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ABSTRACT

Sequential generative models are typically trained by maximizing the evidence
lower bound (ELBO), which optimizes the likelihood of predicting the next ob-
servation given the current one. While ELBO-based training is simple and scal-
able, in sequential settings it suffers from compounding errors. In this work, we
reinterpret ELBO training as an imitation learning problem for modeling data dis-
tributions. We show that prior formulations suffer from an entropy bias that is
misaligned with the objectives of generative modeling. To address this issue, we
leverage the GFlowNet framework to eliminate the bias and derive algorithms that
can be viewed as regularized ELBO objectives. Our approach assigns positive
rewards to data samples and negative rewards to policy-generated samples, corre-
sponding to minimization of the χ2-divergence between the data distribution and
the policy mixture. We further establish theoretical connections to existing imi-
tation learning methods, providing transferable insights across domains. Empir-
ically, our approach eliminates entropy bias and achieves improved performance
on a range of generative modeling tasks by combining with previous methods.

1 INTRODUCTION

Framing generative modeling through the lens of imitation learning offers several advantages. For
example, recent work has applied maximum entropy inverse reinforcement learning (MaxEnt IRL)
to language modeling (Cundy & Ermon, 2023; Wulfmeier et al., 2024), which has been shown the-
oretically to mitigate compounding errors (Xu et al., 2020). However, unlike in language modeling,
where maximum likelihood estimation (MLE) naturally aligns with an imitation learning perspective
by treating each data sequence as a unique demonstration, there is no equally principled imitation
learning framework for generative models trained by maximizing evidence lower bound (ELBO). In
ELBO-based training, the model passes through a series of intermediate objects, with many possible
paths leading to the same final outcome. These intermediate objects are not directly observed in the
data but are introduced as auxiliary constructs that provide the structure needed to generate objects.

We argue that previous imitation learning based on MaxEnt IRL is not directly applicable to ELBO-
based training. First, in MaxEnt IRL the policy is encouraged to select actions uniformly, which
can bias the sampling distribution, as we demonstrate in Section 3.1. Second, existing imitation
learning frameworks do not consider the variational distribution, as they assume trajectories are
fixed demonstrations provided by an optimal expert. In contrast, ELBO-based training samples
trajectories from a variational distribution that can be jointly optimized with the generative model,
allowing both components to adapt during training.

In this paper, we develop alternative formulations based on Generative Flow Networks (GFlowNets)
(Bengio et al., 2021). GFlowNets have been shown to have close connections to variational inference
(Malkin et al., 2022b) and to maximum entropy reinforcement learning (MaxEnt RL) (Tiapkin et al.,
2024), which provide useful analytical tools for our work. Similar to MaxEnt IRL, our approach
first recovers the reward function inherent in the dataset and then trains a policy using the recovered
reward. This perspective unifies several prior methods, ranging from energy-based GFlowNets (EB-
GFN) (Zhang et al., 2022) to soft Q imitation learning (SQIL) (Reddy et al., 2019). Building on
this framework, we propose algorithms that can be interpreted as regularized ELBO objectives,
assigning positive rewards to data samples and negative rewards to policy-sampled data. The main
contributions of this paper are as follows:
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• We extend the imitation learning framework to ELBO-based sequential generative mod-
eling, where only terminal data points are observed. We show that existing frameworks
are misaligned with the objectives of generative modeling and introduce biases into the
sampling distribution.

• We establish new theoretical connections between MaxEnt IRL, energy-based models
(EBMs), and GFlowNets. In particular, we show that EBMs can be reinterpreted as regu-
larized ELBO objectives, which can be optimized through two competing GFlowNet ob-
jectives. This perspective further reveals an equivalence to MaxEnt IRL with an additional
posterior regularization term.

• We empirically demonstrate the versatility of our framework across diverse generative
modeling tasks, and show how previous approaches can be adapted and unified within
our formulation.

2 BACKGROUND

2.1 GENERATIVE FLOW NETWORKS

Given a state space S and a set of terminal states X ⊂ S, sequential generative models aim to gen-
erate samples from X by following a sequence of transitions (s0, . . . , sT ), where the intermediate
states are denoted by τ = (s0, . . . , sT−1) and the terminal state by x = sT . The forward dynamics
are governed by a policy π, which specifies the probability of transitioning to the next state. In
addition, we define a backward policy q (interpreted as a variational distribution), which samples
trajectories in reverse from terminal states, thereby inducing two Markov chains:

π(x, τ) := π0(s0)

T∏
t=1

π(st|st−1), q(τ |x) :=
T∏
t=1

q(st−1|st).

where we extend the notation π and q to also denote their induced trajectory-level distributions. The
probability of a terminal state under π is obtained by marginalizing all intermediate states πX (x) =∑
τ π(x, τ). The goal of GFlowNets is to match a given reward function r : X → R such that

πX (x) = exp(r(x))/Z, where Z is a normalizing constant. Since the direct evalutaion of πX (x)
is generally infeasible, GFlowNets are trained by jointly optimizing π and q using the Trajectory
Balance (TB) objective:

TB(x, τ) := (logZ + log π(x, τ)− log q(τ |x)− r(x))
2

While the TB objective is widely used for its improved credit assignment capability (Malkin et al.,
2022a), it suffers from high gradient variance (Madan et al., 2023) and may become computationally
impractical in long-horizon settings. Alternatively, the Detailed Balance (DB) objective is defined
at the transition-level (s, s′) as

DB(s, s′) := (logF (s) + log π(s′|s)− log q(s|s′)− logF (s′))
2

where F denotes the learned state-flow function, interpreted as an unnormalized state distribution.
For a terminal state x, we set logF (x) = r(x), while for initial state s0, logF (s0) is set to logZ +
log π0(s0), where π0 is the initial distribution. The main result from GFlowNets theory is that
TB and DB induces a policy that samples from the distribution with density πX (x) ∝ exp(r(x))
(Malkin et al., 2022a), with a analogous result holding in continuous spaces (Lahlou et al., 2023).

In GFlowNets, rewards are defined only on terminal states X , whereas MaxEnt RL specifies per-step
rewards r̄ : S × S → R, and trains a policy to sample trajectories in proportion to their cumulative
rewards: π(x, τ) ∝ exp(

∑T
t=1 r̄(st−1, st)). However, if the per-step rewards are augmented with

log q, MaxEnt RL also induces policies whose terminal distribution satisfies πX ∝ exp(r(x)) (Tiap-
kin et al., 2024). This correspondence allows us to express the GFlowNet procedure as the following
maximum entropy optimization problem:

GFNq(r) = argmax
π

Ex,τ∼π(x,τ)[r(x) + log q(τ |x)] +H(π)

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

where H(π) = Eπ[− log π(x, τ)] denotes the trajectory-level entropy. The resulting policy samples
trajectories according to π(x, τ) ∝ q(τ |x) exp(r(x)), inducing the marginal πX (x) ∝ exp(r(x)).
Unlike MaxEnt RL, however, GFlowNets also allow the backward policy q to be trained jointly with
π so as to approximate the posterior q(τ |x) ≈ π(x, τ)/πX (x).

2.2 MAXIMUM ENTROPY INVERSE REINFORCEMENT LEARNING

In MaxEnt IRL, the algorithm has access to a set of demonstrations consisting of state-action pairs
assumed to be sampled from an expert. For consistency with sequential generative modeling, we
assume a finite-horizon, deterministic, no-discount, acyclic setting. The objective is to learn a per-
step reward function r̄ such that the expert outperforms all other policies, with a convex regularizer
ψ, by solving the following optimization problem:

max
r̄

min
π

Ex,τ∼πE(x,τ) [r̄(x, τ)]− Ex,τ∼π(x,τ) [r̄(x, τ)]−H(π)− ψ(r̄) (1)

where πE is the expert policy and r̄(x, τ) is the cumulative reward. The policy learned from
the reward recovered by Equation 1 is given by argminπ ψ

∗(πE − π) − H(π), where ψ∗(x) =
supy∈RS×S xT y − ψ(y) is the convex conjugate of ψ (Ho & Ermon, 2016, Proposition 3.2).

2.3 EVIDENCE LOWER BOUND (ELBO)

For a given data distribution pdata, the ELBO objective is defined as

Ex∼pdata(x),τ∼q(τ |x)[log π(x, τ)− log q(τ |x)].

