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Abstract: Humanoids have the potential to be the ideal embodiment in environ-
ments designed for humans. Thanks to the structural similarity to the human
body, they benefit from rich sources of demonstration data, e.g., collected via
teleoperation, motion capture, or even using videos of humans performing tasks.
However, distilling a policy from demonstrations is still a challenging problem.
While Diffusion Policies (DPs) have shown impressive results in robotic manip-
ulation, their applicability to locomotion and humanoid control remains under-
explored. In this paper, we investigate how dataset diversity and size affect the
performance of DPs for humanoid whole-body control. In a simulated IsaacGym
environment, we generate synthetic demonstrations by training Adversarial Mo-
tion Prior (AMP) agents under various Domain Randomization (DR) conditions,
and we compare DPs fitted to datasets of different size and diversity. Our findings
show that, although DPs can achieve stable walking behavior, successful train-
ing of locomotion policies requires significantly larger and more diverse datasets
compared to manipulation tasks, even in simple scenarios. Videos can be found at
https://sites.google.com/view/dps-for-humanoid-control.
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1 Introduction

Humanoid robots hold great promise as ideal embodiments for human-centered environments due
to their structural resemblance to the human body, which enables them to leverage rich datasets like
motion capture for learning control policies. As more companies begin to develop, produce, and
commercialize humanoid robots, there is a growing demand for robust and general whole-body mo-
tion policies. While diffusion models, in particular Diffusion Policies (DPs), have recently achieved
significant success in robot arm manipulation [1, 2], research on whole-body control — encompass-
ing simultaneous locomotion and arm movements — remains relatively limited [3, 4]. Most existing
approaches that use diffusion models for robot control rely on small real-world datasets, which are
often sparse and difficult to collect [5, 6, 7]. In contrast, training Reinforcement Learning (RL) poli-
cies for locomotion and whole-body control in randomized simulators has demonstrated substantial
robustness and success [8, 9]. Recent work, such as DiffuselLoco [10], has shown that diffusion
models can integrate multiple source policies into a unified model for robot control. However, while
the focus has largely been on the development of the diffusion framework, the impact of the source
dataset used for training remains underexplored.

To address the insufficient understanding of the role of dataset characteristics on training DPs, we
investigate different types of Domain Randomization (DR) — such as perturbations, dynamic vari-
ations, and terrain changes — as well as varying dataset sizes. We collect datasets with distinct
randomization strategies and sizes to train separate DPs. Our findings reveal that DR is crucial for
training successful DPs: even large datasets without sufficient randomization struggle to generalize
to non-randomized environments.
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Contributions. Our contributions are twofold. First, we present the first ablation study on the impact
of DR in dataset generation for training DPs in humanoid control. This includes not only commonly
used DR techniques but also the introduction of a novel approach. Second, we analyze the effect of
dataset size on training, exploring how varying amounts of data interact with different randomization
techniques. Notably, while only a few trajectories may suffice for manipulation tasks, training DPs
for whole-body control demands substantially more data to achieve robust performance.

2 Related Work

Imitation Learning for Humanoid Control. One prominent approach in whole-body control is
Imitation Learning (IL) from motion capture data. DeepMimic [11] introduced an RL framework
where physics-based characters learn skills by mimicking reference motions from a set of motion
clips. By combining imitation rewards with task-specific objectives, DeepMimic allows characters
to both mimic reference motions and achieve specific goals. Most imitation learning approaches are
based on Generative Adversarial Imitation Learning (GAIL) [12], in which a discriminator is learned
and used as a reward signal to an RL policy. Various adaptations have been proposed [13, 14, 15,
16], with Adversarial Motion Prior (AMP) [14] achieving notable success. AMP leverages the
discriminator’s learned reward as a style reward, supplemented with additional handcrafted rewards
for task-specific objectives. This approach encourages the agent to replicate the style of the dataset
while effectively accomplishing the given tasks. Escontrela et al. [17] demonstrated that AMP can
produce natural locomotion strategies for quadrupedal robots using only a few seconds of motion
capture data from a German Shepherd. Extending these ideas to humanoid robots, however, presents
additional challenges due to their higher degrees of freedom and balance requirements. He et al.
[18] proposed Human-to-Humanoid (H20), a framework for real-time whole-body teleoperation of
humanoid robots using an RGB camera. They introduced a “sim-to-data” process to filter and select
feasible motions from a large human motion dataset. While their approach scales to a large number
of motions, the dataset still consists of retargeted human motions without added variability. Our
work builds upon this foundation by utilizing diffusion policy and versatile DR.

