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ABSTRACT

Generative recommendation (GR) models tokenize each action into a few dis-
crete tokens (called semantic IDs) and autoregressively generate the next tokens
as predictions, showing advantages such as memory efficiency, scalability, and
the potential to unify retrieval and ranking. Despite these benefits, existing tok-
enization methods are static and non-personalized. They typically derive semantic
IDs solely from item features, assuming a universal item similarity that overlooks
user-specific perspectives. However, under the autoregressive paradigm, semantic
IDs with the same prefixes always receive similar probabilities, so a single fixed
mapping implicitly enforces a universal item similarity standard across all users.
In practice, the same item may be interpreted differently depending on user inten-
tions and preferences. To address this issue, we propose a personalized context-
aware tokenizer that incorporates a user’s historical interactions when generating
semantic IDs. This design allows the same item to be tokenized into different se-
mantic IDs under different user contexts, enabling GR models to capture multiple
interpretive standards and produce more personalized predictions. Experiments
on three public datasets demonstrate up to 8.9% improvement in NDCG@10
over non-personalized action tokenization baselines. Our code is available at
https://anonymous.4open.science/r/Pctx-code-4246.

1 INTRODUCTION

Generative recommendation (GR) (Rajput et al., 2023; Deng et al., 2025) has emerged as a new
paradigm for building recommendation models. Unlike conventional ID-based approaches (Hidasi
et al., 2016; Kang & McAuley, 2018), the key difference is how user actions are tokenized. Rather
than representing each action by the unique ID of the interacted item, GR approaches tokenize an
action into a few discrete tokens (also known as a semantic ID (Tay et al., 2022; Rajput et al., 2023;
Singh et al., 2024)) drawn from a compact vocabulary shared across all actions. An autoregressive
model is then trained to generate predictions token by token, in a manner analogous to modern gen-
erative models such as large language models (LLMs). This design enables GR models to achieve
benefits including memory-efficiency (Rajput et al., 2023; Hou et al., 2025a), good scaling proper-
ties (Zhai et al., 2024; Hou et al., 2025b), and the potential to unify multiple retrieval and ranking
stages in traditional recommender system pipelines (Zhai et al., 2024; Deng et al., 2025).

Although effective, current action tokenization methods remain static and non-personalized. Typi-
cally, an action is tokenized solely based on item features (e.g., titles and descriptions) (Rajput et al.,
2023; Wang et al., 2024a), so the same item is always mapped to the same semantic IDs. Under the
autoregressive paradigm of GR, this design has an important consequence: when generating the next
semantic IDs, those with the same prefixes inevitably receive similar probabilities. As a result, the
fixed mapping implicitly enforces a universal standard of item similarity across all users. In practice,
however, user intentions and preferences vary, and the same item may be interpreted differently by
different individuals. For example, as illustrated in Figure 1, one user may purchase an expensive
watch as a gift, another may treat it as an investment, while a third may simply want a watch that
looks good. Under such diverse interpretations, the similarity relations between items should also
differ and be taken into account when generating the next semantic IDs.

In this paper, we propose a personalized action tokenization approach. Rather than mapping each ac-
tion to a fixed semantic ID, our goal is to tokenize actions in a way that reflects a user’s personalized
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(b) Personalized context-aware action tokenizer (ours)
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Figure 1: The comparison between the current paradigm applying the static tokenizer and Pctx.

context (e.g., their historical interactions). However, it is non-trivial to develop such an approach.
We highlight the following key challenges:

C1: How can we design a tokenization algorithm that enables adaptive tokenization based
on personalized context? To achieve this goal, the tokenizer must be context-aware, i.e., able
to adaptively tokenize the same action into different tokens depending on its context. However,
existing context-aware tokenization approaches are typically limited to local context, focusing only
on adjacent actions (Hou et al., 2025b). Such a narrow perspective is insufficient to capture a user’s
personality. Therefore, it is necessary to develop a new algorithm that incorporates longer historical
interactions as personalized context and generates tokens accordingly.

C2: How can we balance generalizability and personalizability? A central principle of tokeniza-
tion techniques is to identify commonly occurring patterns, encode them as single units, and rely on
these units to generalize across the data (Wu et al., 2016; Sennrich et al., 2016; Kudo, 2018). Overly
personalized tokenization, however, may weaken this principle. For instance, if each appearance of
the same interacted item is tokenized into distinct semantic IDs, the model loses the ability to con-
nect them and thus struggles to generalize to future occurrences. Therefore, it is crucial to carefully
balance generalizability and personalizability when designing the tokenization algorithm.

To this end, we propose a personalized context-aware tokenizer for generative recommenda-
tion (Pctx). Our approach incorporates a user’s historical interactions and tokenizes the current
action into personalized semantic IDs. To address C1, we introduce a neural module that com-
presses the current action and the interaction history into a single personalized context representa-
tion. This representation is then quantized into discrete tokens alongside the item features. In this
way, if users purchase the same item for different reasons, their personalized context representations
will diverge, leading to multiple possible semantic IDs for that item. To balance generalizabil-
ity and personalizability (C2), we design several strategies: (a) Adaptive clustering: personalized
context representations are clustered into a variable number of significant groups, with the cluster
centroids serving as prototype representations for quantization. (b) Merging infrequent semantic
IDs: low-frequency semantic IDs are merged into semantically similar ones of the same item. (c)
Data augmentation: actions are augmented with alternative semantic IDs of the same item in both
model inputs and prediction targets. Through these designs, input semantic IDs become person-
alized according to user context, while GR models can also produce predictions in a personalized
manner. The generation probabilities over multiple possible semantic IDs for the same item reflect
how the model anticipates a user’s perspective in future interactions. Extensive experiments on three
public datasets demonstrate that our method outperforms non-personalized tokenization approaches
by up to 8.9% in NDCG@10.

2 METHOD

In this section, we present Pctx, which tokenizes each action (i.e., interacted item) into personalized
semantic IDs conditioned on the user context for generative recommendation. After formulating the
problem (Section 2.1), we first introduce the personalized action tokenizer. The tokenization process
takes both the current action and the user interaction history as input, and outputs the corresponding
semantic IDs (Section 2.2). We then describe how to construct a generative recommendation model,
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Figure 2: Overall framework of Pctx.

covering both training and inference, based on the personalized semantic IDs produced by Pctx
(Section 2.3). An overview of the Pctx framework is provided in Figure 2.

2.1 PROBLEM FORMULATION

Following the sequential recommendation setting, we represent each user by their historical in-
teraction sequence S = [v1, v2, . . . , vn], ordered chronologically, where each vi ∈ V denotes an
interacted item and n is the number of past interactions. The goal is to predict the next item of
interest given the user interaction sequence S. Generative recommendation models address this task
by tokenizing each item into a sequence of discrete tokens [mi

1,m
i
2, . . . ,m

i
G], referred to as a se-

mantic ID, where G denotes the number of tokens per semantic ID. Accordingly, the task can be
reformulated as predicting the semantic ID(s) of the target item given a sequence of tokens formed
by concatenating the semantic IDs of historical items.

