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Abstract

Event Causality Extraction (ECE) aims to ex-
tract the cause-effect event pairs from the given
text, which requires the model to possess a
strong reasoning ability to capture event causal-
ities. However, existing works have not ade-
quately exploited the interactions between the
cause and effect event that could provide cru-
cial clues for causality reasoning. To this end,
we propose an Implicit Cause-Effect interaction
(ICE) framework, which formulates ECE as
a template-based conditional generation prob-
lem. The proposed method captures the im-
plicit intra- and inter-event interactions by in-
corporating the privileged information (ground
truth event types and arguments) for reason-
ing, and a knowledge distillation mechanism
is introduced to alleviate the unavailability of
privileged information in the test stage. Fur-
thermore, to facilitate knowledge transfer from
teacher to student, we design an event-level
alignment strategy named Cause-Effect Opti-
mal Transport (CEOT) to strengthen the seman-
tic interactions of cause-effect event types and
arguments. Experimental results indicate that
ICE achieves state-of-the-art performance on
the ECE-CCKS dataset.

1 Introduction

Event Causality Extraction (ECE) is an emerging
yet challenging natural language processing (NLP)
task, which requires extracting the whole event
structure of cause and effect events, including event
type and event arguments. As shown in Figure 1,
given the input text, an ECE system is expected
to identify the cause event (i.e., the event type is
Price Increase, the argument oil plays the role of
Product, the argument worldwide as Region), and
similarly identify the corresponding effect event.
Recognizing event causality can provide support
for many downstream NLP tasks, including ma-
chine reading comprehension (Berant et al., 2014),
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The worldwide rise of oil prices stimulates the 
demand for new energy such as Ammonia fuel.

Cause: Price Increase

Effect: Demand Increase

Industry Product

Product

Region: None

Industry: new energy

Product: Ammonia fuel

Effect: Demand Increase    

Region

Region: worldwide

Industry: None

Product: oil

Cause: Price Increase

Figure 1: An instance of event causality extraction. The
cause event is marked in yellow and the effect event is
marked in green. The cause-effect interactions include
intra- and inter-event interactions. Solid lines indicate
intra-event interactions between the event type and the
corresponding arguments, while the dashed line indi-
cates inter-event interaction between the cause-effect
event.

intelligent search (Rudnik et al., 2019), future event
forecasting (Hashimoto, 2019), and why-question
answering (Oh et al., 2017).

Existing studies mainly regard this task as a
classification-based problem. Du and Cardie (2020)
and Wang et al. (2019) extracted the events and
classified the causal relation in a pipelined manner.
Wang et al. (2020) leveraged grid tagging to si-
multaneously extract the events and causality pairs.
Cui et al. (2022) also designed a dual grid tagging
scheme, which aims at modeling the correlations
between different event arguments. Compared
to the classification-based methods, generation-
based models can take full advantage of Pre-trained
Language Models (PLMs) by designing flexible
prompt templates (Ma et al., 2022; Liu et al., 2022).
As a result, there is a trend to cast the extraction
task as a conditional generation problem.

Although generation-based approaches have



achieved remarkable success, the limited interac-
tions between the cause-effect events impede the
model’s ability to reason effectively between events.
Intuitively, the privileged information (Xu et al.,
2020), which stands for the ground truth informa-
tion of event types or event arguments, could pro-
vide valuable knowledge for inferring causal clues.
Take Figure 1 as an example, if the model has al-
ready known the cause event is Price Increase, and
the Product and Region are oil and worldwide in
this event, the inter-event interactions could bene-
fit the extraction of effect event. Similarly, if the
model has known Price Increase causes Demand
Increase during training, the intra-event interac-
tions may help the model to capture event argu-
ments more accurately. By incorporating different
kinds of privileged information, the model could
make full use of the implicit interactions and be
guided to extract causal clues. However, due to
the unavailability of such privileged information
in practice, incorporating it naively will result in
inconsistencies between training and test phases
and may affect the model performance. Several
methods (Liu et al., 2017; Wei et al., 2021) in other
NLP fields have provided solutions to overcome
this problem, but they are not applicable when ECE
is modeled as a generative problem.

Moreover, generation-based methods are typi-
cally trained via maximum likelihood estimation
(MLE) (Salakhutdinov, 2015), which maximizes
the likelihood of the next word conditioned on its
previous ground truth words. Then, it leverages
cross-entropy loss to measure the difference at each
position of the target sequence. Nevertheless, since
MLE only emphasizes strict word-level alignment,
it struggles to consider the semantic information
from the perspective of event type or event argu-
ments. For instance, as shown in Figure 1, when
training the word new from the effect event argu-
ment new energy, MLE ignores new energy is a
whole unit as the Industry, which results in a par-
tial loss of semantics. The event type and event
arguments from the cause-effect event pairs could
also be regarded as different wholes, and by inter-
acting with each other, the model could implicitly
incorporate such event-level semantic information.

In this paper, we propose an Implicit Cause-
Effect interaction (ICE) framework for ECE to ad-
dress the above issues. Specifically, we formulate
the ECE task as a template-based conditional gener-
ation problem, which takes the context and prompt

template as the input, and decodes event causality
and event structure from the generated sequence.
To capture the implicit intra- and inter-event inter-
actions, we feed different privileged information
to the input template and train two well-informed
teacher models. Then a student model is driven
by imitating the behaviors of teachers to narrow
the input difference of training and test phases
through knowledge distillation (Hinton et al., 2015).
Furthermore, to facilitate knowledge transfer and
strengthen the interactions between cause and ef-
fect events, we design a Cause-Effect Optimal
Transport (CEOT) mechanism by treating the event
type and event arguments as model units, which
could implicitly incorporate the event-level seman-
tic information. In summary, the contributions of
this paper are as follows:

1) This work proposes an ICE framework, which
models event causality extraction in a generative
paradigm and incorporates privileged knowledge
for reasoning.

2) The proposed method implicitly captures the
intra- and inter-event interactions through knowl-
edge distillation, and employs a CEOT strategy to
strengthen the semantic interactions of cause and
effect events.

3) Experimental results show that our model
achieves state-of-the-art performance, improving
the F1-score by 8.39% on the ECE evaluation
benchmark.

2 Related Work

Event Causality Extraction. ECE is derived from
the previous event causality identification (ECI),
which aims to recognize the causal relations be-
tween the given events in text (Zuo et al., 2021; Phu
and Nguyen, 2021). Early methods mainly focus
on syntactic and lexical features (Gao et al., 2019),
causality patterns (Hidey and McKeown, 2016),
and statistical causal clues (Hu and Walker, 2017).
Recent works seek to employ external knowledge
(Liu et al., 2020; Cao et al., 2021) or prompt-based
models (Shen et al., 2022; Liu et al., 2023) for this
task. But these methods only identify the causality
of events expressed by a word or phrase, without
considering the event type and event arguments.
Cui et al. (2022) first proposed the ECE task and
exploited the argument correlations to extract event
causality and event structure. Some variant meth-
ods from relation extraction have also been applied
to this task (Wang et al., 2020; Wei et al., 2020).



