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Inverting cognitive models with machine learning to infer
preferences from fixations

Anonomyous Author(s)

Abstract

Inferring an individual’s preferences from their observable behavior is a key step in the de-
velopment of assistive decision-making technology. Although machine learning models such
as neural networks could in principle be deployed toward this inference, a large amount of
data is required to train such models. Here, we present an approach in which a cognitive
model generates simulated data to augment limited human data. Using these data, we train
a neural network to invert the model, making it possible to infer preferences from behavior.
We show how this approach can be used to infer the value that people assign to food items
from their eye movements when choosing between those items. We demonstrate first that
neural networks can infer the latent preferences used by the model to generate simulated
fixations, and second that simulated data can be beneficial in pretraining a network for pre-
dicting human-reported preferences from real fixations. Compared to inferring preferences
from choice alone, this approach confers a slight improvement in predicting preferences and
also allows prediction to take place prior to the choice being made. Overall, our results
suggest that using a combination of neural networks and model-simulated training data is
a promising approach for developing technology that infers human preferences.
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1. Introduction

Key to building systems that help people make better choices is inferring what people want
from their behavior (Hadfield-Menell et al., 2016). How can this inference take place? Cog-
nitive models, which specify how latent preferences generate behavior, could in principle be
applied to this problem. By using Bayesian inference to invert such a model, we can infer
preferences from behavior. However, cognitive models often fail to capture idiosyncratic
relationships between preferences and behavior, and inverting such models is computation-
ally burdensome. In contrast, machine learning models such as neural networks offer a way
to make inference computationally feasible and have greater flexibility to capture arbitrary
relationships. However, training such models requires vast amounts of behavioral data.

In this work, we propose and test a new solution to the problem of inferring preferences
from behavior, combining the strengths of cognitive models and neural networks. Our
approach is to satisfy the need for massive data to train neural networks by augmenting
limited available real human data with simulated data from a cognitive model. We apply this
approach to the problem of inferring human preferences over food items from visual fixations
between those items made during the decision-making process. Our results demonstrate that
neural networks are able to learn, from simulated data, to invert a computationally intensive
cognitive model for how individuals decide where to fixate while making a decision given
their preferences over items. Additionally, pretraining a network with simulated data and
fine-tuning with limited human data allows prediction of people’s self-reported preferences

© 2023 A. Author(s).



AUTHOR(S)

from their fixations. This demonstrates a new approach for how cognitive models can be
used to address key limitations of deploying neural networks in human-interaction systems.

In machine learning, the problem of inferring another agent’s preferences has been cast as
inverse reinforcement learning (IRL; Ng and Russell, 2000). IRL specifies a generative model
whereby agents have latent preferences (formalized as a utility function over task states
and/or actions) and make decisions that maximize those preferences. This generative model,
relating preferences to behavior, is inverted to predict the maximum a posteriori (MAP)
preferences that generated the observed behavior. This general framework of inferring
preferences by inverting a decision model has also formed the basis of cognitive models for
how individuals make inferences about others preferences based on their behavior (Lucas
et al., 2014; Jern et al., 2017; Baker et al., 2017; Jara-Ettinger, 2019). Cognitive science
has also recently provided more sophisticated models of how humans make decisions, which
can provide more accurate models relating preferences to actions to guide inference (Ho
and Griffiths, 2022), and can expand the observables over which inference can occur to data
beyond choices (e.g. response times; Gates et al., 2021).

Although TRL defines how preference inference can occur in principle, its practical use
has been limited by the computational challenge of inverting decision models. Finding
the MAP preferences typically involves searching over, and computing the likelihood of,
candidate utility functions. For many cognitive process models, computing this likelihood
for a single utility function can be quite computationally intensive. This makes a full search
process too computationally expensive to be deployed in real-time inference settings. As a
step toward making inference faster, recent work has shown that it is possible to implement
IRL in neural networks, for which inference is fast (Rabinowitz et al., 2018). However, this
approach requires large amounts of labeled training data, which is often unavailable for
real-life applications. Here, we test whether use of simulated data can alleviate this need
for real human data.

