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ABSTRACT

We present the diffusion variational autoencoder (DiVA), a method for unsuper-
vised representation learning that combines the theoretical frameworks of diffusion
models and VAEs. By unifying their respective evidence lower bounds, DiVA
formulates a principled objective that learns representations through score-based
guidance of the underlying diffusion process. The resulting representations automat-
ically capture meaningful structure in the data: it recovers ground truth generative
factors in synthetic datasets, learns factorized, semantic latent dimensions from
complex natural images, and encodes video sequences into latent trajectories that
are straighter than those of alternative encoders, despite training exclusively on
static images. Furthermore, DiVA can extract useful representations from pre-
trained diffusion models with minimal additional training. Finally, the explicitly
probabilistic formulation provides new ways to identify semantically meaningful
axes in the absence of supervised labels. Overall, these results indicate that implicit
structural information in diffusion models can be made explicit and interpretable
through synergistic combination with a variational autoencoder.

1 INTRODUCTION

To evaluate the behavioral relevance of their observations intelligent agents must possess a notion of
semantics. This requires decomposing complex sensory observations into abstract and semantically
meaningful factors of variation, a capability known in machine learning as disentangling (Bengio et al.,
2014). Recent theoretical and empirical work has demonstrated that disentangled representations
offer several advantages, including improved interpretability, enhanced generalization, and stronger
transfer capabilities across related tasks (Higgins et al., 2017). However, given that for both biological
and artificial agents, the amount of unlabeled data vastly exceeds that of labeled data, an important
consideration is how to learn disentangled representations without relying on explicit supervision.

Latent variational models provide a principled framework grounded in probabilistic generative models.
The variational auto-encoder (VAE) has emerged as a particularly promising instantiation of this idea
(Kingma and Welling, 2013; Rezende et al., 2014), which allows for amortized inference of latent
structure and data generation through optimization of the evidence lower bound (ELBO). Successful
variants of this approach have been used for compression (Ballé et al., 2017; Ballé et al., 2021),
prediction (Tishby et al., 2000; Alemi et al., 2019; Sachdeva et al., 2020), and as models of neural
activity in visual cortex (Csikor et al., 2022; Vafaii et al., 2023). Crucially, VAEs can be encouraged
to exhibit disentangled representations via appropriate regularization, as with β-VAEs (Higgins et al.,
2017; Alemi et al., 2019).

Despite these successes, there is a fundamental tension between reconstruction fidelity and disentan-
glement quality (Kumar et al., 2018; Sikka et al., 2019) in such models. Encouraging disentangled
representations typically requires stronger regularization that limits the expressiveness of latent
variables; this trade-off between compression and reconstruction precision is well known as the
rate-distortion principle. This limitation has motivated various VAE improvements, including en-
hanced posterior approximations through non-diagonal covariances or complex posterior distributions
(Manduchi et al., 2023; Klushyn et al., 2019; Mathieu et al., 2019; Cheng et al., 2020; Rezende
and Mohamed, 2015), additional latent constraints (Chen et al., 2019; Zhao et al., 2018), and more
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flexible latent priors (Klushyn et al., 2019; Wehenkel and Louppe, 2021). Notably, these efforts have
largely focused on the inference mechanism rather than the generative model itself, despite the role
the diagonal posterior covariance plays in encouraging disentanglement (Rolínek et al., 2019) and
the importance of the generative model in determining the nature of learned representations (Cremer
et al., 2018).

A possible avenue for building more expressive generative models lies in diffusion models. These
generative models produce high-quality samples in many domains by learning to approximate the
data distribution through a denoising objective. However, their lack of an explicit latent representation
poses challenges for tasks requiring embeddings, such as disentangled representation learning (Song
et al., 2020). Additionally, guiding the diffusion sampling process to generate samples with specific
attributes or classes remains an open research question (Fuest et al., 2024). While techniques like
classifier-guided diffusion (Dhariwal and Nichol, 2021) and classifier-free guidance (Ho and Salimans,
2021) lay the groundwork for sampling from conditional densities in the presence of explicit class
labels, achieving robust and flexible conditioning without compromising sample quality or diversity
is not fully resolved (Chidambaram et al., 2024; Sadat et al., 2024; Kaiser et al., 2024; Ifriqi et al.,
2025). Critically, few studies explore the learning of latents that enable diffusion models to effectively
navigate the full data manifold without auxiliary information.

Here, we introduce a Diffusion Variational Autoencoder (DiVA) that combines the strengths of varia-
tional autoencoders and diffusion models to achieve unsupervised learning of structured, interpretable
latent representations while maintaining high-quality sample generation. Our key innovation lies
in employing conditional diffusion as the generative component of a VAE, coupled with a precise
mathematical formalization of the objective via the ELBO that enables reuse of the inference network
for conditioning. The diffusion prior on the data space allows us to keep a simple latent posterior
approximation and impose strong factorization constraints on the latent code. Furthermore, learning
latent representations of images that are coherent across noise levels helps to unify and smooth the
latent representation. When trained on image data, our framework yields semantically meaningful
latent axes and produces straighter trajectories when encoding natural video sequences, all without
compromising generative performance. Moreover, a distinctive feature of our approach is that the
posterior structure enables identification of semantically meaningful axes without reliance on super-
vised labels. From the diffusion perspective, incorporating an inference network with an explicit
representational space facilitates unsupervised discovery of factorized and interpretable latents that
can be used to control sample generation. Notably, this same methodology can be applied to extract
semantic latent representations from pretrained diffusion models.

A B

C

VAE

DiVA

diffusion

Figure 1: A) Graphical model for our diffusion VAE (DiVA), contrasted with those of standard
VAEs and unconditioned diffusion models. B) Schematic of conditional sampling procedure. C)
Schematic illustration of how movement in the latent space results in guidance of the denoiser score
towards regions of the clean image manifold that are semantically similar to the original image. For
visualization, both latent and image spaces are depicted as two dimensional.
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2 METHODS

The task of extracting latent representations from data can be formalized as a graphical model
in which latent random variables, z ∈ Z, give rise to observations x ∈ X (Fig. 1A, yellow box).
Representational learning then corresponds to maximizing the marginal likelihood of the observed data
under the model,

∏
k

∫
pθ(xk, z)dz, while inference requires calculating the posterior distribution

p(z|x) via Bayes’ rule. Unfortunately, directly computing the log likelihood and the posterior
distribution in closed form is usually infeasible for expressive models.

Variational autoencoders (VAEs) address this difficulty by approximating the posterior with a simpler
parametric form, whose parameters are data-specific and obtained via optimization (Kingma and
Welling, 2013; Rezende et al., 2014). The parameters of both the amortized posterior and the
generative model are learned via minimization of the evidence lower bound (ELBO), a tractable
lower bound on the model marginal likelihood:

LELBO(θ, ϕ;x) = Ez∼qϕ(z|x)

[
log

pθ(x, z)

qϕ(z|x)

]
≤ log pθ(x), (1)

where qϕ(z|x) is the approximate posterior (usually computed by a neural network with weights
ϕ), the density pθ(x, z) = pθ(x|z)p(z) is the generative model, with prior p(z) given by a simple
parametric distribution (e.g., a standard Gaussian), and likelihood pθ(x|z) computed by a separate
neural network with weights θ. In practice, the limitations imposed on the likelihood by this
parameterization often lead to poor quality of generated samples (Burda et al., 2016; Sønderby et al.,
2016; Rezende and Viola, 2018).

