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Abstract

The widespread use of black box prediction methods has sparked an increasing
interest in algorithm/model-agnostic approaches for quantifying goodness-of-fit,
with direct ties to specification testing, model selection and variable importance
assessment. A commonly used framework involves defining a predictiveness
criterion, applying a cross-fitting procedure to estimate the predictiveness, and
utilizing the difference in estimated predictiveness between two models as the
test statistic. However, even after standardization, the test statistic typically fails
to converge to a non-degenerate distribution under the null hypothesis of equal
goodness, leading to what is known as the degeneracy issue. To addresses this
degeneracy issue, we present a simple yet effective device, Zipper. It draws
inspiration from the strategy of additional splitting of testing data, but encourages
an overlap between two testing data splits in predictiveness evaluation. Zipper
binds together the two overlapping splits using a slider parameter that controls the
proportion of overlap. Our proposed test statistic follows an asymptotically normal
distribution under the null hypothesis for any fixed slider value, guaranteeing
valid size control while enhancing power by effective data reuse. Finite-sample
experiments demonstrate that our procedure, with a simple choice of the slider,
works well across a wide range of settings.

1 Introduction

Consider predicting response Y ∈ R from covariates X ∈ Rp. Due to the popularity of black
box prediction methods like random forests and deep neural networks, there has been a growing
interest in the so-called “algorithm (or model)-agnostic” inference on the goodness-of-fit (GoF) in
regression [1, 2, 3, 4, 5]. This framework aims to assess the appropriateness of a given model for
prediction compared to a potentially more complex (often higher-dimensional) model. A common
approach involves defining a predictiveness criterion, employing either the sample-splitting or cross-
fitting strategy to estimate the predictiveness of the two models, and examining the difference in
predictiveness. The main focus of this work is to address the issue of degeneracy encountered in
predictiveness-comparison-based test statistics.

1.1 Goodness-of-Fit Testing via Predictiveness Comparison

Let P represent the joint distribution of (Y,X) and consider a class F of prediction functions that
effectively map the covariates to the response. Define a criterion C(f̃ , P ), which quantifies the
predictive capability of a prediction function f̃ ∈ F . Larger values of C(f̃ , P ) indicate stronger
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predictive capability. The optimal prediction function within the class F is determined as f ∈
argmaxf̃∈F C(f̃ , P ). Therefore, C(f, P ) represents the highest achievable level of predictiveness
within the class F . Examples of C include the (negative) squared loss C(f̃ , P ) = −E[{Y − f̃(X)}2]
for continuous responses and the (negative) cross-entropy loss C(f̃ , P ) = E[Y log f̃(X) + (1 −
Y ) log{1− f̃(X)}] for binary responses, where E denotes the expectation under P .

In GoF testing problems, there are typically two classes of prediction functions F and FS , where
FS is a subset of F . Define a dissimilarity measure ψS = C(f, P ) − C(fS , P ), which quantifies
the deterioration in predictive capability resulting from constraining the model class to FS . Here,
fS ∈ argmaxf̃∈FS

C(f̃ , P ) denotes the optimal prediction function within the restricted class. Since
FS ⊆ F , it follows that ψS ≥ 0. The GoF testing is then formulated as

H0 : ψS = 0 versus H1 : ψS > 0. (1)

The formulation of assessing a scalar predictiveness quantity is inspired by the work of Williamson
et al. [5], which focuses on evaluating variable importance. Other predictiveness or risk quantities
have also been explored by [6, 7, 8, 9]. Here, we highlight a few examples where the aforementioned
framework can be directly applied.

• (Specification testing) Model specification testing aims to evaluate the adequacy of a class
of postulated models, such as parametric models, say, examining whether the conditional
expectation E(Y | X) = gθ(X) holds almost surely [10], where gθ is a known function up
to an unknown parameter θ. Under the framework (1), we can consider F as a generally
unrestricted class, while FS represents a class of parametric models.

• (Model selection) GoF testing can also be employed to identify the superior predictive model
from a set of candidates [11, 12]. This situation often arises when choosing between two
prediction strategies, such as an unregularized model and a regularized one. Testing H0 is
to assess whether the inclusion of a regularizer provides benefits for predictions.

• (Variable importance measure) A recently popular aspect of GoF testing involves evaluating
the significance of a specific group of covariates U in predicting the response, where
X = (U⊤, V ⊤)⊤. This assessment can be incorporated into (1) by defining a subset of
prediction functions FS ⊆ F that disregard the covariate group U when making predictions.
When utilizing the squared loss, ψS simplifies to the LOCO (Leave Out COvariates) variable
importance measure [1, 13, 14, 5, 15, 16], which quantifies the increase in prediction error
resulting from the removal of U . Specifically, taking ψS = E[{Y −E(Y | V )}2]−E[{Y −
E(Y | X)}2] corresponds to testing for conditional mean independence [17, 18].

The measure ψS possesses the advantages of being both model-free and algorithm-agnostic. It is
not tied to a specific model and remains independent of any particular model fitting algorithm. This
flexibility makes ψS a versatile quantity for evaluating goodness-of-fit, enabling us to leverage diverse
machine learning prediction algorithms in its estimation.

1.2 The Degeneracy Issue

Let Z = (Y,X) ∼ P , and suppose we have collected a set of independent realizations of Z as
Zi = (Yi, Xi) for i = 1, . . . , n. To effectively estimate ψS while ensuring algorithm-agnostic
inference, the sample-splitting or cross-fitting has recently gained significant popularity. This
approach relaxes the requirements imposed on estimation algorithms, allowing for the utilization
of flexible machine learning techniques [13, 19, 2, 20, 21]. Taking sample-splitting as an example,
the data is divided into a training set and a testing set. Based on the training data, estimators f trn
and f trn,S are obtained for the optimal prediction functions f and fS , respectively. The dissimilarity
measure ψS can then be evaluated using the testing data, i.e., ψn,S = C(f trn , P te

n )− C(f trn,S , P te
n ),

where P te
n represents the empirical distribution function of the testing data. Notably, in the context

of measuring variable importance, it has been established that when ψS > 0, the estimator ψn,S
exhibits asymptotic linearity under certain assumptions [5]. Similar results are also applicable to the
problem of comparing multiple algorithms or models [11, 12].

However, the situation becomes distinct when considering the null hypothesis H0 : ψS = 0. Recent
studies have drawn significant attention to a phenomenon known as degeneracy [22, 23, 15, 18, 5].
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Consider the simplest scenario where there are no covariates and the objective is to test whether
µ := E(Y ) = 0; see also Example 1 in Lei [11]. In this case, we set F = R and FS = {0}.
Using the squared loss, we have ψS = E(Y 2)− E{(Y − µ)2} = µ2. The estimator for ψS based
on sample-splitting is ψn,S = 2Ȳ te

n Ȳ tr
n − (Ȳ tr

n )2, where Ȳ tr
n and Ȳ te

n denote the sample means
of the training and testing data, respectively. When µ ̸= 0,

√
n(ψn,S − µ) follows an asymptotic

normal distribution. However, when µ = 0,
√
nψn,S = OP (n

−1/2), indicating the presence of the
degeneracy phenomenon. While inference at a n-rate remains feasible under degeneracy in this
specific example, it is crucial to recognize that this would not hold true for intricate models and black
box fitting algorithms. Williamson et al. [5] provide evidence for the occurrence of degeneracy in a
general variable importance measure ψS , where the influence function becomes exactly zero under
the null hypothesis. It is therefore required to address this degeneracy issue in a generic manner to
perform algorithm-agnostic statistical inference.

1.3 Existing Solutions

By using the fact that the influence functions of the individual components C(f, P ) and C(fS , P )
in ψS remain nondegenerate even under H0, Williamson et al. [5] proposed an additional data
split of the testing data, where the two predictiveness functions are evaluated on two separate
testing data splits. This approach ensures a nondegenerate influence function under H0, therefore
restoring asymptotic normality. A similar approach has been independently explored by Dai et al.
[23]. However, performing additional data splits may reduce the actual sample size used in the
testing, leading to a substantial loss of power. Alternatively, Rinaldo et al. [13] and Dai et al. [23]
introduced data perturbation methods, where independent zero-mean noises are added to the empirical
influence functions. These methods also restore asymptotic normality. However, determining the
appropriate amount of perturbation to achieve desirable Type I error control remains a heuristic
process. Furthermore, Verdinelli and Wasserman [22] proposed expanding the standard error of the
estimator to mitigate the impact of degeneracy.