In language modeling that generates tokens sequentially from left to right, each sequence x corre-
sponds to a unique trajectory. In this case, log q(τ |x) = 0, and the trajectory probability reduces to
the induced state distribution: π(x, τ) = πX (x). Consequently, the ELBO objective coincides with
MLE. While MLE and ELBO objectives are widely used for generative modeling, they are prone to
compounding errors (Ross et al., 2011). This issue is tied to the divergence they minimize: for fixed
q, the ELBO objective corresponds to minimizing the KL divergence, DKL(pdata · q∥π). Under KL
divergence, even when pdata(x) ≈ 0 but π(x, τ) is large, the loss remains small. As a result, such
objectives permit small errors and tend to exhibit mode-covering behavior. Furthermore, because
KL divergence trains the model only on finite data in practice, its behavior is left undetermined on
out-of-distribution inputs.

3 GENERATIVE IMITATION LEARNING WITH GFLOWNETS

3.1 ON THE LIMITATIONS OF MAXENT IRL FOR GENERATIVE MODELING

While it may be tempting to apply the MaxEnt IRL framework directly to sequential generative mod-
eling, it introduces bias in the sampling distritbution. Figure 1 illustrates this effect in the Pascal’s
triangle environment. A policy starts from the topmost hexagons and repeatedly chooses between
two actions, left or right, until it reaches a bottom state. The data distribution pdata is uniform
over the bottom states, so ideally the policy should also terminate uniformly (Figure 1b). However, a
policy trained with SQIL (Reddy et al., 2019) assigns higher probability to the middle states, which
admit a larger number of trajectories (Figure 1a). This bias arises from the entropy bonus, which
encourages uniform action probabilities and is reflected in the smoother color transitions at the top
of the triangle. This issue does not appear in recent work on applying the MaxEnt IRL framework
to language modeling (Wulfmeier et al., 2024), since in those tasks each trajectory corresponds to a
unique terminal states.

Another limitation of MaxEnt IRL is the absence of a principled framework for learning the back-
ward policy q(τ |x). Without a learnable backward policy, the model cannot adapt q to approximate
the true posterior over trajectories, which restricts its expressiveness and can introduce additional
bias in practice (Figure 1c). In contrast, GFlowNets explicitly incorporate the learning of both π and
q, enabling more accurate modeling of the data distribution (Figure 1d).

3
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(a) SQIL, Uniform q (b) Ours, Uniform q (c) Ours, Uniform q (d) Ours, Learned q

Figure 1: Example experiments in the Pascal’s triangle environment, with states colored by visitation
probability. (a, b) While SQIL concentrates probability mass in the center, our method distributes it
uniformly, as desired. (c, d) The initial distribution is fixed as π0(s0) = [0.3, 0.4, 0.3] over the top
three states, which limits the modeling capacity of π(x, τ). Nonetheless, jointly learning π and q
recovers the uniform data distribution at the bottom states.

3.2 GENERATIVE IMITATION LEARNING FRAMEWORK

In this section, we derive an generative imitation learning framework based on GFlowNets. Anal-
ogous to inverse reinforcement learning, which first recovers the reward function underlying expert
demonstrations to train an imitating policy, our formulation relies on reward function that underlies
the dataset. Proofs of all Propositions and Lemmas are provided in Appendix A.

Since our focus in this paper is on imitating the data distribution, the rewards assigned to terminal
states play a much more critical role than in prior approaches. We therefore derive an alternative
formulation in which only the terminal rewards are learned to discriminate between samples from
the data and those generated by the policy.

max
r

min
π
Lq(r, π) = Ex∼pdata(x)[r(x)]− Ex,τ∼π(x,τ) [r(x) + log q(τ |x)] +H(π)− ψ(r)

= Ex∼pdata(x)[r(x)]− Ex∼πX (x) [r(x)] +K(π, q)− ψ(r) (2)

where K(π, q) = Eπ[log π(x, τ) − log q(τ |x)]. The inner minimization corresponds to the
GFlowNet procedure, which induces πX (x) = 1

Z exp(r(x)). The overall optimization problem
can be interpreted as energy-based model (EBM) training, with π as the generative sampler and −r
as the energy function. In particular, EB-GFN (Zhang et al., 2022) trains the energy function jointly
with a GFlowNet sampler in order to approximate the normalizing constant Z. Further details on
these connections are provided in Appendix D.

The posterior regularization term K can be decomposed into a posterior KL divergence and the
entropy of the terminal distribution: EπX [DKL(π(·|x)∥q(·|x))] − H(πX ) (See Appendix A.1). In
other words, K(π, q) encourages the policy to align its posterior with the reference backward dis-
tribution q, while the entropy term promotes diversity over the outcome space X . To characterize
Equation 2, we first establish the convexity of K, followed by a proposition describing the policy
induced by the recovered reward.

Lemma 1 (Convexity of K) K(π, q) is convex in both π and q.

Proposition 1 (Induced policy under Lq) If r⋆ ∈ argmaxrminπ Lq(r, π) is the recovered reward,
then the policy induced by r⋆ is: GFNq(r

⋆) = argminπ ψ
∗(pdata − πX ) +K(π, q)

Proposition 1 shows that the optimization problem seeks a policy whose distribution over terminal
states X closely matches the data distribution, as measured by ψ∗, while simultaneously aligning
the trajectory distribution with q. By choosing an appropriate ψ, one can recover well-known sta-
tistical divergence measures, as indicated in Appendix B. This formulation cleanly separates the
characteristics of the induced policy for terminal states from those for trajectories.

A solution to the max-min optimization can be obtained by iteratively (1) training the GFlowNet
policy in the inner loop and (2) learning the rewards in the outer loop, as is done in EB-GFN.
However, this approach is challenging in practice due to the adversarial nature of the optimization.

4
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To simplify the optimization, we reparameterize the problem in terms of the policy. Given a reward
function, the induced policy is uniquely defined by GFNq(r). Conversely, the reward function can
be expressed in terms of the policy π and the normalization constant Z:

rπ(x) = logZ + logEτ∼q(τ |x)[π(x, τ)/q(τ |x)].

where rπ is the reward function reparameterized by the policy π. This allows the reward to be rep-
resented through the pair (π, Z), leading to the reformulated objective: maxπ,Z minπ̃ Lq(rπ, π̃).
Using this new representation, the solution to the inner minimization is given by π̃(x, τ) =
πX (x)q(τ |x). This removes the need for a separate inner-loop optimization, as we can directly
sample x ∼ πX (x) and τ ∼ q(τ |x).
However, the inner expectation required to compute rπ(x) remains difficult to evaluate accu-
rately. To address this, we approximate rπ(x) by its single-sample estimate r̂π(x; τ) = logZ +
log π(x, τ) − log q(τ |x), which serves as a trajectory-level estimate of the implicit reward rπ(x)
under policy π. This leads to the following approximate objective:

max
π,Z

min
π̃
L̂q(π, Z, π̃) = Ex∼pdata(x)

τ∼q(τ |x)
[r̂π(x; τ)]− Ex,τ∼π̃(x,τ) [r̂π(x; τ)] +K(π̃, q)− ψ(r̂π) (3)

The inner minimization is attained at π̃(x, τ) = π(x, τ) (Lemma 2 in Appendix), eliminating the
need for the inner optimization loop. The resulting objective only depends on π and Z as follows:

Proposition 2 (Regularized ELBO) Denoting Jq(π, Z) = minπ̃ L̂q(π, Z, π̃), we obtain

Jq(π, Z) = Ex∼pdata(x),τ∼q(τ |x) [log π(x, τ)− log q(τ |x)]︸ ︷︷ ︸
ELBO

− ψ(r̂π)︸ ︷︷ ︸
regularization

(4)

recovering the ELBO objective with an additional regularization term.

The regularization term constrains the reward, which is implicitly defined by the policy. From
Jensen’s inequality, rπ(x) ≥ Eτ∼q(τ |x)[r̂π(x; τ)], and that the single sample approximation r̂π be-
comes accurate when q(τ |x) ∝ π(x, τ). Therefore, the approximation error can be reduced by
interleaving optimization steps for q with those for p. However, optimizing Jq(π, Z) with fixed q
also results in π(x, ·) ∝ q(·|x), as shown in the following proposition.