Diffusion Policies in Robot Learning. Recent advancements in robotics have seen the integration
of diffusion models into policy learning for legged locomotion tasks. Diffusion models, known
for their ability to capture complex, multimodal distributions [19], have been effectively utilized to
model the stochasticity and adaptability required for locomotion in varied environments. Kang et
al. [19] propose Efficient Diffusion Policies (EDP) for offline RL, aiming to overcome the com-
putational inefficiency of previous diffusion-based approaches like Diffusion-QL. While their focus
is on improving training efficiency and compatibility with various offline RL algorithms, the data
collection in their experiments relies on existing offline datasets from benchmarks like D4RL [20],
without specific emphasis on DR or data diversity.

Ren et al. [21] introduce Diffusion Policy Policy Optimization (DPPO), a framework for fine-tuning
diffusion-based policies using policy gradient methods. Their approach demonstrates improved
performance and training stability over other RL methods for diffusion policies. While their work
focuses on fine-tuning pre-trained policies and does not delve deeply into the data collection process,
they use DR during sim-to-real transfer. By adding noise to observations and actions, they simulate
imperfect conditions, thereby improving the robustness of their policies in real-world deployments.
However, the application of DR, in their approach compared to ours, is not extensively explored.

BiRoDiff introduced by Mothish et al. [22] presents a real-time controller based on diffusion mod-
els for bipedal robots. They collect their source dataset by deploying a deep reinforcement learning
policy trained via Proxmimal Policy Optimization (PPO) on their custom-made bipedal robot, Stoch
BiRo. The dataset comprises observation-action pairs collected from walking on flat ground and
slopes with specific inclinations. Their framework emphasizes generalization to unseen terrains,
demonstrating the capability of diffusion policies to handle multiple walking behaviors with differ-
ent velocities on various terrains. However, their approach primarily focuses on the generalization
aspect without delving deeply into the challenges posed by dynamic whole-body control.



Huang et al. proposed DiffuseLoco [10], a framework that leverages diffusion models to learn multi-
skill locomotion policies from offline datasets. DiffuseLoco showcases the potential of diffusion
policies in capturing diverse locomotion skills, including agile maneuvers like hopping and bipedal
walking. To collect the source dataset, they generate data from multiple single-skill control policies
obtained through various methods, including reinforcement learning and central pattern generators.
They focus on offline learning, which allows them to scalably incorporate diverse skills. While their
work highlights the scalability and versatility of diffusion models in robotics, it also addresses the
importance of DR in handling dynamic tasks involving whole-body motions.

While these works collectively advance the field of diffusion-based policies for locomotion, there is
a gap in addressing the challenges posed by dynamic whole-body control tasks. DR has been shown
to be crucial in bridging the simulation-to-reality gap, particularly for tasks involving high dynam-
ics and complex interactions [23, 24]. Our approach builds upon the strengths of diffusion-based
policies and explicitly integrates DR to handle the complexities of dynamic whole-body control
tasks. By introducing variability during training, our method enhances the robustness and adapt-
ability of the learned policies, ensuring better performance in real-world scenarios with diverse and
unpredictable conditions.

3 Framework for Offline Dataset Generation

To generate datasets for training Diffusion Policies, we first train robust RL policies using AMP [25].
This method integrates goal-conditioned RL with IL. In our case, the goal is a velocity com-
mand. For the imitation component, we leverage 10 motion capture sequences from the AMASS
dataset [26], which include walking in various directions (forward, backward, sideways), in-place
rotations, walking in circles, and “8-figure” walking.

The policy is trained under extensive Domain Randomization (cf. Table 2), incorporating several
widely adopted regularization rewards (cf. Table 1) to enhance the stability and smoothness of the
resulting motions [8]. Having trained the RL policy, we utilize it to collect a total of 24 distinct
datasets (3 dataset sizes across 8 environment setups), which are used to train diffusion models both
individually and collectively. The specific environment randomization configurations are detailed
in Sec. 3.2. Once the diffusion models are trained, we assess their performance across two dis-
tinct evaluation setups: i) without DR on a flat surface, and ii) with dynamics randomization on a
complex, uneven terrain.

3.1 Reinforcement Learning Environment

We model the environment as a Markov Decision Process (MDP), defined as a tuple
(S, A, T,R,po,7)- S denotes the state space, A represents the action space, 7 describes the tran-
sition function, R indicates the reward function, pg is the distribution of the initial state, and ~ is
the discount factor. The objective of RL is to determine the optimal parameters 6 of a parameterized
policy mp : S — A that maximizes the expected discounted return: J(0) = E,, {Zz:ol fytrt} .