2.2 PERSONALIZED ACTION TOKENIZATION

The proposed personalized action tokenizer takes as input not only the current item but also a se-
quence of historically interacted items as the user context. This design enables Pctx to tokenize each
item into different semantic IDs, conditioned on the input user context, to capture the diverse facets
users may perceive. To achieve this, we first derive rich context representations from the training
data of each item, and then employ a data-driven approach to obtain representative semantic IDs that
account for diverse user interpretations.

2.2.1 PERSONALIZED CONTEXT REPRESENTATION

In this section, we present how we leverage an auxiliary model to obtain rich context representations,
which will be subsequently used in training the personalized action tokenizer.

User Context Encoding. To tokenize both the current item and the user context, we first introduce
an auxiliary model to encode the user context:

ectxvi = f([v1, v2, . . . , vi]), (1)

where ectxvi ∈ Rd1 is the encoded user context representation for item vi and its associated context
[v1, v2, . . . , vi−1], f(·) denotes a neural sequence model pretrained on the same training data. Note
that although the sequence model f(·) takes a similar input format to that of a sequential recom-
mendation model, it is not straightforward to directly reuse existing models such as SASRec (Kang
& McAuley, 2018). Our goal is not to ensure that the derived user context representations accu-
rately predict the next item; rather, we require them to be sufficiently distinguishable to capture
user personalities. To this end, we adopt DuoRec (Qiu et al., 2022) as an example, which leverages
contrastive learning to mitigate representation degeneration.

Multi-Facet Condensation of Context Representations. An item may appear multiple times in
the training data under different user contexts, reflecting diverse user interpretations. However, as
discussed in Section 1, assigning too many semantic IDs to a single item can lead to sparsity, as each
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semantic ID will occur rarely when training GR models, thereby weakening model generalizability.
To alleviate sparsity, we group context representations by the currently interacted item vi and con-
dense them into a small set of representative ones. Specifically, we apply k-means++ to cluster the
context representations into Cvi centroids (i.e., representative context representations), where Cvi is
chosen proportionally to the number of available context representations for item vi. Further details
on the determination of Cvi are provided in Appendix B.

2.2.2 PERSONALIZED SEMANTIC ID

After deriving all representative context representations from the training data, we then proceed to
tokenize them into discrete semantic IDs.

Semantic ID Construction from Context Representations. In addition to context representa-
tions, we follow prior work (Rajput et al., 2023; Zheng et al., 2024) to derive a feature representation
efeat ∈ Rd2 for each item by encoding textual features with pretrained sentence embedding models
such as sentence-t5-base (Ni et al., 2022). We then fuse the context and feature representa-
tions of item vi as:

evi,k = concat (α · ectxvi,k, (1− α) · efeatvi ), k ∈ {1, 2, . . . , Cvi
} (2)

where evi,k ∈ Rd1+d2 is the k-th fused representation of item vi, ectxvi,k
is the k-th representation

of evi,k, and α is a hyperparameter that balances the two fusion components. After obtaining the
fused representations for all items, we follow Rajput et al. (2023) and apply RQ-VAE (Zeghidour
et al., 2021) to quantize each fused representation into a sequence of G − 1 discrete tokens, while
appending an additional token to avoid conflicts, yielding the final G-digit semantic IDs.

Redundant Semantic ID Merging. In addition to the context representation condensation, we
propose two kinds of semantic ID-level redundancy reducing methods to further improve the gener-
alizability of the obtained semantic IDs.

Merging of duplicated semantic IDs. The first type of redundancy arises when an item is assigned
multiple semantic IDs that differ only in the last token. This occurs when the context representations
of the item are highly similar. Since the last token carries no semantic meaning and is used solely
to prevent conflicts, these duplicated semantic IDs are in fact semantically equivalent and should
not be regarded as distinct user interpretations. To address this, we retain only one of these dupli-
cated semantic IDs and ensure that the last tokens are used exclusively to resolve conflicts between
semantic IDs of different items, rather than within the same item.

Merging of infrequent semantic IDs. The second type of redundancy arises when an item is assigned
semantic IDs that appear only rarely in the dataset. These infrequent IDs may come from two
sources: (1) outliers in the data, or (2) using too many centroids during clustering. Since such IDs
are overly sparse in the training data, keeping them weakens the generalization of the trained models.
To address this, we set a frequency threshold τ , remove semantic IDs that appear less often than this
threshold, and redirect to the nearest remaining centroid of the same item.

To this end, each item can be associated with multiple semantic IDs, each representing a typical user
interpretation.

2.3 GENERATIVE RECOMMENDATION UNDER PCTX

In this section, using the proposed personalized tokenizer, we describe how to train a generative
recommendation model and perform inference, where each item is assigned a personalized semantic
ID selected from multiple candidates according to context.

Training with Data Augmentation. As in previous work Rajput et al. (2023), we train an au-
toregressive encoder–decoder model on semantic ID sequences using the next-token prediction loss.
Specifically, when tokenizing an item vi and its corresponding user context [v1, v2, . . . , vi−1], we
first derive the fused personalized semantic representation following Equation (2). The semantic ID
for vi is then chosen as the one whose centroid is closest to this fused representation. By replacing
each item in a sequence with its personalized semantic ID, we obtain the training sequences.
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To further enhance data diversity, we introduce an augmentation strategy that randomly replaces a
personalized semantic ID with another semantic ID corresponding to the same item. Every personal-
ized semantic ID is replaced with probability γ. Although the augmented sequences may not always
reflect the most accurate user interpretation, they still represent valid item sequences. Moreover, this
augmentation increases the number of semantic ID sequences available for training and implicitly
connects different semantic IDs associated with the same items.

Multi-Facet Semantic ID Generation. During inference, we adopt beam search to generate se-
mantic ID predictions, following Rajput et al. (2023); Zheng et al. (2024). Different decoding paths
may yield distinct personalized semantic IDs for the same item, each with its own probability. These
probabilities represent the likelihood of a user perceiving a potential next item from different facets.
We then aggregate semantic ID probabilities to obtain the next-item probabilities. This multi-facet
semantic ID generation not only provides item predictions but also reveals the likelihoods of differ-
ent user interpretations, thereby enhancing the explainability of the recommendation process.

2.4 DISCUSSION

In this section, we compare the proposed Pctx with existing action tokenization paradigms.