In contrast, diffusion models are highly expressive generative models that can estimate and sample
from complex densities. Diffusion models such as denoising diffusion probabilistic models (DDPMs)
form an implicit prior over data by learning to denoise noisy versions of clean data (Sohl-Dickstein
et al., 2015; Kadkhodaie and Simoncelli, 2020; Ho et al., 2020). Noisy data are generated by a
fixed forward operator that is typically assumed to be additive Gaussian, xt ∼ pfwd(xt|x0), with
t ∈ [0, 1, ..., T ] specifying the noise variance. This denoising objective can be written as the mean
squared error between the model’s estimate of the noise ϵθ(xt, t) and the true noise present in the
noisy image ϵ, which is typically assumed to be isotropic Gaussian. Minimizing this error has also
been shown to be equivalent to maximizing the ELBO (up to a noise-dependent scalar weighting
λt) for a joint data distribution given by p(x0:T ) and a joint “posterior” q(x1:T |x0) that captures the
distribution over all noising paths (Kingma and Gao, 2023):

LDDPM = Eϵ∼N (0,I), t∼[0,T ]

[
λt∥ϵ− ϵθ(xt, t)∥2

]
= −Eq(x1:T |x0)

[
log

pθ(x0:T )

q(x1:T |x0)

]
. (2)

It is well known that the minimum mean squared error (MMSE) estimate is given by the posterior
mean, and this in turn can be related to the score function via Miyasawa’s/Tweedie’s formula (Robbins,
1956; Miyasawa et al., 1961). Under a Gaussian variance-preserving noise distribution given by
p(xt|x0) = N (xt|

√
ᾱtx0, (1−ᾱt)I), where {ᾱt} defines the variance schedule, the MMSE estimate

of the noise is given as

ϵ̂θ(xt) = argmin
ϵθ

∥ϵ− ϵθ(xt, t)∥2 = Ep(x0|xt)[ϵ] = −
√
1− ᾱt∇xt

log p(xt). (3)

Once trained, generation of samples relies on an iterative partial denoising process that samples
xt ∼ pθ(xt|xt+1) as t = T − 1, ..., 0 (Fig. 1A, blue box). Examples from the training set can be
thought of as samples from a complex probability distribution that resembles a low-dimensional,
nonlinear manifold lying within the high-dimensional data space (Ho et al., 2020; Kadkhodaie and
Simoncelli, 2020), and the iterative denoising process effectively learns to project noisy samples
back onto this manifold. To generate samples with desired characteristics, the denoiser can be guided
towards specific regions of the manifold through classifier-based or embedding-based guidance signals
(Dhariwal and Nichol, 2021). However, unlike variational autoencoders or GANs (Goodfellow et al.,
2014), diffusion models do not specify or infer an explicit latent representation.

By using conditional diffusion models as part of the VAE generative process, we can overcome
the limitations of both models. The key idea is to learn the latent variables that will best guide
the diffusion process towards the observations. Concretely, we learn a latent representation by
augmenting the Markov chain x0:T of the diffusion model with a latent variable z that guides the
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denoising process (Fig. 1A, green box). This results in a joint distribution p(x0:T , z) and approximate
posterior q(x1:T , z|x0) that can be factorized as

p(x0:T , z) = pθ,ϕ(x0:T |z)p(z)
q(x1:T , z|x0) = qx(x1:T |x0)qϕ(z|x0),

where the latter holds because the noisy samples in x1:T are independent of z when conditioned
on x0. Here, qϕ(z|x0) is the inference network, used to infer latent z from observations x0, while
qx(x1:T |x0) is the (known) “posterior” that defines the conditional forward process of the diffusion
model. As is common for VAEs, we assume that the model prior is an isotropic Gaussian, p(z) =
N (0, I). Incorporating these into the ELBO yields a joint objective function of the form:

LDiVA = −Eqϕ(z|x0)Eqx(x1:T |x0,z)

[
log

pθ,ϕ(x0:T |z)p(z)
qx(x1:T |x0)qϕ(z|x0)

]
= −Eqϕ(z|x0)Eqx(x1:T |x0,z)

[
log

pθ,ϕ(x0:T |z)
qx(x1:T |x0)

]
− Eqϕ(z|x0)

[
log

p(z)

qϕ(z|x0)

]
= Eqϕ(z|x0) [DKL (qx(x1:T |x0)∥pθ,ϕ(x0:T |z))] +DKL (qϕ(z|x0)∥p(z)) , (4)

where the second term is equivalent to the standard regularization term in the VAE objective that
encourages the expected approximate posterior distribution to be close to the latent prior. Inputs x0

to the inference network return the corresponding mean and covariance µϕ(x0) and Σϕ(x0) of the
posterior distribution qϕ(z|x0), which are then used to analytically calculate the KL divergence term.

Implementing the generative model as conditional diffusion. The first term in DiVA’s objective
(Eq. 4) encourages the latent conditioned generative model pθ,ϕ(x0:T |z) to be close to the distribution
over forward noising paths qx. Following a similar derivation to Ho et al. (2020), this term can be
written as the expected mean squared error between the true and estimated noise across noise levels t:

LDiVA = Eqϕ(z|x0),ϵ,t

[
λt∥ϵ− ϵθ,ϕ(xt, t, z)∥2

]
+DKL (qϕ(z|x0)∥p(z)) , (5)

where ϵ is the true noise, ϵθ,ϕ is the function estimating it, and λt is a scalar hyperparameter that
depends on t. For the first term in the objective, we can use Miyasawa’s formula to relate the
conditional MMSE estimate to the guidance score (full derivation in Appendix A.1). Using the same
variance-preserving noise distribution as in Eq. (3), we see that

ϵ̂θ,ϕ(xt, z) = argmin
ϵθ,ϕ

∥ϵt − ϵθ,ϕ(xt, t, z)∥2 = −
√
1− ᾱt∇xt log p(xt|z). (6)

Critically, Bayes’ rule can be used to express the guidance score as the sum of two terms, an
unconditional denoiser score and a guidance score:

∇xt log p(xt|z) = ∇xt log p(xt) +∇xt log p(z|xt). (7)

Plugging this back into Eq. (6), we see that the MMSE solution can be expressed as

ϵ̂θ,ϕ(xt, z) = −
√
1− ᾱt

(
∇xt

log p(xt) +∇xt
log p(z|xt)

)
= ϵ̂θ(xt)− γt gt(xt, z), (8)

where ϵ̂θ(xt) = −
√
1− ᾱt ∇xt log p(xt) is the MMSE solution associated with an unconditional

diffusion model (Eq. 3), gt(xt, z) = ∇xt
log p(z|xt) is the guidance score, and γt =

√
1− ᾱt is a

noise level-dependent scalar term that weights the two terms appropriately.

