choosing an appropriate ψ, one can recover well-known sta-
tistical divergence measures, as indicated in Appendix B. This formulation cleanly separates the
characteristics of the induced policy for terminal states from those for trajectories.

A solution to the max-min optimization can be obtained by iteratively (1) training the GFlowNet
policy in the inner loop and (2) learning the rewards in the outer loop, as is done in EB-GFN.
However, this approach is challenging in practice due to the adversarial nature of the optimization.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

To simplify the optimization, we reparameterize the problem in terms of the policy. Given a reward
function, the induced policy is uniquely defined by GFNq(r). Conversely, the reward function can
be expressed in terms of the policy π and the normalization constant Z:

rπ(x) = logZ + logEτ∼q(τ |x)[π(x, τ)/q(τ |x)].

where rπ is the reward function reparameterized by the policy π. This allows the reward to be rep-
resented through the pair (π, Z), leading to the reformulated objective: maxπ,Z minπ̃ Lq(rπ, π̃).
Using this new representation, the solution to the inner minimization is given by π̃(x, τ) =
πX (x)q(τ |x). This removes the need for a separate inner-loop optimization, as we can directly
sample x ∼ πX (x) and τ ∼ q(τ |x).
However, the inner expectation required to compute rπ(x) remains difficult to evaluate accu-
rately. To address this, we approximate rπ(x) by its single-sample estimate r̂π(x; τ) = logZ +
log π(x, τ) − log q(τ |x), which serves as a trajectory-level estimate of the implicit reward rπ(x)
under policy π. This leads to the following approximate objective:

max
π,Z

min
π̃
L̂q(π, Z, π̃) = Ex∼pdata(x)

τ∼q(τ |x)
[r̂π(x; τ)]− Ex,τ∼π̃(x,τ) [r̂π(x; τ)] +K(π̃, q)− ψ(r̂π) (3)

The inner minimization is attained at π̃(x, τ) = π(x, τ) (Lemma 2 in Appendix), eliminating the
need for the inner optimization loop. The resulting objective only depends on π and Z as follows:

Proposition 2 (Regularized ELBO) Denoting Jq(π, Z) = minπ̃ L̂q(π, Z, π̃), we obtain

Jq(π, Z) = Ex∼pdata(x),τ∼q(τ |x) [log π(x, τ)− log q(τ |x)]︸ ︷︷ ︸
ELBO

− ψ(r̂π)︸ ︷︷ ︸
regularization

(4)

recovering the ELBO objective with an additional regularization term.

The regularization term constrains the reward, which is implicitly defined by the policy. From
Jensen’s inequality, rπ(x) ≥ Eτ∼q(τ |x)[r̂π(x; τ)], and that the single sample approximation r̂π be-
comes accurate when q(τ |x) ∝ π(x, τ). Therefore, the approximation error can be reduced by
interleaving optimization steps for q with those for p. However, optimizing Jq(π, Z) with fixed q
also results in π(x, ·) ∝ q(·|x), as shown in the following proposition.

Proposition 3 (Induced policy under Jq) Maximizing Jq is equivalent to minimizing a divergence
regularized by K(π, q): argmaxπmaxZ Jq(π, Z) = argminπ ψ

∗(pdata · q − π) +K(π, q).

For proper choices of ψ, the conjugate ψ∗ induces a divergence that encourages π(x, ·) ∝ q(· | x)
(Appendix B). Since K promotes the same alignment, the approximate objective remains accurate
provided that π is optimized over a sufficiently large function class. Because both ψ∗ and K are
convex, the resulting objective ensures stable optimization, leading to the unique optimal point.

Remark Our derivation is closely related to IQ-Learn (Garg et al., 2021), which also eliminates
the inner optimization loop by reparameterizing both the reward function and the policy in terms of
the soft-Q function. IQ-Learn can be interpreted as a form of regularized MLE (Wulfmeier et al.,
2024), which parallels the regularized ELBO objective presented in Proposition 2. In MaxEnt IRL,
however, the policy is encouraged to maximize H(π), which biases it toward terminal states with
many trajectories leading to them. In contrast, our objectives eliminate this bias by leveraging the
GFlowNets perspective, which was itself motivated by the same issue.

3.3 DERIVING GFLOWNETS OBJECTIVES

While various convex functions can be chosen for the regularizer ψ, we adopt ψTB(r̂π) =
αEdmix

[(r̂π(x; τ) − rprior(x))
2], where rprior(x) is the prior rewards we have on X , dmix =

1
2 (pdata · q + π) is the mixture distribution between pdata · q and π, and α controls the strength
of the regularization. Under this choice, Equation 4 reduces to a mixed objective (ELBO + TB). In
fact, it can be reformulated entirely as two competing TB objectives, which we term TBIL.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Proposition 4 (TBIL) The solution to Equation 4 with the regularizer ψTB is equivalent to solving
two TB objectives. Specifically, we define LTB

q (π, Z) as:

E
x∼pdata(x)
τ∼q(τ |x)

[
(r̂π(x; τ)− rprior(x)− rα)

2
]
+ E
x,τ∼π̃(x,τ)

[
(r̂π(x; τ)− rprior(x) + rα)

2
]
, (5)

where rα = 1/α, and π̃ denotes the sampling distribution. If the samples are drawn from the current
policy, i.e., π̃ = π, then argminπ,Z LTB

q (π, Z) = argmaxπ,Z Jq(π, Z).

The resulting objective assigns different rewards to samples depending on their source: samples from
the data distribution receive rewards of rprior(x) + rα, while other samples receive rprior(x) − rα.
When rα = 0, the objective reduces to the TB objective. For rα > 0, the objective progressively
incorporates the ELBO term. The equivalence between the regularized ELBO and Equation 5 can
be established more directly through a gradient analysis, which we provide in Appendix C.

The prior reward function rprior can be leveraged to incorporate domain knowledge while imitating
the data distribution. For example, Pandey et al. (2025) combined the negative ELBO loss with the
TB loss to pretrain a molecular generative model. In this setting, the negative ELBO encourages
proximity to the reference chemical library, while the prior is defined through computationally in-
expensive reward functions such as drug-likeness (QED), which act as proxies for more complex
molecular properties. Our results show that this regularized ELBO objective is equivalent to two
competing TB objectives for specific choices of α and the mixture proportion in dmix.

While Equation 5 involves two different TB objectives with different rewards, it can be shown to
be equivalent to minimizing the χ2-divergence, which attains a unique minimum and makes out-of-
distribution samples more costly than KL divergence.

Proposition 5 (Divergence interpretation) When rprior is a constant function and α = 1/2, mini-
mizing Lq(π, Z) is equivalent to minimizing the χ2-divergence with additionalK term. Specifically,
argminπminZ Lq(π, Z) = argminπ 2χ

2(pdata · q∥ 1
2 (pdata · q + π)) +K(π, q).

Next, we derive analogous results for the DB objective, which is defined over transitions. Just as
Equation 5 can be interpreted as the ELBO combined with the TB objective, combining the ELBO
with the DB objective yields a pair of competing DB objectives, refered to as DBIL:

Proposition 6 (DBIL) Let ρq(s, s′) and ρπ(s, s′) denote distibutions over transitions, induced by
pdata · q and π, respectively. Define the transition-based objective LDB

q as

E
s,s′∼ρq(s,s′)

[(
log

F (s)π(s′|s)
F (s′)q(s|s′)

− rα

)2
]
+ E
s,s′∼ρπ(s,s′)

[(
log

F (s)π(s′|s)
F (s′)q(s|s′)

+ rα

)2
]
, (6)

where rα is some constant, and logF (x) = rprior(x) for terminal states x. The objective LDB
q

is equivalent to the negative ELBO combined with the DB objective. Moreover, when rprior(x) is
constant and rα = 2, optimizing LDB

q is equivalent to minimizing χ2(ρq∥ 1
2 (ρq + ρπ)) + k(π, q),

where k(π, q) = Eρπ [log π(s′|s)− log q(s|s′)] is a per-step regularization term.

DBIL assigns a (±rα) bonus at each transition, which can be understood as an energy cost (or gain)
associated with the transition (Pan et al., 2023; Jang et al., 2023).