Proposition 3 (Induced policy under Jq) Maximizing Jq is equivalent to minimizing a divergence
regularized by K(π, q): argmaxπmaxZ Jq(π, Z) = argminπ ψ

∗(pdata · q − π) +K(π, q).

For proper choices of ψ, the conjugate ψ∗ induces a divergence that encourages π(x, ·) ∝ q(· | x)
(Appendix B). Since K promotes the same alignment, the approximate objective remains accurate
provided that π is optimized over a sufficiently large function class. Because both ψ∗ and K are
convex, the resulting objective ensures stable optimization, leading to the unique optimal point.

Remark Our derivation is closely related to IQ-Learn (Garg et al., 2021), which also eliminates
the inner optimization loop by reparameterizing both the reward function and the policy in terms of
the soft-Q function. IQ-Learn can be interpreted as a form of regularized MLE (Wulfmeier et al.,
2024), which parallels the regularized ELBO objective presented in Proposition 2. In MaxEnt IRL,
however, the policy is encouraged to maximize H(π), which biases it toward terminal states with
many trajectories leading to them. In contrast, our objectives eliminate this bias by leveraging the
GFlowNets perspective, which was itself motivated by the same issue.

3.3 DERIVING GFLOWNETS OBJECTIVES

While various convex functions can be chosen for the regularizer ψ, we adopt ψTB(r̂π) =
αEdmix

[(r̂π(x; τ) − rprior(x))
2], where rprior(x) is the prior rewards we have on X , dmix =

1
2 (pdata · q + π) is the mixture distribution between pdata · q and π, and α controls the strength
of the regularization. Under this choice, Equation 4 reduces to a mixed objective (ELBO + TB). In
fact, it can be reformulated entirely as two competing TB objectives, which we term TBIL.
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Proposition 4 (TBIL) The solution to Equation 4 with the regularizer ψTB is equivalent to solving
two TB objectives. Specifically, we define LTB

q (π, Z) as:

E
x∼pdata(x)
τ∼q(τ |x)

[
(r̂π(x; τ)− rprior(x)− rα)

2
]
+ E
x,τ∼π̃(x,τ)

[
(r̂π(x; τ)− rprior(x) + rα)

2
]
, (5)

where rα = 1/α, and π̃ denotes the sampling distribution. If the samples are drawn from the current
policy, i.e., π̃ = π, then argminπ,Z LTB

q (π, Z) = argmaxπ,Z Jq(π, Z).

The resulting objective assigns different rewards to samples depending on their source: samples from
the data distribution receive rewards of rprior(x) + rα, while other samples receive rprior(x) − rα.
When rα = 0, the objective reduces to the TB objective. For rα > 0, the objective progressively
incorporates the ELBO term. The equivalence between the regularized ELBO and Equation 5 can
be established more directly through a gradient analysis, which we provide in Appendix C.

The prior reward function rprior can be leveraged to incorporate domain knowledge while imitating
the data distribution. For example, Pandey et al. (2025) combined the negative ELBO loss with the
TB loss to pretrain a molecular generative model. In this setting, the negative ELBO encourages
proximity to the reference chemical library, while the prior is defined through computationally in-
expensive reward functions such as drug-likeness (QED), which act as proxies for more complex
molecular properties. Our results show that this regularized ELBO objective is equivalent to two
competing TB objectives for specific choices of α and the mixture proportion in dmix.

While Equation 5 involves two different TB objectives with different rewards, it can be shown to
be equivalent to minimizing the χ2-divergence, which attains a unique minimum and makes out-of-
distribution samples more costly than KL divergence.

Proposition 5 (Divergence interpretation) When rprior is a constant function and α = 1/2, mini-
mizing Lq(π, Z) is equivalent to minimizing the χ2-divergence with additionalK term. Specifically,
argminπminZ Lq(π, Z) = argminπ 2χ

2(pdata · q∥ 1
2 (pdata · q + π)) +K(π, q).

Next, we derive analogous results for the DB objective, which is defined over transitions. Just as
Equation 5 can be interpreted as the ELBO combined with the TB objective, combining the ELBO
with the DB objective yields a pair of competing DB objectives, refered to as DBIL:

Proposition 6 (DBIL) Let ρq(s, s′) and ρπ(s, s′) denote distibutions over transitions, induced by
pdata · q and π, respectively. Define the transition-based objective LDB

q as

E
s,s′∼ρq(s,s′)

[(
log

F (s)π(s′|s)
F (s′)q(s|s′)

− rα

)2
]
+ E
s,s′∼ρπ(s,s′)

[(
log

F (s)π(s′|s)
F (s′)q(s|s′)

+ rα

)2
]
, (6)

where rα is some constant, and logF (x) = rprior(x) for terminal states x. The objective LDB
q

is equivalent to the negative ELBO combined with the DB objective. Moreover, when rprior(x) is
constant and rα = 2, optimizing LDB

q is equivalent to minimizing χ2(ρq∥ 1
2 (ρq + ρπ)) + k(π, q),

where k(π, q) = Eρπ [log π(s′|s)− log q(s|s′)] is a per-step regularization term.

DBIL assigns a (±rα) bonus at each transition, which can be understood as an energy cost (or gain)
associated with the transition (Pan et al., 2023; Jang et al., 2023).

So far, we have assumed the backward policy q to be fixed, aligning only π with q. While this
suffices to recover the correct distributions if the policy class is expressive enough, jointly learning
q can yield faster convergence (Malkin et al., 2022a) and improved performance in several domains
using ELBO-based objectives (Chen et al., 2021; Sahoo et al., 2024). An important advantage of
TBIL and DBIL, paralleling GFlowNet objectives, is that π and q can be trained jointly, thereby
eliminating the need for separate optimization steps.

Remark The resulting algorithm is similar to SQIL (Reddy et al., 2019), which uses fixed zero-
one rewards to the policy and the expert at each transition. SQIL has also been shown to connect
to the χ2-divergence when symmetric rewards are used (Al-Hafez et al., 2023). In fact, through
the established connections between GFlowNets and MaxEnt RL (Tiapkin et al., 2024), logF +
log π can be interpreted as a soft-Q function, making the two algorithms closely related. The key
distinction, however, is that Equation 6 explicitly incorporates log q as a reward baseline.
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3.4 PRACTICAL ALGORITHM

Algorithm 1 TBIL

Require: Dataset D, rα, πθ, qϕ, and Zγ
1: Initialize parameters θ, γ and optionally ϕ
2: while not converged do
3: Sample (x, τ) from D with τ ∼ qϕ(τ |x)
4: Sample (x′, τ ′) ∼ πθ(x, τ)
5: Update θ, ϕ, γ using Equation 5
6: end while

To instantiate our algorithm, we approximate
π, Z (for TBIL), F (for DBIL), and optionally
q with neural networks, while expectations are
estimated using finite samples. An overview of
TBIL is presented in Algorithm 1. Although
the proposed algorithms require samples from
the policy, off-policy training can be performed
with a replay buffer, which has been shown to
substantially improve performance (Du & Mor-
datch, 2019; Kostrikov et al., 2018).

While we can assume a fixed horizon length T without loss of generality by introducing an absorb-
ing state, in practice no further interactions are needed once termination is reached. For DBIL,
however, this setup can cause longer trajectories to accumulate larger cumulative rα bonuses,
thereby introducing bias. To correct for this, we assign an additional reward by setting logF (x)
as rprior(x)± (T − t)rα when a trajectory ends at step t. Although this issue has been noted previ-
ously in the imitation learning literature (Kostrikov et al., 2018), we revisit it here in the context of
generative modeling and provide further discussion in Appendix E.

4 RELATED WORK

Imitation Learning Early approaches such as behavioral cloning (BC) treat imitation learning
(IL) as supervised learning over expert state-action pairs, but they suffer from compounding errors
due to distributional shift (Ross & Bagnell, 2010; Ross et al., 2011). To mitigate this issue, inverse
reinforcement learning (IRL) methods jointly infer both the policy and the reward function, which
has been shown to reduce compounding errors (Xu et al., 2020). In particular, GAIL (Ho & Ermon,
2016) formulates IL as adversarial training between the policy and the reward function, and shows
that minimizing the divergence between expert and policy occupancy measures can be expressed
as a two-player saddle-point problem. IQ-Learn (Garg et al., 2021) represents both the policy and
rewards using a soft Q-function, eliminating the need for adversarial training. SQIL (Reddy et al.,
2019) simplifies IL by showing that a zero-one reward scheme is equivalent to a form of regularized
BC, which was later connected to the general IL framework (Al-Hafez et al., 2023). Connections
between IRL and EBMs were established in Finn et al. (2016).