Static Tokenizers. Methods such as TIGER (Rajput et al., 2023) and LC-Rec (Zheng et al., 2024)
assign fixed semantic IDs to each item. However, due to the design of autoregressive models, se-
mantic IDs with shared prefixes inevitably receive similar probabilities when predicting. As a result,
static tokenization implicitly assumes a universal standard of item similarity, limiting the represen-
tational power of GR models. In contrast, Pctx overcomes this limitation by tokenizing each item
into different semantic IDs conditioned on the personalized user context.

Multi-Identifier Tokenizers. For example, MTGRec (Zheng et al., 2025) assigns multiple seman-
tic IDs to each item, which may seem similar to Pctx. However, its improvement over traditional
semantic IDs is unrelated to personalization. MTGRec samples semantic IDs from different epochs
of the same RQ-VAE model, essentially functioning as a data augmentation strategy in the pretrain-
ing phase. This approach still relies on the universal similarity assumption. By contrast, our insight
is not simply to enable one-to-many mappings between items and semantic IDs, but to ensure that
each mapping reflects distinct user interpretations. In this way, an item can be considered similar to
different others under different similarity standards.

Context-Aware Tokenizers. Approaches like ActionPiece (Hou et al., 2025b) tokenize items
based on their surrounding action context. While Pctx belongs to this family, it extends the perceived
context window beyond adjacent actions. Specifically, it incorporates the entire user interaction his-
tory, allowing the tokenizer to capture personalities reflected in longer-term contexts.

3 EXPERIMENT

3.1 EXPERIMENTAL SETUP

Datasets. Following prior work (Liu et al., 2025; Zheng et al., 2025), we conduct experiments
on three categories from the latest Amazon Reviews dataset (Hou et al., 2024), namely “Musical
Instruments” (Instrument), “Industrial & Scientific” (Scientific), and “Video Games” (Game). For
more details, please refer to Appendix C.1.

Compared Models. (1) Conventional sequential recommendation: Caser (Tang & Wang, 2018).
HGN (Ma et al., 2019). GRU4Rec (Hidasi et al., 2016). BERT4Rec (Sun et al., 2019). SAS-
Rec (Kang & McAuley, 2018). FMLP-Rec (Zhou et al., 2022). HSTU (Zhai et al., 2024).
DuoRec (Qiu et al., 2022). FDSA (Zhang et al., 2019). S3-Rec (Zhou et al., 2020). (2) Generative
recommendation: TIGER (Rajput et al., 2023). LETTER (Wang et al., 2024a). ActionPiece (Hou
et al., 2025b). Further elaboration is available in Appendix C.2

Evaluation Settings. We follow Rajput et al. (2023); Wang et al. (2024a) to evaluate model per-
formance using Recall@K and Normalized Discounted Cumulative Gain@K (NDCG@K), where
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Table 1: Comparison of Pctx with existing methods on four metrics across three datasets. The best
results are boldfaced and the second-best results are underlined. R@K and N@K are short for
Recall@K and NDCG@K, respectively.

Methods
Instrument Scientific Game

R@5 R@10 N@5 N@10 R@5 R@10 N@5 N@10 R@5 R@10 N@5 N@10

Caser 0.0241 0.0386 0.0151 0.0197 0.0159 0.0257 0.0101 0.0132 0.0330 0.0553 0.0209 0.0281
HGN 0.0321 0.0517 0.0202 0.0265 0.0212 0.0351 0.0131 0.0176 0.0424 0.0687 0.0281 0.0356
GRU4Rec 0.0324 0.0501 0.0209 0.0266 0.0202 0.0338 0.0129 0.0173 0.0499 0.0799 0.0320 0.0416
BERT4Rec 0.0307 0.0485 0.0195 0.0252 0.0186 0.0296 0.0119 0.0155 0.0460 0.0735 0.0298 0.0386
SASRec 0.0333 0.0523 0.0213 0.0274 0.0259 0.0412 0.0150 0.0199 0.0535 0.0847 0.0331 0.0438
FMLP-Rec 0.0339 0.0536 0.0218 0.0282 0.0269 0.0422 0.0155 0.0204 0.0528 0.0857 0.0338 0.0444
HSTU 0.0343 0.0577 0.0191 0.0271 0.0271 0.0429 0.0147 0.0198 0.0578 0.0903 0.0334 0.0442
DuoRec 0.0347 0.0547 0.0227 0.0291 0.0234 0.0389 0.0146 0.0196 0.0524 0.0827 0.0336 0.0433
FDSA 0.0347 0.0545 0.0230 0.0293 0.0262 0.0421 0.0169 0.0213 0.0544 0.0852 0.0361 0.0448
S3-Rec 0.0317 0.0496 0.0199 0.0257 0.0263 0.0418 0.0171 0.0219 0.0485 0.0769 0.0315 0.0406

TIGER 0.0370 0.0564 0.0244 0.0306 0.0264 0.0422 0.0175 0.0226 0.0559 0.0868 0.0366 0.0467
LETTER 0.0372 0.0580 0.0246 0.0313 0.0279 0.0435 0.0182 0.0232 0.0563 0.0877 0.0372 0.0473
ActionPiece 0.0383 0.0615 0.0243 0.0318 0.0284 0.0452 0.0182 0.0236 0.0591 0.0927 0.0382 0.0490

Pctx 0.0409 0.0630 0.0270 0.0341 0.0319 0.0491 0.0202 0.0257 0.0614 0.0951 0.0399 0.0508
Improvements +6.79% +2.44% +11.11% +7.23% +12.32% +8.63% +10.99% +8.90% +3.89% +2.59% +4.26% +3.67%

K is chosen as 5 and 10. We provide further discussion in Appendix C.3. Implementation Details.
Please refer to Appendix C.4 for the specific information about implementation details.

3.2 OVERALL PERFORMANCE

We evaluate Pctx’s performance against item ID-based sequential recommendation and GR base-
lines. The experimental results are presented in Table 1. For more experimental results and discus-
sion, please refer to Appendix D.

Among baseline methods, GR models generally achieve superior performance compared to item ID-
based sequential approaches, primarily due to the use of action tokenization techniques and the gen-
erative retrieval paradigm. ActionPiece achieves the best performance compared with all baselines,
demonstrating that context-aware action tokenization provides stronger expressive power. Finally,
our proposed Pctx outperforms all baselines on all four metrics. It exceeds the best-performing base-
line by up to 8.90% on NDCG@10. Different from existing approaches, Pctx is the first paradigm
to introduce a personalized context-aware tokenizer for GR. This design allows the same action to
be tokenized into different personalized semantic IDs based on user context, thereby enabling the
model to capture diverse user interpretations and generate more personalized predictions.

3.3 ABLATION STUDY

To figure out whether each component of Pctx contributes to the overall performance, we conduct
an ablation study in Table 2. Please refer to Appendix D for more results and discussions.

