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Abstract

Processing large tables provided in-context
to LLMs is challenging due to token limits
and information overload. While Retrieval-
Augmented Generation can select relevant sub-
sets externally, this work explores Key-Value
(KV) cache compression as an alternative, ap-
plied directly to the linearized table during in-
ference. We show that the LLM’s internal at-
tention scores over the table context guides the
retention of essential KV pairs, effectively com-
pressing the processing context while preserv-
ing crucial relational information needed for
complex queries. Experiments on Spider, Wik-
itableQA, and QTSumm datasets validate the
compression approach for in-context table pro-
cessing, offering a promising path for improved
table representation learning in LLMs.

1 Introduction

Large language models (LLMs) have demonstrated
remarkable capabilities across language tasks. A
promising frontier is enabling LLMs to reason over
structured data, such as tables, alongside natural
language. This ability is key for applications such
as table question answering (TableQA) (Chen et al.,
2024) and fact-checking using relational data (Aly
et al., 2021). While generating SQL queries from
text (Text2SQL) is a popular approach (Yu et al.,
2019), directly processing tabular data within the
LLM’s context offers a unified framework, leverag-
ing the model’s abilities to handle nuances beyond
SQL’s scope (Deng et al., 2024).

However, directly feeding large tables into
LLMs faces significant issues. The primary chal-
lenge is context length: even moderately sized ta-
bles (e.g., thousands of rows and tens of columns)
linearized into text easily exceed the token limits
of popular models (e.g., >120,000 tokens) (Chen
et al., 2024). Consequently, full-table inputs are of-
ten impractical, necessitating truncation or retrieval
mechanisms (Ji et al., 2024; Badaro et al., 2023).

Figure 1: High-level overview of attention-guided KV
compression for efficient tabular reasoning with LLMs.
The model compresses the KV representation of a large
table by selecting only the most attended tokens, en-
abling inference over a compressed table.

Even when models accommodate large contexts,
their reasoning accuracy often degrades substan-
tially (Liu et al., 2024). This phenomenon is exacer-
bated by tables, which inherently mix relevant cells
with irrelevant information, diluting the model’s
attention (Sui et al., 2023; Satriani et al., 2025).
Capturing relational patterns that span disparate
rows or columns is particularly difficult, hindering
accurate aggregation or multi-step reasoning.

Existing solutions often rely on Retrieval-
Augmented Generation (RAG) (Chen et al., 2024;
Lin et al., 2023). While RAG effectively reduces
the input length by pre-selecting relevant table
chunks (rows, columns, or cells), it introduces its
own complexities. First, it requires separate re-
trieval modules and deciding how to optimally par-
tition and retrieve table segments (e.g., by row, col-
umn, or semantic blocks) (Bodensohn and Binnig,
2024). Second, relying on embedding similarity
for retrieval might fail to capture the fine-grained
relational dependencies, shifting the bottleneck to
the retriever’s effectiveness.

In this paper, we explore an alternative approach:
leveraging Key-Value (KV) cache compression tech-
niques, originally developed for general text infer-
ence (Qin et al., 2023; Corallo and Papotti, 2024),
to handle large tabular data directly within the
LLM’s inference process. Our core hypothesis is



that the LLM’s own attention mechanism, as it pro-
cesses the linearized table, inherently identifies the
most salient information. We exploit these atten-
tion scores to dynamically prune the KV cache,
retaining only the key-value pairs corresponding to
the most attended-to tokens. This effectively com-
presses the table’s representation, making the in-
formation from the original tables available during
inference, mitigating information overload while
avoiding the complexities of explicit retrieval.

Our experiments across datasets, including Spi-
der (Yu et al., 2019), WikitableQA (Pasupat and
Liang, 2015), and QTSumm (Zhao et al., 2023),
demonstrate the viability of this approach.

Related Work. RAG methods retrieve relevant
subsets of tabular data to reduce input complex-
ity. TableRAG (Chen et al., 2024) employs schema
and cell retrieval techniques, while TAP4LLM (Sui
et al., 2023) uses sampling strategies to focus the
model’s attention on relevant subsets of data. Spe-
cialized encoding techniques tailored for structured
inputs have also gained attention. SpreadsheetLLM
(Tian et al., 2024) exploits structural redundancies
within tabular data, compressing input lengths with-
out losing semantic fidelity. However, retrieval-
based methods often fall short in capturing the com-
prehensive relational contexts that are required to
handle queries involving multiple tuples. Although
KV cache compression methods (Qin et al., 2023;
Corallo and Papotti, 2024) have demonstrated sig-
nificant context compression by retaining subsets
of relevant tokens, these techniques have yet to
be adapted for structured data. This work, there-
fore, represents the first exploration of KV cache
compression tailored to tabular inputs.

