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Abstract001

Lifelong model editing aims to dynamically ad-002
just a model’s output concerning specific facts,003
knowledge items, or behaviors, enabling the004
model to adapt to the evolving demands of real-005
world applications. While some retrieval-based006
methods have demonstrated potential in life-007
long editing scenarios by storing edited knowl-008
edge in external memory, they often suffer009
from limitations in usability, such as requir-010
ing additional training corpora or lacking sup-011
port for reversible and detachable edits. To ad-012
dress these issues, we propose a plug-and-play013
method for knowledge retrieval and injection,014
i.e., Layer-Level Prompting (LLP), which015
enables seamless and efficient lifelong model016
editing. In our LLP framework, the reasoning017
process of LLMs is divided into two stages,018
respectively, knowledge retrieval (Thinking)019
and knowledge injection (Recalling). Specif-020
ically, the knowledge retrieval process is per-021
formed in the early layers of the model, using022
layer outputs as thinking clues. And access023
the updated knowledge from memory in the024
subsequent layer to complete the knowledge025
injection process. Experimental results demon-026
strate that our method consistently outperforms027
existing techniques on lifelong model editing028
tasks, achieving superior performance on ques-029
tion answering and hallucination benchmarks030
across different LLMs. Our code is available031
at: https://anonymous.4open.science/r/LLP-032
607D/.033

1 Introduction034

Large Language Models (LLMs) (Jiang et al., 2023;035

OpenAI, 2023; Bai et al., 2023; Touvron et al.,036

2023a) pre-trained on large-scale datasets have037

demonstrated remarkable performance across a038

wide range of tasks. However, inherent limitations039

such as hallucinations (Ji et al., 2023) and biases040

(Ferrara, 2023) continue to hinder their broader041

applicability and reliability. Additionally, as time042

passes, the factual knowledge encoded within these043

models becomes increasingly outdated (Yao et al., 044

2023). These issues typically do not involve the 045

core reasoning abilities of the model, yet they arise 046

frequently due to the dynamic nature of real-world 047

information and user needs. Consequently, sim- 048

ple retraining is not only resource-intensive (Tou- 049

vron et al., 2023b) but also insufficient in address- 050

ing these challenges (Lin et al., 2022; Lee et al., 051

2020; Huang et al., 2023a). To overcome this, the 052

concept of lifelong model editing was introduced 053

(Hartvigsen et al., 2023), aiming to enable efficient 054

updates to a model’s knowledge over time. 055

Most existing model editing methods primarily 056

focus on single editing or batch editing, such as 057

ROME (Meng et al., 2022), MEMIT (Meng et al., 058

2023), and MEND (Mitchell et al., 2022a). As Fig- 059

ure 1 shows, while effective in one-off edits, these 060

approaches often fall short in lifelong editing set- 061

tings that require continuous modifications as time 062

progresses. A key limitation lies in their inability 063

to separate newly edited knowledge from the pre- 064

existing knowledge of models, which originates 065

from the LLM’s intrinsic parameters or prior edits. 066

In contrast, retrieval-based methods, which de- 067

couple new knowledge from the model and prior 068

edited knowledge, have demonstrated strong per- 069

formance in the lifelong editing scenario. However, 070

these methods may rely on auxiliary pretrained 071

models to perform retrieval or external training cor- 072

pora to train the editing model, which increases the 073

method’s dependency on additional components 074

(Han et al., 2023; Jiang et al., 2024; Chen et al., 075

2024). Moreover, they often lack support for re- 076

versible and detachable edits (Hartvigsen et al., 077

2023; Wang et al., 2024). 078

To address these challenges, we propose a model 079

editing method based on layer-level prompts with 080

a vector memory, which performs knowledge re- 081

trieval and injection by leveraging and influencing 082

the model’s hidden states. This mechanism is sim- 083

ilar to the human process of updating knowledge 084
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Figure 1: Differences between lifelong editing and
other editing methods. Compared to single editing
and batch editing, lifelong editing enables continuous,
incremental updates over time.