We use the AMP algorithm in a simulated Unitree H1 humanoid robot environment. Actions are rep-
resented by a 19-dimensional vector a; € A = RY, which indicates the desired positional changes
for each actuated joint, later processed by a Proportional-Derivative (PD) controller. Similar to prior
work [10], we give the critic privileged information such as base linear and angular velocities, while
the policy receives a reduced observation vector without velocities. The privileged observations
represented as o, € R%, include the current linear and angular velocities of the humanoid, the ori-
entation of the gravity vector relative to the robot’s base frame, joint positions and velocities, target
command, and previous actions. A command vector c; is used to define the target velocities along
the x-, y-, and yaw-axis in the robot’s base frame.

To encourage the robot to effectively track the desired command velocities ©; 4, 9, and the global
yaw rate w;, we define a task reward function similar to [17], that assesses how closely the robot’s
actual motion aligns with these targets. Specifically, we want to minimize the difference between



Table 2: Dynamics Randomization

Table 1: Regularization Rewards Parameter Range
Name Value Weight Body friction [0.7, 1.3]
DoF lower limit — max(6 — Bjimow, 0) -4.0 Aqud base mass [kg] [-2.0,2.0]
DoF upper limit min(f — Grimup, 0) -4.0 Link mass multiplier [0.8, 1.2]
DOF velocities 61l -3.0e-5 Cgﬁ%a}mi multlpltle[r L ([)0-185, 1).21]5]
. i isplacement [m -0.15, 0.
Non]—)i;) :; zgzzzl(e;?elﬁr;ﬁ on H!ﬁ” | _1_'?%_7 External perturbation [m/s] [0, 0.6]
. Joint friction coeff. [0.01, 1.15]
Joint damping coeff. [0.3, 1.5]

the robot’s current linear and angular velocities v; 4, vy, wy and the desired values. The reward
function 7, at each timestep is defined as

Tg = Wy €XP (_”@t,my - Ut,my”) + wy exp (—|wr — wyl) . (D

The desired velocities are sampled uniformly from the ranges: o, € (—1,1) m/s, ¥, €
(—0.7,0.7) m/s, & € (—1.57,1.57) rad/s. This task reward function is combined with regu-
larization rewards defined in Table 1 and a style reward function learned by a discriminator in AMP.

3.2 Environment Randomizations During Data Collection

DR is used in RL to enhance an agent’s robustness by training it across a distribution of similar
environments, rather than just a single environment. This approach has proven crucial for addressing
the sim-to-real gap in RL, enabling zero-shot transfer of policies from simulation to the real world.
In this work, we aim to apply DR to randomize the source dataset used for training the DP. To
achieve this, we introduce various randomization clusters below, including both commonly used
techniques and newly proposed ones. While we apply all DR during the training of the AMP policy,
we implement each one separately during the collection of the source dataset used to train the DP.
This approach enables us to identify the effects and importance of each randomization method.

Dynamics randomization. During dynamics randomization, we randomize the simulator’s param-
eters, as initially proposed by [27]. A detailed overview of randomized parameters of the simulator
is given in Table 2.

Perturbation randomization. We apply force perturbations of random amplitude to the humanoid’s
torso, capping the maximum amplitude at 0.6 m/s. These perturbations are introduced at 3-second
intervals. The primary objective of perturbation randomization is to destabilize the robot’s state,
compelling it to adapt and learn effective recovery strategies from unstable conditions. By exposing
the humanoid to various disturbances, we aim to enhance its resilience and improve its ability to
maintain balance and perform tasks in dynamic environments.

Terrain randomization. Instead of simulating a flat ground only, we randomize the terrain the
humanoid is walking on. To do so, we utilize terrains supported in IsaacGym which include terrains
with obstacles as well as bumpy surfaces.

Initial state randomization. Reference state initialization has proven important for imitating human
movements [11, 14]. Hence, we sample an initial state from the expert dataset at the beginning of
each episode to initialize the simulation. To further diversify the source dataset, we sample random
joint positions and velocities in a limited range at a 50% chance.