Specifically, we consider the problem of predicting preferences from visual fixations,
which is particularly valuable for virtual and augmented reality systems. When individuals
make a choice between items to acquire, they tend to move their gaze between potential
items in a stereotypic manner. This process has been studied experimentally in tasks where
a participant is presented with a screen displaying snack items, and is required to select
which of them they would prefer to eat at the end of the experiment (Krajbich et al., 2010;
Krajbich and Rangel, 2011). Recent work suggests that when making such decisions, people
fixate on the different options in a way that depends on independently provided ratings of
how much they like those items (Anonymous; Gluth et al., 2018; Jang et al., 2021). These
relationships in principle make it possible to predict individuals’ utility over items from their
fixations. Prior studies have found that, indeed, it is possible to use the total as well as
proportion of time individuals spend fixating on different items to predict, to some extent,
individuals’ preferences for those items (Goyal et al., 2015; Glaholt et al., 2009).

Here, we examine how use of a cognitive model of how individuals select fixations can
be applied to improve this inference. Anonymous presented a resource-rational model for
how individuals select both where to fixate at any point in time, and when to stop fixating
and make a choice in such tasks. According to the model, eye movements reflect optimally
selected information-gathering computations that improve the participant’s beliefs about
the utilities of different snack items. These computations can lead to a better ultimate
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decision, however they also incur a cognitive cost. By formalizing this process as a sequential
decision problem (specifically, a meta-level Markov decision process), the optimal fixation
policy can be identified. It was found that the sequences of fixations made by the optimal
policy closely corresponded to participant’s observed fixation behavior.

Our objective is to use simulated data from this model to train neural networks to infer
an individual’s preferences given their fixations. This work builds on work in cognitive
science and machine learning that has combined neural networks with simulated data to
either invert complex generative models or to predict human choices. For fitting cognitive
models to behavior, recent work has used neural networks to approximate likelihood func-
tions that might otherwise be intractable (Fengler et al., 2021). Closer to our application
here is work that has trained neural networks to directly estimate mean parameters or sam-
ple from posterior distributions of complex models, by training networks with simulated
data labeled with corresponding parameters (Radev et al., 2022; Papamakarios and Mur-
ray, 2016; Gongalves et al., 2020; Ger et al., 2023; Yildirim et al., 2020). Neural networks
used to predict human decisions have been pretrained with simulated data from cognitive
models to make up for limited real human data (Bourgin et al., 2019). Finally, neural net-
works trained to predict human choices have in turn have been used to improve cognitive
models through a process referred to as scientific regret minimization (Agrawal et al., 2020;
Peterson et al., 2021; Kuperwajs et al., 2023).

We turn this approach toward the problem of estimating human preferences from eye
fixations. Our specific approach is to train neural networks on simulated fixation and choice
data from the model presented in Anonymous. We first test whether we can simply invert the
model; that is, we provide neural networks with a sequence of simulated fixations followed
by a choice and test whether they output correct utilities over the three items. Following
this, we validate the approach using real human data on a trinary choice task, reported in
Krajbich and Rangel (2011). We determine whether neural networks can predict people’s
reported utilities given their fixations and choices, how this compares to prediction using
choice alone, and then also whether simulated data complements using human data alone
in training models on this task.

2. Methods

2.1. Human Data

Human data consisted of 2965 trials reported in Krajbich and Rangel (2011) in which
participants made choices over three food items after having the opportunity to engage in
a sequence of fixations between them. Fixations, f;;,, reflect the item most fixated on in a
.1 second bin. Prior to all choices, participants provided liking ratings (utilities) over the
full set of items.

2.2. Simulated Data

Simulated data was generated using the model described in Anonymous. To simulate a
single trial, j, a utility, u;s, was drawn for each snack item, s, from P(u), which was defined
by fitting a Gaussian distribution to the full set of item ratings from Krajbich and Rangel
(2011). Given such “true” utilities over items, the model generates a sequence of fixations,
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fjt.<T, over by items, followed by a choice, ¢jt;, j = (fjt1s fita, - Cjty). At a high level,
each simulated fixation on item s collects a sample from a distribution of item utilities
centered on uj,, with Gaussian noise. This sample is used to increase the accuracy of an
estimate of that item’s utility. Optimal fixations reflect the information gathering actions
that balance the benefit of making a choice with a more accurate utility estimates with the
cost of spending additional time. Using this model, we simulated 1.8 million trials.