Computing the guidance score. From the perspective of the unconditional diffusion model, the
VAE posterior has a dual interpretation as a likelihood function Lϕ(xt; z), which is a function of the
noisy image xt over the latent domain Z . The guidance score is the score of the likelihood evaluated
at a particular latent value Z = z, which in our case we take to be the latent corresponding to the
clean image, since our goal is to reconstruct the original observation. To compute this, we take
samples of the clean image latent z(x0) ∼ qϕ(z|x0) in accordance with the expectation in Eq. (5)
and compute its log likelihood, logLϕ(Xt = xt;Z = z(x0)). Taking the derivative of this scalar
quantity with respect to the noisy image xt (via auto-diff) then gives the approximate guidance score

gt,ϕ(xt, z) = Ez′∼qϕ(z|x0)

[
∇xt

log qϕ(z
′|xt)

]
(9)
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The reuse of the inference network to compute the log likelihood removes the need for a separate
neural network to map the representation z into a guiding signal, and ties the representations of clean
and noisy versions of an image together. Plugging this back into Eq.(8), and this in turn into Eq. (5),
we see that the DiVA objective can be written as the influence of two separate networks in our model,
the unconditional denoiser parameterized by θ, and the inference network parameterized by ϕ:

Lβ-DiVA = Eqϕ(z|x0),ϵt,t

[
λt∥ϵt − ϵθ(xt, t) + γt gt,ϕ(xt, z)∥2

]
+ β DKL

(
qϕ(z|x0)∥p(z)

)
, (10)

where β is a hyperparameter that balances the effective contribution of the KL regularization on the
latent space. This is akin to the Lagrange multiplier that controls the reconstruction and regularization
terms in β-VAEs (Higgins et al., 2017). Note that if we rewrite this derivation in terms of x0

estimates instead of ϵ estimates, we can show, using the relation xt =
√
ᾱt x0 +

√
1− ᾱt ϵ, that

x̂0(xt, z) = x̂0(xt) + 1−ᾱt/
√
ᾱtgt(xt, z), which reflects the additive relation between the denoising

score and guidance score in Fig. 1C, X space. The expression that details the effect of the guidance
score on the DDPM reverse transition operator is given in Appendix A.2.

Inference and guidance. Once DiVA is trained using Eq. (10), inference follows the general
VAE prescription where latent samples are drawn from the posterior distribution qϕ(z|x0) via the
reparameterization trick. Generating image samples that resemble the given “guidance” datapoint x0

involves conditioning the diffusion process on draws from the posterior distribution. As in DDPMs,
we start the conditional generation process with a sample from an isotropic gaussian xt ∼ N (0, I).
At each noise level t, we estimate the noise present in the noisy image via the denoiser ϵθ(xt, t), and
compute the guidance score gt,ϕ using Eq. (9). Note that while the clean image posterior remains the
same at every noise level, the guidance score changes because we evaluate the clean image latent
under the noisy image posterior, which changes with the noise level. The resulting guidance score
biases the reverse process according to Eq. (8), such that as the noise level goes to 0, we arrive at a
sample from the conditional distribution x̂0 ∼ pθ,ϕ(x0|z). Algorithms are provided in Appendix A.3.

Geometric intuition. In the image space, conditional generation update steps (purple arrow in
Fig. 1C, X space) can be thought of as a combination of two forces: starting from a noisy image xt,
attractor dynamics push the state towards the image manifold (blue arrow) while the latent-based
guidance selects specific regions of the manifold (red arrow). The addition of these two forces direct
the network towards regions of the data manifold that are close to the target x0 (green shade).

In the latent space (Fig. 1C, Z), similarity between the current state xt and the conditioning image x0

(as defined by the likelihood) is the Mahalanobis distance between the mean estimate of the network
state in latent space µϕ(xt) and the latent corresponding to the conditioning image z′(x0), computed
under a metric that is given by the inverse of the covariance Σ−1

ϕ (concentric ellipsoids). Conditional
generation can thus be cast as a constrained optimization process, where the network minimizes the
latent Mahalanobis distance subject to the constraints posed by the geometry of the latent space and
the image manifold (for further details, see Appendix A.4).

During the learning process, the network learns to map noisy version of the same image close together
in Z space, while accounting for uncertainty introduced by the noise in the associated posterior
covariance, Σϕ(xt). This effectively means learning which directions in latent space correspond to
noise-induced variations versus meaningful semantic content.

3 RESULTS

Synthetic disks dataset. We first investigated whether DiVA is able to learn a semantically meaning-
ful latent space by training the network on a synthetic dataset where the ground truth latent factors
and generative structure are known, and the number of latent dimensions matches that of the latent
factors. The dataset is a simplified version of that used by Kadkhodaie et al. (2024), comprised of
images of circles (“disks”) of a fixed radius and intensity on a blank background (Fig. 2A, B). The
images are fully determined by three independent generative factors: the coordinates of the disk
center, cx, cy, and the intensity of the background, Ibg. All three generative factors are uniformly
distributed, and the foreground intensity of the disks is held to a constant value of 0.5.

As a first measure of whether DiVA learns a useful representation, we tested the model’s ability to
faithfully reconstruct images when conditioned on a given guidance image (Fig. 2C; see Appendix A.5
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Figure 2: Disks dataset. A) Graphical model for the disks dataset, with coordinates of disk center
(cx, cy) and background intensity Ib as latents. B) Random draws from the ground truth generative
process. C) Samples drawn from the model, conditioned on leftmost image. D) Posterior means for a
grid of test cx and cy ground truth positions, fixed Ib. E) Same as D, but cy fixed during interpolation
of the other two factors. F) Same as D, for all three factors.

for architecture details). The conditioned image generation is sensible: it preserves background
intensity (which can be accurately estimated from the conditioning image), with small variations in
the location of the disc reflecting some posterior uncertainty in that dimension. To quantify the latent
variable’s contribution in “explaining away” the observation, we measured the reduction in MSE
between generated and guidance images compared to the expected MSE of the dataset with respect
to the mean image, where MSE serves as a proxy for the entropy in the distribution of generated
samples. Since the dataset is symmetric around the mean image, the expected MSE with respect
to this image gives us a heuristic measure of the total variance of the entire dataset. We found a
substantial decrease in the MSE from 5.6× 10−1 to 4× 10−3 when the generation is conditioned on
the latent variable, indicating that the representation captures most of the variability in the dataset.

To directly probe the semantic structure of the learned representation, we systematically varied
two of the generative factors and extracted the corresponding posterior means provided by the
inference network. When varying the x, y coordinates of the disk, we found an approximately
Cartesian representation in the latent space (Fig. 2D), while varying the background intensity and
the x coordinate resulted in an approximately polar representation (Fig. 2E). The singular point in
the center corresponds to an image where the background intensity exactly matches the foreground
intensity, so the x, y coordinates are unspecified. The shrinking of the spatial encoding with contrast is
a reflection of increasing uncertainty in position pulling the posterior mean towards the prior. We see
this more clearly in the 3d space (Fig. 2F), in which we linearly interpolated along all three generative
factors. Importantly, the orthogonality of the semantic axes directly reflects the independence of the
three generative factors. The constraints imposed by the KL regularization term suffice for the model
to learned a factorized, semantically meaningful representation of the data.

CelebA dataset. Next, we applied our method to CelebA, a dataset of diverse, high-quality images
of human faces with structured attributes (e.g. facial features, expressions, and accessories) that
are qualitatively discernible by human observers, which provides sematic structure that we can
post-hoc evaluate in the learned representations. Following Ho et al. (2020), we used a standard UNet
architecture for the denoiser, but without self-attention layers, so as to focus on the algorithmic effects.
The noise level was encoded using a sinusoidal position embedding, provided as an additional input
channel (Nichol and Dhariwal, 2021). For the inference network, we used a half-UNet architecture
that retains the Down and Mid, but not the Up blocks. The mean and covariance of the posterior
are linearly decoded from this network. Unlike Mittal et al. (2023), our inference network does not
receive noise level information, which we found to be unnecessary for learning a good representation.
As is common in VAEs, we restricted the posterior covariance to be diagonal, Σϕ = diag(σ2

ϕ).
Additional architectural details are provided in Appendix A.5.