and reasoning, which first analyzes the problem and085

then recalls relevant recent information. For exam-086

ple, when asked, “Who is the current president of087

the United States?”, a person first understands the088

question and then recalls the most recent presiden-089

tial election(e.g., that Donald Trump won the 2024090

U.S. election) to arrive at the correct answer. In our091

method, the earlier layers of the model are treated092

as the "thinking" stage, responsible for processing093

the input and triggering a retrieval mechanism. In094

these layers, the outputs are directly used as think-095

ing clues to perform retrieval in our key memory.096

Based on the retrieval results, we extract the corre-097

sponding knowledge from the value memory and098

concatenate it in a prompt-like format to the input099

of the later "recalling" layer, thereby injecting the100

edited knowledge into the model. This process can101

be completely independent of the original model102

inference, as all knowledge update operations are103

performed on the external key-value memory, mak-104

ing the method easily usable as a plugin. Moreover,105

as each key-value item location is explicitly known,106

any single piece of edited knowledge remains fully107

traceable and can be easily modified or deleted108

when necessary.109

Our main contributions are as follows:110

1. We propose LLP, a lifelong editing method111

which divides the model’s reasoning process112

into two stages: thinking and recalling.113

2. Our method has minimal dependencies, requir-114

ing neither additional models nor additional115

training data. It utilizes and influences the116

model’s hidden states to perform knowledge117

retrieval and knowledge injection, making it118

adaptable to a wide range of applications.119

3. We validate the effectiveness of LLP across 120

multiple backbones and editing datasets for 121

lifelong model editing. 122

2 Related Work 123

2.1 Model editing 124

Model editing aims to modify the output of a pre- 125

trained model with minimal cost (Feng et al., 2023; 126

Zhang et al., 2024; Yao et al., 2023; Li et al., 2024). 127

A wide range of approaches has been proposed in 128

this area, which can be broadly classified into the 129

following categories: 130

Constrained Fine-tuning Methods leverage re- 131

stricted supervised training strategies to guide the 132

model toward meeting specific editing objectives 133

without extensively altering its overall behavior 134

(Sinitsin et al., 2020; Zhu et al., 2020). 135

Locate and Edit Methods first locate the target 136

knowledge within the model and then edit it. For 137

instance, ROME (Meng et al., 2022) identifies the 138

location of factual knowledge via causal tracing 139

and applies the rank-one model editing to a spe- 140

cific FFN layer. MEMIT (Meng et al., 2023) ex- 141

tends ROME by addressing its limitation in han- 142

dling batch editing. Wilke (Hu et al., 2024) further 143

investigates dynamic knowledge localization. 144

Meta-learning Methods leverage auxiliary hyper- 145

networks to learn generalized patterns for model 146

editing. MEND (Mitchell et al., 2022a) learns 147

to transform gradients obtained via standard fine- 148

tuning into effective model updates by applying 149

a low-rank decomposition to the gradient. MAL- 150

MEN (Tan et al., 2024) further advances this idea 151

by formulating the aggregation of parameter shifts 152

as a least squares optimization problem, and subse- 153

quently updates the language model’s parameters 154

using the normal equation. 155

The above three categories of methods fail to 156

effectively decouple the edited knowledge from the 157

model’s internal parameters, thereby limiting their 158

scalability in the lifelong editing task. 159

Retrieval-based Methods aim to store edited 160

knowledge externally instead of directly modify- 161

ing the internal parameters of the model. SERAC 162

(Mitchell et al., 2022b) trains a counterfactual 163

model to store newly introduced knowledge and 164

a scope classifier to determine whether a given 165

input query should invoke the edited knowledge. 166

GRACE (Hartvigsen et al., 2023) employs a dis- 167

crete key-value codebook to store edited knowl- 168

edge and directly replaces the output of a specific 169
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layer. LTE (Jiang et al., 2024) trains LLMs to apply170