Humanoid scale randomization. Al-Hafez et al. [28, 29] recently proposed an idea of using mul-
tiple body scales during training. Here we aim to investigate how data collected from humanoids of
different scales impacts the performance of the Diffusion Policy. We initially trained three separate
RL policies, each for a different scale. However, we later discovered that our RL policy, originally
trained with a single scale, remains robust to a range of variations in the humanoid scale. As a result,
we opted to use this policy for data collection. When scaling is applied, the mass and inertia of all
links are scaled by factors of k3 and k®, respectively, where k is the scaling factor. To account for
these changes, we scale the PD gains of the motors and the torque limits by a factor of k* for each
scale. During data collection, humanoids of scales 0.8, 1.0, and 1.2 are used.
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Figure 1: Proposed method. First, a robust and stable RL policy is trained using AMP under ex-
tensive Domain Randomization. This policy is then used for data collection, to subsequently train
Diffusion Policies. We generate different datasets, each with different DR applied during data col-

lection, and we train DPs on each dataset separately. Finally, performance of each DP is evaluated
on two environments: with and without DR.

4 Diffusion Models for Whole-Body Humanoid Control

In a recent work, Huang et al. [10] utilized diffusion models for learning skill transitions from a
set of separately trained RL skill policies. Similarly, we adopt an encoder-decoder architecture,
incorporating two 2-layer MLP encoders and six Transformer decoder layers, each having an 8-
head cross-attention layer. The MLP encoders embed the previous state-action transitions and goal
information, which — along with the diffusion timestep embedding — serve as conditional inputs.
Ground-truth actions, after the addition of noise, are passed through the Transformer decoder layers.
In each layer, cross-attention weights are computed between the noisy actions and the conditional
information. Finally, the model minimizes the mean square error loss between the predicted and
sampled noise. As proposed by Huang et al. [10], we employ receding horizon control, where
predictions are made for n future steps, but only the first predicted action is executed.

Figure 1 illustrates the overall setup. Motion sequences are collected from the AMASS dataset, from
which the global positions and rotations of the hands and feet of a human subject are extracted. These
keypoints are then processed using the MuJoCo simulator to solve the inverse kinematics problem,
taking into account the humanoid morphology and potential collisions. This approach generates
motion sequences consistent with humanoid structure, although not necessarily aligned with the
physical dynamics of the real world or robot. These sequences, however, provide valuable style
information, significantly reducing the need for manual reward shaping. During training, this style
information — together with similarly structured observations from the simulator — is provided to
a discriminator within the AMP framework. The discriminator evaluates how closely the humanoid
motions in simulation resemble the preprocessed mocap data. Once the RL policy is trained, it
serves as a data generator for subsequent training of diffusion-based policies.
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Figure 2: Evaluation of Diffusion Policies in a non-randomized target environment. Top: A plot dis-
playing the normalized performances of all configurations, with tracking performance and smooth-
ness inverted for unified metrics (higher values indicate better performance). Bottom: A table
presenting detailed results, including the success rate (higher is better), tracking performance (lower
is better), and smoothness (lower is better).

5 Results

We gathered a total of 24 datasets, which comprise 8 distinct environment setups and 3 dataset sizes:
500K, 2M, and 8M transitions of observations and actions. Each diffusion policy is trained with 3
different random seeds. To assess the performance of the trained DP across various environments,
we create two validation environments: one without DR and another with DR. Each evaluation lasts
for 10 seconds, which corresponds to 500 simulation steps. The commanding velocity is set to 1 m/s
in the forward direction. We evaluate the performance using three metrics: success rate, tracking
performance, and smoothness. The success rate is defined as the number of environments that do
not terminate before the end of the episode. The tracking performance is measured by the Euclidean
distance between the current and commanded velocities. Smoothness is the sum of squared L?
norms between two consecutive actions. Training times on an Nvidia V100-16GB GPU are as
follows: approximately 1 hour and 25 minutes for a dataset of 500,000 samples, about 5 hours for a
dataset of 2 million samples, and roughly 23 hours and 17 minutes for a dataset of 8 million samples.

5.1 Evaluation on Non-Randomized Target Environment

First, we evaluate DPs in a non-randomized target environment. All DPs are trained on datasets
generated with various randomizations during data collection. Figure 2 presents the results for
this setting. As observed, the DP does not achieve stable walking, even when DR is applied with
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Figure 3: Evaluation of Diffusion Policies in a randomized target environment. Evaluation of Dif-
fusion Policies in a non-randomized target environment. Top: A plot displaying the normalized
performances of all configurations, with tracking performance and smoothness inverted for unified
metrics (higher values indicate better performance). Bottom: A table presenting detailed results,
including the success rate (higher is better), tracking performance (lower is better), and smoothness
(lower is better).

a dataset size of 500K samples. Starting from 2M samples, some configurations achieve robust
walking, although DR becomes crucial for success. It is evident that some randomizations are
more significant than others: while the configurations with dynamics, perturbations, and terrain
randomization achieve a success rate close to 1.0, scale and initial state randomizations do not yield
successful policies. Nevertheless, with a large dataset size of 8M, most randomizations produce
strong results, with the notable exception of dynamics randomization, which achieves a success rate
of 95%.