1.4 Our Contributions

In this paper, we introduce the Zipper device for algorithm-agnostic inference under the null hypothe-
sis H0 of equal goodness. Our approach is inspired by the method of additional splitting of testing
data, as demonstrated in the works of Williamson et al. [5] and Dai et al. [23] for assessing variables
with zero-importance. Instead of creating two distinct testing data splits to evaluate the discrepancy
of predictiveness criteria between the expansive and restricted models, we encourage an overlap
between them. The Zipper device serves to bind together the two overlapping splits, with a slider
parameter τ ∈ [0, 1) controlling the proportion of overlap. To ensure stable inference and accommo-
date versatile machine learning prediction algorithms, we incorporate a K-fold cross-fitting scheme.
We will demonstrate that the proposed test statistic follows an asymptotically normal distribution H0

for any fixed value of τ , ensuring valid size control while providing satisfactory power enhancement.

1.5 Related Works

For variable importance assessments, in addition to LOCO methods within our framework, Shapley
value-based measures are commonly used [24, 25, 26, 27]. These measures, which estimate the
incremental predictive accuracy contributed by a specific variable across all possible covariate subsets,
reveal complex inter-variable relationships but at a considerable computational expense. Furthermore,
conditional randomization tests [28, 29] offer a robust alternative when covariate distributions are
known or can be accurately estimated. These methods are especially beneficial in semi-supervised
settings with extensive unlabeled data. Additionally, LIME [30] focuses on estimating variable
importance locally for a specific instance, while LOCO methods are designed to assess global
variable importance.

1.6 Organization

The remainder of our paper is structured as follows. In Section 2, we introduce the Zipper device for
addressing the degenerate issue, and present the asymptotic behaviors of the method. Finite-sample
experiments are presented in Section 3. Section 4 concludes the paper. Proofs of theorems and
additional numerical results are provided in Appendix.
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2 Our Remedy

2.1 The Zipper Device

To initiate the process, we randomly partition the data into K folds, denoted as D1, . . . ,DK , ensuring
that each fold is approximately of equal size. For a given fold index k ∈ {1, . . . ,K}, we construct
estimators fk,n and fk,n,S for the oracle prediction functions f and fS correspondingly, using the
data excluding the fold Dk. To activate the Zipper device, we further randomly divide Dk into two
splits, labeled as Dk,A and Dk,B , with approximately equal sizes, allowing for an overlap denoted
as Dk,o. Specifically, Dk,A ∪ Dk,B = Dk and Dk,A ∩ Dk,B = Dk,o. Let Dk,a = Dk,A\Dk,o and
Dk,b = Dk,B\Dk,o represent the non-overlapping parts. For simplicity, we assume that |Dk| = n/K
and |Dk,A| = |Dk,B |, where |A| represents the cardinality of set A. Let τ = |Dk,o|/|Dk,A| represent
the proportion of the overlap. Visualize the two splits Dk,A and Dk,B as two pieces of fabric or other
materials. The term “Zipper” is derived from the analogy of using a zipper mechanism to either
separate or join them by moving the slider τ ; see Figure 1. To evaluate the discrepancy measure
ψS = C(f, P )−C(fS , P ) based on the kth fold of testing data Dk, we denote Pk,n,I as the empirical
distribution of the data split Dk,I , where I ∈ {o, a, b}. We can estimate ψS by Ck,n −Ck,n,S , where

Ck,n = τC(fk,n, Pk,n,o) + (1− τ)C(fk,n, Pk,n,a) and
Ck,n,S = τC(fk,n,S , Pk,n,o) + (1− τ)C(fk,n,S , Pk,n,b)

represent weighted aggregations of empirical predictiveness criteria corresponding to overlapping
and non-overlapping parts, used for estimating C(f, P ) and C(fS , P ), respectively. By employing
the cross-fitting process, we obtain the final estimator of ψS , denoted as

ψn,S = K−1
K∑

k=1

(Ck,n − Ck,n,S), (2)

which is the average over all testing folds.

Dk,a: C(fk,n, Pk,n,a)

Dk,b: C(fk,n,S , Pk,n,b)

Dk,o: C(fk,n, Pk,n,o)

Dk,o: C(fk,n,S , Pk,n,o)

Dk,A

Dk,B

τ

Figure 1: Illustration of the mechanism of the Zipper device based
on the kth fold of testing data.

Notably, if we fully open the Zip-
per, setting τ = 0 and leaving
Dk,o empty, our approach aligns
with the vanilla data splitting
strategy utilized in Williamson
et al. [5] and Dai et al. [23]
for assessing variables with zero-
importance. Conversely, when
we completely close Zipper with
τ = 1, our method essentially in-
volves evaluating the predictive-
ness discrepancy using the iden-
tical data split Dk,o = Dk,A =
Dk,B = Dk, which is known to result in the phenomenon of degeneracy [5]. Therefore, to avoid such
degeneracy, we restrict the slider parameter τ ∈ [0, 1); see also Remark 2.5 below.

2.2 Asymptotic Linearity

We start by investigating the asymptotic linearity of the proposed test statistic ψn,S in (2), which
serves as a foundation for establishing the asymptotic distribution under the null hypothesis, as well
as for analyzing the test’s power.

Theorem 2.1 (Asymptotic linearity). If Conditions (C1)–(C4) in Section A hold for both tuples
(P,F , f, fk,n) and (P,FS , fS , fk,n,S), then

ψn,S − ψS =
1

n/(2− τ)

K∑
k=1

[ ∑
i:Zi∈Dk,a

ϕ(Zi)−
∑

i:Zi∈Dk,b

ϕS(Zi)

+
∑

i:Zi∈Dk,o

{ϕ(Zi)− ϕS(Zi)}
]
+ oP (n

−1/2),

(3)
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where ϕ(Z) = Ċ(f, P ; δZ − P ) and ϕS(Z) = Ċ(fS , P ; δZ − P ). Here, Ċ(f̃ , P ;h) represents the
Gâteaux derivative of P̃ 7→ C(f̃ , P̃ ) at P in the direction h, and δz denotes the Dirac measure at z.
Consequently, for any τ ∈ [0, 1),

{n/(2− τ)}1/2(ψn,S − ψS)
d→ N(0, ν2S,τ )

as n → ∞, where ν2S,τ = (1 − τ)(σ2 + σ2
S) + τη2S , σ2 = E{ϕ2(Z)}, σ2

S = E{ϕ2S(Z)}, and
η2S = E[{ϕ(Z)− ϕS(Z)}2].
Remark 2.2. The conditions in Theorem 2.1 are derived from Williamson et al. [5], which outline
specific requirements concerning the convergence rate of estimators obtained from flexible black box
prediction algorithms and the smoothness of the predictiveness measures. The validity of Theorem 2.1
relies on the asymptotic linear expansions of C(fk,n, Pk,n,I) and C(fk,n,S , Pk,n,I) for I ∈ {o, a, b};
see Lemma B.1 or Theorem 2 in Williamson et al. [5]. Given the asymptotic linearity of ψn,S , we
can readily obtain its asymptotic distribution by observing the independence of data in ∪K

k=1Dk,a,
∪K
k=1Dk,b and ∪K

k=1Dk,o, as well as the facts that | ∪K
k=1 Dk,a| = | ∪K

k=1 Dk,b| = (1− τ)n/(2− τ)
and | ∪K

k=1 Dk,o| = τn/(2− τ).