We trained the joint model from scratch using 60,000 images from the CelebA dataset, and evaluated
the learned representation by assessing conditioned reconstruction quality on images from the test
set. If the learned latents are useful, they should encode the pertinent features in the original guiding
image that, when used to condition the generation process, reduces the MSE between itself and the
generated images. Note that proper conditional generation is not trivial: since guidance scores are
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Figure 3: CelebA. A) Conditional image generation; conditioning image – red, samples – blue. B)
Linear traversal between latents of leftmost (yellow) and rightmost (purple) images. C) The spectrum
of the posterior covariance for one example image from the test set. D) The posterior variance as a
function of noise level; color intensity marks the ordering of the axes at the largest noise level. E)
Moving along the linear combination of two latent axes with identified semantics. F) Geometric
characterization of latent representation. Left: across-test data variability in posterior mean (blue)
and posterior variance of a noisy image (orange) for each latent dimension. Middle: norm of the
sensitivity of posterior variance to input changes. Right: Global coherence of each axis. The x axes
of all three plots are sorted by global coherence. G) Example transformation of two different images
along a latent axis identified as global. H) Weight sparsity of binary classifiers compares how closely
the semantics of latent axes align to supervised labels for DiVA vs. DiffAE.

added to the denoiser estimates in pixel space, conditioning can easily worsen generation if the latents
are non-informative or misaligned with the image prior.

The generated images possess many of the same features as the guiding image, including skin
tone, light position, pose, and location and shape of facial features such as the eyes, hairline, and
mouth (Fig. 3A). As with the disks, we observe variability in conditionally generated image features,
stemming from uncertainty in the posterior and the stochastic nature of the diffusion process. To
measure sample fidelity and diversity, we computed the FID based on 10,000 images (Heusel et al.,
2017). DiVA’s score of 16.25 beats other diffusion-based representation learning models such as
DiffAE and InfoDiffusion (Preechakul et al., 2022; Wang et al., 2023) (see Appendix A.7 for details).

To investigate the smoothness of the latent embedding we used latent traversal, linearly interpolating
between the latent representations corresponding to two images from the test set (Fig. 3B). At regular
intervals along this interpolant, we generated sample images conditioned on the corresponding latent.
Given two endpoint images (enclosed in yellow and purple boxes in Fig. 3B), the intermediate
images display semantic characteristics that change smoothly between those of the endpoint images,
indicating that the learned latent space is smooth and continuous.

Factorized semantics. The results on the disk images suggest DiVA latents can capture independent
generative factors in the data. Moreover, our explicitly probabilistic approach point to the structure of
the posterior covariance as a natural lens into the interpretability of individual latent axes.

Empirically, the posterior variance for any given image exhibits a few dominant modes alongside
many smaller ones (Fig. 3C), indicating that, within the local neighborhood of the mean latent
representation, certain latent axes have significantly higher uncertainty. Adding noise to the image
increases variance across these axes (Fig. 3D), suggesting that posterior variance reflects the inference
network’s uncertainty about the corresponding features. We hypothesize that axes with low posterior
variance at low noise levels encode robust semantic features, while the rate of variance increase with
noise level indicates the spatial scale of the encoded features. Specifically, large-scale features, still
prominent at relatively high noise levels, should correspond to axes with low uncertainty even under
significant noise, whereas small-scale features will exhibit overall higher uncertainty.
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To test this, we perturbed a clean test image’s latent representation along axes with low posterior
variance. The resulting images showed consistent changes in specific semantic attributes, suggesting
that the model factorizes representations semantically (Fig. 3E, smiling horizontally, forward lighting
vertically). Interpolating along a linear combination of two axes produced images reflecting both
attributes, suggesting a combinatorial code (Fig. 3E, diagonal). Meanwhile, axes that displayed large
changes in posterior variance tended to correspond to finer scale features, such as movements of the
eyes and mouth. Finally, we measured disentanglement using Total AUROC Difference (TAD) (Yeats
et al., 2022). When trained on CelebA, DiVA attains a TAD score of 0.583, capturing 3 attributes,
which outperforms InfoDiffusion (TAD of 0.299 with 3 attributes captured), and significantly outper-
forms other baseline generative models such as β-VAE (full comparisons in Appendix A.7). These
findings reveal that DiVA’s latent space is structured to disentangle semantic features along specific
axes, offering a foundation for interpretable and controllable generative modeling.

How global is the mapping between latent axes and semantic meaning? While perturbation
along individual axes is interpretable in the neighborhood of the conditioning image, we found that
in general this mapping is not preserved across the full latent space. To identify the axes whose
semantic meaning is preserved globally, we derived a formula that provides sufficient conditions
for global axes under additive transformations by assessing the z-independence of the linear local
approximation of the inference network (see Appendix A.8). When applying this metric (Fig. 3F,
right) we find the axes with the largest measure to be “junk” dimensions that encode the pixel-level
noise, whose semantic mapping is in effect global. However, most of the identified global axes are
interpretable, reflecting e.g. global lightning effects (Fig. 3G).

Alignment with explicit labels. A separate way to assess the semantic structure of the representation
is by measuring the alignment between latent axes and recognizable semantic labels. To this end,
we trained separate logistic regression classifiers on the learned representation to predict each of the
40 binary semantic labels. If the axes are well aligned with the supervised attributes, the weights of
the classifier should be sparse, as only a small subset of the axes need to be recruited to form the
decision boundary. We used the normalized participation ratio (PR) of each classifier’s coefficients
as a measure of sparsity; this is 1 if only one latent axis is used for a decision, and it becomes the
square root of the dimensionality of the latent space if all axes are used equally. The normalized PR
is generally low for DiVA, in particular when compared to state of the art alternative DiffAE (Fig 3H),
suggesting that our approach is superior in factorizing the latent space into useful semantic axes.
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Figure 4: Unsupervised extraction of latent representation from a pre-trained diffusion model.
A) Top: Samples from the trained model, conditioned on leftmost image (green). Bottom: samples
drawn from the unconditional diffusion model. B) Straightness of latent trajectories over the course of
one naturalistic video from CelebV. C) Average straightness of latent encoding (over 50 naturalistic
videos) for DiVA, compared to trajectories in pixel space and latent trajectories of DiffAE.

Feature extraction for pretrained diffusion models. Since the denoising and guidance terms
are parameterized by separate neural networks, one might sensibly wonder if training them jointly
is strictly necessary or if the inference network could be trained separately on top of a pre-trained
denoiser. To test this, we used a DDPM from the Huggingface repository pretrained on CelebA-
HQ-256 (Ho et al., 2020; Karras et al., 2018) and then trained the inference network to guide
the responses of the denoiser towards the corresponding clean image using the same objective as
before. We found that samples drawn from the conditioned distribution exhibit similar semantic
characteristics as the guiding image, such as lighting direction, facial expression, and hairline, while
remaining a naturalistic image with high frequency details (Fig. 4). As before, the conditioning
reduces variability compared to samples from the unconditional model (Fig. 4A, second row), but
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there is still appreciable diversity among the samples. Overall, separate training of the conditioning
network seems to generally preserve the properties seen with joint training with a substantial reduction
in training effort.