So far, we have assumed the backward policy q to be fixed, aligning only π with q. While this
suffices to recover the correct distributions if the policy class is expressive enough, jointly learning
q can yield faster convergence (Malkin et al., 2022a) and improved performance in several domains
using ELBO-based objectives (Chen et al., 2021; Sahoo et al., 2024). An important advantage of
TBIL and DBIL, paralleling GFlowNet objectives, is that π and q can be trained jointly, thereby
eliminating the need for separate optimization steps.

Remark The resulting algorithm is similar to SQIL (Reddy et al., 2019), which uses fixed zero-
one rewards to the policy and the expert at each transition. SQIL has also been shown to connect
to the χ2-divergence when symmetric rewards are used (Al-Hafez et al., 2023). In fact, through
the established connections between GFlowNets and MaxEnt RL (Tiapkin et al., 2024), logF +
log π can be interpreted as a soft-Q function, making the two algorithms closely related. The key
distinction, however, is that Equation 6 explicitly incorporates log q as a reward baseline.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

3.4 PRACTICAL ALGORITHM

Algorithm 1 TBIL

Require: Dataset D, rα, πθ, qϕ, and Zγ
1: Initialize parameters θ, γ and optionally ϕ
2: while not converged do
3: Sample (x, τ) from D with τ ∼ qϕ(τ |x)
4: Sample (x′, τ ′) ∼ πθ(x, τ)
5: Update θ, ϕ, γ using Equation 5
6: end while

To instantiate our algorithm, we approximate
π, Z (for TBIL), F (for DBIL), and optionally
q with neural networks, while expectations are
estimated using finite samples. An overview of
TBIL is presented in Algorithm 1. Although
the proposed algorithms require samples from
the policy, off-policy training can be performed
with a replay buffer, which has been shown to
substantially improve performance (Du & Mor-
datch, 2019; Kostrikov et al., 2018).

While we can assume a fixed horizon length T without loss of generality by introducing an absorb-
ing state, in practice no further interactions are needed once termination is reached. For DBIL,
however, this setup can cause longer trajectories to accumulate larger cumulative rα bonuses,
thereby introducing bias. To correct for this, we assign an additional reward by setting logF (x)
as rprior(x)± (T − t)rα when a trajectory ends at step t. Although this issue has been noted previ-
ously in the imitation learning literature (Kostrikov et al., 2018), we revisit it here in the context of
generative modeling and provide further discussion in Appendix E.

4 RELATED WORK

Imitation Learning Early approaches such as behavioral cloning (BC) treat imitation learning
(IL) as supervised learning over expert state-action pairs, but they suffer from compounding errors
due to distributional shift (Ross & Bagnell, 2010; Ross et al., 2011). To mitigate this issue, inverse
reinforcement learning (IRL) methods jointly infer both the policy and the reward function, which
has been shown to reduce compounding errors (Xu et al., 2020). In particular, GAIL (Ho & Ermon,
2016) formulates IL as adversarial training between the policy and the reward function, and shows
that minimizing the divergence between expert and policy occupancy measures can be expressed
as a two-player saddle-point problem. IQ-Learn (Garg et al., 2021) represents both the policy and
rewards using a soft Q-function, eliminating the need for adversarial training. SQIL (Reddy et al.,
2019) simplifies IL by showing that a zero-one reward scheme is equivalent to a form of regularized
BC, which was later connected to the general IL framework (Al-Hafez et al., 2023). Connections
between IRL and EBMs were established in Finn et al. (2016).

GFlowNets GFlowNets were introduced as a framework for training policies that sample com-
positional objects in proportion to a given reward function (Bengio et al., 2021). Subsequent work
has highlighted their close connections to variational inference (Malkin et al., 2022b; Zimmermann
et al., 2023) and MaxEnt RL (Tiapkin et al., 2024; Mohammadpour et al., 2024), which provide
useful theoretical tools for analysis. Since their introduction, GFlowNets have been extended to con-
tinuous spaces (Lahlou et al., 2023) and to environments beyond directed acyclic graphs (Brunswic
et al., 2024; Morozov et al., 2025), developments that are complementary to and potentially extend
our work. Most similar to our work, Zhang et al. (2022) proposed training a GFlowNet sampler to
aid energy model learning on a given dataset, a procedure that can be viewed as interleaving the
max-min optimization steps in our framework. We provide a more detailed discussion of Zhang
et al. (2022) in Appendix D.

5 EXPERIMENTS

In this section, we compare three methods that are closely related to our approach—SQIL, EBMs,
and GFlowNets. Our aim is not to identify the best-performing method, but to demonstrate how these
existing approaches can be adapted within our framework and to provide meaningful comparisons
with our proposed method. Further experimental details and results are presented in Appendix F.

5.1 GENERATIVE IMITATION LEARNING (SQIL)

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Negative log-likelihood (NLL ↓) on seven 2D synthetic problems.

Method 2spirals 8gaussians circles moons pinwheel swissroll checkerboard

EB-GFN 20.098 20.025 20.576 19.764 19.629 20.185 20.716
TBIL 20.131 19.998 20.586 19.774 19.639 20.194 20.712
Combined 20.106 20.002 20.575 19.759 19.612 20.180 20.721

2spirals 8gaussians circles moons pinwheel swissroll checkerboard

Figure 3: Samples generated by a GFlowNet trained under the TBIL objective with rα = 10.

0 10000 20000 30000 40000 50000
Number of Model Updates

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y
of

 L
en

di
ng

 a
t D

at
a

Sa
m

pl
es

DBIL (r = 1)
SQIL (r = 1)
SQIL (r = 1 + log q baseline)
SQIL (r = 5)

Figure 2: Comparison to SQIL as mea-
sured by the probability of sampling
data samples.

We compare DBIL with SQIL (Reddy et al., 2019), which
can be viewed as DBIL without the log q baseline. For
fairness, we replaced SQIL’s zero–one rewards with sym-
metric rewards rα = ±1, and we also implemented a vari-
ant of SQIL augmented with the log q baseline. The task
is to generate a 17-bit binary sequence by flipping one bit
at a time until the stop action is chosen, with the final
bit reserved for this termination signal (|X | = 65,536).
Following Malkin et al. (2022a), data samples are con-
structed by concatenating four randomly chosen blocks
from the set 0100,1100,0110,0011,1110, yielding
625 data samples. Figure 2 reports the convergence of
each method, measured by the probability of terminating
at states contained in pdata. Both DBIL and the corrected
SQIL variant successfully learn to match the data distri-
bution, while SQIL (rα = 1) degenerates to always pro-
ducing the all-ones sequence, which is favored due to the factorially larger number of trajectories
leading to it. In addition, DBIL and the combined variant generate blocks with approximately uni-
form frequencies, closely matching the target distribution, whereas SQIL with rα = 5 favors blocks
containing many 1’s.

5.2 ENERGY-BASED MODELING (EB-GFN)

We compare TBIL with EB-GFN (Zhang et al., 2022), as both solve the same optimization problem
but through different algorithms (see Appendix D for details). Following the experimental setup of
Zhang et al. (2022), we use seven target distributions over 32-dimensional binary vectors derived
from discretizing continuous distributions on the 2D plane. Each point (x, y) ∈ R2 is quantized into
216 equal-width bins per coordinate and encoded using a 16-bit Gray code, ensuring that adjacent
bins differ by exactly one bit. Default hyperparameters from EB-GFN are used for both methods,
except that EB-GFN is trained with an L2 regularization coefficient of α = 0.1, corresponding to
rα = 10 in TBIL. Since our method can be readily integrated with EB-GFN, we additionally tested
a combined approach, using intermediate hyperparameters of α = 0.2 and rα = 5. Unlike EB-GFN,
TBIL does not require a separate reward network, resulting in fewer effective parameters. Figure 3
presents samples generated by TBIL.

We evaluate each methods in terms of negative log-likelihood (NLL) in Table 1. EB-GFN achieved
slightly better overall performance than TBIL at convergence, which may be explained by the greater
flexibility offered by explicitly modeling the reward function, a benefit that has also been observed
in language modeling tasks (Xu et al., 2024; Ivison et al., 2024). However, because EB-GFN relies
solely on the reward function to guide GFlowNet training—which is particularly unreliable in the
early stages—it converges more slowly (see Figure 5 in the Appendix). Incorporating TBIL into

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: Results on two biological sequence generation tasks: DNA (TFBind10) and molecules
(sEH). We report true reward means for different top-k samples selected from 5,000 model-
generated samples (mean ± std).