2.3. Input and Target Data Representation

For each trial, j, consisting of T' time-points, we represented that trial’s sequence of fixations
followed by a choice as a length-T" sequence of 6-length vectors, xj;, for each time-point,
i =1:T. For each time-point, ¢« < T, the first 3 elements of x;; designated which of the
3 food items was fixated on at that time-point. The last 3 elements, which were active
only for the final time-point, T', designated which of the three items was chosen on that
time-point. Sequence-based models were trained to make a prediction of each of the three
item’s utilities at each time-point, i, in the sequence, using all input data up to time-point
i. The target sequence thus consisted of a length-3 vector where each element, j =1 : 3
contained the true utility of item j, u;, repeated for each time-point in the sequence.

We compared models trained on both fixations and choice to a model trained on choice
alone. For the model trained on choice alone, we trained a model that simply estimated
two parameters reflecting the respective utilities of the chosen item and non-chosen items.
We also defined a set of control models based on features that previous work has identified
as predictive of preferences: the cumulative total and proportion fixation time on each item
(Goyal et al., 2015; Glaholt et al., 2009). For each time point, we defined a length-9 vector,
with three values indicating the current fixated item, three indicating the total fixation
time on each item, and three indicating the proportion fixation time on each item. We then
trained multi-layer perceptrons to map these features at each time-point to utility estimates
for each item. Models including all of these features predicted utilities better than models
using only a subset of them (Appendix Fig. 4). Thus, we used this as a control model for
comparison to our approach.

2.4. Training Procedure and Hyperparameter Selection

Both simulated and human data were split into training (60%), validation (20%) and testing
(20%) sets, which were used to respectively train the model, select hyperparameters, and
test final accuracy. We trained LSTMs (Hochreiter and Schmidhuber, 1997), GRUs (Cho
et al., 2014), and Transformers (Vaswani et al., 2017). Because qualitative results were
the same across architectures, we show only LSTM results in the main text and present
results for all networks in the appendix (Appendix Figs. 5-7). Control models used multi-
layer perceptrons (MLPs). All networks were implemented in the Python package, PyTorch
(Paszke et al., 2017). We used the Adam optimizer to identify network parameters that
minimized the mean square error in predicting the set of training sequences. All training
used a batch size of 32. For each task, for all networks, we used a grid search to iden-
tify the number of hidden units (and embedding dimensionality for transformers; out of
[8,16,32,62,128,256,512]) and learning rate (out of [.00001,.0001,.001]). For each combi-
nation of these hyperparameters, we trained 5 models, each with different starting weights,
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Figure 1: Results of training model on simulated data and testing on held-out simulated
data. A. Predictive accuracy of neural networks at predicting simulated data
utilities, at each time-point prior to a choice being made. The best control model
used an MLP to map current item identity and both sum and proportion of
fixation items up to a time-point to predict utility of all three items. B. Predictive
accuracy after the choice is made. LSTMs trained on simulated fixation and choice
data outperform a model which only uses the choice that was made.

for 2 million training sequences. We then averaged these 5 error-vs-training-number curves,
smoothed them with a Gaussian kernel (¢ = 200 batches) and selected the hyperparameters
and number of training sequences that achieved minimum mean squared error. Note that
when pretraining with simulated data, we use 1 million training examples of simulated data
and then allow the number of human fine-tuning examples to vary (up to 2 million). For
the transformer networks, we set the number of attention heads to 4 and the number of
layers to 2. All other parameters were set to pytorch default values. All final results reflect
using these hyperparameters and number of training sequences, averaged over 180 runs,
each with randomized training data ordering and initial weights.