2 Background

Given a sequence of n tokens x ∈ Rn, each trans-
former layer produces hidden representations via a
multi-head self-attention mechanism:

Attention(Q,K,V) = softmax
(QK⊤

√
dk

)
V,

where Q = WQh,K = WKh,V = WV h,
with h representing the hidden states (token em-
beddings) for the input sequence. The dimension
dk is d

H where d is the hidden size and H is the
number of attention heads. Most LLMs organize
their input as a context followed by a prompt. Let x
denote a sequence of tokens and the input sequence:
x =

[
x(cont), x(prompt)

]
∈ Rn(cont)+n(prompt)

,

where x(cont) serves as the knowledge (i.e., the ta-
ble) the model has access to when generating the
final response. During inference, an LLM oper-
ates in two phases. In the Prefill Stage, the model
processes the entire input sequence x and caches
the KV matrices for each layer K ∈ Rn×d,V ∈
Rn×d. In the Generation Stage, for each new
token yj , the model computes autoregressively
qnew,knew,vnew ∈ R1×d, and updates the KV
cache. With the cached KV matrices, self-attention
complexity reduces from O(n2d) to O(nd). How-
ever, storing these matrices for every layer is mem-
ory intensive. To mitigate the memory load from
very long contexts, one approach is KV cache com-
pression. Instead of retaining K,V for all n tokens,
one compresses them into smaller matrices K̃ ∈
Rk×d and Ṽ ∈ Rk×d with k ≪ n, that pre-
serve the information needed for generating the re-
sponse, i.e., min

K̃, Ṽ

[
dist

(
y |K,V, y | K̃, Ṽ

)]
,

where y is the model’s output.
To introduce compression, we detail a query-

aware approach that compresses the KV cache by
retaining only the most relevant KV vectors for
the query given at inference time (Corallo and Pa-
potti, 2024). Let m be the chunk length, and let
{c1, c2, . . . } be the segments obtained by slicing
the input table x(cont). At iteration i, the method
takes as input[

K̃i−1, Ṽi−1︸ ︷︷ ︸
previous compressed cache

, ci︸︷︷︸
current chunk

, q︸︷︷︸
question

]
,

where K̃i−1, Ṽi−1 ∈ Rk×d denote the compressed
cache from the previous iteration, ci ∈ Rm×d is
the chunk of context for the current iteration, and
q ∈ Rq×d is the question to be answered.

During the forward pass, the multi-head atten-
tion scores are computed. The cross-attention sub-
matrix W(q,c) ∈ Rq×(k+m), captures how each
question token attends to both the previous cache
and the current chunk. The method then selects
the top k token positions (according to the highest
attention scores in W(q,c)) to form K̃i, Ṽi. Here,
k is a user-defined global budget that stays constant
across iterations.

After processing all chunks, the final K̃, Ṽ ∈
Rk×d provide a global representation of the entire
context, at a reduced length. Agnostic methods
use similar principles but in a single offline com-
putation of the cache, thus without making use of
the query. For example, Ada Expected Attention
scores are computed by modeling the distribution



of queries and estimating their interaction with key
vectors at future positions (Jegou et al., 2024), in
conjunction with head-specific compression (Feng
et al., 2025).

3 KV Compression for Tables

Handling structured data in LLMs remains a sig-
nificant challenge due to the quadratic complexity
of self-attention and limited context windows. An-
other challenge is capturing interconnections be-
tween tuples. For example, consider a table contain-
ing sales data. Answering a query such as SELECT

region, SUM(sales) FROM table GROUP BY region re-
quires capturing information across multiple tuples.
Retrieval methods may fall short by only selecting
isolated tuples or columns, missing the holistic rela-
tional context necessary for accurate aggregations.

KV cache compression, initially introduced for
general LLM inference, presents a promising op-
portunity for tabular data. The key insight of KV
compression is straightforward: after linearizing a
structured table into a textual representation, stan-
dard mechanisms within transformers naturally en-
code relevance and information importance within
attention scores. When selecting KV vectors from
the cache, these vectors inherently contain latent
information representing broader relational context,
including information from vectors that have been
evicted. Thus, rather than employing separate re-
trieval systems or encoding mechanisms tailored
specifically for tables, we hypothesize that LLMs
themselves inherently identify critical elements of
linearized tables directly through attention patterns.

We explore two types of compression for lin-
earized tabular data. (1) Query-aware compression
dynamically compresses the cache during inference
by retaining KV vectors with the highest attention
scores relative to a specific question. (2) Query-
agnostic compression pre-computes a representa-
tion of the cache independently of a specific query,
capturing general information from the table.

4 Experimental Setting

Datasets. We consider three datasets. In all cases,
we linearize the input table as a string with a list of
lists: the first element is the table header and each
subsequent sub-list is a tuple in the table. This ap-
proach outperforms or is comparable to alternative
serializations. Spider (Yu et al., 2019) is primarily
used for Text2SQL and its dev split contains 1,034
examples, each using one or more tables. We gener-

ate our ground truth by executing the SQL queries
on the corresponding tables. In cases involving
multiple tables, we concatenate their linearized
representations sequentially, prepending the name
of each table before its content. WikitableQA
(Pasupat and Liang, 2015) and QTSumm (Zhao
et al., 2023) focus on question answering and query-
focused summarization, respectively, with answers
in natural language. We use their evaluation splits.
Both datasets operate on a single table at a time.