GFlowNets GFlowNets were introduced as a framework for training policies that sample com-
positional objects in proportion to a given reward function (Bengio et al., 2021). Subsequent work
has highlighted their close connections to variational inference (Malkin et al., 2022b; Zimmermann
et al., 2023) and MaxEnt RL (Tiapkin et al., 2024; Mohammadpour et al., 2024), which provide
useful theoretical tools for analysis. Since their introduction, GFlowNets have been extended to con-
tinuous spaces (Lahlou et al., 2023) and to environments beyond directed acyclic graphs (Brunswic
et al., 2024; Morozov et al., 2025), developments that are complementary to and potentially extend
our work. Most similar to our work, Zhang et al. (2022) proposed training a GFlowNet sampler to
aid energy model learning on a given dataset, a procedure that can be viewed as interleaving the
max-min optimization steps in our framework. We provide a more detailed discussion of Zhang
et al. (2022) in Appendix D.

5 EXPERIMENTS

In this section, we compare three methods that are closely related to our approach—SQIL, EBMs,
and GFlowNets. Our aim is not to identify the best-performing method, but to demonstrate how these
existing approaches can be adapted within our framework and to provide meaningful comparisons
with our proposed method. Further experimental details and results are presented in Appendix F.

5.1 GENERATIVE IMITATION LEARNING (SQIL)
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Table 1: Negative log-likelihood (NLL ↓) on seven 2D synthetic problems.

Method 2spirals 8gaussians circles moons pinwheel swissroll checkerboard

EB-GFN 20.098 20.025 20.576 19.764 19.629 20.185 20.716
TBIL 20.131 19.998 20.586 19.774 19.639 20.194 20.712
Combined 20.106 20.002 20.575 19.759 19.612 20.180 20.721

2spirals 8gaussians circles moons pinwheel swissroll checkerboard

Figure 3: Samples generated by a GFlowNet trained under the TBIL objective with rα = 10.
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Figure 2: Comparison to SQIL as mea-
sured by the probability of sampling
data samples.

We compare DBIL with SQIL (Reddy et al., 2019), which
can be viewed as DBIL without the log q baseline. For
fairness, we replaced SQIL’s zero–one rewards with sym-
metric rewards rα = ±1, and we also implemented a vari-
ant of SQIL augmented with the log q baseline. The task
is to generate a 17-bit binary sequence by flipping one bit
at a time until the stop action is chosen, with the final
bit reserved for this termination signal (|X | = 65,536).
Following Malkin et al. (2022a), data samples are con-
structed by concatenating four randomly chosen blocks
from the set 0100,1100,0110,0011,1110, yielding
625 data samples. Figure 2 reports the convergence of
each method, measured by the probability of terminating
at states contained in pdata. Both DBIL and the corrected
SQIL variant successfully learn to match the data distri-
bution, while SQIL (rα = 1) degenerates to always pro-
ducing the all-ones sequence, which is favored due to the factorially larger number of trajectories
leading to it. In addition, DBIL and the combined variant generate blocks with approximately uni-
form frequencies, closely matching the target distribution, whereas SQIL with rα = 5 favors blocks
containing many 1’s.

5.2 ENERGY-BASED MODELING (EB-GFN)

We compare TBIL with EB-GFN (Zhang et al., 2022), as both solve the same optimization problem
but through different algorithms (see Appendix D for details). Following the experimental setup of
Zhang et al. (2022), we use seven target distributions over 32-dimensional binary vectors derived
from discretizing continuous distributions on the 2D plane. Each point (x, y) ∈ R2 is quantized into
216 equal-width bins per coordinate and encoded using a 16-bit Gray code, ensuring that adjacent
bins differ by exactly one bit. Default hyperparameters from EB-GFN are used for both methods,
except that EB-GFN is trained with an L2 regularization coefficient of α = 0.1, corresponding to
rα = 10 in TBIL. Since our method can be readily integrated with EB-GFN, we additionally tested
a combined approach, using intermediate hyperparameters of α = 0.2 and rα = 5. Unlike EB-GFN,
TBIL does not require a separate reward network, resulting in fewer effective parameters. Figure 3
presents samples generated by TBIL.

We evaluate each methods in terms of negative log-likelihood (NLL) in Table 1. EB-GFN achieved
slightly better overall performance than TBIL at convergence, which may be explained by the greater
flexibility offered by explicitly modeling the reward function, a benefit that has also been observed
in language modeling tasks (Xu et al., 2024; Ivison et al., 2024). However, because EB-GFN relies
solely on the reward function to guide GFlowNet training—which is particularly unreliable in the
early stages—it converges more slowly (see Figure 5 in the Appendix). Incorporating TBIL into

8
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Table 2: Results on two biological sequence generation tasks: DNA (TFBind10) and molecules
(sEH). We report true reward means for different top-k samples selected from 5,000 model-
generated samples (mean ± std).

Task Dataset rα k = 50 k = 500 k = 5000 Diversity

TFBind10
Top 5% 0 1.047 ± 0.078 0.603 ± 0.018 0.045 ± 0.008 6.497 ± 0.003

0.5 1.087 ± 0.036 0.621 ± 0.003 0.057 ± 0.002 6.384 ± 0.013

Top 15% 0 0.906 ± 0.019 0.597 ± 0.003 0.071 ± 0.026 6.403 ± 0.014
0.5 0.931 ± 0.020 0.600 ± 0.004 0.093 ± 0.006 6.412 ± 0.008

sEH
Top 5% 0 7.906 ± 0.028 7.465 ± 0.034 5.425 ± 0.066 0.783 ± 0.001

0.5 7.912 ± 0.013 7.487 ± 0.001 5.643 ± 0.036 0.779 ± 0.002

Top 15% 0 7.840 ± 0.022 7.442 ± 0.009 5.609 ± 0.032 0.772 ± 0.001
0.5 7.818 ± 0.016 7.412 ± 0.010 5.700 ± 0.009 0.776 ± 0.003

the training, as in the combined method, substantially accelerates convergence and achieves the best
overall performance.

5.3 OFFLINE LEARNING (GFLOWNET)

Existing GFlowNets are typically trained with an oracle function assumed to provide reliable re-
wards. In practice, however, this oracle is often replaced with a learned proxy model, which may
not faithfully capture the true reward (Zhang et al., 2025). This limitation is especially pronounced
in domains such as biological sequence generation, where experimental data is scarce and proxy
models must be trained on limited datasets, increasing the risk of inaccuracies. A natural remedy
is to leverage previously collected data to constrain the policy distribution, thereby improving ro-
bustness (Nair et al., 2020). We adopt this approach in our experiments by training conservative
GFlowNets that stay close to the offline data distribution. In our formulation, this corresponds to
setting rα > 0, which acts as a conservatism parameter.

We evaluate this idea on two generative tasks: DNA (TFBind10) and molecules (sEH). Both tasks
can be formulated as sequence construction problems under a prepend–append action space. To
assess the impact of offline data quality, we construct datasets by randomly sampling 1000 objects
from the top 5% and 15%, which are then used both to train proxy models and as data samples.
Table 2 reports the mean rewards of the top-scoring samples generated by different methods. Setting
rα = 0 corresponds to standard GFlowNets trained solely on the proxy model, while rα = 0.5
corresponds to our conservative variant. The results indicate that our method improves upon the
proxy-only baseline overall, though its effectiveness depends on the quality of the dataset. Further
results and detailed definitions of the evaluation metrics are provided in Appendix F.3.