However, these works fail to model the implicit
cause-effect interactions, making it difficult to ex-
tract causal clues.
Knowledge Distillation. This technique is first
proposed by Hinton et al. (2015), which aims to
transfer knowledge from a well-trained teacher to
a student model. Jiao et al. (2020) and Sanh et al.
(2019) used knowledge distillation for compress-
ing large-scale pre-trained language models. Wu
et al. (2021) and Li et al. (2022) adopted multiple-
teacher knowledge distillation to improve the ef-
fectiveness of distillation. Wei et al. (2023a) pro-
posed to incorporate related arguments knowledge
through knowledge distillation for event argument
extraction. Nevertheless, they are designed for
classification-based methods and struggle to mi-
grate to the ECE task under the generative pattern.
Optimal Transport. OT has a wide range of ap-
plications in NLP domains (Chen et al., 2019; Xu
et al., 2021; Wei et al., 2023b). Li et al. (2020)
proposed using optimal transport to tackle the ex-
posure bias issue in training generative models
by maximum likelihood estimation. Zhou et al.
(2022) modeled events in the sequence as units and
adopted optimal transport to explicitly extract the
event semantics for generating temporally-ordered
event sequences. In this paper, we employ optimal
transport to improve the semantic interactions of
event type and event argument for cause and effect
events.

3 Methodology

Our ICE framework formulates ECE as a template-
based generation problem and implicitly incorpo-
rates privileged information for reasoning. Under
this paradigm, we train two well-informed teacher
models by incorporating different privileged in-
formation into model inputs. Then we adopt a
knowledge distillation mechanism to drive a stu-
dent model to capture implicit cause-effect inter-
actions, which could alleviate the difference of un-
available privileged information in the test stage.
During the training phase, a CEOT strategy is
adopted to improve the semantic interactions of
cause-effect events and promote the training of the
student. The overview of ICE is shown in Figure 2.

3.1 Task Formulation

The goal of ECE is to extract event causality and
event structure from the text. Formally, given a
context, ECE aims to extract a set of cause-effect

event pairs {Ecai , Eefi}si=1, where Ecai and Eefi

indicate the cause and effect event of the i-th pair,
respectively. The event structure E = (t, A) con-
tains the event type t and the argument set A. Each
argument in A corresponds to a role.

3.2 Generative Template-based ECE Model

Template Creation. At the input stage, we
first construct a specific task-related template for
ECE. Following Ma et al. (2022) and Liu et al.
(2021), we design a soft template that contains
learnable pseudo tokens and slots for all compo-
nents we require extracting. Figure 2(c) shows
the ECE template in our model, where <Cause>,
<Effect>, <type>, </type>, etc. are specific
learnable pseudo tokens. Then we concatenate
the context and template, and feed them into a
Transformer-based model to generate the output
sequence, where the slots in the template will be
filled with concrete event type or event arguments
of the cause event and effect event.
Target Output Sequence. For the cause-effect
event pair in context, we construct the target output
sequence Y for conditional generation by filling
the ground truth cause event and effect event into
the template. Note that when there is more than one
argument corresponding to a role, they will be con-
catenated by a special token <and>. If some roles
of the event have no arguments, the corresponding
positions in the target output sequence will be filled
with <None>.
Training. In the training process, we adopt the
Transformer-based pre-trained language model
BART (Lewis et al., 2020) as our basic model archi-
tecture, which consists an encoder and a decoder.

He = Encoder(X)

Hd = Decoder(Y ;He)
(1)

where X denotes the concatenation of context and
template. The training target is to maximize the
likelihood of the next token conditioned on the
previous ground truth tokens in the sequence:

Lgen = −
L∑
l=1

log p(Yl|Y<l, X) (2)

where L is the length of the target output sequence.
Inference. After obtaining the generated sequence,
we decode the event type and event arguments of
cause-effect events from corresponding slots with
a rule-based matching algorithm. Then we check
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Figure 2: (a) The overview of the ICE learning framework. (b) The process of Cause-Effect Optimal Transport
(CEOT). (c) The creation of the template. The cause event is marked in orange and the effect event is marked in
green. Underlined tokens indicate slots for event types and event arguments of cause-effect events. And tokens with
<angle brackets> denote specific pseudo tokens.

whether the event type is in the predefined event
type set and whether each event argument is a span
of the context.

3.3 Teacher-Student Distillation Learning

Based on the generative paradigm, we adopt a
teacher-student distillation learning framework to
capture the implicit intra- and inter-event interac-
tions, which could implicitly incorporate the privi-
leged information for event causality reasoning and
narrow the inconsistencies between training and
test phases.

Specifically, we train two well-informed teach-
ers, including an event argument extractor and an
effect event extractor. The event argument extrac-
tor aims to extract event arguments with the event
type of cause event and effect event given, and the
effect event extractor seeks to recognize event type
and event arguments of effect event with knowing
the information of cause event. With template-
based generation formulation, we could introduce
the privileged information into the model in a flex-
ible way. As shown in Figure 2, for the event
argument extractor, we construct a knowledge-
enriched template by filling the ground truth event
types of the cause and effect event in the raw tem-
plate. Likewise, for the effect event extractor,
we fill in the ground truth event type and argu-
ments of the cause event to form a new knowledge-
enriched template. We give an example for the

construction of knowledge-enriched templates in
Appendix B. Next, we concatenate the context and
the knowledge-enriched templates as inputs to train
teachers.

In the knowledge distillation stage, we use HS
di

to denote the hidden states of the i-th decoder
layer of the student model, and HT

di
to denote the

teacher’s. We adopt the mean squared error (MSE)
to encourage the student model to match the hidden
states of corresponding layers of the decoder in the
teacher:

Lmse =
L∑
l=1

N∑
i=1

MSE(HS
di
,HT

di
) (3)

where N is the number of decoder layers. We also
employ KL-Divergence to encourage the student
to match the probability distribution of the teacher
over the next possible word at each position:

Lkl =

L∑
l=1

KL(pSl , p
T
l ) (4)

where pSl and pTl are probability distributions of
student and teacher over the next possible token
at position l. Please note that the teachers and stu-
dent exploit the same model architecture and train-
ing objectives, but do not share model parameters.
And the parameters of teachers are fixed during the
training of the student. The overall loss for training



student model with a single teacher is:

Lkd = Lgen + αLmse + βLkl (5)

where α and β are weight coefficients.

3.4 Cause-Effect Optimal Transport

To improve knowledge transfer, we seek to model
semantic information from the perspective of event
type or event arguments and introduce a CEOT
strategy to promote interactions of cause and effect
events, which is achieved by event-level alignment
of teacher and student representations.