(1) Study of personalized context. To evaluate the effect of different sources of personalized context,
we introduce three variants: (1.1) with SASRec, which replaces DuoRec to SASRec as the context
representation model; (1.2) with SASRec item embedding, which replaces context representations
by item embeddings from a pretrained SASRec model, while (1.3) with DuoRec item embedding
employs DuoRec’s. Note that variants leveraging item embeddings from pretrained models rely on
static representations rather than context representations. We can see that: (a) All three variants
perform worse than Pctx, confirming that the user context representations generated by DuoRec
are more effective. The reason is that DuoRec employs contrastive learning to make sequence rep-
resentations more distinguishable, whereas SASRec is not explicitly optimized for sequence rep-
resentation tasks. (b) Using item embeddings leads to larger degradation compared to sequence
representations, as the latter incorporate user context. Interestingly, as shown in Table 1, DuoRec
performs worse than SASRec. However, when integrated into Pctx, DuoRec as the context repre-
sentation model yields substantially better results than SASRec (variant (1.1)), indicating that what
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Table 2: Ablation study on key components of Pctx. R@K and N@K stand for Recall@K and
NDCG@K, respectively. The best results are denoted in bold fonts. SID represents Semantic ID.

Variants
Instrument Scientific

R@5 R@10 N@5 N@10 R@5 R@10 N@5 N@10

Personalized context

(1.1) with SASRec 0.0395 0.0612 0.0261 0.0330 0.0294 0.0458 0.0190 0.0243
(1.2) with SASRec Item Embedding 0.0360 0.0573 0.0231 0.0300 0.0281 0.0448 0.0182 0.0235
(1.3) with DuoRec Item Embedding 0.0378 0.0594 0.0249 0.0318 0.0278 0.0445 0.0180 0.0235
TIGER 0.0370 0.0564 0.0244 0.0306 0.0264 0.0422 0.0175 0.0226

Tokenization

(2.1) w/o Clustering 0.0386 0.0596 0.0249 0.0316 0.0295 0.0462 0.0192 0.0245
(2.2) w/o Redundant SID Merging 0.0270 0.0415 0.0175 0.0221 0.0201 0.0316 0.0133 0.0170

Model training and inference

(3.1) w/o Data Augmentation 0.0366 0.0577 0.0240 0.0308 0.0291 0.0457 0.0188 0.0242
(3.2) w/o Multi-Facet Generation 0.0376 0.0594 0.0242 0.0312 0.0282 0.0449 0.0181 0.0235

Pctx 0.0409 0.0630 0.0270 0.0341 0.0319 0.0491 0.0202 0.0257

Table 3: The results of model ensemble of Pctx. The best performance is shown in boldface.

Methods
Instrument Scientific

Recall@5 Recall@10 NDCG@5 NDCG@10 Recall@5 Recall@10 NDCG@5 NDCG@10

SASRec 0.0333 0.0523 0.0213 0.0274 0.0259 0.0412 0.0150 0.0199
DuoRec 0.0347 0.0547 0.0227 0.0291 0.0234 0.0389 0.0146 0.0196
TIGER 0.0370 0.0564 0.0244 0.0306 0.0264 0.0422 0.0175 0.0226
TIGER+SASRec 0.0374 0.0582 0.0245 0.0311 0.0268 0.0427 0.0169 0.0221
TIGER+DuoRec 0.0376 0.0586 0.0247 0.0314 0.0258 0.0418 0.0163 0.0215

Pctx 0.0409 0.0630 0.0270 0.0341 0.0319 0.0491 0.0202 0.0257

matters for learning effective context representations is not the next-item prediction performance of
the representation model.

(2) Effects of tokenization. We then study the impact of tokenization by introducing two variants:
(2.1) w/o Clustering, which does not condense context representations into a small set of cluster
centroids; and (2.2) w/o Redundant SID Merging, which disables the strategy for merging redundant
semantic IDs. Experimental results show that removing either clustering or redundant semantic
ID merging leads to a performance drop, showing the importance of both strategies in enhancing
the quality of personalized semantic IDs. Among them, removing redundant semantic ID merging
causes a more severe performance drop. This is because the merging strategy is more directly tied
to the final semantic IDs.

(3) Model training and inference. To validate the strategies in leveraging personalized semantic IDs
for GR model training and inference, we develop two variants: (3.1) w/o Data Augmentation, which
deterministically tokenizes actions without applying augmentation during training; and (3.2) w/o
Multi-Facet Generation, where each item is restricted to a single decoding path (a single semantic
ID) instead of multiple candidate semantic IDs. The results lead to the following observations: the
(3.1) variant shows a clear performance drop, suggesting that the random replacement augmentation
strategy improves the generalization ability of GR models with personalized semantic IDs. The (3.2)
variant shows a performance drop as well, highlighting the importance of enabling GR models to
decode multiple user interpretations.

3.4 IN-DEPTH ANALYSIS

Model Ensemble. A natural concern is that the improvements of Pctx might simply result from
combining the strengths of existing models, such as DuoRec (or SASRec) and TIGER. To address
this, we conduct a model ensemble analysis (Dietterich, 2000). Specifically, we ensemble the predic-
tions of SASRec and DuoRec with TIGER using a voting scheme. As shown in Table 3, the results
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Figure 3: The number of personalized semantic IDs (simplified as SIDs) every item possesses.

Tomb Raider The Last of Us Saints Row Medal of Honor StarCraft II

Warcraft III Command & Conquer StarCraft Company of Heroes StarCraft II

53 395 576 770

53 412 576 770

Real-Time Strategy

Story-driven Games

Tokenizing the same item as different SIDs

Real-Time Strategy Scene

Story-driven Games Scene
Personalized

Tokenizer

Figure 4: Case Study. The upper row denotes a story-driven game player, while the lower row depicts
a real-time strategy game player. The same item StarCraft II is tokenized into different semantic IDs
under different user context, reflecting its multifaceted attributes. SID denotes semantic ID.

show that: (a) The ensembled models consistently outperform the individual models, confirming that
the two sources of information are complementary. (b) Nevertheless, all ensemble results remain far
below the performance of Pctx, which demonstrates that Pctx is not merely a simple combination of
multiple models, but that its personalized semantic IDs expand the capabilities of GR models.

Study of the Number of Personalized Semantic IDs. As presented in Figure 3, we report the
distribution of personalized semantic IDs assigned to each item in Pctx, from which several obser-
vations can be drawn: (a) Frameworks that rely on static and non-personalized tokenizers, such as
TIGER, map each action into a fixed semantic ID, hindering personalization. (b) In contrast, Pctx
is the first to introduce a personalized context-aware tokenizer, assigning the same item with mul-
tiple personalized semantic IDs. (c) The majority of items in Pctx are assigned two personalized
semantic IDs, followed by one, three, and then a smaller fraction exceeding four. Items with only a
single semantic ID are typically infrequent entities with limited interactions and therefore exhibit re-
stricted diversity. But the number of items associated with an excessive number of personalized IDs
still remains small, as the proposed redundant semantic ID merging strategy effectively consolidates
redundant representations.