Encoding of video trajectories. One property that makes for good latent representations is their
predictability over time, measured by the ability to represent temporal sequences in a manner
that supports linear extrapolation (Niu et al., 2024). Since movement along individual latent axes
corresponds to naturalistic transformations in images (Fig. 3E), we hypothesized that DiVA may
map natural movements in naturalistic videos, such as a mouth opening and closing, to relatively
straight trajectories in latent space. To test this, we encoded frames from a naturalistic facial attributes
video dataset (Yu et al., 2023) into latent representations using the DiVA model for CelebA-HQ.
Following Hénaff et al. (2019), we quantified the “straightness” of temporal sequences in both
latent and pixel domains by computing discrete curvature, defined as the cosine similarity between
vectors connecting consecutive pairs of frames in the sequence: s = dt·dt+1/(∥dt∥∥dt+1∥), where
dt = ft+1 − ft represents the difference between consecutive frames, or latent posterior means.
Despite being trained solely on static images, our model encodes frames of these videos such that
their trajectories in the 512-dimensional latent space exhibit near-unity cosine similarity across large
portions of a given video (Fig. 4B). Compared to pixel-domain trajectories and those from other
diffusion-based representation learning models (Preechakul et al., 2022), DiVA produces significantly
straighter latent trajectories. This effect holds consistently across 50 randomly sampled videos from
the dataset (Fig. 4C). Thus, by leveraging its semantically factorized representation, DiVA naturally
straightens dynamic patterns without temporal supervision.

4 DISCUSSION

While recent work has demonstrated the promise of unsupervised representation learning with
diffusion models (Fuest et al., 2024; Preechakul et al., 2022; Hudson et al., 2024; Mittal et al.,
2023; Wang et al., 2023; Zhang et al., 2022; Yang et al., 2023; Kim et al., 2024; Li et al., 2024),
past approaches typically rely on (often deterministic) encoders that approximate the log-likelihood,
or use objective functions that are special cases of the ELBO with extra regularization terms (see
Appendix A.6 for detailed comparison to prior methods). DiVA diverges from this paradigm by
optimizing an exact ELBO that encodes both clean and noisy images simultaneously. This dual
encoding strategy introduces a novel form of implicit regularization. By requiring the inference
network to predict the log-likelihood of clean image features while conditioned on noisy observations,
DiVA learns to effectively separate signal from noise and calibrate its posterior variance to capture
the irreducible uncertainty inherent in the data. The probabilistic nature of these paired observations
constrains the latent space geometry, promoting representations where semantically similar images
cluster together. Our empirical analysis reveals that this approach successfully mitigates the “latent
holes” problem that commonly afflicts variational autoencoders (Rezende and Viola, 2018; Falorsi
et al., 2018; Li et al., 2021), producing perceptually smoother and more coherent latent spaces.

Pairing a powerful recognition model with strong factorization Higgins et al. (2017) assumptions
on the prior encourages disentanglement without sacrificing generative performance. The KL
regularization term enforces an information bottleneck by encouraging posterior whitening, which
promotes maximum entropy representations in the latent space Burgess et al. (2018). Crucially, the
conditional denoising objective encourages the latents to capture meaningful structure in the observed
data by leveraging the implicit image prior learned by the diffusion model. This approach sidesteps
the traditional rate-distortion trade-off in VAEs: rather than compromising reconstruction fidelity to
achieve better disentanglement, DiVA maintains perceptually high-quality generations through the
expressive power of the diffusion prior, even when the latent representation is heavily regularized.
This information theoretic perspective suggests interesting connections to the I-MMSE relation (Guo
et al., 2005; Kong et al., 2023), which has recently been used to link conditional diffusion scores with
estimates of mutual information (Franzese et al., 2024). Such connections might provide alternative
theoretical foundations for understanding representation learning in conditional diffusion models
and could potentially allow for more direct optimization of information-theoretic objectives such as
InfoMax (Linsker, 1988). We leave the exploration of these connections as an exciting direction for
future work. Overall, our results represent an important and mathematically rigorous step towards
building learning systems that extract complex semantical structure from data in an unsupervised
manner while maintaining competitive generative performance.
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A APPENDIX

The anonymized code repository can be found at: https://anonymous.4open.science/r/diva-D7DA

A.1 RELATION OF MMSE SOLUTION TO CONDITIONAL SCORE

Here, we provide a derivation of how the guidance score relates to the MMSE solution for the
noise present in the noisy image (Eq. 6). For a variance-preserving noising operator p(xt|x0) =
N (
√
ᾱtx0, (1− ᾱt)I), Miyasawa/Tweedie’s formula is given as

Ep(x0|xt,z)[x0] =
1√
ᾱt

[xt + (1− ᾱt)∇xt
log p(xt|z)].

We can compute the expected value of the noise in the noisy image

Ep(x0|xt,z)[ϵ] =

∫
ϵ p(x0|xt, z)dx0

=
1√

1− ᾱt

[
xt −

√
ᾱtEp(x0|xt,z)[x0]

]
.

where on the second line we have substituted in ϵ = 1/
√
1−ᾱt(xt−

√
ᾱtx0) via the re-parameterization

trick. Now, rearranging for and substituting the expected value of x0 into Tweedie’s formula above,
we are left with

Ep(x0|xt,z)[x0] =
1√

1− ᾱt

[
xt −

√
ᾱt

(
1√
ᾱt

[xt + (1− ᾱt)∇xt log p(xt|z)]
)]

=
1√

1− ᾱt
[xt − (xt + (1− ᾱt)∇xt log p(xt|z))]

=
1√

1− ᾱt
(−(1− ᾱt)∇xt

log p(xt|z))

= −
√
1− ᾱt∇xt log p(xt|z)

which is the relation given by Eq. 6 in the main text.

A.2 GUIDING TRANSITION OPERATORS

Here we derive the equation for how the guidance score affects the DDPM reverse transition operator,
given by p(xt|xt+1). The classifier guidance equation in Eq. 7 can be expressed in terms of the
transition operators:

∇xt
log p(xt|xt+1, z) = ∇xt

log p(xt|xt+1) +∇xt
log p(z|xt,xt+1)

= ∇xt
log p(xt|xt+1) +∇xt

log p(z|xt),

where we have used the fact that since xt+1 is a noisier image than xt, it carries less information about
z than xt, so the dependence on xt+1 can be dropped. In practice, this problem is equivalent to asking
how to sample from p(xt−1|xt, z) over all noise levels t. For a given noise schedule determined
by {αt}, we evaluate xt ∼ pθ(xt−1|xt) = N (µθ,

√
1− αtI) by estimating the transition operator

mean

µθ(xt) =
1
√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ(xt)

)
,

using which we can estimate the next state in the Markov chain xt−1 = µθ(xt) +
√
1− αt ϵ, where

ϵ ∼ N (0, I). To sample from the z-conditional distribution instead, this function must be dependent
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on ϵθ,ϕ(xt, z) rather than on ϵθ(xt):

µ(xt, z) =
1
√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ,ϕ(xt, z)

)
=

1
√
αt

(
xt −

1− αt√
1− ᾱt

(
ϵθ(xt)−

√
1− ᾱt∇xt log qϕ(z|xt)

))
=

1
√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ(xt)

)
− 1− αt√

αt
∇xt

log qϕ(z|xt)

= µθ(xt)−
1− αt√
αt
∇xt log qϕ(z|xt).