Optimal transport defines a distance metric be-
tween two probability measures on a domain.
Given two discrete probability measures µ =∑n

i=1 uiδxi and ν =
∑m

j=1 vjδyj , where δxi is
the Dirac function centered on x, the weights
u = {ui}ni=1 ∈ ∆n and v = {vj}mj=1 ∈ ∆m

satisfy the constraints
∑n

i=1 ui =
∑m

j=1 vj = 1.
Under this setting, the OT distance is formalized as
the following problem (Luise et al., 2018):

Lot(µ,ν) = min
M∈Π(u,v)

n∑
i=1

m∑
j=1

Mij · c(xi,yj)

= min
M∈Π(u,v)

⟨M ,C⟩

(6)
where Π(u,v) = {M ∈ Rn×m

+ |M1m =
u,M⊤1n = v}, 1n denotes an n-dimensional
all-one vector, C is cost matrix defined as Cij =
c(xi,yj), M is the transportation plan, and
⟨M ,C⟩ = Tr(M⊤C) denotes the Frobenius in-
ner product. Xie et al. (2019) proposed an approx-
imate algorithm IPOT to solve Eq. 6, which is
illustrated in Appendix A. After solving M , we
use OT distance as loss to update model parame-
ters.

Specifically, the representation of the template
for student is denoted as HS

e , which is obtained
from the last hidden state of the BART encoder
of student corresponding to the template. We first
partition HS

e into n groups, where each group cor-
responds to the representation of the slot together
with specific tokens before and behind it (e.g.,
<type> TypeOfCause </type> belong to a group).
Then we average the representations of tokens in
each group to obtain the sequence KS

e = {hS
ei}

n
i=1,

where hei denotes the representation of the i-th
group, n is the number of groups. Similarly, we
can get the sequence KT

e = {hT
ei}

m
i=1 by group

and average the template representations of teacher.

Split #Sents #Pairs #Events

Train 5600 6318 12636
Dev 700 791 1582
Test 700 799 1598

Table 1: Statistics of the ECE-CCKS dataset.

We use cosine distance as the cost function and
adopt the IPOT algorithm to compute the OT loss:

Leot = IPOT(KS
e ,K

T
e ) (7)

Meanwhile, the last hidden state of the BART
decoder for teacher and student is denoted as HT

d

and HS
d . We first use a linear layer followed by

an argmax function to decode the output sequence.
Then the representations are divided into several
groups based on the event type or event argument
together with specific tokens before and behind it.
Note that when some specific tokens are missing
in the output, we remove the corresponding groups.
Likewise, we can obtain two sequences KS

d and
KT

d via an average operation and compute the OT
loss:

Ldot = IPOT(KS
d ,K

T
d ) (8)

The overall loss of the model is defined as:

Lo = Lkd + λLeot + ηLdot (9)

where λ and η are weight coefficients.

3.5 Training Objectives
Since the two teachers exhibit different difficulties
in extracting the same sample, motivated by Zhang
et al. (2022), we use adaptive weights to control
the importance of different teachers for a specific
sample:

wk = 1−
exp(Lk

genT
)∑

j exp(L
j
genT )

(10)

where Lk
genT

denotes the prediction loss of the k-
th teacher. The total loss under the multi-teacher
knowledge distillation framework is calculated as:

L =
∑
k

wkLk
o (11)

4 Experiments

4.1 Experiment Setup
Dataset. Our experiments are conducted on the
ECE-CCKS (Cui et al., 2022) dataset, which is



Method EAE CET ECE

P R F1 P R F1 P R F1

Novel-tagging 59.40 28.47 38.49 49.79 61.70 55.11 51.52 26.75 35.22
CasECE 36.88 36.72 36.80 58.26 59.70 58.97 31.30 41.81 35.80
Pair-tagging 47.08 46.49 46.79 55.78 62.95 59.14 39.24 47.69 43.05
DualCor 58.05 47.60 52.31 61.75 58.19 59.92 48.56 44.85 46.63

BART-ECE 64.62 50.09 56.43 69.43 60.83 64.84 54.74 47.21 50.70
Student 67.81 54.37 60.35 67.57 59.20 63.11 55.47 49.76 52.46
MKD 68.83 53.59 60.26 68.29 59.82 63.78 57.02 49.04 52.73
CE-Pipeline 66.50 52.69 58.80 69.00 60.45 64.44 55.01 48.36 51.47
TA-Pipeline 67.01 53.55 59.53 68.86 60.33 64.31 54.27 47.98 50.93
ICE (Ours) 69.69 54.57 61.21 70.00 61.33 65.38 59.13 51.44 55.02

Table 2: Overall performance compared to the state-of-the-art methods on the test set. P, R, and F1 denote precision
(%), recall (%), and F1-score (%). The best results are denoted in bold.

derived from the corpus released by Tianchi (2021).
The dataset is annotated with 39 event types and 3
event roles, and the statistic information is listed in
Table 1.
Evaluation Metric. We use precision (P), recall
(R), and F1-score (F1) as evaluation metrics. A
predicted cause-effect event pair is considered cor-
rect when the event type and event arguments of
the cause event and effect event are correctly ex-
tracted. To prove a fair comparison with previous
methods (Cui et al., 2022), we also report results on
the following two tasks: Event Argument Extrac-
tion (EAE), which measures the model’s ability
to extract event arguments; Cause-Effect Type ex-
traction (CET), which aims to recognize whether
the predicted event types of cause and effect event
are correct.
Implementation Details. All experiments are con-
ducted on NVIDIA Tesla V100 GPU with Py-
torch framework. We use the pre-trained BART-
base from Hugging-Face’s Transformers library
(Wolf et al., 2020) as the encoder-decoder language
model. Our model is optimized by the AdamW
weight decay strategy with a learning rate of 3e-5.
The coefficient λ is set to 0.1 and η is set to 0.1. We
set α and β to 1e-3 and 0.5. The model is trained
for 60 epochs with a batch size of 16.

4.2 Baseline Methods

Classification-based Method. (1) Novel-tagging
is introduced to ECE by combining causality, event
types, event roles, and argument span into a unified
label space (Zheng et al., 2017). (2) CasECE is
a pipelined method inspired by Wei et al. (2020),

which first extracts the cause event and then recog-
nizes the effect event conditioned on the former pre-
diction. (3) Pair-linking is a grid tagging method
based on Wang et al. (2020), which uses event-
type-level pair linking as conditional information
for token-pair linking to extract event arguments.
(4) DualCor (Cui et al., 2022) designed a dual grid
tagging scheme to capture the argument correla-
tions for ECE.
Generation-based Method. Since there is no gen-
erative method for ECE in existing studies, we im-
plement the following baselines: (1) BART-ECE
achieves event causality extraction with a template-
based conditional generation method in natural lan-
guage form. (2) Student is the generative model in-
troduced in Section 3.2. (3) MKD employs a multi-
teacher knowledge distillation framework where
each teacher is trained without privileged informa-
tion. (4) CE-Pipeline is a pipelined generation
model, which first extracts the cause event and then
predicts the effect event based on the cause. (5)
TA-Pipeline is also a pipelined generation model
that first identifies the event type of the cause and
effect event, conditioned on which to detect the
event arguments.