3.5 CASE STUDY

To illustrate the capability of Pctx in capturing diverse user interpretations, we conduct a case study
of the tokenization process, as shown in Figure 4. We sample an item with multiple semantic IDs
from the “Game” dataset and examine two users’ interaction histories involving this item. (a) Back-
ground. Story-driven games prioritize narrative progression over pure mechanics, with the core
experience centered on how the storyline shapes gameplay. By contrast, real-time strategy (RTS)
games emphasize simultaneous decision-making in dynamic environments, requiring players to
manage resources, construct bases, produce armies, and coordinate battles in real time. The sampled
item, StarCraft II: Heart of the Swarm, exemplifies the fusion of story-driven and RTS genres, both
of which enjoy broad popularity among players. Story-driven and RTS attributes together define
StarCraft II. For additional details on the displayed items, please refer to Appendix D.2. (b) Per-
sonalized tokenization. The upper row corresponds to a user interested in story-driven games, while
the lower row represents a user who prefers RTS games. Pctx assigns the sampled item two distinct
semantic IDs conditioned on user context, thereby reflecting personalized interpretations. Specif-
ically, the semantic ID [53,395,576,770] emphasizes the story-driven aspect of StarCraft II,
whereas [53,412,576,770] highlights its RTS attribute. This case study demonstrates how

8
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Pctx adaptively tokenizes the same action into personalized semantic IDs under different contexts,
thereby enabling GR models to produce more user-specific predictions.

4 RELATED WORK

Generative Recommendation. For a long time, sequential recommendation models have repre-
sented each user action with the interacted item ID (Rendle et al., 2010; Kang & McAuley, 2018;
Sun et al., 2019; Hidasi et al., 2016; Tang & Wang, 2018; Ma et al., 2019; Zhou et al., 2022). While
effective, it’s challenging to optimize the extremely sparse item embedding table. Recently, genera-
tive recommendation has attracted growing attention (Tay et al., 2022; Rajput et al., 2023; Zhai et al.,
2024; Deng et al., 2025). GR tokenizes each action into a short sequence of discrete tokens, col-
lectively referred to as a semantic ID for that action, and trains an autoregressive model to generate
the next semantic IDs as predictions. This design improves memory efficiency and scalability (Ra-
jput et al., 2023; Zhai et al., 2024; Liu et al., 2024b), while also facilitating alignment with large
generative models (Zheng et al., 2024; Jin et al., 2024). Early studies explored various techniques
for converting actions into discrete tokens, including quantization (Rajput et al., 2023; Wang et al.,
2024a; Zhu et al., 2024; Hou et al., 2025a), clustering (Tay et al., 2022; Hua et al., 2023; Wang et al.,
2024b), and language-model-based ID generators (Jin et al., 2024; Liu et al., 2025). Another line of
work incorporated features beyond text, such as action types (Zhai et al., 2024; Liu et al., 2024b),
visual signals (Zhu et al., 2025), structural information (Liu et al., 2024a), and POI data (Wang
et al., 2025). However, most of these methods rely on static, non-personalized tokenizers that map
each action to a fixed semantic ID. This paradigm overlooks the fact that the same action may be
interpreted differently by different users, thereby limiting the model’s ability to generate items from
diverse perspectives. Very recently, Hou et al. (2025b) proposed the first context-aware action tok-
enization approach, but the context is defined by only adjacent actions, which prevents the tokenizer
from adaptively capturing user-level interpretations. In this work, we introduce the first personal-
ized tokenizer, which allows an item to be tokenized into multiple semantic IDs conditioned on user
context, with each semantic ID corresponding to a distinct latent user intent. More discussions on
different action tokenization paradigms can be found in Section 2.4.

Tokenization. Tokenization algorithms convert raw signals (e.g., bytes, pixels) into discrete units
(tokens) that can be processed by downstream models (Sennrich et al., 2016; Wu et al., 2016; Rajput
et al., 2023). Their benefits are twofold: (1) capturing meaningful units that frequently appear in the
corpus, enabling the model to reuse these units to generalize to new data; and (2) balancing model
input length against vocabulary size. In language modeling, tokenization is typically based on statis-
tical methods that merge high-frequency byte segments into single tokens (Sennrich et al., 2016; Wu
et al., 2016; Kudo, 2018; Kudo & Richardson, 2018). For other modalities like vision, tokenization
often involves using pretrained models to encode raw inputs into dense representations, which are
then quantized into discrete tokens Van Den Oord et al. (2017); Esser et al. (2021); Yu et al. (2024).
Unlike language or vision, recommendation is a domain that inherently relies on inductive biases
to capture personalized behaviors. However, existing approaches to tokenizing actions in recom-
mendation are largely non-personalized, typically relying only on item features Rajput et al. (2023);
Deng et al. (2025). In this work, we propose a personalized tokenization method that conditions on
a user’s historical interactions to generate interpretation-specific semantic IDs.

5 CONCLUSION & FUTURE DISCUSSION

In this paper, we propose Pctx, a personalized context-aware tokenizer for generative recommenda-
tion. Unlike existing static tokenization paradigms that map each action to a fixed semantic ID, Pctx
conditions the tokenization of each interacted item by the user’s historical interactions. This design
allows the same action to be tokenized into different semantic IDs under different user contexts,
thereby capturing diverse user interpretations and enhancing the model’s generative capability. Ex-
tensive experiments on three public datasets demonstrate the effectiveness of our approach, yielding
up to an 8.9% improvement in NDCG@10 over non-personalized tokenization baselines. To the
best of our knowledge, this is the first work to introduce a personalized action tokenizer in GR. In
future work, we plan to investigate approaches for scaling effective semantic IDs within the broader
semantic ID space and for developing end-to-end personalized action tokenizers.
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able datasets without involving any personally identifiable or sensitive user information. No human
subjects were recruited, and no private data was collected or released. The proposed methods are
designed to enhance personalization without compromising user privacy. We are not aware of any
ethical concerns or potential risks associated with the deployment of our approach.

REPRODUCIBILITY STATEMENT

To support the reproducibility of Pctx, detailed implementation information is provided in Ap-
pendix C.4. Furthermore, the source code is accessible via the anonymous link: https://
anonymous.4open.science/r/Pctx-code-4246. These resources are intended to en-
able other researchers to verify and replicate our findings.
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A NOTATIONS

Table 4: Notations and explanations.