The asymptotic linearity of ψn,S in (3) exhibits distinct behaviors depending on the validity of H0.
Under H0 : ψS = 0, we have ϕ = ϕS almost surely, due to f = fS almost surely. Consequently, the
overlapping terms

∑
i:Zi∈Dk,o

{ϕ(Zi)−ϕS(Zi)} for k = 1, . . . ,K vanish. As a result, (3) simplifies
to

ψn,S − ψS =
1

n/(2− τ)

{ K∑
k=1

∑
i:Zi∈Dk,a

ϕ(Zi)−
K∑

k=1

∑
i:Zi∈Dk,b

ϕS(Zi)

}
+ oP (n

−1/2). (4)

In this case, the dominant term compares the means of two independent samples, each with a size
of (1 − τ)n/(2 − τ). Additionally, it can be deduced that ν2S,τ = (1 − τ)(σ2 + σ2

S) under H0.
Conversely, under H1 : ψS > 0, we can reformulate (3) as

ψn,S − ψS =
1

n/(2− τ)

{ K∑
k=1

∑
i:Zi∈Dk,A

ϕ(Zi)−
K∑

k=1

∑
i:Zi∈Dk,B

ϕS(Zi)

}
+ oP (n

−1/2).

Here, the leading term compares the means of two samples that have an overlap, with each sample
having a size of n/(2− τ).

2.3 Null Behaviors

To conduct the test, it is crucial to have a consistent estimator for the variance ν2S,τ = (1 −
τ)(σ2 + σ2

S) under H0. Following the plug-in principle, we derive an estimator ν2n,S,τ := (1 −
τ)K−1

∑K
k=1(σ

2
k,n + σ2

k,n,S), where for each k ∈ {1, . . . ,K},

σ2
k,n =

1

|Dk|
∑

i:Zi∈Dk

{Ċ(fk,n, Pk,n; δZi − Pk,n)}2,

σ2
k,n,S =

1

|Dk|
∑

i:Zi∈Dk

{Ċ(fk,n,S , Pk,n; δZi − Pk,n)}2,

and Pk,n represents the empirical distribution of Dk. The consistency of this estimator is demonstrated
in Proposition 2.3.
Proposition 2.3. If Conditions (C4)–(C5) in Section A hold for both tuples (P,F , f, fk,n) and
(P,FS , fS , fk,n,S), then, ν2n,S,τ

p→ ν2S,τ as n→ ∞ under H0 for any τ ∈ [0, 1).

Remark 2.4. Computing Gâteaux derivatives Ċ for certain predictiveness measures can be challenging.
In many cases, the predictiveness measure takes the form C(f̃ , P̃ ) = EP̃ {g(Y, f̃(X))}, where g is a
known function. In such situations, it has been found that the Gâteaux derivative can be expressed
as ϕf̃ (z) := g(y, f̃(x)) − E{g(Y, f̃(X))}; see, for example, Appendix A in Williamson et al. [5].
Consequently, when f̃ = f , the empirical Gâteaux derivative becomes Ċ(fk,n, Pk,n; δz − Pk,n) =
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g(y, fk,n(x))− n−1
k

∑
i:Zi∈Dk

g(Yi, fk,n(Xi)). This formulation allows for the identification of the
variance estimator σ2

k,n as the sample variance of {g(Yi, fk,n(Xi))}, simplifying the computation.
Moreover, Condition (C5) is immediately satisfied (see Section B.2.1). Examples of such function g
include the squared loss and cross-entropy loss.

Based on Theorem 2.1 and Proposition 2.3, utilizing Slutsky’s lemma, we can conclude that the
normalized test statistic

Tτ := {n/(2− τ)}1/2ψn,S/νn,S,τ
d→ N(0, 1)

under H0 for any τ ∈ [0, 1). For a prespecified significance level α ∈ (0, 1), we reject the null
hypothesis if Tτ > z1−α, where zα denotes the α quantile of N(0, 1). A summary of the entire
testing procedure can be found in Section C.
Remark 2.5. In our asymptotic analysis of the null behavior, we explicitly exclude the case of τ = 1
due to the resulting degeneracy phenomenon. Specifically, under H0, when τ = 1, the linear leading
term of (3) becomes exactly zero. Therefore, including τ = 1 can introduce a distortion in the Type I
error.

2.4 Power Analysis

Next, we turn our attention to the power analysis of the proposed test under the alternative hypothesis
H1 : ψS > 0.

Theorem 2.6 (Power approximation). Suppose the conditions stated in Theorem 2.1 and Proposition
2.3 hold. Then for any τ ∈ [0, 1), the power function Pr(Tτ > z1−α | H1) = GS,n,α(τ) + o(1),
where

GS,n,α(τ) = Φ

(
−
ν
(0)
S,τ

νS,τ
z1−α +

{n/(2− τ)}1/2ψS

νS,τ

)
,

ν
(0)
S,τ = {(1− τ)(σ2 + σ2

S)}1/2 and Φ denotes the distribution function of N(0, 1). Furthermore, if
Cov{ϕ(Z), ϕS(Z)} ≥ 0, then GS,n,α(τ) increases with τ .

Remark 2.7. The form of the power function can be directly derived from Theorem 2.1 and the fact
that the estimator of standard deviation νn,S,τ

p→ ν
(0)
S,τ as n → ∞ under H1. Recall that ν2S,τ =

(1−τ)(σ2+σ2
S)+τη

2
S , which is provably a decreasing function of τ when Cov{ϕ(Z), ϕS(Z)} ≥ 0.

Consequently, the approximate power function GS,n,α(τ) increase with τ . For more details, please
refer to Section B.3.
Remark 2.8. The requirement Cov{ϕ(Z), ϕS(Z)} ≥ 0 is relatively benign. For instance, when
considering ψS = E[{Y −E(Y | V )}2]−E[{Y −E(Y | X)}2] within the framework of evaluating
variable importance, this condition is readily satisfied; refer to B.3.1.

Consider the “unzipped” version of the proposed test with τ = 0, which has been explored in the
works of Williamson et al. [5] and Dai et al. [23] for assessing variable importance. According to
Theorem 2.6, the approximate power function reduces to

GS,n,α(0) = Φ

(
−z1−α +

(n/2)1/2ψS

(σ2 + σ2
S)

1/2

)
,

aligning with the findings in Dai et al. [23]. In contrast, for the Zipper with τ ∈ [0, 1), we have

GS,n,α(τ)
(i)
≥ Φ

(
−z1−α +

{n/(2− τ)}1/2ψS

(σ2 + σ2
S)

1/2

)
(ii)
≥ GS,n,α(0),

due to the facts that ν(0)S,τ ≤ νS,τ , and νS,τ ≤ (σ2+σ2
S)

1/2 ifCov{ϕ(Z), ϕS(Z)} ≥ 0. Consequently,
our method surpasses the vanilla sample-splitting or cross-fitting based inferential procedures that
correspond to τ = 0. The improved power can be attributed to two sources: the introduction of the
overlap mechanism τ (corresponding to Inequality (ii)), and the utilization of the variance estimator
ν2n,S,τ (Inequality (i)).
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Remark 2.9. As discussed, ν2n,S,τ is inconsistent for the limiting variance ν2S,τ under H1 when
0 < τ < 1. If the objective is to construct a valid confidence interval for the dissimilarity measure
ψS , it is crucial to use a consistent variance estimator regardless of whether H0 holds or not. This
can be achieved by incorporating an additional plug-in estimator of η2S , which is a component of the
asymptotic variance ν2S,τ . For detailed construction of a valid confidence interval, please refer to
Section D in Appendix.

2.5 Efficiency-and-Degeneracy Tradeoff

Our asymptotic analysis demonstrates that the Zipper device ensures a valid testing size for any fixed
slider parameter τ ∈ [0, 1). Moreover, as the slider τ moves away from 0, the power improves. In
practical scenarios with finite sample sizes, selecting an appropriate value of τ involves a tradeoff
between efficiency and degeneracy. Opting for a larger value of τ can indeed enhance the testing
power. However, an excessively large τ approaching 1 would result in degeneracy and potential size
inflation. This occurs because the normal approximation (4) breaks down under the null hypothesis.
It is worth emphasizing that using a relatively small τ is generally safer and yields improved power
compared to the vanilla splitting-based strategies with τ = 0.

To achieve better power while maintaining a reliable size, we propose a simple approach for selecting
τ . By (4), the asymptotic normality relies on comparing means from two independent samples
∪K
k=1Dk,a and ∪K

k=1Dk,b, each with a size of (1 − τ)n/(2 − τ). To ensure a favorable normal
approximation, we can choose the sample size (1− τ)n/(2− τ) such that it meets a predetermined
“large" sample size, such as n0 = 30 or 50. Say, we can specify τ = τ0 := (n− 2n0)/(n− n0). In
the case of very large n, a truncation may be needed to safeguard against degeneracy. For example,
we can set τ = min{τ0, 0.9}. Our numerical experiments show that this selection of τ achieves
satisfactory performances across a wide range of scenarios. For more details on the impact of τ ,
please refer to Section E.1.