Metrics. We use different evaluation metrics de-
pending on the task. For Spider, we assess the
generated output tables with four metrics from the
literature (Papicchio et al., 2023): Cell Precision
and Recall, Tuple Constraint, and Execution Ac-
curacy. For the WikitableQA dataset, we evaluate
outputs with Accuracy (Pasupat and Liang, 2015).
For QTSumm, we rely on ROUGE-L (Lin, 2004)

LLMs. We use LLaMA-3.1-8B-Instruct (Tou-
vron et al., 2023) and Qwen-2.5-7B (Yang et al.,
2024). Both models are used in a few-shot setting,
where we prepend task-specific instructions, defin-
ing expected input and output formats along with
two examples. Additionally, we enforce a fixed
maximum number of output tokens (the maximum
number of tokens in the ground truth), to ensure fair
comparisons and prevent overly long generations.

Methods. For compression, we report results for
a query-aware method, Finch (Corallo and Papotti,
2024), a query-agnostic one, Ada Expected At-
tention, and a RAG approach similar to those in
(Lin et al., 2023; Sui et al., 2023). We chunk the
tables into tuples and iteratively select them based
on their relevance to the question, until the number
of tokens aligns with the context length used in
the compression methods - we use BGE-BASE-1.5-
EN (Xiao et al., 2023) as embedding model. We
also report results for a baseline for the full-context
setting, i.e., input table without compression.1

5 Results

In Tables 1a and 1b, we report results for all meth-
ods on WikiTableQA and QTSumm, respectively.
Based on the tables’ average length in each dataset,
we select different target context lengths, obtain-
ing compression rates between 1.7x and 51.39x
(average context length in Spider is 13158 tokens).

1We do not report results for the execution with the base
model only (no tuples in the context) because of low perfor-
mance, e.g., 1.80 accuracy for WikiTableQA.



Model Context Length Finch Ada EA RAG

Llama-3.1-8B-Instruct

1024 (1.7x) 35.11 34.16 29.09
512 (3.35x) 34.92 32.16 28.00
256 (6.71x) 33.59 28.66 24.05
128 (13.43x) 30.02 21.94 9.82

Full context 35.08

Qwen2.5-7B-Instruct

1024 (1.91x) 29.72 29.17 29.27
512 (3.83x) 28.80 28.22 28.59
256 (7.66x) 27.07 23.30 23.04
128 (15.31x) 23.49 15.24 9.96

Full context 30.04

(a) WikiTableQA

Model Context Length Finch Ada EA RAG

Llama-3.1-8B-Instruct

512 (2.5x) 30.61 30.59 26.67
256 (5x) 29.78 29.74 24.32
128 (10x) 26 25.85 19.23
64 (20x) 21.86 20.75 12.14

Full context 30.56

Qwen2.5-7B-Instruct

512 (2.85x) 29.82 30.01 26.58
256 (5.70x) 28.62 29.39 24.32
128 (11.40x) 25.75 24.71 19.69
64 (22.78x) 23.54 19.57 16.07

Full context 29.96

(b) QTSumm

Table 1: Performance of Finch, Ada Expected Attention, and RAG on WikiTableQA (left) and QTSumm (right)
across various target context lengths; “Full context” at the bottom of each block shows the full table input result.
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(a) Llama-3.1-8B-Instruct, compression rate varies between 5.66x and 45.30x.
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(b) Qwen2.5-7B-Instruct, compression rate varies between 6.42x and 51.39x.

Figure 2: Performance of Finch, Ada Expected Attention, and RAG on the Spider dataset for two LLMs.

Overall, KV compression methods outperform
the RAG-based approach in most scenarios, and in
several cases, achieve better results than the full-
context setup. Finch achieves strong results on
WikiTableQA: with LLaMA-3.1-8B-Instruct, it ob-
tains an Accuracy of 35.11 at a compression rate
of 1.7× (1024 tokens), which is significantly higher
than the other approaches, including full context.
With QTSumm, compression methods yield results
that are either better or very close to those of the
full-context case, with compression (e.g., 30.61 for
Finch with LLaMA-3.1-8B-Instruct and 30.01 for
Ada with Qwen-2.5-7B).

In the Spider dataset’s results in Figure 2a, query-
aware compression reports promising results for
Llama, outperforming the row retrieval-based strat-
egy in all cases. Moving to Spider on Qwen in
Figure 2b, RAG and Ada (agnostic) are more com-
petitive and even surpass the full-context scenario.

In this scenario, Finch reports strong performance
in terms of Precision, Recall, and Tuple Constraint,
but lower scores for Execution Accuracy.

In terms of execution-time, query-agnostic KV
cache compression delivers faster inference than
RAG, while query-aware compression similarly to
full-context decoding (Corallo et al., 2025).

6 Conclusion and Future Work

This work shows that KV cache compression can
outperform RAG and match full-context perfor-
mance, offering a promising technique for pro-
cessing tables directly within LLMs. Future re-
search includes developing table-specific compres-
sion strategies beyond adapting existing methods
and investigating the interplay between table/query
complexity and compression effectiveness. Finally,
we plan to examine hybrid approaches combining
KV compression with lightweight retrieval.
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