4.3 Overall Performance

The experimental results are reported in Table 2.
We can draw the following conclusions: (1) The
proposed method achieves the best performance,
outperforming the previous state-of-the-art model,
DualCor, by 8.90%, 5.46%, and 8.39% on EAE,
CET, and ECE in terms of F1-score. The significant
improvements demonstrate the effectiveness of our



Method EAE CET ECE

ICE 61.21 65.38 55.02
-w/o EAE 60.43 65.11 53.20
-w/o EEE 60.97 64.71 53.51
-w/o EAE&EEE 60.35 63.11 52.46
-w/o CEOT 60.97 65.18 54.06
-w/o AW 60.45 65.11 54.30

Table 3: Experimental results (F1-score) of ablation
study on the test set.

model. (2) The generation-based methods gener-
ally produce better performance than classification-
based methods. This suggests that the generation-
based model could make full use of the knowledge
in PLMs and exhibit strong advantages on ECE.
(3) Compared with Student, our method performs
better on the three tasks. We credit the reason
to that the student model has difficulty in extract-
ing implicit causal clues, while ICE can equip the
model with more implicit event causality reasoning
knowledge via a multi-teacher knowledge distilla-
tion framework, thus boosting the model perfor-
mance. (4) With the same model architecture, the
performance of ICE exceeds MKD. The improve-
ments indicate that the privileged information could
help to train well-informed teachers, which guide
the student to capture the intra- and inter-event
interactions.(5) CE-Pipeline and TA-Pipeline per-
form poorly among the generation-based methods.
The results illustrate that the pipelined methods suf-
fer from error accumulation problems, while ICE is
an end-to-end method with privileged information
as the supervision, which could avoid introducing
noise or irrelevant information.

4.4 Further Discussion
Ablation Study. To evaluate the contribution of
each component, we conduct ablation studies by re-
moving event argument extractor (w/o EAE), effect
event extractor (w/o EEE), Cause-Effect Optimal
Transport (w/o CEOT), and adaptive weights (w/o
WA). The experimental results are shown in Ta-
ble 3. We observe that: (1) Removing the event
argument extractor or effect event extractor will
result in performance decay, demonstrating that
both extractors are beneficial for event causality
extraction. This is because they could capture the
implicit intra- and inter-event interactions to per-
form event causality reasoning, and the knowledge
is transferred to the student via a teacher-student

Pairs Method P R F1

Single

Pair-linking 40.31 54.32 46.28
DualCor 49.39 51.56 50.46
Student 55.83 55.58 55.71
ICE 57.74 57.78 57.76

Multiple

Pair-linking 32.15 24.82 28.03
DualCor 43.65 22.72 29.89
Student 59.91 27.48 37.68
ICE 63.06 28.93 39.66

Table 4: Experimental results under different number of
cause-effect event pairs in a sample on ECE task.

Temp. EAE CET ECE

CA 61.88 64.84 53.56
MA 60.95 64.44 54.27
SF 61.21 65.38 55.02

Table 5: Experimental results (F1-score) of using dif-
ferent types of templates. CA: Concatenation Template,
MA: Manual Template, SF: Soft Template.

distillation framework. (2) The model performance
decreases after removing CEOT, which illustrates
this strategy could promote the training process by
enhancing the event-level semantic information in-
teractions of cause event and effect event. (3) The
adaptive weights mechanism can assign different
reliability for each teacher according to the char-
acteristics of the samples, further improving the
performance of the student.
Effect of the Number of Cause-Effect Pairs. To
evaluate the effect of different numbers of event
causality pairs in a sample, we conduct experiments
by dividing the test set into two subsets: Single,
which indicates the subset with one pair in a sam-
ple; Multiple, which denotes the subset with more
than one pairs. The results are reported in Table
4. It can be observed that: (1) ICE achieves the
best performance among all the baselines on Sin-
gle and Multiple subsets, which shows the gener-
alization ability and robustness of ICE. (2) The
methods on Multiple generally suffer from weak
performance. The reason may be that multiple
event causality pairs impose difficulties in captur-
ing implicit causal clues, leading to extremely low
recall. (3) The performance gaps between Student
and ICE on the two subsets further demonstrate
that the knowledge distillation framework could
utilize the privileged information to improve the



Figure 3: Experimental results (F1-score) under different ratios of training data on three tasks.

Example1

The growth of {global}RegionOfCause {gasoline}ProductOfCause demand is sluggish, and the
combination of excess supply and unsatisfactory demand has led to a continuous decline
in {gasoline}ProductOfEffect cracking spreads this year.
BART-ECE: {TypeOfCause: Supply Increase, TypeOfEffect: Demand Drop}
ICE: {TypeOfCause: Demand Drop, TypeOfEffect: Price Drop}

Example2

The amount of {silicon}ProductOfCause used in June increased compared to May, and the
increase came from polysilicon, while the supply of {monosilicon}ProductOfCause decreased.
Therefore, it is expected that the price of {monosilicon}ProductOfEffect will rise after July.
BART-ECE: {TypeOfCause: Supply Decrease, TypeOfEffect: Price Increase}
ICE: {TypeOfCause: Supply Decrease, TypeOfEffect: Price Increase}

Table 6: Case study on the test set. The correctly predicted event type or event arguments are marked in teal, while
wrong predictions by BART-ECE are marked in red.

event causality reasoning ability of the model, thus
driving a more effective model.
Performance in Low-resource Scenarios. To in-
vestigate the model performance in low-resource
scenarios, we adopt different low proportions of
training data to conduct experiments on the three
tasks. As shown in Figure 3, it can be observed
that: (1) ICE achieves the best performance under
different ratios of training data on three tasks. This
suggests that our model can extract event causal-
ities and event structure effectively with a small
scale of annotated data, which is more practical
to use. (2) ICE using a small amount of data can
even exceed DualCor using full data, and the per-
formance gap becomes larger with the decrease of
training data. These observations indicate that ICE
can elicit knowledge in PLMs and has a strong abil-
ity to capture causal clues, which is beneficial for
the model to perform the ECE task.
Effect of the Prompt Template. We study how
different types of prompt templates affect the
model performance by conducting experiments
with the following templates: Concatenation Tem-
plate, Manual Template, and Soft Template. The
creation of the three templates is shown in Ap-
pendix C and the results are listed in Table 5. We

find that the soft template is superior to the manual
template and concatenation template, which illus-
trates the effectiveness of our template. Although
the manual template can elicit pre-training knowl-
edge in a cloze formulation, it is labor-intensive
and hard to achieve optimal. However, the soft
template can avoid this laborious process and take
the best advantage of the PLMs.