3 Finite-Sample Experiments

3.1 Synthetic Experiments

3.1.1 Variable Importance Assessment

For illustration, we conduct a simulation study to evaluate the performance of the proposed Zipper
method in assessing variables with zero-importance, an area of active research. We compare the
empirical size and power of Zipper against several benchmark procedures. Firstly, we consider
Algorithm 3 proposed in Williamson et al. [5] (referred to as WGSC-3) and the two-split test in Dai
et al. [23] (DSP-Split). Both procedures involve an additional splitting of the testing data and can
be seen as approximate counterparts to the proposed Zipper test with τ = 0. Another benchmark
procedure is Algorithm 2 from Williamson et al. [5] (WGSC-2), which can be viewed as a rough
equivalent to Zipper with τ = 1. Additionally, we include the data perturbation method proposed
by Dai et al. [23] (DSP-Pert). For each benchmark procedure, we follow the suggestions of the
respective authors to select nuisance parameters. We specify the slider parameter τ = min{τ0, 0.9}
with n0 = 50 as suggested in Section 2.5.

We consider two models: one with a normal response Y ∼ N(X⊤β, σ2
Y ), and another with a binomial

response Y ∼ binom(1, logit(X⊤β)), where logit(t) = 1/{1 + exp(−t)}. Both models assume
that X ∼ N(0,Σ), where Σ = (0.2|i−j|)p×p. For each model, we examine two scenarios. The first
scenario is a low-dimensional setting with p ∈ {5, 10} and β = (δ, δ, 5, 0, 5, 0p−5)

⊤. The second
scenario is a high-dimensional setting with p ∈ {200, 1000} and β = (δ, δ, 50.01p, 0

⊤
0.99p−2)

⊤, where
aq represents a q-dimensional vector with all entries set to a. In the normal model, we specify σ2

Y

such that the signal-to-noise ratio β⊤Σβ/σ2
Y = 3 by assigning δ = 0. The objective is to test whether

the first two variables contribute significantly to predictions from a sequence of n ∈ {200, 500, 1000}
independent realizations of (Y,X).

Let F represent a generally unrestricted model class, subjecting to a degree of sparsity under the
high-dimensional settings. Consider FS ⊆ F such that the prediction functions exclude the first two
components of the covariates. To test the irrelevance of the first two variables in predictions, we
examine H0 : ψS = 0 in (1). We adopt the squared loss for normal responses and the cross-entropy
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Table 1: Empirical sizes (in percentage) of various testing procedures, with standard deviations in
brackets.

Model p Zipper WGSC-3 DSP-Split WGSC-2 DSP-Pert

Normal 5 3.9(0.19) 5.1(0.22) 4.6(0.21) 0.1(0.03) 10.2(0.30)
1000 4.3(0.20) 6.2(0.24) 5.9(0.24) 16.7(0.37) 35.0(0.48)

Binomial 5 3.7(0.19) 3.9(0.19) 4.2(0.20) 0.6(0.08) 4.0(0.20)
1000 5.6(0.23) 4.8(0.21) 5.1(0.22) 19.9(0.40) 38.6(0.49)

loss for binomial responses. The ordinary least-squares regression and the LASSO are utilized under
the low-dimensional and high-dimensional scenarios, respectively. The significance level is chosen
as α = 5%, and our experiments entail 1, 000 replications. These experiments are executed on an
Intel Xeon Gold 5118 CPU @ 2.30GHz.

Table 1 displays the empirical sizes for different testing procedures with n = 500 and p ∈ {5, 1000}.
The results reveal that the Zipper, WGSC-3, and DSP-Split consistently maintain the correct size
across all models, as anticipated. In contrast, the WGSC-2 exhibits conservative behavior in the
low-dimensional setting and inflated sizes in the high-dimensional settings, primarily due to the
degeneracy phenomenon. In addition, the data perturbation method, DSP-Pert, fails to control the
size in some cases, particularly in the high-dimensional settings. This instability can be attributed to
the selection of the amount of perturbation.

Figure 2: Empirical power of various testing methods as
a function of the magnitude δ with n = 500 and p ∈
{5, 1000}. The dot-dashed horizontal line represents the
intercept at α = 5%.

Figure 2 depicts the empirical power
of various testing methods as a func-
tion of the magnitude δ representing
variable relevance, when n = 500 and
p ∈ {5, 1000}. As expected, the Zip-
per shows a substantial improvement in
power compared to the vanilla cross-
fitting based approaches, WGSC-3 and
DSP-Split, with WGSC-3 and DSP-Split
demonstrating similar performances. Un-
der the high-dimensional settings, the
WGSC-2 and DSP-Pert exhibit higher
power than Zipper, but at the expense
of losing valid size control. For a com-
prehensive analysis of the empirical sizes
and power across various combinations
of n and p, please refer to Section
E.2. These additional results consistently
support the conclusion that the Zipper
method demonstrates reliable empirical
size performance and significant power
enhancement compared to that methods
that utilize non-overlapping splits.

3.1.2 Model Specification Testing

We extend our investigation beyond the
variable importance assessment problem to include an evaluation of the proposed Zipper device in
addressing model specification issues. Our analysis focuses on the model defined as Y = Xβ + ε,
where X ∼ N(0,Σ) with Σ = (0.2|i−j|)p×p and ε ∼ N(0, σ2

ε). Here, we assume that ∥β∥0 = 2,
indicating the presence of two nonzero components in β, while the positions of these components
remain unknown. Our objective is to test the model specification hypothesis: H0 : β = (∗, ∗, 0p−2)

⊤

versus H1 : ∥β∥0 = 2 but not H0, where ∗ represents any nonzero value. To generate the data,
we consider three scenarios: (i) β = (0.4, 0.4, 0p−2)

⊤, (ii) β = (0.4, 0, 0.4, 0p−3)
⊤, and (iii) β =

(0, 0, 0.4, 0.4, 0p−4)
⊤. We determine the value of σ2

ε such that the signal-to-noise ratio β⊤Σβ/σ2
ε =

1. Subsequently, we generate independent realizations (Yi, Xi) for i = 1, . . . , n, with n = 500 and
p ∈ {5, 1000}. To estimate β, we employ ordinary least squares under H0, and perform the best
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two subset selection under H1. For the case when p = 5, we conduct an exhaust search. For the
case when p = 1000, we utilize the abess algorithm [31] to approximate the solutions. The results
are summarized in Table 2, where we observe that under Scenario (i), corresponding to H0, Zipper
maintains correct size control. Furthermore, under Scenarios (ii) and (iii), corresponding to H1,
Zipper exhibits substantial improvements in power when compared to the vanilla cross-fitting based
approaches, WGSC-3 and DSP-Split.

Table 2: Empirical sizes and powers (in percentage) for the model specification test, with standard
deviations in brackets.

p 5 1000
Scenerio Zipper WGSC-3 DSP-Split WGSC-2 Zipper WGSC-3 DSP-Split WGSC-2

(i) 4.3(0.20) 6.2(0.22) 5.6(0.20) 0.0(0.00) 4.2(0.19) 5.5(0.20) 6.5(0.21) 16.6(0.36)
(ii) 96.9(0.17) 31.2(0.46) 34.9(0.46) 100.0(0.00) 94.2(0.22) 29.8(0.46) 31.4(0.46) 97.3(0.16)
(iii) 100.0(0.00) 81.4(0.39) 79.3(0.38) 100.0(0.00) 100.0(0.00) 81.3(0.40) 78.1(0.41) 100.0(0.00)

3.2 Real-Data Examples

3.2.1 MNIST Handwritten Dataset

We apply the Zipper method to the widely used MNIST handwritten digit dataset [32]. The MNIST
dataset consists of size-normalized and center-aligned handwritten digit images, each represented as
a 28× 28 pixel grid (resulting in p = 282 = 784). For our analysis, we specifically extract subsets of
the dataset representing the digits 7 and 9, following Dai et al. [23], resulting in a total of n = 14251
images.