Notation Explanation

S = [v1, v2, . . . , vn] user interaction sequence consisting of n items
vi ∈ V the i-th interacted item from item set V

n length of the user’s interaction sequence S
[mi

1,m
i
2, . . . ,m

i
G] semantic ID of item i as a sequence of G tokens

G the number of tokens per semantic ID
ectx
vi

context embedding of item vi given its historical interactions
f(·) auxiliary neural sequence encoder used to generate ectx

vi

d1 dimension of context embedding ectx
vi

Cvi number of context representation centroids for item vi
efeat
vi

textual embedding of item vi from pretrained model
d2 dimension of textual embedding efeat

vi
α hyperparameter balancing context and textual embeddings

evi,k k-th fused embedding of item vi combining context and textual
representations

ectx
vi,k

the k-th context centroid representation of item vi
τ threshold to merge low-frequency semantic IDs

[v1, v2, . . . , vi−1] user context sequence when tokenizing item vi
γ the augmentation probability, indicating the ratio of each personalized

semantic ID is replaced by its other personalized semantic ID

B DETERMINATION OF THE NUMBER OF CENTROIDS PER ITEM

This section explains how we determine the number of context centroids Cvi for each item vi. Our
goal is to assign more centroids to items with richer user interpretation diversity while avoiding
excessive splitting or sparsity. A simple proportional strategy where Cvi scales linearly with the
number of interactions can easily lead to imbalance: popular items may receive too many centroids
while rare items may be assigned too few or even none. To avoid this, we adopt a quantized and
smoothed allocation scheme that reflects interaction richness without directly depending on absolute
counts. The proposed strategy has three parts. (a) Interaction-aware grouping. We first sort all
items in ascending order by their number of context representations, and then partition them into
T groups. The target proportion of items assigned to each group is determined by sampling T
discrete support points from a normalized Gamma distribution Gamma(K, θ=1) over the integer
interval [1, T ]. This yields a soft prior over group sizes, where the shape parameter K adjusts the
skewness of the allocation: a smaller K favors tail items, while a larger K shifts capacity toward
head items. We then assign items to groups accordingly, ensuring that each group contains items
with similar interaction volume. (b) Group-based centroid allocation. Each group is assigned a pre-
defined number of centroids. To avoid abrupt changes across groups, we define the centroid counts
using an arithmetic progression: the t-th group is assigned C(t) = Cstart + (t−1) · δ, where Cstart
is the start number of centroids and δ is a small step size. Items in the same group share the same
number of centroids, and for any item vi in group t, we set Cvi = C(t). This structure provides
smooth capacity scaling and ensures items with similar interaction levels are treated similarly. (c)
Practical adjustment. For rare items whose number of context representations is smaller than the
initially assigned Cvi , we set Cvi = 1 and perform clustering with a single centroid. This offers a
simple and robust solution for context condensation under long-tailed data, providing a soft balance
between specialization and generalization.

C EXPERIMENTAL SETUP

C.1 DATASETS

The review records span from May 1996 through September 2023. Following the widely adopted
preprocessing pipeline in prior literature (Rajput et al., 2023; Zhou et al., 2020), we exclude users
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Table 5: Statistics of datasets. AvgLen is short for the average length of interaction sequences.

Datasets Users Items Interactions Sparsity AvgLen

Instrument 57,439 24,587 511,836 99.964% 8.91
Scientific 50,985 25,848 412,947 99.969% 8.10

Game 94,762 25,612 814,586 99.966% 8.60

and items with fewer than five interactions to mitigate sparsity and noise. After filtering, user-
specific interaction histories are constructed and ordered chronologically, with the maximum se-
quence length capped at 20 items. The comprehensive statistics of the processed datasets are sum-
marized in Table 5.

C.2 COMPARED MODELS

(1) Conventional sequential recommendation: (1) Caser (Tang & Wang, 2018) applies convolutional
neural networks to capture both spatial and positional dependencies in user interaction sequences.
(2) HGN (Ma et al., 2019) leverages hierarchical gating at the feature and instance levels to re-
fine user preference representation. (3) GRU4Rec (Hidasi et al., 2016) employs gated recurrent
units to model the sequential dynamics within sequential behaviors. (4) BERT4Rec (Sun et al.,
2019) adopts a bidirectional Transformer encoder trained with a masked item prediction objective
to learn sequential patterns. (5) SASRec (Kang & McAuley, 2018) utilizes a unidirectional self-
attention mechanism to capture user interests along behavior trajectories. (6) FMLP-Rec (Zhou
et al., 2022) introduces a fully MLP-based framework with learnable filters that suppress noise
while modeling user intent. (7) HSTU (Zhai et al., 2024) incorporates action–timestamp signals
and proposes hierarchical sequential transducers to improve scalability, though it still remains ID-
based. (8) DuoRec (Qiu et al., 2022) addresses representation collapse in sequential modeling by
introducing contrastive regularization with dropout-based augmentation and supervised sampling.
(9) FDSA (Zhang et al., 2019) develops a dual-stream self-attention design that separately encodes
feature-level and item-level dependencies. (10) S3-Rec (Zhou et al., 2020) improves representa-
tion learning by employing self-supervised objectives based on correlations between items and their
attributes. (2) Generative recommendation: (11) TIGER (Rajput et al., 2023) applies RQ-VAE to
discretize item embeddings into semantic identifiers and follows a generative retrieval paradigm for
recommendation. (12) LETTER (Wang et al., 2024a) further extends TIGER by injecting collab-
orative information and diversity-oriented constraints into RQ-VAE. (13) ActionPiece (Hou et al.,
2025b) proposes a context-aware tokenization framework that merges frequent co-occurring fea-
tures with probabilistic weighting and introduces set permutation regularization to better exploit
action sequences.

C.3 EVALUATION SETTINGS

In line with previous works (Kang & McAuley, 2018; Rajput et al., 2023; Zhou et al., 2020), we
adopt the leave-one-out protocol to construct the training, validation, and test splits. Specifically, for
each user’s interaction sequence, the most recent item is reserved as the test instance, the penultimate
item is held out for validation, and the remaining interactions are utilized for training. To ensure
a fair and rigorous comparison, we perform full-ranking evaluation against the entire candidate set
instead of relying on negative sampling. Moreover, for GR baselines, the beam size in autoregressive
decoding is consistently fixed at 50.