Task Dataset rα k = 50 k = 500 k = 5000 Diversity

TFBind10
Top 5% 0 1.047 ± 0.078 0.603 ± 0.018 0.045 ± 0.008 6.497 ± 0.003

0.5 1.087 ± 0.036 0.621 ± 0.003 0.057 ± 0.002 6.384 ± 0.013

Top 15% 0 0.906 ± 0.019 0.597 ± 0.003 0.071 ± 0.026 6.403 ± 0.014
0.5 0.931 ± 0.020 0.600 ± 0.004 0.093 ± 0.006 6.412 ± 0.008

sEH
Top 5% 0 7.906 ± 0.028 7.465 ± 0.034 5.425 ± 0.066 0.783 ± 0.001

0.5 7.912 ± 0.013 7.487 ± 0.001 5.643 ± 0.036 0.779 ± 0.002

Top 15% 0 7.840 ± 0.022 7.442 ± 0.009 5.609 ± 0.032 0.772 ± 0.001
0.5 7.818 ± 0.016 7.412 ± 0.010 5.700 ± 0.009 0.776 ± 0.003

the training, as in the combined method, substantially accelerates convergence and achieves the best
overall performance.

5.3 OFFLINE LEARNING (GFLOWNET)

Existing GFlowNets are typically trained with an oracle function assumed to provide reliable re-
wards. In practice, however, this oracle is often replaced with a learned proxy model, which may
not faithfully capture the true reward (Zhang et al., 2025). This limitation is especially pronounced
in domains such as biological sequence generation, where experimental data is scarce and proxy
models must be trained on limited datasets, increasing the risk of inaccuracies. A natural remedy
is to leverage previously collected data to constrain the policy distribution, thereby improving ro-
bustness (Nair et al., 2020). We adopt this approach in our experiments by training conservative
GFlowNets that stay close to the offline data distribution. In our formulation, this corresponds to
setting rα > 0, which acts as a conservatism parameter.

We evaluate this idea on two generative tasks: DNA (TFBind10) and molecules (sEH). Both tasks
can be formulated as sequence construction problems under a prepend–append action space. To
assess the impact of offline data quality, we construct datasets by randomly sampling 1000 objects
from the top 5% and 15%, which are then used both to train proxy models and as data samples.
Table 2 reports the mean rewards of the top-scoring samples generated by different methods. Setting
rα = 0 corresponds to standard GFlowNets trained solely on the proxy model, while rα = 0.5
corresponds to our conservative variant. The results indicate that our method improves upon the
proxy-only baseline overall, though its effectiveness depends on the quality of the dataset. Further
results and detailed definitions of the evaluation metrics are provided in Appendix F.3.

6 CONCLUSION

We introduced a generative imitation learning framework built on GFlowNets, extending MaxEnt
IRL to settings where a variational distribution is introduced. Our analysis established theoretical
links between regularized ELBO and GFlowNet objectives, showing that the regularized ELBO can
be reformulated as two competing GFlowNet objectives. The framework naturally supports joint
training of forward and backward policies and avoids the entropy bias inherent in prior approaches.
We demonstrated that the proposed objectives can be seamlessly integrated into existing methods,
broadening their applicability to a variety of generative modeling settings. We conducted experi-
ments on both synthetic and biological sequence design tasks, demonstrating promising results and
showing that our approach can be effectively combined with existing methods. However, its em-
pirical validation remains limited. Extending TBIL and DBIL to more complex domains such as
molecular graphs or high-dimensional images would better test scalability and practical utility, and
represents a key direction for future work.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Firas Al-Hafez, Davide Tateo, Oleg Arenz, Guoping Zhao, and Jan Peters. Ls-iq: Implicit reward
regularization for inverse reinforcement learning. arXiv preprint arXiv:2303.00599, 2023.

Emmanuel Bengio, Moksh Jain, Maksym Korablyov, Doina Precup, and Yoshua Bengio. Flow
network based generative models for non-iterative diverse candidate generation. Advances in
neural information processing systems, 34:27381–27394, 2021.

Leo Brunswic, Yinchuan Li, Yushun Xu, Yijun Feng, Shangling Jui, and Lizhuang Ma. A theory
of non-acyclic generative flow networks. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pp. 11124–11131, 2024.

Xiaohui Chen, Xu Han, Jiajing Hu, Francisco JR Ruiz, and Liping Liu. Order matters: Probabilistic
modeling of node sequence for graph generation. arXiv preprint arXiv:2106.06189, 2021.

Chris Cundy and Stefano Ermon. Sequencematch: Imitation learning for autoregressive sequence
modelling with backtracking. arXiv preprint arXiv:2306.05426, 2023.

Yilun Du and Igor Mordatch. Implicit generation and modeling with energy based models. Advances
in neural information processing systems, 32, 2019.

Chelsea Finn, Paul Christiano, Pieter Abbeel, and Sergey Levine. A connection between generative
adversarial networks, inverse reinforcement learning, and energy-based models. arXiv preprint
arXiv:1611.03852, 2016.

Justin Fu, Katie Luo, and Sergey Levine. Learning robust rewards with adversarial inverse rein-
forcement learning. arXiv preprint arXiv:1710.11248, 2017.

Divyansh Garg, Shuvam Chakraborty, Chris Cundy, Jiaming Song, and Stefano Ermon. Iq-learn:
Inverse soft-q learning for imitation. Advances in Neural Information Processing Systems, 34:
4028–4039, 2021.

Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning with
deep energy-based policies. In International conference on machine learning, pp. 1352–1361.
PMLR, 2017.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. Advances in neural
information processing systems, 29, 2016.

Hamish Ivison, Yizhong Wang, Jiacheng Liu, Zeqiu Wu, Valentina Pyatkin, Nathan Lambert,
Noah A Smith, Yejin Choi, and Hanna Hajishirzi. Unpacking dpo and ppo: Disentangling best
practices for learning from preference feedback. Advances in neural information processing sys-
tems, 37:36602–36633, 2024.

Hyosoon Jang, Minsu Kim, and Sungsoo Ahn. Learning energy decompositions for partial inference
of gflownets. arXiv preprint arXiv:2310.03301, 2023.

Ilya Kostrikov, Kumar Krishna Agrawal, Debidatta Dwibedi, Sergey Levine, and Jonathan Tomp-
son. Discriminator-actor-critic: Addressing sample inefficiency and reward bias in adversarial
imitation learning. arXiv preprint arXiv:1809.02925, 2018.

Salem Lahlou, Tristan Deleu, Pablo Lemos, Dinghuai Zhang, Alexandra Volokhova, Alex
Hernández-Garcıa, Léna Néhale Ezzine, Yoshua Bengio, and Nikolay Malkin. A theory of con-
tinuous generative flow networks. In International Conference on Machine Learning, pp. 18269–
18300. PMLR, 2023.

Kanika Madan, Jarrid Rector-Brooks, Maksym Korablyov, Emmanuel Bengio, Moksh Jain, An-
drei Cristian Nica, Tom Bosc, Yoshua Bengio, and Nikolay Malkin. Learning gflownets from
partial episodes for improved convergence and stability. In International Conference on Machine
Learning, pp. 23467–23483. PMLR, 2023.

Nikolay Malkin, Moksh Jain, Emmanuel Bengio, Chen Sun, and Yoshua Bengio. Trajectory balance:
Improved credit assignment in gflownets. Advances in Neural Information Processing Systems,
35:5955–5967, 2022a.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Nikolay Malkin, Salem Lahlou, Tristan Deleu, Xu Ji, Edward Hu, Katie Everett, Dinghuai Zhang,
and Yoshua Bengio. Gflownets and variational inference. arXiv preprint arXiv:2210.00580,
2022b.

Sobhan Mohammadpour, Emmanuel Bengio, Emma Frejinger, and Pierre-Luc Bacon. Maximum
entropy gflownets with soft q-learning. In International Conference on Artificial Intelligence and
Statistics, pp. 2593–2601. PMLR, 2024.

Nikita Morozov, Ian Maksimov, Daniil Tiapkin, and Sergey Samsonov. Revisiting non-acyclic
gflownets in discrete environments. arXiv preprint arXiv:2502.07735, 2025.

Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. Awac: Accelerating online rein-
forcement learning with offline datasets. arXiv preprint arXiv:2006.09359, 2020.

XuanLong Nguyen, Martin J Wainwright, and Michael I Jordan. Estimating divergence functionals
and the likelihood ratio by convex risk minimization. IEEE Transactions on Information Theory,
56(11):5847–5861, 2010.

Ling Pan, Nikolay Malkin, Dinghuai Zhang, and Yoshua Bengio. Better training of gflownets with
local credit and incomplete trajectories. In International Conference on Machine Learning, pp.
26878–26890. PMLR, 2023.

Mohit Pandey, Gopeshh Subbaraj, Artem Cherkasov, Martin Ester, and Emmanuel Bengio. Pretrain-
ing generative flow networks with inexpensive rewards for molecular graph generation. arXiv
preprint arXiv:2503.06337, 2025.

Siddharth Reddy, Anca D Dragan, and Sergey Levine. Sqil: Imitation learning via reinforcement
learning with sparse rewards. arXiv preprint arXiv:1905.11108, 2019.

Stéphane Ross and Drew Bagnell. Efficient reductions for imitation learning. In Proceedings of the
thirteenth international conference on artificial intelligence and statistics, pp. 661–668. JMLR
Workshop and Conference Proceedings, 2010.

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and struc-
tured prediction to no-regret online learning. In Proceedings of the fourteenth international con-
ference on artificial intelligence and statistics, pp. 627–635. JMLR Workshop and Conference
Proceedings, 2011.

Subham Sahoo, Aaron Gokaslan, Christopher M De Sa, and Volodymyr Kuleshov. Diffusion models
with learned adaptive noise. Advances in Neural Information Processing Systems, 37:105730–
105779, 2024.

John Schulman, Xi Chen, and Pieter Abbeel. Equivalence between policy gradients and soft q-
learning. arXiv preprint arXiv:1704.06440, 2017.

Max W Shen, Emmanuel Bengio, Ehsan Hajiramezanali, Andreas Loukas, Kyunghyun Cho, and
Tommaso Biancalani. Towards understanding and improving gflownet training. In International
conference on machine learning, pp. 30956–30975. PMLR, 2023.

Daniil Tiapkin, Nikita Morozov, Alexey Naumov, and Dmitry P Vetrov. Generative flow networks
as entropy-regularized rl. In International Conference on Artificial Intelligence and Statistics, pp.
4213–4221. PMLR, 2024.

Brandon Trabucco, Xinyang Geng, Aviral Kumar, and Sergey Levine. Design-bench: Benchmarks
for data-driven offline model-based optimization. In International Conference on Machine Learn-
ing, pp. 21658–21676. PMLR, 2022.

Markus Wulfmeier, Michael Bloesch, Nino Vieillard, Arun Ahuja, Jorg Bornschein, Sandy Huang,
Artem Sokolov, Matt Barnes, Guillaume Desjardins, Alex Bewley, et al. Imitating language via
scalable inverse reinforcement learning. Advances in Neural Information Processing Systems, 37:
90714–90735, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Shusheng Xu, Wei Fu, Jiaxuan Gao, Wenjie Ye, Weilin Liu, Zhiyu Mei, Guangju Wang, Chao Yu,
and Yi Wu. Is dpo superior to ppo for llm alignment? a comprehensive study. arXiv preprint
arXiv:2404.10719, 2024.

Tian Xu, Ziniu Li, and Yang Yu. Error bounds of imitating policies and environments. Advances in
Neural Information Processing Systems, 33:15737–15749, 2020.

Dinghuai Zhang, Nikolay Malkin, Zhen Liu, Alexandra Volokhova, Aaron Courville, and Yoshua
Bengio. Generative flow networks for discrete probabilistic modeling. In International Confer-
ence on Machine Learning, pp. 26412–26428. PMLR, 2022.

Yudong Zhang, Xuan Yu, Xu Wang, Zhaoyang Sun, Chen Zhang, Pengkun Wang, and Yang Wang.
Coflownet: Conservative constraints on flows enable high-quality candidate generation. In The
Thirteenth International Conference on Learning Representations, 2025.

Heiko Zimmermann, Fredrik Lindsten, Jan-Willem van de Meent, and Christian A Naesseth. A
variational perspective on generative flow networks. Transactions on Machine Learning Research,
2023.

A PROOFS

A.1 LEMMA 1

Here we establish the convexity of K(π, q) = Eπ[log π(x, τ) − log q(τ |x)]. Define the posterior
distribution π(τ |x) = π(x, τ)/πX (x). Then K can be decomposed as follows:

K(π, q) = Ex,τ∼π(x,τ)[log π(x, τ)− log q(τ |x)]
= Ex,τ∼π(x,τ)[log π(τ |x) + log π(x)− log q(τ |x)]
= Ex∼πX (x),τ∼π(τ |x)[log π(τ |x)− log q(τ |x)] + Ex∼πX (x)[log π(x)]

= Ex∼πX (x)[DKL(π(·|x)||q(·|x))]−H(πX).

where DKL is the KL divergence and H is the entropy. Now let πλ(x, τ) = λπ1(x, τ) + (1 −
λ)π2(x, τ) for some π1, π2 and 0 ≤ λ ≤ 1. Marginalizing out τ , the induced terminal state distri-
bution is πλ,X (x) = π1,X (x) + (1 − λ)π2,X (x), which establishes the linearity of the expectation
with respect to the terminal distribution πX . Since DKL is jointly convex in its arguments and −H
is convex, and the expectation is linear, it follows that K(π, q) is convex.

A.2 PROPOSITION 1

From the Equation 2, we have

Lq(π, r) = Ex∼pdata(x)[r(x)]− Ex∼πX (x) [r(x)]− ψ(r) +K(π, q)

=
∑
x∈X

r(x)(pdata(x)− πX (x))− ψ(r) +K(π, q)

for some fixed backward policy q. Since K and ψ are both convex, we have that Lq(·, r) is convex
in π for all r and Lq(p, ·) is concave in all r. Therefore, we can exchange min and max as in the
following:

max
r

min
π
Lq(π, r) = min

π
max
r
Lq(π, r) = min

π
ψ∗(pdata − πX) +K(π, q).

Let r⋆ ∈ argmaxrminπ Lq(π, r) and π⋆ ∈ argminπmaxr Lq(π, r). Then, (π⋆, r⋆) is a saddle
point of Lq , meaning π⋆ ∈ argminπ Lq(π, r

⋆).

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A.3 LEMMA 2

Lemma 2 π = argminπ̃ L̂q(π, Z, π̃).

Rewriting L̂q(π, Z, π̃), after removing terms that do not depend on π̃,

argmax
π̃

−L̂q(π, Z, π̃) = argmax
π̃

Ex,τ∼π̃(x,τ) [r̂π(x; τ)]−K(π̃, q)

= argmax
π̃

Ex,τ∼π̃(x,τ)
[
log

Zπ(x, τ)

q(τ |x)

]
− Ex,τ∼π̃(x,τ)

[
log

π̃(x, τ)

q(τ |x)

]
= argmax

π̃
Ex,τ∼π̃(x,τ) [log π(x, τ)] +H(π̃)

This is an entropy-regularized maximization problem, a form with a well-known closed-form solu-
tion (see, e.g., Haarnoja et al. (2017); Schulman et al. (2017)):

π̃⋆(x, τ) ∝ exp (log π(x, τ)) = π(x, τ)

A.4 PROPOSITION 2

We want to prove Jq(π, Z) = minπ̃ L̂q(π, Z, π̃). Rewriting L̂q(π, Z, π̃):

L̂q(π, Z, π̃) = E
x∼pdata(x)
τ∼q(τ |x)

[
log

Zπ(x, τ)

q(τ |x)

]
− E
x,τ∼π̃(x,τ)

[
log

Zπ(x, τ)

q(τ |x)
− log

π̃(x, τ)

q(τ |x)

]
− ψ(r̂π)

By Lemma 2, minimizing L̂q(π, Z, π̃) with respect to π̃ yields π̃ = π. Substituting π̃ with π, we
obtain:

L̂q(π, Z, π) = E
x∼pdata(x)
τ∼q(τ |x)

[
log

Zπ(x, τ)

q(τ |x)

]
− E
x,τ∼π(x,τ)

[
log

Zπ(x, τ)

q(τ |x)
− log

π(x, τ)

q(τ |x)

]
− ψ(r̂π)

= E
x∼pdata(x)
τ∼q(τ |x)

[log π(x, τ)− log q(τ |x)]− ψ(r̂π)

= Jq(π, Z)

as desired.