Figure 3: Hypothesis
regions (blank squares)
and important discoveries
(squares filled in red) com-
paring the Zipper method
(left column) with WGSC-
3 (right column).

In Figure 3, we calculate and graphically represent the average grayscale
pixel values for images sharing the same numerals. We divide each
image into nine distinct regions, as shown by the blank squares in Figure
3, with the objective of detecting regions that can effectively distinguish
between these two digits. To achieve this, we perform a sequence of
variable importance testing to assess the relevance of each region in
making predictions while considering the remaining regions. Given the
nature of the data, we employ a Convolutional Neural Network (CNN)
as the underlying model, leveraging its proven effectiveness in image
analysis. In the Zipper approach, we select the slider parameter τ such
that n0 = 50, as recommended in the manuscript. As a benchmark, we
adopt WGSC-3 [5] (equivalent to DSP-Split [23]), which produces valid
size, aligning with our approach. We set the predefined significance
level for each test as α = 0.05/9, applying the Bonferroni correction to
account for multiple comparisons. The discovered regions, highlighted
in red, are presented in Figure 3. Our findings indicate that the Zipper
method outperforms WGSC-3 in identifying critical regions with greater
efficacy.

3.2.2 Bodyfat Dataset

We expand the application of our Zipper method to the bodyfat dataset
[33], which provides an estimate of body fat percentages obtained
through underwater weighing, along with various body circumference measurements from a sample
of n = 252 men. Our objective is to conduct marginal variable importance tests for each body
circumference while considering potential influences from essential attributes such as age, weight,
and height. To accurately estimate the relevant regression functions within this dataset, we employ the
random forest as our modeling technique. Table 3 presents the resulting p-values obtained from the
Zipper and WGSC-3 methods. By applying the Bonferroni correction, the Zipper method identifies
both Abdomen and Hip as significant factors at the significance level of α = 0.05/10. In contrast,
WGSC-3 suggests only Abdomen as important. It is worth noting that a recent study by Zhu et al.
[34] proposed the formula (Waist+Hip)/Height as a straightforward evaluation index for body fat.
Remarkably, our finds align with this fact, further supporting the validity and relevance of our Zipper
method in identifying key factors.
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Table 3: P-values obtained from the Zipper and WGSC-3 methods for each marginal test regarding
the relevance of the body circumference.

Body Part Neck Chest Abdomen Hip Thigh Knee Ankle Biceps Forearm Wrist

Zipper 0.98 0.10 5.48× 10−10 4.01× 10−4 0.10 0.03 0.20 0.26 0.35 0.02
WGSC-3 0.12 0.01 9.30× 10−4 0.29 0.01 0.06 0.36 0.18 0.69 0.05

4 Concluding Remarks

In this paper, we introduce Zipper, a simple yet effective device designed to address the issue of
degeneracy in algorithm/model-agnostic inference. The mechanism of Zipper involves the recycling
of data usage by constructing two overlapping data splits within the testing samples, which holds
potential for independent exploration. A key component of Zipper is the slider parameter, which
introduces an efficiency-and-degeneracy tradeoff. To ensure reliable inference, we propose a simple
selection criterion by ensuring a large sample size to render asymptotic normality under the null
hypothesis. Other data-adaptive strategies are possible and merit further investigation. Moreover, the
predictiveness-comparison-based framework allows for the utilization of alternative forms of two-
sample tests, such as rank-based methods. This capability proves beneficial when dealing with data
exhibiting heavy-tailed distributions or outliers. Furthermore, incorporating the Zipper device into
large-scale comparisons to achieve error rate control warrants additional research. We can conduct a
sequence of variable importance tests, each aimed at assessing the relevance of a specific variable
Xj in the predictive model while controlling for a global error rate. This procedure necessitates the
fitting of p+ 1 models: one that includes all variables and p null models, each excluding a distinct
variable. Such a process is computationally demanding. Moreover, accurately controlling error rates
presents a considerable challenge due to complex dependency structures among the p-values.
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Appendix

A Conditions

Assume P ∈ M for a rich class M of distributions. Define the linear space H = {c(P̃1 − P̃2) :

c ≥ 0, P̃1, P̃2 ∈ M}. For each h ∈ H, let ∥h∥∞ = supz |F̃1(z) − F̃2(z)|, where F̃j denotes
the distribution function corresponding to P̃j for j = 1, 2. Consider F as the class of predictions
functions endowed with a norm ∥ · ∥F . Let f ∈ argmaxf̃∈F C(f̃ , P ), and {fk,n}Kk=1 be a sequence
of estimators of f . For each 1 ≤ k ≤ K, define ak,n : z 7→ Ċ(fk,n, P ; δz − P )− Ċ(f, P ; δz − P )

and bk,n : z 7→ Ċ(fk,n, Pk,n; δz−Pk,n)−Ċ(fk,n, P ; δz−P ). The following conditions are imposed
on the tuple (P,F , f, fk,n).

(C1) There exists some constant C > 0 such that, for each sequence f̃1, f̃2, . . . ∈ F such that
∥f̃j − f∥F → 0, |C(f̃j , P )− C(f, P )| ≤ C∥f̃j − f∥2F for each j large enough;

(C2) There exists some constant δ > 0 such that for each sequence ϵ1, ϵ2, . . . ∈ R and
h, h1, h2, . . . ∈ H satisfying that ϵj → 0 and ∥hj − h∥∞ → 0, it holds that

sup
f̃∈F :∥f̃−f∥F<δ

∣∣∣∣∣C(f̃ , P + ϵjhj)− C(f̃ , P )
ϵj

− Ċ(f̃ , P ;hj)

∣∣∣∣∣→ 0;

(C3) For each 1 ≤ k ≤ K, ∥fk,n − f∥F = oP (n
−1/4);

(C4) For each 1 ≤ k ≤ K,
∫
a2k,ndP = oP (1);

(C5) For each 1 ≤ k ≤ K,
∫
b2k,ndP = oP (1).

Condition (C1) pertains to the optimality of the prediction function f , eliminating first-order esti-
mation biases. Condition (C2) requires Hadamard differentiability of the predictiveness criterion.
Condition (C3) demands accurate estimation of f , rendering second-order terms negligible. Condition
(C4) controls the remainder terms. Condition (C5) ensures consistent variance estimators.

B Proofs

B.1 Proof of Theorem 2.1

Lemma B.1. If Conditions (C1)–(C4) specified in Appendix hold for both tuples (P,F , f, fk,n) and
(P,FS , fS , fk,n,S), then, for each I ∈ {o, a, b} and k ∈ {1, . . . ,K},

C(fk,n, Pk,n,I)− C(f, P ) =
1

|Dk,I |
∑

i:Zi∈Dk,I

ϕ(Zi) + oP (|Dk,I |−1/2) and

C(fk,n,S , Pk,n,I)− C(fS , P ) =
1

|Dk,I |
∑

i:Zi∈Dk,I

ϕS(Zi) + oP (|Dk,I |−1/2).

Proof. See Theorem 2 in Williamson et al. [5].

Denote mk = |Dk,A| = |Dk,B |. Since |Dk,a| = |Dk,b| = (1 − τ)mk and |Dk,o| = τmk, we have
mk = n/{(2− τ)K} due to |Dk,a|+ |Dk,b|+ |Dk,o| = n/K. By Lemma B.1, we have

Ck,n − C(f, P ) = τ{C(fk,n, Pk,n,o)− C(f, P )}+ (1− τ){C(fk,n, Pk,n,a)− C(f, P )}

=
1

mk

∑
i:Zi∈Dk,A

ϕ(Zi) + oP (m
−1/2
k ).
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Since the number of folds K is fixed, we have

1

K

K∑
k=1

Ck,n − C(f, P ) =
1

K

K∑
k=1

 1

mk

∑
i:Zi∈Dk,A

ϕ(Zi) + oP (m
−1/2
k )


=

1

K

K∑
k=1

1

mk

∑
i:Zi∈Dk,A

ϕ(Zi) + oP (n
−1/2).