3. Results

3.1. LSTMs trained on simulated data can predict latent utilities

We first examined the ability of LSTMs trained on simulated fixation and choice data to pre-
dict corresponding latent utilities used to generate that data. An advantage for predicting
utilities from fixations in addition to choices, as opposed to predicting from choices alone,
is that prediction from fixations can be made prior to the choice occurring. Indeed, LSTMs
were able to predict latent utilities at time-points prior to choice occurrence, from fixations
alone, with prediction accuracy increasing up until the time of choice occurance (Fig. 1A).
This prediction accuracy prior to choice outperformed a variety of control models, which
used multi-layer perceptrons to map hand-designed features at a single-time point to predic-
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Figure 2: Testing on human data under different training regimes. LSTMs were trained
using either simulated data alone, human data alone, or were pretrained with
simulated data and fintuned with human data. Networks trained with both sim-
ulated and human data outperformed networks trained with either alone. A.
Predictive accuracy of neural networks at predicting self-reported human item
utilities, at each time-point prior to a choice being made. B. Predictive accuracy
of neural networks at predicting utilities of human data after choice is made,
using both fixation and choice information.

tion of utilities (see Methods). The best performing control model was provided the current
fixation identity, the sum of fixations on each item up to that time-point, and the propor-
tion of fixations up to that time-point (Appendix Fig. 4A). This control model achieved
worse prediction accuracy than the LTSM model (independent sample t-test comparing ac-
curacy correlations aggregated across time-points, £(358) = 22.1,p < .001) demonstrating
that the LSTM can learn non-trivial sequential aspects of the relationship between fixations
and preferences in the simulated data. LSTMs trained on fixations in addition to choice
also conferred an advantage in predicting preferences after a choice was made compared to
predictions made using choice alone (Fig. 1B; ¢(358) = 92.6,p < .001). This demonstrates
an ability to learn about relationships between fixations and preferences in simulated data
beyond just predicting which item will be chosen.

3.2. Simulated data complements human data in predicting human utilities

We next sought to examine the ability of LSTMs trained on fixation and choice data to
predict human self-reported utilities of items from fixations and choices over those items.
Additionally, we sought to determine whether training networks with simulated data pro-
vided a benefit over training with human data alone. We thus compared the ability of dif-
ferent LSTMs to predict real human self-reported preferences, varying whether the LSTMs
were trained using simulated data only, human data only, or pretrained on simulated data
and fine-tuned using human data. Networks pretrained on simulated data and finetuned
with human data outperformed networks trained using either simulated data or human data
alone, both when predicting preferences prior to a choice being made (Fig. 2A; Simulated
and Human vs Simulated Only: ¢(358) = 18.1,p < .001; Simulated and Human vs Human
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Figure 3: Comparison of LSTMs trained on simulated and human data to control model
utilizing hand-crafted features and also model which uses choice alone. A. Predic-
tive accuracy of neural networks at predicting self-reported human item utilities,
at each time-point prior to a choice being made. The best control model used an
MLP to map current item identity and both sum and proportion of fixation items
up to a time-point to predict utility of all three items. B. Predictive accuracy on
human data after the choice is made. LSTMs trained on simulated and human
fixation and choice data outperform a model which only uses the choice that was
made.

Only: ¢(358) = 15.9,p < .001) and also when predicting with knowledge of the choice
(Fig. 2B; Simulated and Human vs Simulated Only: ¢(358) = 18.2,p < .001; Simulated and
Human vs Human Only: #(358) = 16.1,p < .001). This demonstrates that simulated data
is beneficial in addition to human data in predicting real human preferences.

To assess overall accuracy at predicting human preferences from fixations alone, we
compared LSTMs trained on human and simulated data to control MLPs trained on hand-
designed features. As with the simulated data case, the best performing control model for
predicting human preferences from fixations was provided the current fixation identity, the
sum of fixations on each item up to that time-point, and the proportion of fixations up to
that time-point (Appendix Fig. 4B). This model was outperformed by LSTMs trained on
simulated and human data (Fig. 3A; t(358) = 37.3,p < .001). As in the simulated data case,
LSTMs trained on simulated and human data, utilizing both information about fixations
and which item was chosen, performed better than a model that only used information about
which item was chosen (Fig. 3B; ¢(358) = 12.52,p < .001). This demonstrates that, under
this approach, using fixation data to predict preferences confers a slight benefit beyond
simply predicting which item will be chosen.
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4. Discussion

Cognitive models, which define the relationships between an individual’s latent preferences
and their behavior, offer a tremendous opportunity to infer the hidden variables that guide
an individual’s choice. However, standard approaches to performing probabilistic inference
with such models are computationally prohibitive for practical applications. Here, we have
proposed and implemented a new approach for using neural networks to perform inference
in such cognitive models, which can make inference computationally feasible for online
applications. In addition to demonstrating that neural networks can perform inference of
latent preferences in such models, we have also demonstrated that simulating data from
such models can make up for limited human data in training neural networks to infer real
human preferences from behavior.