Since xt−1(xt, z) = µ(xt, z) +
√
1− αtϵ, we can rewrite this relation in terms of the noisy states:

x∗
t−1(xt, z) = x∗

t−1(xt)−
1− αt√
αt
∇xt

log qϕ(z|xt)

= x∗
t−1(xt)−

1− αt√
αt

gt,ϕ.

A.3 TRAINING AND CONDITIONAL GENERATION ALGORITHMS

Below, we provide algorithms for training DiVA and for performing conditional generation using the
trained networks.

Algorithm 1: Conditional generation, given a clean guidance image x0, trained denoiser ϵθ
and inference network fϕ
(µ0,σ0)← fϕ(x0) // encode guidance image
ϵ ∼ N (0, I)
z← µ0 + σ0 · ϵ // sample clean image latent

Initialize t← T ; xt ∼ N (0, I)
while t ̸= 0 do

(µt,σt)← fϕ(xt) // encode noisy image

log q ← −1/2
(
dM (z,µt) + log |σtI|

)
// log posterior

gt ← ∇xt
log q // guidance score

µ← 1√
αt

(
xt − 1−αt√

1−ᾱt
ϵθ

)
Σ←

√
1− αtI

xt ∼ N (µ+Σgt,Σ) // guidance
t← t− 1

end

A.4 CONDITIONAL GENERATION AS CONSTRAINED OPTIMIZATION

As mentioned in the “Geometric Intuition” subsection, we can think of conditional generation as a
constrained optimization problem, in which we have multiple constraints imposed by the inference
network and the denoiser. To make this perspective more concrete, consider the generation procedure,
given by Algorithm 1. We start with a sample of white noise, xt ∼ N (0, I), from which we take
gradient steps towards a region of large guided score:

xt ← xt +∇xt
log p(xt|z)

= xt +∇xt
log qϕ(z|xt) +∇xt

log pθ(xt),

where we have decomposed the conditional score using Bayes’ rule. Since the posterior qϕ is assumed
to be conditional Gaussian, the analytic form of the log likelihood is given as

logLϕ(xt; z) = −
1

2
Ez′∼qϕ(z|x0)

[
dM

(
z′ϕ(x0),µϕ(xt)

)
+ log |Σϕ(xt)|+ c

]
, (11)
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Algorithm 2: Training, given a denoiser network ϵθ and inference network fϕ with randomly
initialized weights

while not converged do
x0 ∼ p(x0)
t ∼ [0, T ]
xt ∼ pfwd(xt|x0) = N (

√
ᾱtx0, (1− ᾱt)I) // noise the image

ϵx ← (xt−
√
ᾱtx0)/

√
1−ᾱt

ϵz ∼ N (0, I)
(µ0,σ0)← fϕ(x0) // encode clean guidance image
z← µ0 + σ0 · ϵz
(µt,σt)← fϕ(xt) // encode noisy image

log q ← −1/2
(
dM (z,µt) + log |σtI|

)
// log posterior

gt,ϕ(z)← ∇xt log q // guidance score

Lx ← ∥ϵx − ϵθ(xt)−
√
1− ᾱt gt,ϕ(xt, z)∥2

Lz ← DKL (N (µ0,σ0)∥N (0, I))
take gradient steps on∇θ,ϕ (Lx + βLz)

end

where dM =
(
z′ϕ(x0)−µϕ(xt)

)⊤
Σ−1

ϕ

(
z′ϕ(x0)−µϕ(xt)

)
is the Mahalanobis distance between the

mean estimate of the network state in latent space µϕ(xt) and the latent corresponding to the target
image z′(x0), computed under a metric that is given by the inverse of the covariance Σ−1

ϕ (red arrow
and concentric ellipsoids in Fig. 1C, X space).

Using this expression for the log likelihood, it becomes clear that we are taking gradient steps with
respect to multiple constraints:

xt ← xt +∇xt
log qϕ(z|xt) +∇xt

log pθ(xt)

= xt −
1

2
∇xt

(
Ez′∼qϕ(z|x0)

[
dM (z′,µϕ(xt)) + log |Σϕ(xt)|

])
+∇xt

log pθ(xt)

= xt −
1

2
Ez′∼qϕ(z|x0)

[
∇xtdM (z′,µϕ(xt))

]
− 1

2
∇xt log |Σϕ(xt)|+∇xt log pθ(xt).

There are three terms, each corresponding to a specific constraint during this optimization procedure.
The first constraint is to land in a region of the image space such that its representation minimizes its
Mahalanobis distance to the latent of the guiding image z′(x0). This is related to the metamer per-
spective (Helmholtz, 1852; Zhu et al., 1998; Portilla and Simoncelli, 2000; Freeman and Simoncelli,
2011; Mahendran and Vedaldi, 2014; Feather et al., 2023), where the goal is to produce data samples
that share the same latent representation as a target datum. Metamer generation can be formulated
as a constrained optimization problem, minimizing the L2 distance between the representations of
the current sample and the target, xt ← xt −∇xt

∥rtarget − rxt
∥2, where rxt

is the representation of
the current sample xt, and rtarget that the target datum. Our approach generalizes this framework by
replacing the L2 distance with the log likelihood from Eq. 11. In this view, the inference network
constrains the generation process to produce samples that are metameric to the guidance image as
defined by the latent representation.

The next term corresponds to taking steps towards regions of the image space that minimizes the log
determinant of the covariance matrix. Geometrically, we can think of this as reducing the volume of
the uncertainty ellipsoid over the features identified by the inference network. In a well-calibrated
Bayesian network, the posterior uncertainty over the identified features should match the irreducible
uncertainty present in the image. For DiVA, the irreducible uncertainty in the latent space comes
from the noise in the noisy observations, and as such we should expect that the log determinant of the
covariance to correlate strongly with the variance of the noisy image.

The final term corresponds to the denoiser, parameterized by θ, which ensures that the network is
driven towards the natural image manifold, i.e. the set of highly probable images.

The region of the X space that we land on is at the intersection of these three signals. This perspective
suggests that we can increase the diversity (i.e. the entropy) of the generated images by relaxing
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one or more of these constraints. For example, if the generation procedure were given only by the
third term, the network would be driven to satisfy only the image prior, recovering the unconditional
generation of DDPM. Alternatively, we might choose to calculate the Mahalanobis distance over
only a subset of the latent dimensions, in effect making sure that µϕ is close to z′ only in those latent
dimensions. This has the effect of making those latent axes “rigid”, while the rest of the axes are
“sloppy”, since large distances in these dimensions are discounted Machta et al. (2013); Transtrum
et al. (2015). Back in the pixel space, this equates to finding images that possess a subset of the
semantic attributes in the original guiding image, i.e. those that correspond to the constrained feature
dimensions.