(5)

Similarly, we conclude that

1

K

K∑
k=1

Ck,n,S − C(fS , P ) =
1

K

K∑
k=1

1

mk

∑
i:Zi∈Dk,B

ϕS(Zi) + oP (n
−1/2). (6)

Combining (5) and (6), we obtain

ψn,S − ψS

=
1

n/(2− τ)

K∑
k=1

[ ∑
i:Zi∈Dk,a

ϕ(Zi)−
∑

i:Zi∈Dk,b

ϕS(Zi) +
∑

i:Zi∈Dk,o

{ϕ(Zi)− ϕS(Zi)}
]
+ oP (n

−1/2).

By applying the standard central limit theorem,

{(1− τ)n/(2− τ)}1/2
K

K∑
k=1

1

(1− τ)mk

∑
i:Zi∈Dk,a

ϕ(Zi)
d→ N(0, σ2), and

{(1− τ)n/(2− τ)}1/2
K

K∑
k=1

1

(1− τ)mk

∑
i:Zi∈Dk,b

ϕS(Zi)
d→ N(0, σ2

S),

as n→ ∞. If ψS > 0, we have

{τn/(2− τ)}1/2
K

K∑
k=1

1

τmk

∑
i:Zi∈Dk,o

{ϕ(Zi)− ϕS(Zi)} d→ N(0, η2S).

Hence,

{n/(2− τ)}1/2(ψn,S − ψS)
d→ N(0, ν2S,τ ),

where ν2S,τ = (1− τ)(σ2 + σ2
S) + τη2S .

B.2 Proof of Proposition 2.3

It suffices to show that σ2
k,n

p→ σ2 as n→ ∞. Since

Ċ(fk,n, Pk,n; δz − Pk,n) = Ċ(fk,n, Pk,n; δz − Pk,n)− Ċ(fk,n, P ; δz − P )

+ Ċ(fk,n, P ; δz − P )− Ċ(f, P ; δz − P ) + Ċ(f, P ; δz − P ),
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we have
σ2
k,n

=
1

nk

[ ∑
i:Zi∈Dk

{Ċ(fk,n, Pk,n; δZi − Pk,n)− Ċ(fk,n, P ; δZi − P )}2

+
∑

i:Zi∈Dk

{Ċ(fk,n, P ; δZi
− P )− Ċ(f, P ; δZi

− P )}2

+
∑

i:Zi∈Dk

{Ċ(f, P ; δZi
− P )}2

+ 2
∑

i:Zi∈Dk

{Ċ(fk,n, Pk,n; δZi − Pk,n)− Ċ(fk,n, P ; δZi − P )}Ċ(f, P ; δZi − P )

+ 2
∑

i:Zi∈Dk

{Ċ(fk,n, P ; δZi
− P )− Ċ(f, P ; δZi

− P )}Ċ(f, P ; δZi
− P )

+ 2
∑

i:Zi∈Dk

{Ċ(fk,n, Pk,n; δZi
− Pk,n)− Ċ(fk,n, P ; δZi

− P )}

× {Ċ(fk,n, P ; δZi
− P )− Ċ(f, P ; δZi

− P )}
]
.

(7)

For any ϵ > 0, by Markov’s inequality and Condition (C5),

Pr

[
1

nk

∑
i:Zi∈Dk

{Ċ(fk,n, Pk,n; δZi − Pk,n)− Ċ(fk,n, P ; δZi − P )}2 ≥ ϵ | D−k

]

≤ 1

ϵ
E[{Ċ(fk,n, Pk,n; δZi

− Pk,n)− Ċ(fk,n, P ; δZi
− P )}2 | D−k]

=
1

ϵ

∫
{bk,n(z)}2dP (z) p→ 0.

Then, by the law of total expectation, the first term of (7) is oP (1). Similarly, the second term is
oP (1). Specifically, by Condition (C4), for any ϵ > 0,

Pr

[
1

nk

∑
i:Zi∈Dk

{Ċ(fk,n, P ; δZi
− P )− Ċ(f, P ; δZi

− P )}2 ≥ ϵ | D−k

]

≤ 1

ϵ
E[{Ċ(fk,n, P ; δZ − P )− Ċ(f, P ; δZ − P )}2 | D−k]

=
1

ϵ

∫
{ak,n(z)}2dP (z) p→ 0.

For the third term, by the law of large numbers,
1

nk

∑
i:Zi∈Dk

Ċ(f, P ; δZi
− P )2

p→ E{Ċ(f, P ; δZ − P )2} = σ2,

as n→ ∞. For the fourth term, we have∣∣∣∣∣ 1nk ∑
i:Zi∈Dk

{Ċ(fk,n, Pk,n; δZi
− Pk,n)− Ċ(fk,n, P ; δZi

− P )}Ċ(f, P ; δZi
− P )

∣∣∣∣∣
≤
[
1

nk

∑
i:Zi∈Dk

{Ċ(fk,n, Pk,n; δZi
− Pk,n)− Ċ(fk,n, P ; δZi

− P )}2
]1/2

×
[
1

nk

∑
i:Zi∈Dk

Ċ(f, P ; δZi
− P )2

]1/2
= oP (1).

Similarly, both of the last two terms are oP (1). Hence, it follows that σ2
k,n

p→ σ2.

By similar arguments, σ2
k,n,S

p→ σ2
S and thus ν2n,S,τ

p→ νS,τ .
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B.2.1 Verification of Condition (C5) in Remark 2.4

Suppose C(f, P ) = EP [g{Y, f(X)}]. Then

Ċ(fk,n, Pk,n; δz − Pk,n) = g{y, fk,n(x)} −
1

nk

∑
i:Zi∈Dk

g{Yi, fk,n(Xi)},

Ċ(fk,n, P ; δz − P ) = g{y, fk,n(x)} − EP [g{Y, fk,n(X)}].
By noting that

E[{Ċ(fk,n, Pk,n; δz − Pk,n)− Ċ(fk,n, P ; δz − P )}2 | D−k]

= E

[ 1

nk

∑
i:Zi∈Dk

g{Yi, fk,n(Xi)}
]2

| D−k

− E[g{Y, fk,n(X)} | D−k]
2

=
1

nk
V ar[g{Y, fk,n(X)} | D−k]

p→ 0,

the conclusion follows.

B.3 Proof of Theorem 2.6

By Theorem 2.1, for any τ ∈ [0, 1),

{n/(2− τ)}1/2(ψn,S − ψS)
d→ N(0, ν2S,τ )

as n→ ∞, where ν2S,τ = (1− τ)(σ2 + σ2
S) + τη2S , σ2 = E{ϕ2(Z)}, σ2

S = E{ϕ2S(Z)}, and η2S =

E[{ϕ(Z)− ϕS(Z)}2]. By examining the proof of Proposition 2.3, we conclude that νn,S,τ
p→ ν

(0)
S,τ

under H1. Consequently, the power function is

Pr(Tτ > z1−α | H1)

= Pr

(
ν
(0)
S,τ

νn,S,τ

{n/(2− τ)}1/2(ψn,S − ψS)

νS,τ
>
ν
(0)
S,τ

νS,τ
z1−α −

{n/(2− τ)}1/2ν(0)S,τψS

νn,S,τνS,τ
| H1

)

= Φ

(
−
ν
(0)
S,τ

νS,τ
z1−α +

{n/(2− τ)}1/2ψS

νS,τ

)
+ o(1)

= GS,n,α(τ) + o(1).

Given that ηS = σ2 + σ2
S − 2Cov{ϕ(Z), ϕS(Z)}, the asymptotic variance ν2S,τ can be expressed as

σ2 + σ2
S − 2τCov{ϕ(Z), ϕS(Z)}. Let

φ1(τ) =
(1− τ)(σ2 + σ2

S)

σ2 + σ2
S − 2τCov{ϕ(Z), ϕS(Z)}

and

φ2(τ) =
{n/(2− τ)}1/2ψS

(σ2 + σ2
S − 2τCov{ϕ(Z), ϕS(Z)})1/2

.

Since 2Cov{ϕ(Z), ϕS(Z)} ≤ σ2 + σ2
S and τ ∈ [0, 1), it follows that φ1(τ) > 0 and φ2(τ) > 0.

When Cov{ϕ(Z), ϕS(Z)} ≥ 0, we observe that φ1(τ) is monotonically decreasing, and φ2(τ) is
monotonically increasing with respect to τ . Therefore, the approximate power function GS,n,α(τ)
increase with τ .