Case Study. We present case studies to further
illustrate the performance of the proposed method.
As shown in Table 6, for Example1, BART-GEN
gives wrong predictions about the event type of the
cause event and effect event. The reason may be
that BART-ECE has difficulty capturing implicit
cause-effect interactions, so it fails to recognize the
causality between Demand Drop and Price Drop.
For Example2, both methods produce the correct
cause-effect event type, while BART-GEN fails to
predict the event argument monosilicon of the cause
event. We credit the reason to that our model could
leverage the event argument extractor and effect
event extractor trained with privileged information
to guide the training process of the student, thus
obtaining better performance in extracting event
causality and event structure.



5 Conclusions

In this paper, we propose an Implicit Cause-Effect
interaction (ICE) framework to improve the reason-
ing ability of the model, which tackles ECE in a
generative manner. The proposed method incorpo-
rates privileged information for reasoning to cap-
ture implicit intra- and inter-event interactions, and
utilizes a teacher-student learning framework to
bridge the gap between training and test stages. Be-
sides, we introduce a Cause-Effect Optimal Trans-
port (CEOT) strategy to improve the event-level
semantic interactions of cause and effect events.
Experimental results indicate that ICE outperforms
all the baselines on the ECE-CCKS dataset, demon-
strating the effectiveness of this work.

Limitations

The multi-teacher knowledge distillation mecha-
nism utilized in the ICE framework may increase
the computational time during the training process.
However, only the student model is leveraged dur-
ing the test process, and the test time is identical
to regular generation-based models. The problem
of relatively long training time can be mitigated
by strategies such as GPU parallelization. Consid-
ering the significant improvement brought by the
ICE framework, we believe the cost is acceptable.

Acknowledgements

The research is supported by the National Nat-
ural Science Foundation of China under Grant
62206267.

References
Jonathan Berant, Vivek Srikumar, Pei-Chun Chen,

Abby Vander Linden, Brittany Harding, Brad Huang,
Peter Clark, and Christopher D. Manning. 2014.
Modeling biological processes for reading compre-
hension. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing,
EMNLP 2014, October 25-29, 2014, Doha, Qatar, A
meeting of SIGDAT, a Special Interest Group of the
ACL. ACL.

Pengfei Cao, Xinyu Zuo, Yubo Chen, Kang Liu, Jun
Zhao, Yuguang Chen, and Weihua Peng. 2021.
Knowledge-enriched event causality identification
via latent structure induction networks. In Proceed-
ings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing,
ACL/IJCNLP 2021, (Volume 1: Long Papers), Virtual
Event, August 1-6, 2021, pages 4862–4872. Associa-
tion for Computational Linguistics.

Liqun Chen, Guoyin Wang, Chenyang Tao, Dinghan
Shen, Pengyu Cheng, Xinyuan Zhang, Wenlin Wang,
Yizhe Zhang, and Lawrence Carin. 2019. Improv-
ing textual network embedding with global attention
via optimal transport. In Proceedings of the 57th
Conference of the Association for Computational Lin-
guistics, ACL 2019, Florence, Italy, July 28- August
2, 2019, Volume 1: Long Papers, pages 5193–5202.
Association for Computational Linguistics.

Shiyao Cui, Jiawei Sheng, Xin Cong, Quangang
Li, Tingwen Liu, and Jinqiao Shi. 2022. Event
causality extraction with event argument correlations.
In Proceedings of the 29th International Confer-
ence on Computational Linguistics, COLING 2022,
Gyeongju, Republic of Korea, October 12-17, 2022,
pages 2300–2312. International Committee on Com-
putational Linguistics.

Xinya Du and Claire Cardie. 2020. Document-level
event role filler extraction using multi-granularity
contextualized encoding. In Proceedings of the 58th
Annual Meeting of the Association for Computa-
tional Linguistics, ACL 2020, Online, July 5-10, 2020,
pages 8010–8020. Association for Computational
Linguistics.

Lei Gao, Prafulla Kumar Choubey, and Ruihong Huang.
2019. Modeling document-level causal structures for
event causal relation identification. In Proceedings
of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, NAACL-HLT 2019,
Minneapolis, MN, USA, June 2-7, 2019, Volume 1
(Long and Short Papers), pages 1808–1817. Associa-
tion for Computational Linguistics.

Chikara Hashimoto. 2019. Weakly supervised multilin-
gual causality extraction from wikipedia. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing, EMNLP-IJCNLP 2019, Hong Kong, China,
November 3-7, 2019, pages 2986–2997. Association
for Computational Linguistics.

Christopher Hidey and Kathy McKeown. 2016. Iden-
tifying causal relations using parallel wikipedia arti-
cles. In Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics, ACL
2016, August 7-12, 2016, Berlin, Germany, Volume
1: Long Papers. The Association for Computer Lin-
guistics.

Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean.
2015. Distilling the knowledge in a neural network.
CoRR, abs/1503.02531.

Zhichao Hu and Marilyn A. Walker. 2017. Inferring
narrative causality between event pairs in films. In
Proceedings of the 18th Annual SIGdial Meeting on
Discourse and Dialogue, Saarbrücken, Germany, Au-
gust 15-17, 2017, pages 342–351. Association for
Computational Linguistics.

https://doi.org/10.3115/v1/d14-1159
https://doi.org/10.3115/v1/d14-1159
https://doi.org/10.18653/v1/2021.acl-long.376
https://doi.org/10.18653/v1/2021.acl-long.376
https://doi.org/10.18653/v1/p19-1512
https://doi.org/10.18653/v1/p19-1512
https://doi.org/10.18653/v1/p19-1512
https://aclanthology.org/2022.coling-1.201
https://aclanthology.org/2022.coling-1.201
https://doi.org/10.18653/v1/2020.acl-main.714
https://doi.org/10.18653/v1/2020.acl-main.714
https://doi.org/10.18653/v1/2020.acl-main.714
https://doi.org/10.18653/v1/n19-1179
https://doi.org/10.18653/v1/n19-1179
https://doi.org/10.18653/v1/D19-1296
https://doi.org/10.18653/v1/D19-1296
https://doi.org/10.18653/v1/p16-1135
https://doi.org/10.18653/v1/p16-1135
https://doi.org/10.18653/v1/p16-1135
http://arxiv.org/abs/1503.02531
https://doi.org/10.18653/v1/w17-5540
https://doi.org/10.18653/v1/w17-5540


Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao
Chen, Linlin Li, Fang Wang, and Qun Liu. 2020.
Tinybert: Distilling BERT for natural language un-
derstanding. In Findings of the Association for Com-
putational Linguistics: EMNLP 2020, Online Event,
16-20 November 2020, volume EMNLP 2020 of Find-
ings of ACL, pages 4163–4174. Association for Com-
putational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
ACL 2020, Online, July 5-10, 2020, pages 7871–7880.
Association for Computational Linguistics.