6 CONCLUSION

We introduced a generative imitation learning framework built on GFlowNets, extending MaxEnt
IRL to settings where a variational distribution is introduced. Our analysis established theoretical
links between regularized ELBO and GFlowNet objectives, showing that the regularized ELBO can
be reformulated as two competing GFlowNet objectives. The framework naturally supports joint
training of forward and backward policies and avoids the entropy bias inherent in prior approaches.
We demonstrated that the proposed objectives can be seamlessly integrated into existing methods,
broadening their applicability to a variety of generative modeling settings. We conducted experi-
ments on both synthetic and biological sequence design tasks, demonstrating promising results and
showing that our approach can be effectively combined with existing methods. However, its em-
pirical validation remains limited. Extending TBIL and DBIL to more complex domains such as
molecular graphs or high-dimensional images would better test scalability and practical utility, and
represents a key direction for future work.
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A PROOFS

A.1 LEMMA 1

Here we establish the convexity of K(π, q) = Eπ[log π(x, τ) − log q(τ |x)]. Define the posterior
distribution π(τ |x) = π(x, τ)/πX (x). Then K can be decomposed as follows:

K(π, q) = Ex,τ∼π(x,τ)[log π(x, τ)− log q(τ |x)]
= Ex,τ∼π(x,τ)[log π(τ |x) + log π(x)− log q(τ |x)]
= Ex∼πX (x),τ∼π(τ |x)[log π(τ |x)− log q(τ |x)] + Ex∼πX (x)[log π(x)]

= Ex∼πX (x)[DKL(π(·|x)||q(·|x))]−H(πX ).

where DKL is the KL divergence and H is the entropy. Now let πλ(x, τ) = λπ1(x, τ) + (1 −
λ)π2(x, τ) for some π1, π2 and 0 ≤ λ ≤ 1. Marginalizing out τ , the induced terminal state distri-
bution is πλ,X (x) = π1,X (x) + (1 − λ)π2,X (x), which establishes the linearity of the expectation
with respect to the terminal distribution πX . Since DKL is jointly convex in its arguments and −H
is convex, and the expectation is linear, it follows that K(π, q) is convex.

A.2 PROPOSITION 1

From the Equation 2, we have

Lq(π, r) = Ex∼pdata(x)[r(x)]− Ex∼πX (x) [r(x)]− ψ(r) +K(π, q)

=
∑
x∈X

r(x)(pdata(x)− πX (x))− ψ(r) +K(π, q)

for some fixed backward policy q. Since K and ψ are both convex, we have that Lq(·, r) is convex
in π for all r and Lq(p, ·) is concave in all r. Therefore, we can exchange min and max as in the
following:

max
r

min
π
Lq(π, r) = min

π
max
r
Lq(π, r) = min

π
ψ∗(pdata − πX ) +K(π, q).

Let r⋆ ∈ argmaxrminπ Lq(π, r) and π⋆ ∈ argminπmaxr Lq(π, r). Then, (π⋆, r⋆) is a saddle
point of Lq , meaning π⋆ ∈ argminπ Lq(π, r

⋆).
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A.3 LEMMA 2

Lemma 2 π = argminπ̃ L̂q(π, Z, π̃).

Rewriting L̂q(π, Z, π̃), after removing terms that do not depend on π̃,

argmax
π̃

−L̂q(π, Z, π̃) = argmax
π̃

Ex,τ∼π̃(x,τ) [r̂π(x; τ)]−K(π̃, q)

= argmax
π̃

Ex,τ∼π̃(x,τ)
[
log

Zπ(x, τ)

q(τ |x)

]
− Ex,τ∼π̃(x,τ)

[
log

π̃(x, τ)

q(τ |x)

]
= argmax

π̃
Ex,τ∼π̃(x,τ) [log π(x, τ)] +H(π̃)

This is an entropy-regularized maximization problem, a form with a well-known closed-form solu-
tion (see, e.g., Haarnoja et al. (2017); Schulman et al. (2017)):

π̃⋆(x, τ) ∝ exp (log π(x, τ)) = π(x, τ)

A.4 PROPOSITION 2

We want to prove Jq(π, Z) = minπ̃ L̂q(π, Z, π̃). Rewriting L̂q(π, Z, π̃):

L̂q(π, Z, π̃) = E
x∼pdata(x)
τ∼q(τ |x)

[
log

Zπ(x, τ)

q(τ |x)

]
− E
x,τ∼π̃(x,τ)

[
log

Zπ(x, τ)

q(τ |x)
− log

π̃(x, τ)

q(τ |x)

]
− ψ(r̂π)

By Lemma 2, minimizing L̂q(π, Z, π̃) with respect to π̃ yields π̃ = π. Substituting π̃ with π, we
obtain:

L̂q(π, Z, π) = E
x∼pdata(x)
τ∼q(τ |x)

[
log

Zπ(x, τ)

q(τ |x)

]
− E
x,τ∼π(x,τ)

[
log

Zπ(x, τ)

q(τ |x)
− log

π(x, τ)

q(τ |x)

]
− ψ(r̂π)

= E
x∼pdata(x)
τ∼q(τ |x)

[log π(x, τ)− log q(τ |x)]− ψ(r̂π)

= Jq(π, Z)

as desired.

A.5 PROPOSITION 3

For convenience, we rewrite Equation 3 below:

max
π,Z

min
π̃
L̂q(π, Z, π̃) = Ex∼pdata(x)

τ∼q(τ |x)
[r̂π(x; τ)]− Ex,τ∼π̃(x,τ) [r̂π(x; τ)] +K(π̃, q)− ψ(r̂π)

Since r̂π(x; τ) = logZ + log π(x, τ) − log q(τ |x) is not restricted in its range as (π, Z) varies,
the maximization over (π, Z) can equivalently be expressed as a maximization over any function
g : T → R, where T denotes the trajectory space (s0, . . . , sT ), as follows:

= max
g

min
π

Ex∼pdata(x)
τ∼q(τ |x)

[g(x, τ)]− Ex,τ∼π(x,τ) [g(x, τ)] +K(π, q)− ψ(g).
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Since K is convex and −ψ is concave, we can exchange the order of max-min and derive the
divergence form as follows:

= min
π

max
g

Ex∼pdata(x)
τ∼q(τ |x)

[g(x, τ)]− Ex,τ∼π(x,τ) [g(x, τ)] +K(π, q)− ψ(g)

= min
π

max
g

∑
x,τ

(pdata(x)q(τ |x)− π(x, τ))g(x, τ)− ψ(g) +K(π, q)

= min
π
ψ∗(pdata · q − π) +K(π, q).

Let π⋆, Z⋆ = argmaxπ,Z Jq(π, Z) and g⋆(x, τ) = logZ⋆ + log π⋆(x, τ) − log q(τ |x). By the
saddle point proterty, g⋆ is the maximizer of the inner optimization problem:

π⋆ = argmin
π

ψ∗(pdata · q − π) +K(π, q)

= argmin
π

Ex∼pdata(x)
τ∼q(τ |x)

[g⋆(x, τ)]− Ex,τ∼π(x,τ) [g⋆(x, τ)] +K(π, q)− ψ(g⋆)

= argmax
π

Ex,τ∼π(x,τ) [g⋆(x, τ) + log q(τ |x)]−H(π)

= argmax
π

Ex,τ∼π(x,τ) [logZ⋆ + log p⋆(x, τ)]−H(π)

∝ exp(logZ⋆ + log π⋆(x, τ))

meaning argmaxπmaxZ Jq(π, Z) = argminπ ψ
∗(pdata · q − π) +K(π, q).

A.6 PROPOSITION 4

Starting from Equation 3, we have

argmax
π,Z

Ex∼pdata(x)
τ∼q(τ |x)

[r̂π(x; τ)]− Ex,τ∼π̃(x,τ) [r̂π(x; τ)]− ψ(r̂π)

with the understanding π̃ = argminπ̃′ L̂q(π, Z, π̃
′). Using the regularizer of the form ψ(r̂π) =

αEdmix
[(r̂π(x; z)− rprior(x))

2], we have

= argmax
π,Z

(
Ex∼pdata(x)
τ∼q(τ |x)

[r̂π(x; τ)]− Ex,τ∼π̃(x,τ) [r̂π(x; τ)]− αEdmix [(r̂π(x; τ)− rprior(x))
2]

)

= argmax
π,Z

(
Ex∼pdata(x)
τ∼q(τ |x)

[
−α
2
r̂π(x; τ)

2 + r̂π(x; τ) + αr̂π(x; τ)rprior(x)
]

+ Ex,τ∼π̃(x,τ)
[
−α
2
r̂π(x; τ)

2 − r̂π(x; τ) + αr̂π(x; τ)rprior(x)
])

= argmax
π,Z

(
− α

2
Ex∼pdata(x)
τ∼q(τ |x)

[
r̂π(x; τ)