A.5 PROPOSITION 3

For convenience, we rewrite Equation 3 below:

max
π,Z

min
π̃
L̂q(π, Z, π̃) = Ex∼pdata(x)

τ∼q(τ |x)
[r̂π(x; τ)]− Ex,τ∼π̃(x,τ) [r̂π(x; τ)] +K(π̃, q)− ψ(r̂π)

Since r̂π(x; τ) = logZ + log π(x, τ) − log q(τ |x) is not restricted in its range as (π, Z) varies,
the maximization over (π, Z) can equivalently be expressed as a maximization over any function
g : T → R, where T denotes the trajectory space (s0, . . . , sT), as follows:

= max
g

min
π

Ex∼pdata(x)
τ∼q(τ |x)

[g(x, τ)]− Ex,τ∼π(x,τ) [g(x, τ)] +K(π, q)− ψ(g).

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Since K is convex and −ψ is concave, we can exchange the order of max-min and derive the
divergence form as follows:

= min
π

max
g

Ex∼pdata(x)
τ∼q(τ |x)

[g(x, τ)]− Ex,τ∼π(x,τ) [g(x, τ)] +K(π, q)− ψ(g)

= min
π

max
g

∑
x,τ

(pdata(x)q(τ |x)− π(x, τ))g(x, τ)− ψ(g) +K(π, q)

= min
π
ψ∗(pdata · q − π) +K(π, q).

Let π⋆, Z⋆ = argmaxπ,Z Jq(π, Z) and g⋆(x, τ) = logZ⋆ + log π⋆(x, τ) − log q(τ |x). By the
saddle point proterty, g⋆ is the maximizer of the inner optimization problem:

π⋆ = argmin
π

ψ∗(pdata · q − π) +K(π, q)

= argmin
π

Ex∼pdata(x)
τ∼q(τ |x)

[g⋆(x, τ)]− Ex,τ∼π(x,τ) [g⋆(x, τ)] +K(π, q)− ψ(g⋆)

= argmax
π

Ex,τ∼π(x,τ) [g⋆(x, τ) + log q(τ |x)]−H(π)

= argmax
π

Ex,τ∼π(x,τ) [logZ⋆ + log p⋆(x, τ)]−H(π)

∝ exp(logZ⋆ + log π⋆(x, τ))

meaning argmaxπmaxZ Jq(π, Z) = argminπ ψ
∗(pdata · q − π) +K(π, q).

A.6 PROPOSITION 4

Starting from Equation 3, we have

argmax
π,Z

Ex∼pdata(x)
τ∼q(τ |x)

[r̂π(x; τ)]− Ex,τ∼π̃(x,τ) [r̂π(x; τ)]− ψ(r̂π)

with the understanding π̃ = argminπ̃′ L̂q(π, Z, π̃
′). Using the regularizer of the form ψ(r̂π) =

αEdmix
[(r̂π(x; z)− rprior(x))

2], we have

= argmax
π,Z

(
Ex∼pdata(x)
τ∼q(τ |x)

[r̂π(x; τ)]− Ex,τ∼π̃(x,τ) [r̂π(x; τ)]− αEdmix [(r̂π(x; τ)− rprior(x))
2]

)

= argmax
π,Z

(
Ex∼pdata(x)
τ∼q(τ |x)

[
−α
2
r̂π(x; τ)

2 + r̂π(x; τ) + αr̂π(x; τ)rprior(x)
]

+ Ex,τ∼π̃(x,τ)
[
−α
2
r̂π(x; τ)

2 − r̂π(x; τ) + αr̂π(x; τ)rprior(x)
])

= argmax
π,Z

(
− α

2
Ex∼pdata(x)
τ∼q(τ |x)

[
r̂π(x; τ)

2 − 2

α
r̂π(x; τ)(αrprior(x) + 1)

]
− α

2
Ex,τ∼π̃(x,τ)

[
r̂π(x; τ)

2 − 2

α
r̂π(x; τ)(αrprior(x)− 1)

])
= argmin

π,Z

(
Ex∼pdata(x)
τ∼q(τ |x)

[(
r̂π(x; τ)− rprior(x)−

1

α

)2
]

+ Ex,τ∼π̃(x,τ)

[(
r̂π(x; τ)− rprior(x) +

1

α

)2
])

= argmin
π,Z

LTB
q (π, Z)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

where dmix = 1
2 (pdata · q + π), and r̂π(x; τ) = logZ + log p(x, π) − log q(π|x). Since

π̃ = argminπ̃′ L̂q(p, Z, π̃
′), the sampling distribution of the second expectation reduces to π̃ = π

by Lemma 2. This chain of equalities shows that minimizing LTB
q (π, Z) yields the same op-

timal pair (π, Z) as maximizing L̂q(π, Z, π̃). Finally, since π̃ is optimal with respect to L̂q ,
we have L̂q(π, Z, π̃) = Jq(π, Z) by Proposition 2, establishing that argminπ,Z LTB

q (π, Z) =
argmaxπ,Z Jq(π, Z).

A.7 PROPOSITION 5

Using the variational form of χ2-divergence (with f(u) = (u − 1)2 and f∗(u) = 1
4u

2 + u; see
Appendix B), and dmix(x, τ) =

1
2 (pdata(x)q(τ |x) + π(x, τ)), we have:

min
π

2χ2(pdata · q∥dmix) +K(π, q)

= min
π

max
g

Ex∼pdata(x)
τ∼q(τ |x)

[2g(x, τ)]− Ex,τ∼dmix

[
1

2
g(x, τ)2 + 2g(x, τ)

]
+K(π, q)

= min
π

max
g

Ex∼pdata(x)
τ∼q(τ |x)

[g(x, τ)]− Ex,τ∼π(x,τ)[g(x, τ)]− Ex,τ∼dmix

[
1

2
g(x, τ)2

]
+K(π, q)

= min
π

max
g̃

Ex∼pdata(x)
τ∼q(τ |x)

[g̃(x, τ)]− Ex,τ∼π(x,τ)[g̃(x, τ)]− Ex,τ∼dmix

[
1

2
(g̃(x, τ)− c)2

]
+K(π, q)

= max
g̃

min
π

Ex∼pdata(x)
τ∼q(τ |x)

[g̃(x, τ)]− Ex,τ∼π(x,τ)[g̃(x, τ)]− ψ(g̃) +K(π, q)

where g̃(x, τ) = g(x, τ) + c for some constant c, and ψ(g̃) = Ex,τ∼dmix
[12 (g̃(x, τ) − c)2]. To

change the min-max order, we used saddle point property. The last equation has the same form as
Equation 3 under the correspondence g̃(x, τ) = r̂π(x; τ). Since r̂π(x; τ) contains the logZ term,
its range is unbounded and the constant term can be absorbed, allowing us to substitute r̂π for g̃. By
Proposition 2 and 4, this is then equivalent to Equation 5.

A.8 PROPOSITION 6

We first show that the negative ELBO combined with the DB objective is equivalent to Equation 6.
By Proposition 2, the ELBO objective can be written as:

ELBO(π, q) = Ex∼pdata(x)
τ∼q(τ |x)

[r̂π(x; τ)]− Ex,τ∼π̃(x,τ) [r̂π(x; τ)] ,

where π̃(x, τ) = argminπ′ [r̂π(x; τ)] + K(π′, q). We decompose the estimated reward r̂π into a
sum of per-transition rewards:

r̂π(x; τ) = logZ + log π(x, τ)− log q(τ |x) =
T∑
t=1

log
F (st−1)π(st|st−1)

F (st)q(st−1|st)
+ logF (sT)

where F : S → R is the state-flow function, with F (s0) defined as logZ + log π0(s0) and
F (sT) = rprior(sT). Define δ(st−1, st) = log F (st−1)π(st|st−1)

F (st)q(st−1|st) . Analogous to Equation 3, the
ELBO combined with DB can be expressed as ELBO(π, q)− ψDB(δ) where:

ELBO(π, q) = E
x∼pdata(x)
τ∼q(τ |x)

[
T∑
t=1

δ(st−1, st)− rprior(sT)

]
− E
x,τ∼π̃(x,τ)

[
T∑
t=1

δ(st−1, st)− rprior(sT)

]

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

and

ψDB(δ) = E
x,τ∼dmix(x,τ)

[
α

T∑
t=1

δ(st−1, st)
2

]
.