Jianqiao Li, Chunyuan Li, Guoyin Wang, Hao Fu, Yuh-
Chen Lin, Liqun Chen, Yizhe Zhang, Chenyang Tao,
Ruiyi Zhang, Wenlin Wang, Dinghan Shen, Qian
Yang, and Lawrence Carin. 2020. Improving text
generation with student-forcing optimal transport. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2020, Online, November 16-20, 2020, pages 9144–
9156. Association for Computational Linguistics.

Zhuoran Li, Chunming Hu, Xiaohui Guo, Junfan Chen,
Wenyi Qin, and Richong Zhang. 2022. An unsuper-
vised multiple-task and multiple-teacher model for
cross-lingual named entity recognition. In Proceed-
ings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
ACL 2022, Dublin, Ireland, May 22-27, 2022, pages
170–179. Association for Computational Linguistics.

Jian Liu, Yubo Chen, and Jun Zhao. 2020. Knowl-
edge enhanced event causality identification with
mention masking generalizations. In Proceedings
of the Twenty-Ninth International Joint Conference
on Artificial Intelligence, IJCAI 2020, pages 3608–
3614. ijcai.org.

Jintao Liu, Zequn Zhang, Zhi Guo, Li Jin, Xiaoyu Li,
Kaiwen Wei, and Xian Sun. 2023. KEPT: knowledge
enhanced prompt tuning for event causality identifi-
cation. Knowl. Based Syst., 259:110064.

Shulin Liu, Yubo Chen, Kang Liu, and Jun Zhao. 2017.
Exploiting argument information to improve event
detection via supervised attention mechanisms. In
Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1789–1798.

Xiao Liu, Heyan Huang, Ge Shi, and Bo Wang. 2022.
Dynamic prefix-tuning for generative template-based
event extraction. In Proceedings of the 60th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), ACL 2022, Dublin,
Ireland, May 22-27, 2022, pages 5216–5228. Associ-
ation for Computational Linguistics.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding,
Yujie Qian, Zhilin Yang, and Jie Tang. 2021. GPT
understands, too. CoRR, abs/2103.10385.

Giulia Luise, Alessandro Rudi, Massimiliano Pontil,
and Carlo Ciliberto. 2018. Differential properties
of sinkhorn approximation for learning with wasser-
stein distance. In Advances in Neural Information
Processing Systems 31: Annual Conference on Neu-
ral Information Processing Systems 2018, NeurIPS
2018, December 3-8, 2018, Montréal, Canada, pages
5864–5874.

Yubo Ma, Zehao Wang, Yixin Cao, Mukai Li, Meiqi
Chen, Kun Wang, and Jing Shao. 2022. Prompt for
extraction? PAIE: prompting argument interaction
for event argument extraction. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), ACL
2022, Dublin, Ireland, May 22-27, 2022, pages 6759–
6774. Association for Computational Linguistics.

Jong-Hoon Oh, Kentaro Torisawa, Canasai Kruengkrai,
Ryu Iida, and Julien Kloetzer. 2017. Multi-
column convolutional neural networks with causality-
attention for why-question answering. In Proceed-
ings of the Tenth ACM International Conference on
Web Search and Data Mining, WSDM 2017, Cam-
bridge, United Kingdom, February 6-10, 2017, pages
415–424. ACM.

Minh Tran Phu and Thien Huu Nguyen. 2021. Graph
convolutional networks for event causality identifica-
tion with rich document-level structures. In Proceed-
ings of the 2021 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, NAACL-
HLT 2021, Online, June 6-11, 2021, pages 3480–
3490. Association for Computational Linguistics.

Charlotte Rudnik, Thibault Ehrhart, Olivier Ferret, De-
nis Teyssou, Raphaël Troncy, and Xavier Tannier.
2019. Searching news articles using an event knowl-
edge graph leveraged by wikidata. In Companion
proceedings of the 2019 world wide web conference,
pages 1232–1239.

Ruslan Salakhutdinov. 2015. Learning deep generative
models. Annual Review of Statistics and Its Applica-
tion, 2:361–385.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of BERT: smaller, faster, cheaper and lighter. CoRR,
abs/1910.01108.

Shirong Shen, Heng Zhou, Tongtong Wu, and Guilin Qi.
2022. Event causality identification via derivative
prompt joint learning. In Proceedings of the 29th
International Conference on Computational Linguis-
tics, COLING 2022, Gyeongju, Republic of Korea,
October 12-17, 2022, pages 2288–2299. International
Committee on Computational Linguistics.

Tianchi. 2021. Ccks2021 the dataset for financial event
and causal relation extraction.

https://doi.org/10.18653/v1/2020.findings-emnlp.372
https://doi.org/10.18653/v1/2020.findings-emnlp.372
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.emnlp-main.735
https://doi.org/10.18653/v1/2020.emnlp-main.735
https://doi.org/10.18653/v1/2022.acl-long.14
https://doi.org/10.18653/v1/2022.acl-long.14
https://doi.org/10.18653/v1/2022.acl-long.14
https://doi.org/10.24963/ijcai.2020/499
https://doi.org/10.24963/ijcai.2020/499
https://doi.org/10.24963/ijcai.2020/499
https://doi.org/10.1016/j.knosys.2022.110064
https://doi.org/10.1016/j.knosys.2022.110064
https://doi.org/10.1016/j.knosys.2022.110064
https://doi.org/10.18653/v1/2022.acl-long.358
https://doi.org/10.18653/v1/2022.acl-long.358
http://arxiv.org/abs/2103.10385
http://arxiv.org/abs/2103.10385
https://proceedings.neurips.cc/paper/2018/hash/3fc2c60b5782f641f76bcefc39fb2392-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/3fc2c60b5782f641f76bcefc39fb2392-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/3fc2c60b5782f641f76bcefc39fb2392-Abstract.html
https://doi.org/10.18653/v1/2022.acl-long.466
https://doi.org/10.18653/v1/2022.acl-long.466
https://doi.org/10.18653/v1/2022.acl-long.466
https://doi.org/10.1145/3018661.3018737
https://doi.org/10.1145/3018661.3018737
https://doi.org/10.1145/3018661.3018737
https://doi.org/10.18653/v1/2021.naacl-main.273
https://doi.org/10.18653/v1/2021.naacl-main.273
https://doi.org/10.18653/v1/2021.naacl-main.273
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
https://aclanthology.org/2022.coling-1.200
https://aclanthology.org/2022.coling-1.200
https://tianchi.aliyun.com/dataset/dataDetail?dataId=110901
https://tianchi.aliyun.com/dataset/dataDetail?dataId=110901


Xiaozhi Wang, Xu Han, Zhiyuan Liu, Maosong Sun,
and Peng Li. 2019. Adversarial training for weakly
supervised event detection. In Proceedings of the
2019 Conference of the North American Chapter
of the Association for Computational Linguistics:
Human Language Technologies, NAACL-HLT 2019,
Minneapolis, MN, USA, June 2-7, 2019, Volume 1
(Long and Short Papers), pages 998–1008. Associa-
tion for Computational Linguistics.