2 − 2

α
r̂π(x; τ)(αrprior(x) + 1)

]
− α

2
Ex,τ∼π̃(x,τ)

[
r̂π(x; τ)

2 − 2

α
r̂π(x; τ)(αrprior(x)− 1)

])
= argmin

π,Z

(
Ex∼pdata(x)
τ∼q(τ |x)

[(
r̂π(x; τ)− rprior(x)−

1

α

)2
]

+ Ex,τ∼π̃(x,τ)

[(
r̂π(x; τ)− rprior(x) +

1

α

)2
])

= argmin
π,Z

LTB
q (π, Z)
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where dmix = 1
2 (pdata · q + π), and r̂π(x; τ) = logZ + log p(x, π) − log q(π|x). Since

π̃ = argminπ̃′ L̂q(p, Z, π̃
′), the sampling distribution of the second expectation reduces to π̃ = π

by Lemma 2. This chain of equalities shows that minimizing LTB
q (π, Z) yields the same op-

timal pair (π, Z) as maximizing L̂q(π, Z, π̃). Finally, since π̃ is optimal with respect to L̂q ,
we have L̂q(π, Z, π̃) = Jq(π, Z) by Proposition 2, establishing that argminπ,Z LTB

q (π, Z) =
argmaxπ,Z Jq(π, Z).

A.7 PROPOSITION 5

Using the variational form of χ2-divergence (with f(u) = (u − 1)2 and f∗(u) = 1
4u

2 + u; see
Appendix B), and dmix(x, τ) =

1
2 (pdata(x)q(τ |x) + π(x, τ)), we have:

min
π

2χ2(pdata · q∥dmix) +K(π, q)

= min
π

max
g

Ex∼pdata(x)
τ∼q(τ |x)

[2g(x, τ)]− Ex,τ∼dmix

[
1

2
g(x, τ)2 + 2g(x, τ)

]
+K(π, q)

= min
π

max
g

Ex∼pdata(x)
τ∼q(τ |x)

[g(x, τ)]− Ex,τ∼π(x,τ)[g(x, τ)]− Ex,τ∼dmix

[
1

2
g(x, τ)2

]
+K(π, q)

= min
π

max
g̃

Ex∼pdata(x)
τ∼q(τ |x)

[g̃(x, τ)]− Ex,τ∼π(x,τ)[g̃(x, τ)]− Ex,τ∼dmix

[
1

2
(g̃(x, τ)− c)2

]
+K(π, q)

= max
g̃

min
π

Ex∼pdata(x)
τ∼q(τ |x)

[g̃(x, τ)]− Ex,τ∼π(x,τ)[g̃(x, τ)]− ψ(g̃) +K(π, q)

where g̃(x, τ) = g(x, τ) + c for some constant c, and ψ(g̃) = Ex,τ∼dmix
[ 12 (g̃(x, τ) − c)2]. To

change the min-max order, we used saddle point property. The last equation has the same form as
Equation 3 under the correspondence g̃(x, τ) = r̂π(x; τ). Since r̂π(x; τ) contains the logZ term,
its range is unbounded and the constant term can be absorbed, allowing us to substitute r̂π for g̃. By
Proposition 2 and 4, this is then equivalent to Equation 5.

A.8 PROPOSITION 6

We first show that the negative ELBO combined with the DB objective is equivalent to Equation 6.
By Proposition 2, the ELBO objective can be written as:

ELBO(π, q) = Ex∼pdata(x)
τ∼q(τ |x)

[r̂π(x; τ)]− Ex,τ∼π̃(x,τ) [r̂π(x; τ)] ,

where π̃(x, τ) = argminπ′ [r̂π(x; τ)] + K(π′, q). We decompose the estimated reward r̂π into a
sum of per-transition rewards:

r̂π(x; τ) = logZ + log π(x, τ)− log q(τ |x) =
T∑
t=1

log
F (st−1)π(st|st−1)

F (st)q(st−1|st)
+ logF (sT )

where F : S → R is the state-flow function, with F (s0) defined as logZ + log π0(s0) and
F (sT ) = rprior(sT ). Define δ(st−1, st) = log F (st−1)π(st|st−1)

F (st)q(st−1|st) . Analogous to Equation 3, the
ELBO combined with DB can be expressed as ELBO(π, q)− ψDB(δ) where:

ELBO(π, q) = E
x∼pdata(x)
τ∼q(τ |x)

[
T∑
t=1

δ(st−1, st)− rprior(sT )

]
− E
x,τ∼π̃(x,τ)

[
T∑
t=1

δ(st−1, st)− rprior(sT )

]
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and

ψDB(δ) = E
x,τ∼dmix(x,τ)

[
α

T∑
t=1

δ(st−1, st)
2

]
.

Since π̃ = π by Lemma 1, its state-transition distribution is given by ρπ . Thus, the objective can be
equivalently rewritten in terms of state-transition distribution as follows:

Es,s′∼ρq(s,s′) [δ(s, s
′)]− Es,s′∼ρπ(s,s′) [δ(s, s

′)]− αEs,s′∼ρmix
[δ(s, s′)2], (7)

where ρmix = 1
2 (ρq + ρπ) and the rprior(sT ) terms in ELBO are ignored, as it does not affect the

optimization. After algebraic manipulation (similar to Appendix A.6), we obtain

(7) = −α
2
Es,s′∼ρq(s,s′)

[(
δ(s, s′)− 1

α

)2
]
− α

2
Es,s′∼ρπ(s,s′)

[(
δ(s, s′) +

1

α

)2
]
+ constant,

which is equivalent to Equation 6 when the maxization problem is reformulated as a minimization
problem with rα = 1/α.

Next we proceed to prove that optimizing LDB
q is equivalent to minimizing χ2(ρq∥ρmix) + k(π, q).

Following similar arguments as in Appendix A.7, we use the variational form of χ2-divergence:

min
π

2χ2(ρq∥ρmix) + k(π, q)

= min
π

max
g

Es,s′∼ρq(s,s′)[2g(s, s
′)]− Es,s′∼ρmix(s,s′)

[
1

2
g(s, s′)2 + 2g(s, s′)

]
+ k(π, q)

= min
π

max
g

Es,s′∼ρq(s,s′)[g(s, s
′)]− Es,s′∼ρπ(s,s′)[g(s, s

′)]− Es,s′∼ρmix

[
1

2
g(s, s′)2

]
+ k(π, q)

= max
g

min
π

Es,s′∼ρq(s,s′)[g(s, s
′)]− Es,s′∼ρπ(s,s′)[g(s, s

′)]− ψ(g) + k(π, q)

= max
g

Es,s′∼ρq(s,s′)[g(s, s
′)]− Es,s′∼ρπg (s,s

′)[g(s, s
′)]− ψ(g)

where ψ(g) = Eρmix

[
1
2g(s, s

′)2
]

and πg(x, τ) ∝ q(τ |x) exp(
∑
g(s, s′)). By interpreting g(s, s′)

as δ(s, s′) recovers ELBO(π, q)− ψDB(δ) under the setting α = 1/2 and constant rprior.

B STATISTICAL DIVERGENCES

A broad family of divergences can be expressed as f -divergences, defined as follows:

Df (p∥q) = Ex∼q(x)
[
f

(
p(x)

q(x)

)]
,

where f is a convex, lower-semicontinuous function with f(1) = 0. The variational form of f -
divergences is given as following (Nguyen et al., 2010):

Df (p∥q) = sup
c∈C

Ex∼p(x)[c(x)]− Ex∼q(x)[f∗(c(x))]

= sup
c∈C

Ex∼p(x)[c(x)]− Ex∼q(x)[c(x)]− Ex∼q(x)[f∗(c(x))− c(x)]︸ ︷︷ ︸
ψf (c)

= ψ∗
f (p− q)

where f∗ is the convex conjugate of function f . Interpreting p(x) = πX , q(x) = pdata(x) and
c(x) = −r(x), we recover Equation 2 with K removed.
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C GRADIENT ANALYSIS

In this section, we show that the regularized ELBO is equivalent to TBIL by demonstrating that
their gradients coincide. We assume πθ, qϕ, and Zγ are parameterized functions. First, we write the
ELBO and TB objectives in terms of these parameterizations:

LELBO(θ, ϕ) = Ex∼pdata(x),τ∼qϕ(τ |x)
[
log

πθ(x, τ)

qϕ(τ |x)

]
,

and

TB(x, τ ; θ, ϕ, γ) =

(
log

Zγπθ(x, τ)

qϕ(τ |x)
− r(x)

)2

.