A.5 ARCHITECTURE AND TRAINING DETAILS

Parameter Disks CelebA 64 CelebA-HQ 256
Inference net arch. ConvNet Half-UNet Half-UNet
Infnet base channels 48 64 64
Infnet channel multiplier [2, 2] [1, 1, 1, 1, 1, 1] [2, 2, 2, 2, 1, 1]
Infnet nonlinearity ReLU ReLU SiLU
Denoiser arch. UNet (no attn) UNet (no attn) UNet (with attn, frozen)
Denoiser base channels 128 128 128
Denoiser ch. multiplier [1, 1, 1, 1, 1, 1] [1, 1, 1, 1, 1, 1] [1, 1, 2, 2, 4, 4]
Num. noise levels 400 1000 1000
Latent dimensionality 3 256 512
KL weight 5e-6 1e-3 1e-8
Noise schedule Linear Cosine Linear
Training set size 2000 60,000 30,000
Batch size 512 512 512
Num. epochs trained 1000 5000 70
Learning rate 6e-3 1e-3 3e-5
Timestep sampling dist. Uniform Uniform Monotonically increasing
Resources (num. A100) 1 20 20
Optimizer Adam (without weight decay)

Table 1: Architectural and training details for each of the three datasets mentioned in the main text.

Architectural details. We tried to use simple architectures throughout our experiments for the sake
of interpretability and to emphasize the algorithmic effects as much as possible. For the disks dataset,
we used a two layer ConvNet as the inference network, with kernel size 3 and stride 2. The inference
networks used for the disks and CelebA-64 datasets have no biases, following Mohan et al. (2022),
and the denoisers had no attention blocks. Despite the deliberate restrictions in architecture, we saw
that the model was able to learn a robust representation of the dataset. The Half-UNet architecture
is a UNet where the Up blocks have been replaced by two MLP layers, both outputting a vector of
dimension equal to the latent dimension. From one MLP we get the latent mean. The other outputs a
vector which we apply Softplus and squaring operators; this returns the variance.

For the CelebA-HQ 256 dataset, we used an off the shelf DDPM Ho et al. (2020). We froze
the denoiser’s weights and trained only the inference network, which we again restricted to be a
Half-UNet without attention blocks.

KL weight. We annealed the KL weight to the value given in Table 1, starting from a number many
orders of magnitude smaller and using a exponential annealing schedule.

Choosing hyperparameters. We performed an extensive grid search over the space of hyperpa-
rameters for each model, measuring model performance by the change in MSE between the MSE
of an unconditional diffusion model and the MSE when the inference network was also employed.



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

The unconditional diffusion model retained the same denoiser hyperparameters as the full DiVA.
As mentioned in the main text, an informative representation should result in generated images that
resemble the original guiding image, and thus a smaller MSE can be used as a measure of latent
informativeness. We found that larger KL weight corresponded to more factorized representations,
but the weight could only be increased up to a threshold, above which the model exhibits posterior
collapse and the representation becomes uninformative. As such, we performed binary search over
the KL weights until we found a value just smaller than the threshold.

Timestep sampling distribution. When training the model on the disks and CelebA 64 datasets,
we sampled the noise level uniformly from 0 to T, as is common when training unconditional DDPMs.
When training the inference network on top of the frozen denoiser on the CelebA-HQ dataset, we
found that oversampling the larger noise levels was more effective. This is equivalent to over-weighing
the contribution of high noise level terms in the overall MSE loss rather than weighing all levels
uniformly. If the inference network is unable to learn the guidance vector for all noise levels when
paired with a frozen denoiser, since the guidance vector has greater relative influence at high noise
levels compared to the denoising score, it is more effective to learn the guidance score for the high
noise regime.

Bottleneck size. We found that the number of semantic attributes learned by the DiVA represen-
tation depended on three factors: the magnitude of the KL weight, the dimensionality of the latent
representation, and the timestep sampling distribution. Relaxing the first two of these three factors
increases the amount of information that can be learned by the network, but results in a less factorized
and interpretable representation.

A.6 COMPARISONS TO OTHER MODELS
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Objective function ELBO MSE MSE+L1 reg. ELBO+MI reg. ELBO MSE MSE+CE reg. MSE
Guidance mechanism Sum Network† Network† Network† Network† Network† Network† Network†

Probabilistic latents Yes No No Yes No No No No
Unsupervised learning Yes Yes Yes Yes Yes No∗ Yes Yes
Using pre-trained DM Both No No No Yes No No No
Encodes noisy images Yes No No No No No No No
Enc. blind to noise level Yes Yes No Yes Yes Yes Yes Yes
Exact guidance score calc. Yes No No No No No No No
Interpretable latent axes Yes No No Yes No No No No

Table 2: Comparison to other diffusion-based representation learning models in the literature.

In Table 2 we compare our model to the other diffusion-based representation learning models in
the literature. Models with a † sign indicates that they use a separate neural network to perform
guidance by approximating the gradient of the log operator. In all networks other than ours, a linear
projection of the latent is used to modulate the UNet denoiser’s Adaptive GroupNorm layers. The
asterisk (∗) in the SODA column indicates that while SODA is trained in a self-supervised manner
using multiple views of the original datum, their formulation allows for unsupervised training as well.
DisDiff uses additional cross entropy losses to encourage representational invariance to a subset of
features. However, we find that a combinatorial representation emerges automatically from training
our diffusion process to use the exact log likelihood for guidance.
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A.7 METRICS

For disentanglement, we measured the degree to which DiVA’s representation was disentangled when
trained on CelebA 64× 64. We used the Total AUROC Difference (TAD) metric, which measures
the degree to which a unique attribute is detected by a unique latent representation, and the degree
to which the latent axes confidently replicate the ground truth axes (Yeats et al., 2022). Among
the diffusion-based representation learning methods, InfoDiff, DisDiff and DBAE are trained to
exhibit disentangled representations (Wang et al., 2023; Yang et al., 2023; Kim et al., 2024), so direct
comparison against these methods are particularly interesting. We also compared our method against
more standard benchmarks in the disentanglement literature, such as VAE and β-VAE.

In Table 3, we see that though we performed little to no hyperparameter search, DiVA performs
the best or second best at both disentangling and sample quality metrics. This is likely due to the
effect of training our model to produce the exact log likelihood, which requires both clean and noisy
images, rather than a representation of only clean images. The coding of noisy images adds important
structure to the latent space by encouraging noisy images to have the same latent value as clean
images in latent dimensions that code for coarse features. This ensures that coarser features have
more global coherence, a hypothesis that is borne out in Fig. 3F and G.

Model TAD↑ Capt. attrs.↑ FID↓
AE 0.042± 0.004 1.0± 0.0 90.4± 1.8

VAE 0.000± 0.000 0.0± 0.0 94.3± 2.8

β-VAE 0.088± 0.051 1.6± 0.8 99.8± 2.4

InfoVAE 0.000± 0.000 0.0± 0.0 77.8± 1.6

DiffAE (Preechakul et al., 2022) 0.155± 0.010 2.0± 0.0 22.7± 2.1

InfoDiffusion (Wang et al., 2023) 0.299± 0.006 3.0± 0.0 22.3± 1.2

DisDiff (Yang et al., 2023) 0.305± 0.010 - 18.2± 2.1

DBAE + TC (Kim et al., 2024) 0.362± 0.036 3.8± 0.8 13.4± 0.2

DiVA 0.583 3.0 16.3

Table 3: Comparisons against other generative models on TAD disentanglement metric and FID
scores on 64× 64 CelebA. “Capt. attrs.” refers to the number of captured attributes when calculating
the TAD score. Dark gray cells indicate the best, while light gray cells indicate second best.