Since π̃ = π by Lemma 1, its state-transition distribution is given by ρπ . Thus, the objective can be
equivalently rewritten in terms of state-transition distribution as follows:

Es,s′∼ρq(s,s′) [δ(s, s
′)]− Es,s′∼ρπ(s,s′) [δ(s, s

′)]− αEs,s′∼ρmix
[δ(s, s′)2], (7)

where ρmix = 1
2 (ρq + ρπ) and the rprior(sT) terms in ELBO are ignored, as it does not affect the

optimization. After algebraic manipulation (similar to Appendix A.6), we obtain

(7) = −α
2
Es,s′∼ρq(s,s′)

[(
δ(s, s′)− 1

α

)2
]
− α

2
Es,s′∼ρπ(s,s′)

[(
δ(s, s′) +

1

α

)2
]
+ constant,

which is equivalent to Equation 6 when the maxization problem is reformulated as a minimization
problem with rα = 1/α.

Next we proceed to prove that optimizing LDB
q is equivalent to minimizing χ2(ρq∥ρmix) + k(π, q).

Following similar arguments as in Appendix A.7, we use the variational form of χ2-divergence:

min
π

2χ2(ρq∥ρmix) + k(π, q)

= min
π

max
g

Es,s′∼ρq(s,s′)[2g(s, s
′)]− Es,s′∼ρmix(s,s′)

[
1

2
g(s, s′)2 + 2g(s, s′)

]
+ k(π, q)

= min
π

max
g

Es,s′∼ρq(s,s′)[g(s, s
′)]− Es,s′∼ρπ(s,s′)[g(s, s

′)]− Es,s′∼ρmix

[
1

2
g(s, s′)2

]
+ k(π, q)

= max
g

min
π

Es,s′∼ρq(s,s′)[g(s, s
′)]− Es,s′∼ρπ(s,s′)[g(s, s

′)]− ψ(g) + k(π, q)

= max
g

Es,s′∼ρq(s,s′)[g(s, s
′)]− Es,s′∼ρπg (s,s

′)[g(s, s
′)]− ψ(g)

where ψ(g) = Eρmix

[
1
2g(s, s

′)2
]

and πg(x, τ) ∝ q(τ |x) exp(
∑
g(s, s′)). By interpreting g(s, s′)

as δ(s, s′) recovers ELBO(π, q)− ψDB(δ) under the setting α = 1/2 and constant rprior.

B STATISTICAL DIVERGENCES

A broad family of divergences can be expressed as f -divergences, defined as follows:

Df (p∥q) = Ex∼q(x)
[
f

(
p(x)

q(x)

)]
,

where f is a convex, lower-semicontinuous function with f(1) = 0. The variational form of f -
divergences is given as following (Nguyen et al., 2010):

Df (p∥q) = sup
c∈C

Ex∼p(x)[c(x)]− Ex∼q(x)[f∗(c(x))]

= sup
c∈C

Ex∼p(x)[c(x)]− Ex∼q(x)[c(x)]− Ex∼q(x)[f∗(c(x))− c(x)]︸ ︷︷ ︸
ψf (c)

= ψ∗
f (p− q)

where f∗ is the convex conjugate of function f . Interpreting p(x) = πX , q(x) = pdata(x) and
c(x) = −r(x), we recover Equation 2 with K removed.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

C GRADIENT ANALYSIS

In this section, we show that the regularized ELBO is equivalent to TBIL by demonstrating that
their gradients coincide. We assume πθ, qϕ, and Zγ are parameterized functions. First, we write the
ELBO and TB objectives in terms of these parameterizations:

LELBO(θ, ϕ) = Ex∼pdata(x),τ∼qϕ(τ |x)
[
log

πθ(x, τ)

qϕ(τ |x)

]
,

and

TB(x, τ ; θ, ϕ, γ) =

(
log

Zγπθ(x, τ)

qϕ(τ |x)
− r(x)

)2

.

For convenience, we define

δTB(r) = log
Zγπθ(x, τ)

qϕ(τ |x)
− r(x).

Taking gradients with respect to θ, we have

∇θLELBO(θ, ϕ) = Ex∼pdata(x),τ∼qϕ(τ |x) [∇θ log πθ(x, τ)] ,

and

∇θδ
2
TB(r) =

(
log

Zγπθ(x, τ)

qϕ(τ |x)
− r(x)

)
∇θ log πθ(x, τ)

= δTB(r)∇θ log πθ(x, τ).

We will use the standard property that, under the policy distribution, any constant baseline can be
subtracted inside the expectation, since

Eπθ
[∇θ log πθ(x, τ)] = 0.

Thus,

Ex,τ∼πθ(x,τ)[∇θδ
2
TB(r)] = Ex,τ∼πθ(x,τ)

[(
δTB(r)− b

)
∇θ log πθ(x, τ)

]
.

Let dmix denote the mixture distribution between pdata · q and π. Combining the two objectives
yields

−∇θLELBO(θ, ϕ) + Ex,τ∼dmix(x,τ)[∇θαδ
2
TB(r)]

= αEx∼pdata(x),τ∼qϕ(τ |x) [(δTB(r)− rα)∇θ log πθ(x, τ)]

+ αEx,τ∼πθ(x,τ) [δTB(r)∇θ log πθ(x, τ)]

= αEx∼pdata(x),τ∼qϕ(τ |x) [(δTB(r)− rα)∇θ log πθ(x, τ)]

+ αEx,τ∼πθ(x,τ) [(δTB(r) + rα)∇θ log πθ(x, τ)]

= αEx∼pdata(x),τ∼qϕ(τ |x)
[
∇θδ

2
TB(r + rα)

]
+ αEx,τ∼πθ(x,τ)

[
∇θδ

2
TB(r − rα)

]
,

where rα = 1/α. In the second equality, rα is used as a baseline. The final expression coincides
with the gradient of the TBIL objective, up to a constant scaling factor. The gradient with respect to
ϕ can be derived analogously. Finally, note that the logZγ term acts only as a baseline and therefore
does not affect the gradient. Consequently, the TBIL and ELBO objectives yield identical gradients,
implying that they induce the same policy.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

D CONNECTIONS TO ENERGY-BASED MODELS

Energy-based models (EBMs) define probability distributions by assigning an unnormalized energy
score to each configuration, with lower energies corresponding to higher probabilities. Formally, an
EBM specifies a distribution over a space X as p(x) = 1

Z exp(−E(x)), where −E is the energy func-
tion and Z =

∫
exp(−E(x))dx is the normalizing constant. For consistency with our framework,

we set E(x) = −r(x), so that the distribution can be expressed as 1
Z exp(r(x)). EBMs train the

function r via maximum likelihood estimation, i.e., by maximizing Ex∼pdata(x)[log
1
Z exp(r(x))]

with respect to r. This objective can be written as:

Ex∼pdata(x)[log p(x)] = Ex∼pdata(x)[r(x)]− logZ

= Ex∼pdata(x)[r(x)]− log

∫
exp(r(x))dx

= Ex∼pdata(x)[r(x)]− logEx∼w(x)

[
exp(r(x))

w(x)

]
≤ Ex∼pdata(x)[r(x)]− Ex∼w(x)

[
log

exp(r(x))

w(x)

]
= Ex∼pdata(x)[r(x)]− Ex∼w(x)[r(x)]−H(w)

where w is an auxiliary distribution used for importance sampling to estimate Z. The inequality fol-
lows from Jensen’s inequality, with equality holding when w(x) ∝ exp(r(x)). In practice, sampling
from p is intractable, and EBMs typically rely on Markov chain Monte Carlo (MCMC) methods to
generate approximate samples. In addition, to encourage smoothness in r and improve stability dur-
ing optimization, it is common to introduce a regularization term ψ(r). The optimization problem
then takes the form:

max
r

min
w

Ex∼pdata(x)[r(x)]− Ex∼w(x)[r(x)]−H(w)− ψ(r)

where the maximum likelihood estimation problem is reformulated in terms of r, and the auxiliary
distribution w serves to approximate the normalizing constant Z.