For convenience, we define

δTB(r) = log
Zγπθ(x, τ)

qϕ(τ |x)
− r(x).

Taking gradients with respect to θ, we have

∇θLELBO(θ, ϕ) = Ex∼pdata(x),τ∼qϕ(τ |x) [∇θ log πθ(x, τ)] ,

and

∇θδ
2
TB(r) =

(
log

Zγπθ(x, τ)

qϕ(τ |x)
− r(x)

)
∇θ log πθ(x, τ)

= δTB(r)∇θ log πθ(x, τ).

We will use the standard property that, under the policy distribution, any constant baseline can be
subtracted inside the expectation, since

Eπθ
[∇θ log πθ(x, τ)] = 0.

Thus,

Ex,τ∼πθ(x,τ)[∇θδ
2
TB(r)] = Ex,τ∼πθ(x,τ)

[(
δTB(r)− b

)
∇θ log πθ(x, τ)

]
.

Let dmix denote the mixture distribution between pdata · q and π. Combining the two objectives
yields

−∇θLELBO(θ, ϕ) + Ex,τ∼dmix(x,τ)[∇θαδ
2
TB(r)]

= αEx∼pdata(x),τ∼qϕ(τ |x) [(δTB(r)− rα)∇θ log πθ(x, τ)]

+ αEx,τ∼πθ(x,τ) [δTB(r)∇θ log πθ(x, τ)]

= αEx∼pdata(x),τ∼qϕ(τ |x) [(δTB(r)− rα)∇θ log πθ(x, τ)]

+ αEx,τ∼πθ(x,τ) [(δTB(r) + rα)∇θ log πθ(x, τ)]

= αEx∼pdata(x),τ∼qϕ(τ |x)
[
∇θδ

2
TB(r + rα)

]
+ αEx,τ∼πθ(x,τ)

[
∇θδ

2
TB(r − rα)

]
,

where rα = 1/α. In the second equality, rα is used as a baseline. The final expression coincides
with the gradient of the TBIL objective, up to a constant scaling factor. The gradient with respect to
ϕ can be derived analogously. Finally, note that the logZγ term acts only as a baseline and therefore
does not affect the gradient. Consequently, the TBIL and ELBO objectives yield identical gradients,
implying that they induce the same policy.
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D CONNECTIONS TO ENERGY-BASED MODELS

Energy-based models (EBMs) define probability distributions by assigning an unnormalized energy
score to each configuration, with lower energies corresponding to higher probabilities. Formally, an
EBM specifies a distribution over a space X as p(x) = 1

Z exp(−E(x)), where −E is the energy func-
tion and Z =

∫
exp(−E(x))dx is the normalizing constant. For consistency with our framework,

we set E(x) = −r(x), so that the distribution can be expressed as 1
Z exp(r(x)). EBMs train the

function r via maximum likelihood estimation, i.e., by maximizing Ex∼pdata(x)[log
1
Z exp(r(x))]

with respect to r. This objective can be written as:

Ex∼pdata(x)[log p(x)] = Ex∼pdata(x)[r(x)]− logZ

= Ex∼pdata(x)[r(x)]− log

∫
exp(r(x))dx

= Ex∼pdata(x)[r(x)]− logEx∼w(x)

[
exp(r(x))

w(x)

]
≤ Ex∼pdata(x)[r(x)]− Ex∼w(x)

[
log

exp(r(x))

w(x)

]
= Ex∼pdata(x)[r(x)]− Ex∼w(x)[r(x)]−H(w)

where w is an auxiliary distribution used for importance sampling to estimate Z. The inequality fol-
lows from Jensen’s inequality, with equality holding when w(x) ∝ exp(r(x)). In practice, sampling
from p is intractable, and EBMs typically rely on Markov chain Monte Carlo (MCMC) methods to
generate approximate samples. In addition, to encourage smoothness in r and improve stability dur-
ing optimization, it is common to introduce a regularization term ψ(r). The optimization problem
then takes the form:

max
r

min
w

Ex∼pdata(x)[r(x)]− Ex∼w(x)[r(x)]−H(w)− ψ(r)

where the maximum likelihood estimation problem is reformulated in terms of r, and the auxiliary
distribution w serves to approximate the normalizing constant Z.

The key idea of EB-GFN (Zhang et al., 2022) is to employ GFlowNets as MCMC samplers, thereby
reducing approximation errors. In this framework, the auxiliary distribution w is replaced with
a GFlowNet sampler π, and optimization proceeds by interleaving two steps: (1) training π to
approximate the terminal distribution πX (x) ∝ exp(r(x)), and (2) using π as a proposal distribution
to train r. In addition, using an L2 regularization term corresponds to ψTB without the prior term
rprior, yielding an optimization problem equivalent to Equation 2. However, upon inspecting the
source code of EB-GFN, we observed that although L2 regularization is implemented, it does not
seem to have been applied. This is equivalent to taking the limit rα → ∞ in our algorithms. In
practice, however, data samples are available only as a finite dataset, and without regularization the
GFlowNet is forced to exactly reproduce those datapoints. As a result, the learned policy effectively
collapses to sampling directly from the training dataset.

Additional differences from our approach lies both in the optimization procedure and in the focus
of the work. In EB-GFN, r and the GFlowNet sampler π are trained in alternating steps, with
π first optimized to approximate πX (x) ∝ exp(r(x)), and r subsequently updated using π as a
proposal distribution. In contrast, we reparameterize r directly in terms of π, thereby removing the
need for this second step and eliminating the alternating optimization. Furthermore, our analysis
emphasizes the theoretical connections with MaxEnt IRL, whereas EB-GFN primarily focuses on
reducing sampler approximation errors using GFlowNet sampler.

E IMPACT OF TERMINAL REWARD

Prior work in imitation learning (Ho & Ermon, 2016; Fu et al., 2017; Garg et al., 2021) often as-
signed zero rewards to the absorbing state, inadvertently introducing termination or survival bias.
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(a) 0-1 reward, no correction
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Figure 4: Illustrative experiments in the bit-flip environment using DBIL. Circle sizes and the num-
bers indicate state visitation probabilities, while terminal states are highlighted in magenta. The
target distribution pdata(x) is uniform, so ideally the visitation probabilities should also be uniform.
(Left) Zero rewards are assumed for absorbing states. In this case, visitation probabilities correlate
with trajectory lengths. (Right) With the terminal-state correction applied, visitation probabilities
become uniform across terminal states.

This bias arises from improper handling of the absorbing state (Kostrikov et al., 2018; Al-Hafez
et al., 2023) and is distinct from the entropy bias discussed in Section 3.1. Our experiments in the
Pascal’s triangle environment does not have this issue, since the horizon length is fixed.

When the horizon length varies, however, DBIL requires an additional adjustment at the end of
trajectories. The reason is that TBIL distinguishes data samples from policy samples using a single
reward of ±rα applied at the trajectory level, whereas DBIL distributes this adjustment across every
transition. As a result, DBIL accumulates a total bonus of ±Trα for trajectories of length T . This
creates a bias when trajectory lengths differ, since longer trajectories automatically accrue larger
bonuses (or penalties), even if they terminate in the same outcome. A common workaround is to
pad shorter trajectories with dummy absorbing transitions satisfying π(s′|s) = q(s|s′) = 1, so that
all trajectories effectively share a fixed horizon. In practice, however, this approach is inefficient, as
it introduces unnecessary computations beyond the natural termination point, despite the stopping
condition already being known.

The symmetric reward scheme ±rα mitigates this issue to some extent, since the bonuses assigned
to data samples and policy samples can partially offset each other (and cancel out completely when
pdata(x)q(τ |x) = π(x, τ)). Nevertheless, variable horizon lengths still introduce bias, as longer
trajectories accumulate larger absolute bonuses. To correct for this, we assign an additional termi-
nal reward that compensates for the missing steps. Concretely, when a trajectory terminates at step
t < T , we add ±(T − t)rα at the terminal state. This adjustment ensures that every trajectory,
regardless of its length, accumulates the same total bonus as a trajectory of horizon T . In practice,
this amounts to padding early-terminating trajectories not with dummy transitions, but with a sin-
gle corrective reward at termination, thereby avoiding unnecessary computational overhead while
maintaining consistency across different horizon lengths.