C.4 IMPLEMENTATION DETAILS

(1) Baselines. The experimental results of Caser, HGN, GRU4Rec, BERT4Rec, SASRec, FMLP-
Rec, HSTU, FDSA, S3-Rec, TIGER, and LETTER are directly taken from the prior work (Zheng
et al., 2025), which implements the aforementioned baselines using RecBole (Zhao et al., 2021), a
well-established open-source framework for recommender research. For other baselines, we care-
fully reconstruct them and configure their hyperparameters precisely as prescribed in their papers.
For generative baselines, we adopt the same architectural design as Pctx for consistent comparison.
(2) Pctx. (a) For item tokenizer, we apply DuoRec (Qiu et al., 2022) as the auxiliary model, which
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Figure 5: Analysis of performance (NDCG@10, ↑) w.r.t. the augmentation probability γ.

is illustrated in Equation (1). The fusion weight α in Equation (2) is set to 0.5. Following the setup
in TIGER (Rajput et al., 2023), we employ sentence-t5-base (Ni et al., 2022) to transform
the textual attributes of each item into textual embeddings. We use FAISS (Douze et al., 2024)
to quantize the fusion of context and feature representations with 3 codebooks of size 256, along
with an auxiliary codebook to address potential collisions following Zheng et al. (2025). To further
strengthen the representation learning within the codebooks, an additional strategy is applied: we
apply PCA combined with whitening (Su et al., 2021) to refine the semantic quality of the item
representations. (b) For GR, we employ sentence-t5-base (Ni et al., 2022) as the core archi-
tecture of our recommender model. The configuration includes a hidden size of 128, a feed-forward
inner dimension of 512, 4 attention heads each with size 64, and ReLU as the activation function.
Both the encoder and decoder are constructed with 4 layers. Training is conducted with a per-GPU
batch size of 256 on 2 A40 GPUs, running for 200 epochs across all datasets. The optimization
is carried out using AdamW, where the learning rate is tuned within {0.01, 0.003} and the weight
decay is searched over {0.1, 0.05, 0.035}. A cosine learning rate scheduler is further applied to
improve convergence stability.

D MORE EXPERIMENTAL RESULTS

D.1 PARAMETER ANALYSIS

Performance w.r.t. the Augmentation Probability γ. To systematically investigate the effect of
the augmentation probability γ on model behavior, we vary γ from 0.0 to 0.9 with a step size of
0.1. The results are illustrated in Figure 5, from which we derive several key insights: (a) Set-
ting γ to 0, i.e., we disable the mechanism, leads to performance that is markedly worse than most
configurations with nonzero γ, aside from some extreme cases. This phenomenon demonstrates
the effectiveness of the proposed data augmentation strategy. (b) The augmentation probability γ
serves as a critical hyperparameter that substantially impacts overall performance. Inappropriate
settings can lead to pronounced performance degradation. (c) When γ lies within the range of 0.3 to
0.7, the performance remains relatively stable and within an acceptable margin. Conversely, exces-
sively small values yield underwhelming outcomes due to insufficient augmentation incorporation,
whereas overly large values introduce instability and may result in extreme performance fluctuations.

Performance w.r.t. the Frequency Threshold τ . To evaluate how the frequency threshold τ af-
fects the overall performance, we vary it from 0.00 to 0.40 with increments of 0.05. The main obser-
vations are summarized as follows from Figure 6: (a) With the increase of τ , the number of utilized
semantic IDs decreases monotonously. Importantly, the total number of semantic IDs will not grow
excessively (e.g., to 500%), since most items are of low frequency with limited interactions. As a
result, both the number of initial cluster centers and the final semantic IDs number remain relatively
bounded. (b) As τ increases, both evaluation metrics improve at first but begin to decline once τ
exceeds 0.2, with the best performance observed at τ = 0.2 on both datasets. (c) An excessive num-
ber of personalized semantic IDs leads to poor performance, as too many personalized semantic IDs
exacerbate the sparsity problem. Although a higher τ can alleviate sparsity, it inevitably sacrifices
personalization, which in turn degrades performance. Therefore, varying τ essentially embodies a
balance between sparsity reduction and personalization preservation.
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Figure 6: Analysis of performance (NDCG@10, ↑) and the quantity of semantic IDs in use (↓) w.r.t.
the frequency threshold τ . Each bar represents the percentage of the number of semantic IDs used
by our personalized tokenizer compared to the static tokenizer at every τ .
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Figure 7: The heatmap illustrating the relationship between the position of an item and the prob-
ability of its tokenization as the most popular semantic ID. position is the index of an interaction
sequence. popular rate indicates the probability of an item to be tokenized as its popular semantic
ID at every position. The lighter the color, the smaller popular rate will be.

D.2 BASIC KNOWLEDGE OF THE ITEMS DEMONSTRATED IN CASE STUDY

Story-driven games emphasize narrative progression rather than pure mechanics. Their core expe-
rience lies in how the storyline drives gameplay. The plot permeates the entire process, with levels
and tasks designed to serve narrative immersion. Tomb Raider presents Lara’s growth and adven-
ture. The Last of Us centers on parental bonds. Saint’s Row: The Third delivers an open-world
experience through a main storyline. Medal of Honor Warfighter combines first-person shooting
with a campaign narrative. Real-time strategy (RTS) games, in contrast, focus on simultaneous
decision-making in dynamic environments. Players must manage resources, construct bases, pro-
duce armies, and coordinate battles in real time. Each match is independent, requiring no storyline
participation, and placing high demands on execution and tactical planning. Warcraft III integrates
resource management, hero development, and unit operations. Command & Conquer emphasizes
rapid construction and unit counterplay. StarCraft II is known for multi-race competition and its
steep mechanical ceiling. Company of Heroes adds cover mechanics and dynamic battlefield inter-
actions. StarCraft II: Heart of the Swarm exemplifies the fusion of story-driven and RTS genres. Its
foundation is real-time strategy: players manage resources, expand bases, and command armies to
secure victory through skillful operation and strategy. Consistent with Blizzard’s design philosophy,
it also incorporates a compelling narrative mode. The single-player campaign follows Kerrigan’s
journey of vengeance, allowing players to witness her evolution and ultimate pursuit of retribution.
Both modes gained wide popularity among players. And story-driven games and RTS are two at-
tributes of StarCraft II.

D.3 POPULAR AND PERSONALIZATION

In this section, we aim to explore the relationship between the position of an item within the input
sequence (from 1 to 20) and the probability of its tokenization as the most popular semantic ID.
Each item has multiple personalized semantic IDs, and each one is associated with a proportion,
representing its frequency in dataset. The one with the highest proportion is considered the popular
semantic ID of vi.
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Table 6: The experimental results of explainability. Acc. is short for the metric accuracy.

Methods Instrument (Acc.) Scientific (Acc.) Game (Acc.)

with SASRec 0.8333 0.8030 0.8240
Pctx 0.8533 0.8534 0.8690

During the tokenization process, items are replaced with their corresponding semantic IDs. With
a personalized context-aware tokenizer, the tokenization of an item is influenced not only by the
item’s intrinsic features but also by its personalized context within the sequence. Items appearing
earlier in the sequence are more likely to be tokenized with their popular semantic IDs, as there is
less context to personalize the tokenization. As the length of the sequence increases, the influence
of personalized context rises, making it more likely that the tokenization reflects more personalized
semantic IDs. We calculate the probability of each item at every position being tokenized as its
popular semantic ID, with the mean probability at each position denoted as popular rate.