The key idea of EB-GFN (Zhang et al., 2022) is to employ GFlowNets as MCMC samplers, thereby
reducing approximation errors. In this framework, the auxiliary distribution w is replaced with
a GFlowNet sampler π, and optimization proceeds by interleaving two steps: (1) training π to
approximate the terminal distribution πX (x) ∝ exp(r(x)), and (2) using π as a proposal distribution
to train r. In addition, using an L2 regularization term corresponds to ψTB without the prior term
rprior, yielding an optimization problem equivalent to Equation 2. However, upon inspecting the
source code of EB-GFN, we observed that although L2 regularization is implemented, it does not
seem to have been applied. This is equivalent to taking the limit rα → ∞ in our algorithms. In
practice, however, data samples are available only as a finite dataset, and without regularization the
GFlowNet is forced to exactly reproduce those datapoints. As a result, the learned policy effectively
collapses to sampling directly from the training dataset.

Additional differences from our approach lies both in the optimization procedure and in the focus
of the work. In EB-GFN, r and the GFlowNet sampler π are trained in alternating steps, with
π first optimized to approximate πX (x) ∝ exp(r(x)), and r subsequently updated using π as a
proposal distribution. In contrast, we reparameterize r directly in terms of π, thereby removing the
need for this second step and eliminating the alternating optimization. Furthermore, our analysis
emphasizes the theoretical connections with MaxEnt IRL, whereas EB-GFN primarily focuses on
reducing sampler approximation errors using GFlowNet sampler.

E IMPACT OF TERMINAL REWARD

Prior work in imitation learning (Ho & Ermon, 2016; Fu et al., 2017; Garg et al., 2021) often as-
signed zero rewards to the absorbing state, inadvertently introducing termination or survival bias.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

1.0

0.33

0.32

0.31

0.04

0.24

0.23

0.09

0.24

0.08

0.08

0.25

0.15

0.15

0.15

0.25

(a) 0-1 reward, no correction

1.0

0.29

0.28

0.29

0.13

0.16

0.17

0.13

0.16

0.12

0.13

0.12

0.11

0.13

0.12

0.12

(b) 0-1 reward, correction applied

Figure 4: Illustrative experiments in the bit-flip environment using DBIL. Circle sizes and the num-
bers indicate state visitation probabilities, while terminal states are highlighted in magenta. The
target distribution pdata(x) is uniform, so ideally the visitation probabilities should also be uniform.
(Left) Zero rewards are assumed for absorbing states. In this case, visitation probabilities correlate
with trajectory lengths. (Right) With the terminal-state correction applied, visitation probabilities
become uniform across terminal states.

This bias arises from improper handling of the absorbing state (Kostrikov et al., 2018; Al-Hafez
et al., 2023) and is distinct from the entropy bias discussed in Section 3.1. Our experiments in the
Pascal’s triangle environment does not have this issue, since the horizon length is fixed.

When the horizon length varies, however, DBIL requires an additional adjustment at the end of
trajectories. The reason is that TBIL distinguishes data samples from policy samples using a single
reward of ±rα applied at the trajectory level, whereas DBIL distributes this adjustment across every
transition. As a result, DBIL accumulates a total bonus of ±Trα for trajectories of length T . This
creates a bias when trajectory lengths differ, since longer trajectories automatically accrue larger
bonuses (or penalties), even if they terminate in the same outcome. A common workaround is to
pad shorter trajectories with dummy absorbing transitions satisfying π(s′|s) = q(s|s′) = 1, so that
all trajectories effectively share a fixed horizon. In practice, however, this approach is inefficient, as
it introduces unnecessary computations beyond the natural termination point, despite the stopping
condition already being known.

The symmetric reward scheme ±rα mitigates this issue to some extent, since the bonuses assigned
to data samples and policy samples can partially offset each other (and cancel out completely when
pdata(x)q(τ |x) = π(x, τ)). Nevertheless, variable horizon lengths still introduce bias, as longer
trajectories accumulate larger absolute bonuses. To correct for this, we assign an additional termi-
nal reward that compensates for the missing steps. Concretely, when a trajectory terminates at step
t < T , we add ±(T − t)rα at the terminal state. This adjustment ensures that every trajectory,
regardless of its length, accumulates the same total bonus as a trajectory of horizon T . In practice,
this amounts to padding early-terminating trajectories not with dummy transitions, but with a sin-
gle corrective reward at termination, thereby avoiding unnecessary computational overhead while
maintaining consistency across different horizon lengths.

Figure 4 illustrates the effect of trajectory length in the bit-flip environment, comparing results with
and without the proposed correction. In this environment, the initial state is [0, 0, 0, 0], and the policy
flips one bit at a time until reaching a terminal state where the last bit is flipped (e.g., [0, 0, 0, 1]).
Without correction, longer trajectories accumulate larger cumulative ±rα bonuses, causing terminal
states with longer paths to receive high visitation probabilities. With the terminal-state correction
applied, an additional reward of ±(T − t)rα is given when a trajectory ends at step t, compensating
for the difference in horizon length. This adjustment ensures that all terminal states are visited with
approximately equal probability, consistent with the uniform target distribution pdata(x).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 3: Probability of generating blocks for each method.

1110 0011 0110 1100 0100

DBIL (rα = 1) 0.20± 0.00 0.20± 0.01 0.20± 0.01 0.19± 0.01 0.20± 0.01
Combined (rα = 1) 0.21± 0.01 0.19± 0.01 0.20± 0.01 0.21± 0.00 0.19± 0.00
SQIL (rα = 5) 0.22± 0.01 0.20± 0.00 0.21± 0.01 0.19± 0.01 0.18± 0.01

F ADDITIONAL EXPERIMENTAL DETAILS AND RESULTS

F.1 GENERATIVE IMITATION LEARNING

Experimental settings The task is to generate a binary sequence by flipping one bit at a time until
the stop action is selected, with the last bit reserved for this stop signal. As in Malkin et al.
(2022a), data samples are constructed by randomly concatenating four blocks drawn from the set
0100,1100,0110,0011,1110, which imposes structure on pdata. Consequently, the sequence
length is 17 bits in total, yielding |S| = 131,072 states overall and |X | = 65,536 distinct terminal
states.

We parameterize the functions (π, F,Q) using a two-layer multilayer perceptron (MLP) with 64
hidden units per layer. The key difference between SQIL and DBIL, other than the reward baseline,
is the parameterization of functions: DBIL is parameterized by both F and π, while SQIL relies
solely on a soft-Q function (corresponding to logF+log π). In practice, however, we found training
a single Q network to be unstable. To address this, we introduced target networks, resulting in an
effective parameter size comparable to DBIL. The experiments are run 3 times for each method.

Results on the entropy bias We sampled 5,000 terminal states from each model, yielding 20,000
blocks in total. To evaluate the learned distributions, we measured the frequency of generating the
component blocks 0100,1100,0110,0011,1110. Standard SQIL places high probability on
blocks containing more 1’s, since these lead to terminal states with a larger number of trajectories.
In contrast, our method and the combined variant produce block frequencies that are approximately
uniform, aligning more closely with the target data distribution.

F.2 ENERGY-BASED MODELING

Experimental settings We closely follow the experimental setup of Zhang et al. (2022), with the
only modification being the treatment of the L2 regularization term. Specifically, for EB-GFN we
add L2 regularization with coefficient α = 0.1, while for TBIL we set rα = 10. For the combined
method, we adopt intermediate values, i.e., α = 0.2 and rα = 5. The negative log-likelihood (NLL)
is computed following the procedure in Zhang et al. (2022):

Eτ∼q(τ |x)
[
π(x, τ)

q(τ |x)

]
≈ 1

M

∑ π(x, τ)

q(τ |x)

where we setM = 20. While all methods share the same number of parameters and model architec-
ture for GFlowNets, TBIL does not rely on an explicit energy function, resulting in fewer effective
parameters for the task. We evaluated the model every 2,000 steps, and Table 1 reports the best NLL
achieved within 100,000 training steps.