Yucheng Wang, Bowen Yu, Yueyang Zhang, Tingwen
Liu, Hongsong Zhu, and Limin Sun. 2020. Tplinker:
Single-stage joint extraction of entities and relations
through token pair linking. In Proceedings of the
28th International Conference on Computational Lin-
guistics, COLING 2020, Barcelona, Spain (Online),
December 8-13, 2020, pages 1572–1582. Interna-
tional Committee on Computational Linguistics.

Kaiwen Wei, Xian Sun, Zequn Zhang, Li Jin, Jingyuan
Zhang, Jianwei Lv, and Zhi Guo. 2023a. Implicit
event argument extraction with argument-argument
relational knowledge. IEEE Trans. Knowl. Data
Eng., 35(9):8865–8879.

Kaiwen Wei, Xian Sun, Zequn Zhang, Jingyuan Zhang,
Zhi Guo, and Li Jin. 2021. Trigger is not sufficient:
Exploiting frame-aware knowledge for implicit event
argument extraction. In Proceedings of the 59th An-
nual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing, ACL/IJCNLP
2021, (Volume 1: Long Papers), Virtual Event, Au-
gust 1-6, 2021, pages 4672–4682. Association for
Computational Linguistics.

Kaiwen Wei, Yiran Yang, Li Jin, Xian Sun, Zequn
Zhang, Jingyuan Zhang, Xiao Li, Linhao Zhang, Jin-
tao Liu, and Guo Zhi. 2023b. Guide the many-to-
one assignment: Open information extraction via
iou-aware optimal transport. In Proceedings of the
61st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), ACL
2023, Toronto, Canada, July 9-14, 2023, pages 4971–
4984. Association for Computational Linguistics.

Zhepei Wei, Jianlin Su, Yue Wang, Yuan Tian, and
Yi Chang. 2020. A novel cascade binary tagging
framework for relational triple extraction. In Pro-
ceedings of the 58th Annual Meeting of the Associa-
tion for Computational Linguistics, ACL 2020, On-
line, July 5-10, 2020, pages 1476–1488. Association
for Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. Transformers:
State-of-the-art natural language processing. In Pro-
ceedings of the 2020 Conference on Empirical Meth-
ods in Natural Language Processing: System Demon-
strations, EMNLP 2020 - Demos, Online, November

16-20, 2020, pages 38–45. Association for Computa-
tional Linguistics.

Chuhan Wu, Fangzhao Wu, and Yongfeng Huang.
2021. One teacher is enough? pre-trained language
model distillation from multiple teachers. In Find-
ings of the Association for Computational Linguis-
tics: ACL/IJCNLP 2021, Online Event, August 1-6,
2021, volume ACL/IJCNLP 2021 of Findings of ACL,
pages 4408–4413. Association for Computational
Linguistics.

Yujia Xie, Xiangfeng Wang, Ruijia Wang, and
Hongyuan Zha. 2019. A fast proximal point method
for computing exact wasserstein distance. In Pro-
ceedings of the Thirty-Fifth Conference on Uncer-
tainty in Artificial Intelligence, UAI 2019, Tel Aviv,
Israel, July 22-25, 2019, volume 115 of Proceed-
ings of Machine Learning Research, pages 433–453.
AUAI Press.

Chen Xu, Quan Li, Junfeng Ge, Jinyang Gao, Xiaoyong
Yang, Changhua Pei, Fei Sun, Jian Wu, Hanxiao Sun,
and Wenwu Ou. 2020. Privileged features distilla-
tion at taobao recommendations. In Proceedings of
the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pages 2590–
2598.

Jingjing Xu, Hao Zhou, Chun Gan, Zaixiang Zheng,
and Lei Li. 2021. Vocabulary learning via optimal
transport for neural machine translation. In Proceed-
ings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing,
ACL/IJCNLP 2021, (Volume 1: Long Papers), Virtual
Event, August 1-6, 2021, pages 7361–7373. Associa-
tion for Computational Linguistics.

Hailin Zhang, Defang Chen, and Can Wang. 2022.
Confidence-aware multi-teacher knowledge distilla-
tion. In IEEE International Conference on Acoustics,
Speech and Signal Processing, ICASSP 2022, Virtual
and Singapore, 23-27 May 2022, pages 4498–4502.
IEEE.

Suncong Zheng, Feng Wang, Hongyun Bao, Yuexing
Hao, Peng Zhou, and Bo Xu. 2017. Joint extraction
of entities and relations based on a novel tagging
scheme. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics,
ACL 2017, Vancouver, Canada, July 30 - August 4,
Volume 1: Long Papers, pages 1227–1236. Associa-
tion for Computational Linguistics.

Bo Zhou, Yubo Chen, Kang Liu, Jun Zhao, Jiexin Xu,
Xiaojian Jiang, and Qiuxia Li. 2022. Generating
temporally-ordered event sequences via event op-
timal transport. In Proceedings of the 29th Inter-
national Conference on Computational Linguistics,
COLING 2022, Gyeongju, Republic of Korea, Oc-
tober 12-17, 2022, pages 1875–1884. International
Committee on Computational Linguistics.

Xinyu Zuo, Pengfei Cao, Yubo Chen, Kang Liu, Jun
Zhao, Weihua Peng, and Yuguang Chen. 2021.

https://doi.org/10.18653/v1/n19-1105
https://doi.org/10.18653/v1/n19-1105
https://doi.org/10.18653/v1/2020.coling-main.138
https://doi.org/10.18653/v1/2020.coling-main.138
https://doi.org/10.18653/v1/2020.coling-main.138
https://doi.org/10.1109/TKDE.2022.3218830
https://doi.org/10.1109/TKDE.2022.3218830
https://doi.org/10.1109/TKDE.2022.3218830
https://doi.org/10.18653/v1/2021.acl-long.360
https://doi.org/10.18653/v1/2021.acl-long.360
https://doi.org/10.18653/v1/2021.acl-long.360
https://doi.org/10.18653/v1/2023.acl-long.272
https://doi.org/10.18653/v1/2023.acl-long.272
https://doi.org/10.18653/v1/2023.acl-long.272
https://doi.org/10.18653/v1/2020.acl-main.136
https://doi.org/10.18653/v1/2020.acl-main.136
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2021.findings-acl.387
https://doi.org/10.18653/v1/2021.findings-acl.387
http://proceedings.mlr.press/v115/xie20b.html
http://proceedings.mlr.press/v115/xie20b.html
https://doi.org/10.18653/v1/2021.acl-long.571
https://doi.org/10.18653/v1/2021.acl-long.571
https://doi.org/10.1109/ICASSP43922.2022.9747534
https://doi.org/10.1109/ICASSP43922.2022.9747534
https://doi.org/10.18653/v1/P17-1113
https://doi.org/10.18653/v1/P17-1113
https://doi.org/10.18653/v1/P17-1113
https://aclanthology.org/2022.coling-1.162
https://aclanthology.org/2022.coling-1.162
https://aclanthology.org/2022.coling-1.162


Learnda: Learnable knowledge-guided data augmen-
tation for event causality identification. In Proceed-
ings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing,
ACL/IJCNLP 2021, (Volume 1: Long Papers), Virtual
Event, August 1-6, 2021, pages 3558–3571. Associa-
tion for Computational Linguistics.