For reference, we report the performance of the source Table 3: Source RL policy performance
RL policy in the same fixed target environment presented  in a fixed target environment (100 runs)
in Figure 2. Comparing Table 3 with the 8M+All setting Success Rate 1.0

: : : : Baseline Tracking lin. vel.  0.12 £ 0.0
from Figure 2, we see that our best lefu51qn Policy can Smoothness 2.89 £ 0.02
match the performance of the source RL policy.

5.2 Evaluation on Randomized Target Environment

Second, we evaluate DPs in a randomized target environment. We generate this environment by
applying milder domain randomization to provide a fair setup for all configurations. To do so,
we applied only terrain and dynamics randomization, where we reduced the range of dynamics
randomization. Detailed parameters are shown in Table 4.



Once more, all DPs are trained on datasets generated with var- Table 4: DR during evaluation

ious randomizations during data collection. When comparing Parameter Range
these results to those from the non-randomized target envi- Body friction (0.8, 1.2]
. .o Added base mass [kg] [-1.,1]

ronment, the impact of each randomization cluster becomes - -
. . Link mass multiplier [0.9, 1.1]
clearer. In the results using 500K samples, no configuration PD gains multiplier [0.9, 1.1]

achieves stable walking. However, starting from 2M samples, =~ COM displacement [m]  [-0.1, 0.1]
. . . . Joint friction coeff. [0.01, 0.5]
perturbations yield strong results, while other configurations X X
3 K Joint damping coeff. [0.3,1.]
perform poorly. With a larger dataset size of 8M samples, per-
turbation and terrain randomization demonstrate the strongest outcomes, whereas the other configu-
rations perform less effectively, with dynamics randomization only achieving a success rate of 50%.

Comparing DPs performance to the source RL policy, we  Table 5: Source RL policy performance
again find that our best DP is able to match the RL policy in 100 randomized target environments

performance, despite target environment randomizations Basel SUECESSI Rate Lo 131.00 0
: aseline Tracking lin. vel. .13+ 0.
as can be seen in Table 5. Smoothness 145 £ 036

6 Discussion

Our results reveal two key findings. First, we find that DR is essential across all dataset sizes, even
when the DP is evaluated in environments equivalent to those used for collecting the training dataset
(see 5.1). Second, we note that the dataset size also plays a significant role when applying DR.
This contrasts sharply with previous work in DP for manipulation, where often only a few expert
trajectories are sufficient to accomplish a task. This finding emphasizes the importance of both DR
and dataset size in complex and dynamic tasks, such as whole-body humanoid control.

We also found that not all randomizations are of equal importance. For some of the randomization
setups, an increase of the dataset size from 2M to 8M leads to significantly better performance (cf.
Figure 2 and Figure 3, columns “3 Scales” and “Init state rand.”). In other cases, however, the
improvement in performance is marginal, and the overall performance is low (cf. Figure 3, columns
“No rand.” and Dynamics), highlighting the fact that the dataset size alone cannot compensate for
the lack of diversity in the training data.

In the settings, where the data was collected with external perturbations and on different terrains (cf.
Figure 2 and Figure 3, columns Perturbations, Terrain+Perturbations and All), DPs could achieve
high success rate, tracking performance, and smoothness on the datasets of size 2M. Increasing the
dataset size to 8M only slightly improved the results.

Another interesting finding is that RL policies trained under extensive DR perform well on both
smaller and larger body scales compared to the original setup. Despite the highly nonlinear changes
in the robot dynamics parameters, such as the masses and inertias of the links, the policy maintains
almost the same performance across different scales when the PD gains are scaled by a factor of k*.

7 Conclusion

We evaluated the effects of dataset size and diversity on training of DPs for whole-body humanoid
control. In particular, we investigated which randomization configurations have the largest impact
on the training performance. We found that terrain and perturbation randomization are the most im-
portant configurations to ensure high data coverage and therefore good generalization performance
of the trained DPs. Additionally, we found that the dataset size plays a crucial role when learn-
ing highly dynamic tasks such as whole-body humanoid control. We believe that our findings will
provide helpful insights for further research efforts in whole-body humanoid control using DP.
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