Convergence speed We compare the convergence behavior of EB-GFN, TBIL, and their com-
bination in terms of negative log-likelihood (NLL) and the number of model updates. As shown
in Figure 5, EB-GFN converges more slowly, possibly because the reward function provides weak
training signals in the early stages of optimization. In contrast, TBIL and the combined method
converge substantially faster, as the reward is reparameterized directly in terms of the policy and
normalization constant. Moreover, EB-GFN requires separate optimization steps, which further
increases the time needed for each GFlowNet update. Also see Figure 6 for the visualization of
intermediate samples generated by TBIL and EB-GFN.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

0 20000 40000 60000 80000 100000
Number of GFlowNet Updates

20.2

20.4

20.6

20.8

21.0

Ne
ga

tiv
e

Lo
g-

Lik
el

ih
oo

d

EB-GFN
TBIL
Combined

2spirals

0 20000 40000 60000 80000 100000
Number of GFlowNet Updates

20.0

20.2

20.4

20.6

20.8

Ne
ga

tiv
e

Lo
g-

Lik
el

ih
oo

d

EB-GFN
TBIL
Combined

8gaussians

0 20000 40000 60000 80000 100000
Number of GFlowNet Updates

20.6

20.7

20.8

20.9

21.0

21.1

Ne
ga

tiv
e

Lo
g-

Lik
el

ih
oo

d

EB-GFN
TBIL
Combined

circles

0 20000 40000 60000 80000 100000
Number of GFlowNet Updates

19.8

20.0

20.2

20.4

20.6

Ne
ga

tiv
e

Lo
g-

Lik
el

ih
oo

d

EB-GFN
TBIL
Combined

moons

0 20000 40000 60000 80000 100000
Number of GFlowNet Updates

19.6

19.8

20.0

20.2

20.4

20.6

20.8

21.0

Ne
ga

tiv
e

Lo
g-

Lik
el

ih
oo

d

EB-GFN
TBIL
Combined

pinwheel

0 20000 40000 60000 80000 100000
Number of GFlowNet Updates

20.2

20.3

20.4

20.5

20.6

20.7

20.8

20.9

21.0

Ne
ga

tiv
e

Lo
g-

Lik
el

ih
oo

d

EB-GFN
TBIL
Combined

swissroll

0 20000 40000 60000 80000 100000
Number of GFlowNet Updates

20.8

21.0

21.2

21.4

21.6

Ne
ga

tiv
e

Lo
g-

Lik
el

ih
oo

d

EB-GFN
TBIL
Combined

checkerboard

Figure 5: Convergence speed measured in terms of negative log-likelihood (NLL) and number of
model updates.

2spirals 8gaussians circles moons pinwheel swissroll checkerboard

2spirals 8gaussians circles moons pinwheel swissroll checkerboard

Figure 6: Visualization of samples generated by GFlowNets after 10k updates. Top: TBIL Bot-
tom: EB-GFN.

F.3 OFFLINE LEARNING

Experimental settings We adapt our algorithms to offline RL by setting rα to a proxy model. For
the GFN baseline (rα = 0), we strictly follow the official implementation from Shen et al. (2023)
without modification, while our conservative GFN (rα = 0.5) is reimplemented by ourselves. All
experiments are conducted under the same training regime for fairness: 25,000 training iterations,
16 training samples (8 on-policy samples + 8 offline data). The offline dataset, used both for training
proxy models and constraining the policy distribution, is normalized using standard normalization.
For the proxy model, we trained a gradient boosted regressor on the rewards of each task. Hyperpa-
rameters were selected using 5-fold cross-validation with grid search, optimizing for mean valida-
tion R2. The final model was then retrained on the entire training set using the best hyperparameter
configuration.

We evaluated offline learning on three biological sequence design tasks: DNA (TFBind10, TF-
Bind8), and molecules (sEH). These tasks can be formulated as sequence-generation problems un-
der a prepend–append action space. TFBind8 involves generating DNA strings of length 8 over 4
nucleotides (|X | = 65,536), where the reward is the wet-lab measured binding activity to the human
transcription factor SIX6 (Trabucco et al., 2022). TFBind10 is the same as TFBind8 but with length
10 (|X | = 1,048,576). The sEH task is to generate molecules that bind to soluble epoxide hydro-
lase (sEH). Molecules are assembled from 18 building blocks with 2 stems each, using 6 blocks
(|X | = 34,012,224). The reward is the predicted binding affinity to the sEH protein from a proxy
model trained with AutoDock outputs. The hyperparameters of all three tasks are identical to those
used in Shen et al. (2023), except for the number of training rounds and the training sample size.

Role of offline data We evaluated the impact of offline data quality under different dataset settings.
For the Table 2 experiments, we constructed two training datasets by randomly sampling 1000 ob-
jects from the top 5% and 15% of each reward distribution. Table 2 reports the rewards mean of
the top-scoring samples generated by the fully trained models. Interestingly, when the data quality
constraint was relaxed (Top 15%), the standard GFN sometimes achieved a higher true reward mean
than the conservative GFN on the sEH task. We also observed that policy-generated sample diversity
decreased in the more restrictive Top 5% setting. Diversity was quantified using average pairwise
distances: Levenshtein distance for DNA sequences and Tanimoto distance between Morgan fin-
gerprints for molecules. To further examine the role of offline data, we compared Top 15% and

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

20 5000 10000 15000 20000 25000
Number of Model Updates

1

2

3

4

5

6

Re
ce

nt
 Tr

ue
 R

ew
ar

d
M

ea
n

(2
5-

ro
un

d
wi

nd
ow

) Top 15%, r = 0
Top 15%, r = 0.5
Bottom 15%, r = 0
Bottom 15%, r = 0.5

(a) TFBind8

20 5000 10000 15000 20000 25000
Number of Model Updates

1.0

1.5

2.0

2.5

3.0

3.5

Re
ce

nt
 Tr

ue
 R

ew
ar

d
M

ea
n

(2
5-

ro
un

d
wi

nd
ow

) Top 15%, r = 0
Top 15%, r = 0.5
Bottom 15%, r = 0
Bottom 15%, r = 0.5

(b) sEH

Figure 7: Impact of offline data quality (Top 15% vs Bottom 15%) on TFBind8 and sEH tasks. We
report the true reward mean of generated sequences over training.

Bottom 15% datasets by randomly sampling 500 objects from the top 15% and bottom 15% of the
TFBind8 and sEH training datasets. Figure 7 shows the true reward mean of generated sequences
during training. 100 on-policy samples were collected every 20 training rounds, and results were
averaged over the most recent 25 training rounds. This provides a moving-window view of training
quality, capturing short-term fluctuations rather than long-term averages. These results highlight the
importance of offline dataset quality: while the conservative GFN consistently performs better with
Top 15% data, it underperforms the standard GFN when trained on Bottom 15% data.

G THE USE OF LARGE LANGUAGE MODELS

During the preparation of this paper, we made use of a large language model (ChatGPT, OpenAI
GPT-5) as a writing and editing assistant. Its role was limited to:

• Proofreading and polishing text: improving grammar, readability, and stylistic consistency.
• Paraphrasing and rephrasing: providing alternative wordings for sentences and figure cap-

tions while maintaining technical accuracy.
• Consistency checks: ensuring consistent terminology, notation, and tone across sections.

All mathematical derivations, algorithmic formulations, experimental design, and scientific claims
were developed and validated by the authors. The LLM did not generate new research ideas or
contribute original technical content.

22

	Introduction
	Background
	Generative Flow Networks
	Maximum Entropy Inverse Reinforcement Learning
	Evidence Lower Bound (ELBO)

	Generative Imitation Learning with GFlowNets
	On the Limitations of MaxEnt IRL for Generative Modeling
	Generative Imitation Learning Framework
	Deriving GFlowNets Objectives
	Practical Algorithm

	Related Work
	Experiments
	Generative Imitation Learning (SQIL)
	Energy-based Modeling (EB-GFN)
	Offline Learning (GFlowNet)

	Conclusion
	Proofs
	Lemma 1
	Proposition 1
	Lemma 2
	Proposition 2
	Proposition 3
	Proposition 4
	Proposition 5
	Proposition 6

	Statistical Divergences
	Gradient Analysis
	Connections to Energy-Based Models
	Impact of Terminal Reward
	Additional Experimental Details and Results
	Generative Imitation Learning
	Energy-based Modeling
	Offline Learning

	The Use of Large Language Models