B.3.1 On Remark 2.8

Here we demonstrate the validity of the condition Cov{ϕ(Z), ϕS(Z)} ≥ 0 in assessing variable
importance when utilizing the square loss. Consider the scenario where Y = E(Y | X) + ε, with
the noise ε assumed to be independent of the covariate X . We seek to evaluate the significance
of a specific set of covariates U in predicting the response, where X = (U⊤, V ⊤)⊤. Assuming
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E(Y | X) ∈ F and E(Y | V ) ∈ FS , the optimal prediction functions within F and FS are
f(X) = E(Y | X) and fS(V ) = E(Y | V ), respectively.

Referring to Remark 2.4, the covariance Cov{ϕ(Z), ϕS(Z)} can be expressed as

Cov{ϕ(Z), ϕS(Z)} = Cov[{Y − f(X)}2, {Y − fS(V )}2]
= V ar(ε2) + Cov[ε2, {f(X)− fS(V )}2] + 2Cov[ε2, ε{f(X)− fS(V )}].

It’s evident that the first two terms are non-negative. Regarding the third term, since ε is independent
of X and Ef(X) | V = fS(V ), we deduce

Cov[ε2, ε{f(X)− fS(V )}] = E[ε3{f(X)− fS(V )}]− E(ε2)E[ε{f(X)− fS(V )}]
= E(ε3)E{f(X)− fS(V )} − E(ε2)E(ε)E{f(X)− fS(V )}
= E(ε3)E[E{f(X)− fS(V ) | V }]
= 0.

Thus, Cov{ϕ(Z), ϕS(Z)} ≥ 0 follows.

C The Zipper Algorithm

Algorithm 1 The algorithm for the proposed Zipper testing procedure
Input: Observed data {Zi}ni=1, number of folds K, and slider parameter τ ∈ [0, 1)
Randomly partition {Zi}ni=1 into K disjoint folds D1, . . . ,DK

for k = 1, . . . ,K do
Using data in {Dj}Kj=1 \ Dk, construct estimators fk,n of f and fk,n,S of fS
Using data in Dk, construct estimator Pk,n of P
Randomly divide Dk into two splits Dk,A and Dk,B of roughly equal size mk, with an overlap
Dk,o such that |Dk,o| = ⌊τmk⌋. Let Dk,a = Dk,A\Dk,o and Dk,b = Dk,B\Dk,o. Using data in
Dk,I , construct estimators Pk,n,I for I ∈ {o, a, b}
Compute Ck,n = τC(fk,n, Pk,n,o) + (1 − τ)C(fk,n, Pk,n,a) and σ2

k,n =

n−1
k

∑
i:Zi∈Dk

{Ċ(fk,n, Pk,n; δZi
− Pk,n)}2, where nk = |Dk|

Compute Ck,n,S = τC(fk,n,S , Pk,n,o) + (1 − τ)C(fk,n,S , Pk,n,b) and σ2
k,n,S =

n−1
k

∑
i:Zi∈Dk

{Ċ(fk,n,S , Pk,n; δZi
− Pk,n)}2

end for
Compute Cn = K−1

∑K
k=1 Ck,n, Cn,S = K−1

∑K
k=1 Ck,n,S and estimator ψn,S = Cn − Cn,S

of ψS
Compute ν2n,S,τ = (1− τ)K−1

∑K
k=1(σ

2
k,n + σ2

k,n,S)

Output: P-value 1− Φ({n/(2− τ)}1/2ψn,S/νn,S,τ ), where Φ denotes the distribution function
of N(0, 1)

D The Confidence Interval for the Dissimilarity Measure

To construct a valid confidence interval for the dissimilarity measure ψS , it is crucial to use a
consistent variance estimator irrespective of whether H0 holds or not. This can be achieved by
incorporating an additional plug-in estimator of η2S , which is a component of the asymptotic variance
ν2S,τ . Let ν2n,S,τ = K−1

∑K
k=1{(1− τ)(σ2

k,n+σ
2
k,n,S)+ τη

2
k,n,S}, where for each k ∈ {1, . . . ,K},

η2k,n,S =
1

nk

∑
i:Zi∈Dk

{Ċ(fk,n, Pk,n; δZi
− Pk,n)− Ċ(fk,n,S , Pk,n; δZi

− Pk,n)}2.

The confidence interval for ψS can be formulated as(
ψn,S − zα/2νn,S,τ

{n/(2− τ)}1/2 , ψn,S +
zα/2νn,S,τ

{n/(2− τ)}1/2
)
,

which has an asymptotic coverage of 1− α.
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Table 4: Empirical sizes (in percentage) of the Zipper method against different values of τ with
n = 500.

τ
Model p 0 0.2 0.4 0.6 0.8 0.9 0.95 0.99

Normal 5 4.6 3.2 3.2 4.4 4.9 4.5 3.7 2.2
1000 5.9 5.9 5.8 4.2 5.6 7.4 8.2 11.1

Binomial 5 4.2 3.3 2.4 2.2 3.6 3.1 3.0 3.5
1000 5.1 5.7 4.2 5.1 5.6 9.5 11.7 20.9

Table 5: Empirical power (in percentage) of the Zipper method against different values of τ with
n = 500. For the normal model, we set δ = 2 for the low-dimensional setting and δ = 5 for the
high-dimensional setting. For the Binomial model, we set δ = 3 for the low-dimensional setting and
δ = 5 for the high-dimensional setting.

τ
Model p 0 0.2 0.4 0.6 0.8 0.9

Normal 5 46.9 54.8 72.0 86.4 98.5 100.0
1000 87.6 91.0 97.7 99.9 100.0 100.0

Binomial 5 89.8 94.7 98.4 99.4 99.9 100.0
1000 78.6 85.0 92.7 98.2 99.7 100.0

E Additional Simulations

E.1 On the Slider Parameter

To assess the influence of the slider parameter τ on the size and power of the proposed Zipper approach,
we conduct a small simulation study using the simulation settings outlined in the manuscript. The
results of this study are summarized in Tables 4–5. Notably, we observe that the empirical sizes are
consistently controlled when τ falls within an appropriate range. However, selecting excessively
large values of τ led to a slight inflation in size, primarily due to the poor normal approximation
under the null hypothesis, as discussed in Section 2.5. Furthermore, the empirical power increases as
the value of τ increases, which aligns with our expectations.

E.2 Additional Simulation Experiments

To provide a comprehensive analysis of the empirical sizes and power across various settings, we
conducted additional simulations using the simulation settings outlined in the manuscript. We
explored different combinations of the sample size n and dimension p. Moreover, we investigated a
model with a heavy-tailed response by considering Y = Xβ + σY ε/3, ε ∼ t3, where t3 represents
the t-distribution with 3 degrees of freedom. The results for empirical sizes and power with δ = 1
are summarized in Tables 6 and 7. These additional findings consistently support the conclusion that
the Zipper method demonstrates reliable empirical size performance and provides significant power
enhancement compared to methods that utilize non-overlapping splits.

F Comparison between Zipper and Data Perturbation Methods

To evaluate variables with zero-importance, Rinaldo et al. [13] and Dai et al. [23] proposed a data
perturbation technique, injecting independent zero-mean noises into empirical influence functions.
We describe this method using our own terminology. We begin by partitioning the data randomly
into K folds, denoted as D1, . . . ,DK , ensuring equitable sizing across folds. For each fold index
k ∈ {1, . . . ,K}, we construct estimators fk,n and fk,n,S for the oracle prediction functions f and fS ,
correspondingly, utilizing data excluding fold Dk. This method employs the following test statistic:

ϕn,S,pert,ρ =
1

n

K∑
k=1

[ ∑
i:Zi∈Dk

ϕ(Zi)− ϕS(Zi) + ρεi

]
,
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Table 6: Empirical sizes (in percentage) of various testing procedures.