We compare three models (variants) in this experiment: (1) TIGER which applies a static tokenizer.
(2) w/o Data Augmentation, i.e., augmentation probability γ = 0, every item will be tokenized
into their context-matched semantic ID according to its context. (3) with augmentation probability
γ = 1: In this variant, we set the augmentation probability γ = 1. This means that items are equally
likely to be tokenized with any of their possible semantic IDs, leading to a uniform distribution of
semantic IDs across the sequence.

As shown in Figure 7, following observations are summarized: (a) As TIGER employs a static
tokenizer, every item is tokenized into its popular semantic ID across all sequence positions, inde-
pendent of its position. (b) In variant w/o Data Augmentation, as the sequence length increases,
the probability of tokenizing an item with its popular SID decreases. This is due to the increasing
influence of the sequential context, which allows for more personalized tokenization. (c) In the vari-
ant with augmentation probability γ = 1, the probability of every item tokenized with its popular
semantic ID is evenly distributed across different positions, indicating that a high γ will harm the
personalization. These findings confirm that our personalized context-aware tokenizer adapts tok-
enization based on user context, providing a more personalized representation than static methods
like TIGER.

D.4 EXPLAINABILITY

We conduct an explainability experiment to investigate whether the personalized semantic IDs gen-
erated by Pctx correspond to distinct user preferences in a human-interpretable manner. For each
dataset, we first select items associated with at least two personalized semantic IDs randomly. Since
each semantic ID is derived from a set of personalized context representations, which is extracted
from the user interaction sequences. So we can group the sequences corresponding to each semantic
ID of a given item, These groups with every item represented by its title are then fed into a large
language model (we call the API of GPT-4o (Hurst et al., 2024)) to summarize the user preference
underlying each semantic ID. Next, for each selected item, we randomly sample 50 sequences from
the test set where the item appears as the target. For each sequence, we determine which of the
item’s semantic IDs appears first in the model’s prediction list. The corresponding user interaction
sequence is then given to the large language model, to assess whether the preference summarized
for the top-ranked semantic ID of the item aligns better with the sequence context than the prefer-
ences of the other semantic IDs. The model produces a binary judgment (“yes” or “no”) with an
explanation, and we define the metric accuracy as the proportion of ”yes” responses out of 50. We
repeat this process for 25 randomly selected items per dataset. So the accuracy metric is calculated
over 1250 samples per dataset. As displayed in Table 6,

the variant with SASRec which utilizes SASRec as the auxiliary model underperforms Pctx. The
accuracy of Pctx is over 0.85 across three datasets, and that of the variant is also above 0.80. The
high accuracy metric demonstrates that the multiple semantic IDs associated with an item capture
diverse and coherent user preferences, and that Pctx effectively aligns its predictions with these
preferences, validating the interpretability of its tokenization mechanism. Furthermore, we provide
a case on “Game” dataset to illustrate the explainability experiment as shown in Appendix D.5.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

D.5 A CASE OF EXPLAINABILITY EXPERIMENT

A Case of Explainability Experiment

Target Item: StarCraft II: Heart of the Swarm.

Prompt
Instruction: You are given: (1) A user’s historical interaction with items represented by
titles that capture the user’s recent activities. (2) Several semantic IDs, each associated with
the preferences of a user group corresponding to that semantic ID. Each set of preferences
consists of 10 keywords and a descriptive summary. Your task: (1) Determine whether
the user preferences associated with the top-ranked semantic ID align with the interaction
sequence more closely than those of all other semantic IDs. (2) Respond with a single word
(Yes or No), followed by an explanation justifying your choice.

Historical Interaction: Command & Conquer 3: Tiberium Wars - Xbox 360 Ultra-
responsive, smooth-as-silk gameplay, 30 single-player missions, in a vast open-world the-
atre, Observe, broadcast, and compete in thrilling online battles - with all-new interactive
spectator modes, VoIP Communication & player commentary, High-definition, live action
Video sequences seamlessly ties the game’s epic story together, Adaptive AI matches your
style of play & gives you the highest level of challenge, Company of Heroes - PC From the
award winning RTS studio Relic, Redefines RTS genre, visceral WWII gaming experience,
bringing soldiers to life, Proprietary Essence Engine delivers unparalleled graphics, destruc-
tible battlfield using havoc engine and rag doll physics, 2-8 player multi-player competition
via LAN or internet with Clan Support, Command & Conquer Red Alert 3: Premier
Edition - PC Command and Conquer: Red Alert 3 Premier Edition for the PC brings back
the fan-favorite real-time strategy game, The Soviets created a time-travel device which cre-
ates interesting plot twists, Play as the Allies, the Soviets, or the Empire of the Rising Sun,
Cooperative campaign and head-to-head multiplayer modes provide hours of fun gameplay,
Premier Edition includes a DVD, soundtrack, exclusive maps, and more, World in Con-
flict: Complete Edition [Download] New Single-Player Campaign - For the first time, play
as the Soviet army and follow the global invasion from the perspective of the motherland,

1. Top-ranked Semantic ID: SID: [53, 412, 576, 770]; User Preference: Gaming, RTS, Ad-
venture, Strategy, Multiplayer, Fantasy, Competitive, Role-playing, Decision-making, Man-
agement. This user group has a strong preference for immersive gaming experiences of all
types. They particularly enjoy competitive real-time strategy games, where they enjoy the
strategizing and decision-making involved. They also enjoy fantasy role-playing games.

2. Other Semantic ID: SID: [53, 395, 576, 770]; User Preference: Adventure, Narrative,
Multiplayer, Open-world, Action, Fantasy, Survival, Shooter, Strategy, Customization. This
user group shows a strong preference for immersive and narrative-driven gaming experi-
ences, with a focus on adventure and role-playing games. They enjoy open-world explo-
ration, strategic gameplay, and multiplayer interactions. Their interests span fantasy, post-
apocalyptic, and sci-fi themes, with an appreciation for customization and detailed world-
building. They also engage with action-packed shooters and survival challenges, reflecting
a diverse gaming palette.

Response
GPT-4o: **Yes.** The historical interaction sequence strongly aligns with the preferences
of the top-ranked semantic ID. The user’s interaction history is dominated by real-time strat-
egy (RTS) games like *Command & Conquer*, *Company of Heroes*, and *World in Con-
flict*, which emphasize strategy, decision-making, and competitive multiplayer gameplay.
These elements are directly reflected in the top-ranked semantic ID’s preference for ”Gam-
ing, RTS, Adventure, Strategy, Multiplayer, Competitive, and Decision-making.” While
the other semantic ID also mentions ”Strategy” and ”Multiplayer,” its broader focus on
narrative-driven, open-world, and action-packed shooters does not align as closely with the
user’s historical preference for RTS games. The top-ranked semantic ID better captures the
user’s core interest in competitive and strategic RTS experiences.
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THE USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs are used for grammar checking and for generating 2 icons in Figure 4 in case study. Also, we
use GPT-4o as a discriminator by calling its API for explainability experiment.
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