A The details of the IPOT algorithm

The details of the IPOT algorithm is shown in Al-
gorithm 1.

Algorithm 1 IPOT algorithm

Input: Feature vectors S = {hi}n1 , S
′
= {h′

j}m1 ,
Generalized stepsize 1

β
Output: ⟨M ,C⟩

1: σ = 1
m1m, M (1) = 1n1

⊤
m

2: Cij = c(hi,h
′
j), Aij = e

−
Cij
β

3: for t = 1, 2, 3 · · · do
4: Q = A⊙M (t) // ⊙ is Hadamart product
5: for k = 1, 2, · · · ,K do //K=1 in practice
6: δ = 1

nQσ ,σ = 1
mQ⊤δ

7: end for
8: M (t+1) = diag(δ) Q diag(σ)
9: end for

10: return ⟨M ,C⟩

B An example of the construction of
knowledge-enriched templates

We show an example of the construction of
knowledge-enriched templates for EAE and EEE
in Table 7. The knowledge-enriched template for
EAE is constructed by filling the ground truth event
types of the cause and effect event in the raw tem-
plate; The knowledge-enriched template for EEE
is constructed by filling the ground truth event type
and arguments of the cause event in the raw tem-
plate.

C The creation of different types of
templates

We construct three types of templates for compar-
ison: (1) Concatenation Template, where all slots
for event type and event arguments are concate-
nated; (2) Manual Template, where event types and
event arguments are integrated into templates in
natural language form; (3) Soft Template, which is
used in our method. And detailed information of
the templates is shown in Table 8.

D Compare with ChatGPT

In this section, we conduct experiments to evaluate
the performance of ChatGPT on the ECE task. A
well-designed prompt template is as follows:

Suppose you are now an event causality extrac-
tion model. Given a sentence, please give the
cause event and result event respectively, where
the event contains the event type and the argu-
ments corresponding to each role. The list of event
types is: [’Typhoon’, ’Demand Increase’, ’Price
Decrease’, ’Cold Wave’, ’Price Increase’, ’Other
Natural Disasters’, ’Supply Decrease’, ’Supply In-
crease’, ’Sales Decrease’, ’Demand Drop’, ’Im-
port Decrease’, ’Flood’, ’Other Trade Frictions’,
’Negative Impact’, ’Swine Fever’, ’Sales Increase’,
’Limited Production’, ’Operating Costs Increased
’, ’Other Livestock Epidemics’, ’Positive Impact’,
’Drought’, ’Operating Cost Decrease’, ’Export De-
crease’, ’Frost’, ’Other or Unclear’, ’Import In-
crease’, ’Bird Flu’, ’Earthquake ’, ’Anti-dumping
Against China’, ’Exports Increase’, ’Add Tariffs to
China’, ’Decrease in Product Profits’, ’Increase in
Product Profits’, ’Foot-and-mouth Disease of Pigs’,
’Anti-dumping Against Other Countries’, ’Unsal-
able’, ’Cattle Foot and Mouth Disease’, ’Flash
Flood’, ’Hail’]. The list of event argument roles
is: [’Region’, ’Industry’, ’Product’]. Given a sen-
tence:"The worldwide rise of oil prices stimulates
the demand for new energy such as Ammonia
fuel.", please extract the event type and arguments
corresponding to cause and effect event. If no argu-
ment corresponds to a role, the argument content
returns "None". If multiple arguments corresponds
to a role, the arguments are connected with "and".

As shown in Table 9, we can observe that ICE
outperforms ChatGPT by a large margin on EAE,
CET, and ECE tasks. The results indicate that
ChatGPT has difficulty solving such complex event
causality extraction tasks without any fine-tuning
or training to update parameters.
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Temp. Example

Raw Temp.

<Cause> <type> TypeOfCause </type> <region> RegionOfCause </region>

<industry> IndustryOfCause </industry> <product> ProductOfCause </product>

<Effect> <type> TypeOfEffect </type> <region> RegionOfEffect </region>

<industry> IndustryOfEffect </industry> <product> ProductOfEffect </product>.

Temp. for EAE

<Cause> <type> Price Increase </type> <region> RegionOfCause </region>

<industry> IndustryOfCause </industry> <product> ProductOfCause </product>

<Effect> <type> Demand Increase </type> <region> RegionOfEffect </region>

<industry> IndustryOfEffect </industry> <product> ProductOfEffect </product>.

Temp. for EEE

<Cause> <type> Price Increase </type> <region> None </region>

<industry> new energy </industry> <product> Ammonia fuel </product>

<Effect> <type> TypeOfEffect </type> <region> RegionOfEffect </region>

<industry> IndustryOfEffect </industry> <product> ProductOfEffect </product>.

Table 7: An example of the construction of knowledge-enriched templates for EAE and EEE.

Temp. Example

CA
TypeOfCause RegionOfCause IndustryOfCause ProductOfCause

TypeOfEffect RegionOfEffectIndustryOfEffect ProductOfEffect.

MA

The cause TypeOfCause, the region RegionOfCause,

the industry IndustryOfCause, the product ProductOfCause,

leads to the effect TypeOfEffect, the region RegionOfEffect,

the industry IndustryOfEffect, the product ProductOfEffect.

SF

<Cause> <type> TypeOfCause </type> <region> RegionOfCause </region>

<industry> IndustryOfCause </industry> <product> ProductOfCause </product>

<Effect> <type> TypeOfEffect </type> <region> RegionOfEffect </region>

<industry> IndustryOfEffect </industry> <product> ProductOfEffect </product>.

Table 8: The creation of different types of templates. CA: Concatenation Template, MA: Manual Template, SF:
Soft Template.

Method EAE CET ECE

P R F1 P R F1 P R F1

ChatGPT 13.16 16.26 14.54 17.85 15.64 16.68 6.00 8.04 6.87
ICE 69.69 54.57 61.21 70.00 61.33 65.38 59.13 51.44 55.02

Table 9: Overall performance compared to ChatGPT on the test set. P, R, and F1 denote precision (%), recall (%),
and F1-score (%). The best results are denoted in bold.