Model n p Zipper WGSC-3 DSP-Split WGSC-2 DSP-Pert

Normal

200
5

3.6 5.0 3.7 0.4 12.5
500 2.1 4.2 4.7 0.0 9.8

1000 3.0 5.7 3.6 0.3 10.7
200

10
3.2 4.3 3.9 1.2 8.9

500 3.7 4.5 4.9 0.3 9.7
1000 2.5 4.0 4.6 0.3 9.6
500 200 4.7 6.3 4.8 17.1 24.6

1000 5.2 5.1 5.0 13.6 25.9
1000 1000 4.4 6.3 3.9 15.8 36.6

t3

200
5

3.5 3.4 3.7 0.3 11.0
500 4.3 4.2 3.8 0.3 8.5

1000 4.3 3.7 4.6 0.3 8.1
200

10
2.4 2.6 2.6 1.3 8.5

500 5.6 4.1 3.7 0.0 8.4
1000 4.3 4.0 3.6 0.2 8.6
500 200 4.9 3.6 5.0 15.4 24.7

1000 5.4 3.9 5.3 12.1 27.8
1000 1000 6.4 3.5 3.9 14.9 34.0

Binomial

200
5

3.7 4.9 3.4 0.4 5.9
500 3.3 4.5 3.9 0.2 4.6

1000 2.8 4.1 3.7 0.2 4.4
200

10
3.1 6.4 3.1 2.0 6.5

500 2.8 5.2 4.1 0.6 5.0
1000 3.2 4.5 3.7 0.7 4.1
500 200 7.0 3.2 6.3 15.2 27.9

1000 6.3 3.8 6.0 16.4 24.9
1000 1000 6.3 4.2 5.4 16.9 32.2

Table 7: Empirical power (in percentage) of various testing procedures for δ = 1.

Model Normal t3 Binomial
n p Zipper WGSC-3 DSP-Split Zipper WGSC-3 DSP-Split Zipper WGSC-3 DSP-Split

200
5

9.5 7.7 6.7 26.5 13.2 14.0 6.9 6.4 5.3
500 44.1 10.5 9.6 66.3 17.6 16.4 49.0 12.4 11.5
1000 86.8 13.9 14.9 89.0 21.1 18.4 91.7 20.6 19.6

200
10

10.3 7.6 7.9 28.6 11.4 13.9 3.7 7.4 2.5
500 42.0 11.2 10.4 68.7 18.4 18.8 36.2 12.7 10.3
1000 87.9 15.7 11.6 87.6 18.4 20.5 87.9 19.5 16.0

500 200 63.6 16.7 14.2 87.0 34.9 32.8 79.2 24.9 23.0
1000 96.5 27.3 27.0 93.2 42.1 42.8 99.1 49.1 44.8

1000 1000 10.4 7.7 5.6 22.5 6.2 7.8 22.0 6.7 8.4

where εi ∼ N(0, 1) for i = 1, . . . , n are independent noise, and ρ represents the perturba-
tion parameter governing the extent of perturbation. It can be established that for any ρ > 0,
n1/2(ϕn,S,pert,ρ − ψS)

d→ N(0, ν2S,pert,ρ), as n → ∞, where ν2S,pert,ρ = η2S + ρ2, and
η2S = E[{ϕ(Z) − ϕS(Z)}2]. Following the plug-in principle, we employ the normalized test
statistic

Tpert,ρ := n1/2ϕn,S,pert,ρ/νn,S,pert,ρ,

which converges in distribution to N(0, 1) under H0 for any ρ > 0. Here
ν2n,S,pert,ρ = K−1

∑K
k=1 η

2
k,n,S + ρ2, where for each k ∈ {1, . . . ,K}, η2k,n,S =

nk
−1
∑

i:Zi∈Dk
{Ċ(fk,n, Pk,n; δZi − Pk,n) − Ċ(fk,n,S , Pk,n; δZi − Pk,n)}2. For a prespecified

significance level α ∈ (0, 1), this method rejects H0 if Tpert,ρ > z1−α.
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Indeed, a direct correspondence emerges between the slider parameter τ within our Zipper and
the perturbation parameter ρ employed in the data perturbation technique, thereby facilitating a
comparative analysis of the two methodologies. To elucidate this connection, we demonstrate that,
under H1 : ψS > 0, the power function corresponding to the data perturbation method is

Pr(Tpert,ρ > z1−α | H1)

= Pr

(
n1/2(ϕn,S,pert,ρ − ψS)

νS,pert,ρ
> z1−α − n1/2ψS

νS,pert,ρ
| H1

)
= Φ

(
−z1−α +

n1/2ψS

νS,pert,ρ

)
+ o(1)

:= GS,n,α,pert(ρ) + o(1).

First notice that our Zipper method with τ = 0 (i.e., the vanilla sample-splitting) has approximate
power

GS,n,α(0) = Φ

(
−z1−α +

(n/2)1/2ψS

(σ2 + σ2
S)

1/2

)
.

We establish an upper bound for the perturbation parameter ρ, namely, ρ2 ≤ 2(σ2 +σ2
S)− η2S , where

equality yields GS,n,α,pert(ρ) = GS,n,α(0). Should ρ2 > 2(σ2 + σ2
S)− η2S , it becomes evident that

GS,n,α,pert(ρ) ≤ GS,n,α(0), suggesting that the data perturbation technique may even exhibit lower
power.

The idea is to establish a relationship between τ and ρ such that both methods yield similar power,
given their valid size control for fixed τ and ρ. Employing a consistent variance estimator as per
Remark 2.9, our Zipper method exhibits an approximate power of

G
(CI)
S,n,α(τ) = Φ

(
−z1−α +

{n/(2− τ)}1/2ψS

νS,τ

)
.

By setting G(CI)
S,n,α(τ) = GS,n,α,pert(ρ), we obtain

ρ2 = (2− τ)(1− τ)(σ2 + σ2
S)− (1− τ)2η2S , (8)

establishing a one-to-one correspondence. Under this correspondence,

GS,n,α,pert(ρ) = G
(CI)
S,n,α(τ) ≤ GS,n,α(τ),

where the latter denotes the approximate power of our Zipper method utilizing the proposed variance
estimation scheme. Thus, our Zipper method can be regarded as a data-adaptive perturbation strategy
that circumvents external randomization while potentially offering power enhancement owing to the
variance estimation scheme.

Figure 4 illustrates the empirical power comparison between Zipper and the data perturbation method,
where the perturbation parameter ρ = ρ(τ) is determined by (8), across various values of τ . This
assessment is conducted according to the low-dimensional normal response scenario outlined in
Section 3, particularly with p = 5 and n = 500. As anticipated, Zipper and the perturbation method
demonstrate the same power when τ = 0, while for τ ∈ (0, 1), Zipper consistently exhibits superior
power compared to the perturbation method.
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Figure 4: Empirical size and power comparison of Zipper and data perturbation method as a function
of τ . The dot-dashed horizontal line represents the intercept at α = 5%.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The paper’s contributions and scope are specifically claimed in the abstract
and introduction, and a single subsection 1.4 fully summarizes our contributions briefly.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss our limitations and further developments in Section 4.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: We provide our assumptions in Section A and complete and correct proof in
Section B in appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We fully describe our settings in synthetic experiments and real-data examples
in Section 3, and the information provided is enough to the reproducibility of our main
experimental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We concretely describe our Zipper algorithm in Section C, and our sythetic
data generating procedure in Section 3. The datasets utilized in real-data analysis are sourced
from publicly available materials on the internet. We think they are sufficient to reproduce
the main experimental results.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We specify all our training details in Section 3. And we discuss the choice of
the hyperparameter τ in Section 2.5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Our work purpose on statistical inference on algorithm/model agnostic
goodness-of-fit tests. The experiments conducted in our paper all focus on the type-I
or type-II error of statistical tests, and can be dual to construct confidence interval in applica-
tion. We further represent standard deviation upon repetitions of our synthetic experiments
in Table 3.1.1 and Table 2, and error bars in Figure 2.
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• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The computer resources used are briefly provided in Section 3. And the time
of execution of our method depend on the algorithm/model chosen in fitting the model, so it
varies among different application scenarios.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We briefly reviewed of the NeurIPS Code of Ethics, and make sure that our
research conducted in the paper conform with the NeurIPS Code of Ethics in every respect.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
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Justification: Our work conducts a general framework of algorithm/model agnostic inference
on goodness-of-fit in regression. This is a fundamental research on statistical methodology
and has no direct societal impacts as far as we currently understand.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The datasets used in real-data examples are all open-source datasets, and we
properly cite the original paper that produced the dataset.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
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• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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