A.8 DERIVATION FOR GLOBALLY PRESERVED SEMANTIC AXES

We investigated the locality of the mapping between the axes and the semantic label by perturbing the
latents of two different images along the same axis. We observed that though in general, this mapping
was not preserved across different regions of the latent space, some axes resulted in relatively similar
semantic transformations irrespective of the latent.

To identify latent-semantic mappings that are relatively global, we derived a mathematical formulation
that provides sufficient conditions for a mapping to be global. Suppose we have a trained conditional
diffusion process that maps noisy images xt to a clean image estimate x̂0 via the use of a set of
learned latents z. This mapping is defined as a function fθ,ϕ that takes in z and xt and returns a
guided clean image estimate:

fθ,ϕ(xt, z) = Epθ(x0|xt, z)

[
x0

]
= Epθ(x0|xt)

[
x0

]
+

1− ᾱt√
ᾱt
∇xt

log qϕ(z|xt)

= x∗
0(xt; θ) + γt ∇xt

log qϕ(z|xt) (12)

where the analytic form of ∇xt log qϕ(z|xt) is given as the derivative of Eq. 11. Given an initial
image x∗

0 = x∗
0(xt, z

′) that was generated by latent z′, we define the change in the generated image
in response to a perturbation to the latent along axis i as a nonlinear function ψ(·) that we can define,
without loss of generality, as

x∗
0 + ψ(x∗

0, z, i) = f(xt, z+ α ı̂)
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where α ı̂ is a perturbation of magnitude α along a particular axis i. Our aim is to understand whether
the functional form of the transformation ψ is dependent on the region of latent space that we are
perturbing. In other words, if this image transformation ψ is global, it should be independent of the
latent value z, while if the transformation is more local, then the form of ψ should itself change as
our test latent point z changes.

To make this problem tractable, let us assume we are currently in a state with large noise xt, where
t ≈ T . At high noise levels, the optimal estimate of the clean image that minimizes the mean squared
error is the mean of the training set. This suggests that for a well-trained denoiser, we should expect
the same output irrespective of the network’s input:

x̂0(xt; θ) = Ep(x0|xt)

[
x0

]
≈ Epdataset(x0)

[
x0

]
= c.

where c is a constant image vector. Under this assumption, our function f is no longer dependent on
the denoiser but only depends on the inference network:

fϕ(xt, z) = c+ γt ∇xt log qϕ(z|xt).

This means the transformation ψ is also independent of the denoiser. It is purely a function of the
guidance vector:

x∗
0 + ψ(x∗

0, z, i) = c+ γt∇xt
log qϕ(z+ α̂ı|xt)

= c− γt
2
∇xt

[(
z+ α ı̂− µϕ

)⊤
Σ−1

ϕ

(
z+ α ı̂− µϕ

)
+ log

∣∣Σϕ

∣∣−N log(2π)
]
,

where z is a function of x0, and the means µϕ and covariances Σϕ are functions of the current noisy
image xt. If we decompose the RHS of the above equation into the contribution of just z and the
contribution of α ı̂, and denote the last two terms as the scalar s, we get:

x̂∗
0 + ψ(x̂∗

0, z, i)

= c− γt
2
∇xt

[(
z− µϕ

)⊤
Σ−1

ϕ

(
z− µϕ

)
+ 2

(
z− µϕ

)⊤
Σ−1

ϕ (α ı̂) + (α ı̂)⊤Σ−1
ϕ (α ı̂) + s

]
= c− γt

2
∇xt

[(
z− µϕ

)⊤
Σ−1

ϕ

(
z− µϕ

)
+ 2α

(
z− µϕ

)⊤
(Σ−1

ϕ )i + α2 (Σ−1
ϕ )ii + s

]
,

where (Σ−1
ϕ )i is the i-th column of the inverse covariance matrix, and (Σ−1

ϕ )ii = σ−2
i is the i-

th element along the diagonal of the inverse covariance matrix. We can now substitute x̂∗
0 =

c− γt

2 ∇xt

[(
z− µϕ

)⊤
Σ−1

ϕ

(
z− µϕ

)
+ s ], which yields

ψ(z, i) = ∇xt

[
2α(z− µϕ)

⊤(Σ−1
ϕ )i + α2 (Σ−1

ϕ )ii

]
.

Let’s see how this transformation in X changes with our location z in latent space Z . First suppose
we use the same latent perturbation α ẑi irrespective of where we are in latent space. For a given state
xt, we compare two instances of ψ at different values of z:

ψ1(z
(1), i) = ∇xt

[
2α(z(1) − µϕ)

⊤(Σ−1
ϕ )i + α2 (Σ−1

ϕ )ii

]
ψ2(z

(2), i) = ∇xt

[
2α(z(2) − µϕ)

⊤(Σ−1
ϕ )i + α2 (Σ−1

ϕ )ii

]
.

Since µϕ and Σϕ are functions of a common xt, their values are the same in both ψ1 and ψ2. The
difference between these two transformations is therefore

ψ1(z
(1))− ψ2(z

(2)) = ∇xt

[
2α(z(1) − µϕ)

⊤(Σ−1
ϕ )i − 2α(z(2) − µϕ)

⊤(Σ−1
ϕ )i

]
= 2α∇xt

[
(z(1) − z(2))⊤(Σ−1

ϕ )i

]
.

We see that the difference in the transformation scales linearly with the difference in z(1) and z(2),
and scales with the i-th column of the inverse covariance matrix. If we assume a diagonal covariance
assumption, as in our model, this is simply a unit vector scaled by the i-th element along the diagonal:

ψ1(z
(1))− ψ2(z

(2)) = 2α∇xt

[
(z(1) − z(2))⊤σ−2

i ẑi

]
= 2α

(
∇xt

σ−2
i

)(
z
(1)
i − z

(2)
i

)
, (13)
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where in the second line we use the fact that only σ−2
i is a function of xt. This means that if the

clean images are mapped to similar values in this dimension (e.g. if the population variance in this
dimension is very low), then the function that is applied in the data space will be very similar. The
effect is also scaled by the derivative of the precision: we want to look for axes where the precision
isn’t affected by perturbations around xt:

∇xt
σ−2
i (xt) =

∂

∂σ2
i

(
1

σ2
i

)
∂σ2

i

∂xt
= − 1

σ4
i

∂σ2
i

∂xt
.

Plugging this into Eq. 13 yields

ψ1(z
(1))− ψ2(z

(2)) = −2α

σ4
i

∂σ2
i

∂xt

(
z
(1)
i − z

(2)
i

)
.

Global axes are those that minimize the difference in ψ. We can find axes that satisfy three properties:

• small variance in the population of clean image latents,
• large feature uncertainty σi for our noisy image state xt,
• where the variance of the noisy latent σi is insensitive to changes in our noisy image xt.

Though our analysis relies on the assumption that we are currently at a large noise regime, this is also
the regime in which the guidance vector has the most influence over the sampling process, since the
noise-dependent factor γt in Eq. 12 —which trades off between the influence of the guidance vector
and the denoiser score—scales monotonically with t.

Figure 5: Comparing the norms of the denoiser score and the guidance score. Larger (rightward)
denoising steps corresponds to smaller noise level. The ratio is closest to one at the start of the
diffusion process, at large noise levels.

Above, we plot the ratio between the norm of the denoiser score and the norm of the weighted
guidance score. A smaller ratio indicates that the guidance score has more relative strength. We see
that the ratio is smallest at large noise levels, at the start of the diffusion process.
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