Figure 4 illustrates the effect of trajectory length in the bit-flip environment, comparing results with
and without the proposed correction. In this environment, the initial state is [0, 0, 0, 0], and the policy
flips one bit at a time until reaching a terminal state where the last bit is flipped (e.g., [0, 0, 0, 1]).
Without correction, longer trajectories accumulate larger cumulative ±rα bonuses, causing terminal
states with longer paths to receive high visitation probabilities. With the terminal-state correction
applied, an additional reward of ±(T − t)rα is given when a trajectory ends at step t, compensating
for the difference in horizon length. This adjustment ensures that all terminal states are visited with
approximately equal probability, consistent with the uniform target distribution pdata(x).
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Table 3: Probability of generating blocks for each method.

1110 0011 0110 1100 0100

DBIL (rα = 1) 0.20± 0.00 0.20± 0.01 0.20± 0.01 0.19± 0.01 0.20± 0.01
Combined (rα = 1) 0.21± 0.01 0.19± 0.01 0.20± 0.01 0.21± 0.00 0.19± 0.00
SQIL (rα = 5) 0.22± 0.01 0.20± 0.00 0.21± 0.01 0.19± 0.01 0.18± 0.01

F ADDITIONAL EXPERIMENTAL DETAILS AND RESULTS

F.1 GENERATIVE IMITATION LEARNING

Experimental settings The task is to generate a binary sequence by flipping one bit at a time until
the stop action is selected, with the last bit reserved for this stop signal. As in Malkin et al.
(2022a), data samples are constructed by randomly concatenating four blocks drawn from the set
0100,1100,0110,0011,1110, which imposes structure on pdata. Consequently, the sequence
length is 17 bits in total, yielding |S| = 131,072 states overall and |X | = 65,536 distinct terminal
states.

We parameterize the functions (π, F,Q) using a two-layer multilayer perceptron (MLP) with 64
hidden units per layer. The key difference between SQIL and DBIL, other than the reward baseline,
is the parameterization of functions: DBIL is parameterized by both F and π, while SQIL relies
solely on a soft-Q function (corresponding to logF+log π). In practice, however, we found training
a single Q network to be unstable. To address this, we introduced target networks, resulting in an
effective parameter size comparable to DBIL. The experiments are run 3 times for each method.

Results on the entropy bias We sampled 5,000 terminal states from each model, yielding 20,000
blocks in total. To evaluate the learned distributions, we measured the frequency of generating the
component blocks 0100,1100,0110,0011,1110. Standard SQIL places high probability on
blocks containing more 1’s, since these lead to terminal states with a larger number of trajectories.
In contrast, our method and the combined variant produce block frequencies that are approximately
uniform, aligning more closely with the target data distribution.

F.2 ENERGY-BASED MODELING

Experimental settings We closely follow the experimental setup of Zhang et al. (2022), with the
only modification being the treatment of the L2 regularization term. Specifically, for EB-GFN we
add L2 regularization with coefficient α = 0.1, while for TBIL we set rα = 10. For the combined
method, we adopt intermediate values, i.e., α = 0.2 and rα = 5. The negative log-likelihood (NLL)
is computed following the procedure in Zhang et al. (2022):

Eτ∼q(τ |x)
[
π(x, τ)

q(τ |x)

]
≈ 1

M

∑ π(x, τ)

q(τ |x)

where we setM = 20. While all methods share the same number of parameters and model architec-
ture for GFlowNets, TBIL does not rely on an explicit energy function, resulting in fewer effective
parameters for the task. We evaluated the model every 2,000 steps, and Table 1 reports the best NLL
achieved within 100,000 training steps.

Convergence speed We compare the convergence behavior of EB-GFN, TBIL, and their com-
bination in terms of negative log-likelihood (NLL) and the number of model updates. As shown
in Figure 5, EB-GFN converges more slowly, possibly because the reward function provides weak
training signals in the early stages of optimization. In contrast, TBIL and the combined method
converge substantially faster, as the reward is reparameterized directly in terms of the policy and
normalization constant. Moreover, EB-GFN requires separate optimization steps, which further
increases the time needed for each GFlowNet update. Also see Figure 6 for the visualization of
intermediate samples generated by TBIL and EB-GFN.
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Figure 5: Convergence speed measured in terms of negative log-likelihood (NLL) and number of
model updates.
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Figure 6: Visualization of samples generated by GFlowNets after 10k updates. Top: TBIL Bot-
tom: EB-GFN.

F.3 OFFLINE LEARNING

Experimental settings We adapt our algorithms to offline RL by setting rα to a proxy model. For
the GFN baseline (rα = 0), we strictly follow the official implementation from Shen et al. (2023)
without modification, while our conservative GFN (rα = 0.5) is reimplemented by ourselves. All
experiments are conducted under the same training regime for fairness: 25,000 training iterations,
16 training samples (8 on-policy samples + 8 offline data). The offline dataset, used both for training
proxy models and constraining the policy distribution, is normalized using standard normalization.
For the proxy model, we trained a gradient boosted regressor on the rewards of each task. Hyperpa-
rameters were selected using 5-fold cross-validation with grid search, optimizing for mean valida-
tion R2. The final model was then retrained on the entire training set using the best hyperparameter
configuration.

We evaluated offline learning on three biological sequence design tasks: DNA (TFBind10, TF-
Bind8), and molecules (sEH). These tasks can be formulated as sequence-generation problems un-
der a prepend–append action space. TFBind8 involves generating DNA strings of length 8 over 4
nucleotides (|X | = 65,536), where the reward is the wet-lab measured binding activity to the human
transcription factor SIX6 (Trabucco et al., 2022). TFBind10 is the same as TFBind8 but with length
10 (|X | = 1,048,576). The sEH task is to generate molecules that bind to soluble epoxide hydro-
lase (sEH). Molecules are assembled from 18 building blocks with 2 stems each, using 6 blocks
(|X | = 34,012,224). The reward is the predicted binding affinity to the sEH protein from a proxy
model trained with AutoDock outputs. The hyperparameters of all three tasks are identical to those
used in Shen et al. (2023), except for the number of training rounds and the training sample size.

Role of offline data We evaluated the impact of offline data quality under different dataset settings.
For the Table 2 experiments, we constructed two training datasets by randomly sampling 1000 ob-
jects from the top 5% and 15% of each reward distribution. Table 2 reports the rewards mean of
the top-scoring samples generated by the fully trained models. Interestingly, when the data quality
constraint was relaxed (Top 15%), the standard GFN sometimes achieved a higher true reward mean
than the conservative GFN on the sEH task. We also observed that policy-generated sample diversity
decreased in the more restrictive Top 5% setting. Diversity was quantified using average pairwise
distances: Levenshtein distance for DNA sequences and Tanimoto distance between Morgan fin-
gerprints for molecules. To further examine the role of offline data, we compared Top 15% and
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(b) sEH

Figure 7: Impact of offline data quality (Top 15% vs Bottom 15%) on TFBind8 and sEH tasks. We
report the true reward mean of generated sequences over training.

Bottom 15% datasets by randomly sampling 500 objects from the top 15% and bottom 15% of the
TFBind8 and sEH training datasets. Figure 7 shows the true reward mean of generated sequences
during training. 100 on-policy samples were collected every 20 training rounds, and results were
averaged over the most recent 25 training rounds. This provides a moving-window view of training
quality, capturing short-term fluctuations rather than long-term averages. These results highlight the
importance of offline dataset quality: while the conservative GFN consistently performs better with
Top 15% data, it underperforms the standard GFN when trained on Bottom 15% data.

G THE USE OF LARGE LANGUAGE MODELS

During the preparation of this paper, we made use of a large language model (ChatGPT, OpenAI
GPT-5) as a writing and editing assistant. Its role was limited to:

• Proofreading and polishing text: improving grammar, readability, and stylistic consistency.
• Paraphrasing and rephrasing: providing alternative wordings for sentences and figure cap-

tions while maintaining technical accuracy.
• Consistency checks: ensuring consistent terminology, notation, and tone across sections.

All mathematical derivations, algorithmic formulations, experimental design, and scientific claims
were developed and validated by the authors. The LLM did not generate new research ideas or
contribute original technical content.
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