Overall, this approach is likely limited by the extent to which cognitive models can
capture idiosyncratic features of the relationship between human preferences and behavior.
In future work, we can improve this approach by identifying and understanding discrep-
ancies between model generated datasets and real human fixation data. Identifying such
discrepancies may enable the generation of new generative models of fixations. These mod-
els may relax the strong optimality assumptions of the model we currently use, but may in
turn produce fixation data that is more useful for training neural networks for predicting
preferences.
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Figure 4: Performance of non-sequential control models. Control models are all multi-layer
perceptrons (MLPs) which take in pre-defined features and output predictions of
each item’s utility. The Current Item (ID) model maps the current fixated item
(represented as a length-3 one-hot vector) to a prediction of item utilities. Sum
of Time on Item (Sum) and Proportion of Time on Item (Prop) map either the
cumulative sum or cumulative proportion of time thus-far into the trial fixated
on each item to a prediction of the item utilities. ID + Sum + Prop stitches these
different representations together into a length-9 vector. A) Performance when
trained and tested on simulated data. B) Performance when trained on simulated
and human data and tested on human data. A B) In both training and testing
settings, ID 4+ Sum + Prop achieved the best aggregate prediction accuracy across
time-points, with aggregate » = .27 for Simulated data and r = .10 for human
data.
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Figure 5: Results of training model on simulated data and testing on held-out simulated
data for GRU and Transformer networks. Plot corresponds to Fig. 1, but with
GRU (A,B) and Transformer (C,D) networks. A) GRU networks outperform con-
trol models at predicting from fixations prior to choice (#(358) = 19.4,p < .001).
B) GRU networks utilizing fixation and choice data outperform predicting pref-
erences from choice alone (£(358) = 15.3,p < .001). C) Transformer networks
outperform control models at predicting from fixations prior to choice (¢(358) =
78.7,p < .001). D) Transformer networks utilizing fixation and choice data out-
perform predicting preferences from choice alone (¢(358) = 37.3,p < .001).
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Figure 6: Testing on human data under different training regimes for GRU and Transformer
networks. Plot corresponds to Fig. 2 but with GRU (A,B) and Transformer (C,D)
networks. GRUs trained on simulated and human data outperforms GRUs trained
on either simulated or human data only both prior to choice (A; Simulated and
Human vs Simulated Only: #(358) = 15.9,p < .001; Simulated and Human vs
Human Only: #(358) = 28.4,p < .001) and following choice (B; Simulated and
Human vs Simulated Only: #(358) = 5.0,p < .001; Simulated and Human vs
Human Only: ¢(358) = 19.4,p < .001). Transformers trained on simulated and
human data outperforms Transformers trained on either simulated or human data
only both prior to choice (C; Simulated and Human vs Simulated Only: ¢(358) =
21.0,p < .001; Simulated and Human vs Human Only: ¢(358) = 11.2,p < .001)
and following choice (D; Simulated and Human vs Simulated Only: #(358) =
38.0,p < .001; Simulated and Human vs Human Only: ¢(358) = 40.8,p < .001).
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Figure 7: Results of training model on simulated and human data and testing on held-
out human data for GRU and Transformer networks. Plot corresponds to
Fig. 3, but with GRU (A,B) and Transformer (C,D) networks. A) GRU net-
works outperform control models at predicting from fixations prior to choice
(t(358) = 42.3,p < .001). B) GRU networks utilizing fixation and choice data
outperform predicting preferences from choice alone (¢(358) = 12.5,p < .001).
C) Transformer networks outperform control models at predicting from fixations
prior to choice (#(358) = 38.7,p < .001). D) Transformer networks utilizing
fixation and choice data outperform predicting preferences from choice alone
(t(358) = 31.8,p < .001)
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