updated knowledge by fine-tuning them on meticu-171

lously curated parallel data and retrieves relevant172

edit descriptors from a stored memory during infer-173

ence. RECIPE (Chen et al., 2024) trains two sep-174

arate encoders, one for encoding new knowledge175

and another for producing keys used in the memory.176

The above retrieval-based methods fail to achieve177

all desirable editing properties with high efficiency,178

and most of them rely on additional training data or179

pre-trained models, making them difficult to adapt180

to real-world editing scenarios.181

2.2 Prompt Tuning182

Prompt Tuning is a specialized and parameter-183

efficient approach to adapting large language mod-184

els, typically categorized into two types: discrete185

prompts and continuous prompts (Liu et al., 2023).186

Discrete Prompts operate within a discrete search187

space, often corresponding to natural language188

phrases. These methods typically construct189

prompts either by retrieving and composing them190

from large-scale text corpora (Jiang et al., 2020), or191

by employing gradient-based techniques to search192

for discrete tokens that steer the model toward gen-193

erating the desired output (Wallace et al., 2019;194

Shin et al., 2020).195

Continuous Prompts utilize trainable word em-196

bedding vectors as prompts. For example, Prefix197

Tuning (Li and Liang, 2021) guides model behav-198

ior by prepending a sequence of continuous, task-199

specific vectors to the hidden states at each layer200

of the language model. Similarly, Prompt Tuning201

(Lester et al., 2021) introduces trainable embed-202

dings at the input layer. Building on these ideas,203

P-Tuning (Liu et al., 2024) further extends the con-204

cept by injecting trainable prompts into multiple205

layers of the model.206

3 Methods207

3.1 Prelimimaries208

We focus on the task of lifelong model editing209

(Huang et al., 2023b; Hartvigsen et al., 2023), aim-210

ing to ensure the model can not only meet the re-211

quirements of successive modifications but also212

maintain its original performance after multiple213

edits. Let F0 denote the original model without214

any edits and FT denote the model after T knowl-215

edge editing. Assuming the model has L layers, F i216

denotes the i-th layer of model F , hi denotes the217

input embedding of the i-th layer, and d denotes218

the hidden size. Given a model editing dataset 219

De = {(Xe, Ye)|(x1, y1), (x2, y2), ..., (xT , yT )} 220

that represents the knowledge that needs to be up- 221

dated over time by the model, our task can then be 222

formally defined by Equation 1. 223

FT = Editor(FT−1, xT , yT ),

s.t. FT (x) =

{
ye, if x ∈ Xe,

F0(x), if x /∈ Xe.

(1) 224

3.2 Think and Recall: Layer-Level Prompting 225

for Lifelong Model Editing 226

Figure 2 shows the overview of LLP. Our main 227

method consists of two main components: knowl- 228

edge retrieval and knowledge injection. 229

3.2.1 Model Inference with Memory 230

Knowledge Retrieval The knowledge retrieval is 231

designed to leverage the intermediate layer outputs 232

of the LLM as cues for identifying the most relevant 233

piece of newly stored knowledge corresponding to 234

the input query. Specifically, we pre-define a set 235

of retrieval layers R = [r1, r2, ..., rm], primarily 236

located in the early stage of the model. This de- 237

sign enables the model to complete the retrieval 238

phase as early as possible, allowing for efficient 239

and timely knowledge retrieval. At each designated 240

layer ri, we extract its output token embeddings 241

of length l as a query Qi = [q1i , q
2
i , ..., q

l
i] which is 242

then matched against a corresponding key-memory 243

store K = [K1,K2, ...,Km], respectively. Each 244

Ki = [k1i , k
2
i , ..., k

e
i ] contains the e keys associated 245

with newly edited knowledge: 246

simi = Cos(Qi,Ki), (2) 247

Hi = Topk(simi > tlayer), (3) 248

where Cos(·) is the cosine similarity function to 249

calculate the similarity between each token embed- 250

ding in query Qi and each key in Ki, Topk(·) is 251

the function used to select the knowledge positions 252

corresponding to the top-k similarities, and tlayer 253

is the threshold for layer retrieval. 254

We apply a voting mechanism that aggregates 255

the retrieval results Hi from all selected layers to 256

enhance robustness and accuracy. This consensus- 257

based approach determines the most relevant piece 258

of stored knowledge, which then guides the subse- 259

quent knowledge injection process: 260

H = H1

⊔
H2

⊔
H3 ...

⊔
Hm, (4) 261
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Figure 2: Overview of LLP. 1) Similarity computation, 2) Retrieval based on similarity, 3) Concatenate value item
with input embedding, 4) Contrastive loss for training the new keys, 5) Key memory updating, 6) Cross-entropy loss
for training the new value, 7) Value memory updating.

u = argmax
x∈H

Count(x,H), (5)262

w =

{
u, Count(u,H) ≥ tvote,

∅, Count(u,H) < tvote,
(6)263

where Count(·) is the function to count the number264

of elements in a set and tvote is the threshold for265

the voting process.266

Knowledge Injection In the pre-defined injec-267

tion layer z, we perform knowledge injection based268

on w. If a corresponding knowledge item is suc-269

cessfully matched in K, we extract the associ-270

ated value from the value-memory store V =271

[v1, v2...ve], which has e value items correspond-272

ing to those in Ki. Each value vj in the memory273

storage is formatted as a prompt-like structure, con-274

sisting of p continuous tokens, each with dimension275

d, resulting in a prompt embedding of shape p ∗ d.276

This prompt is then concatenated with the input277

hidden embedding hz of layer z, thereby achieving278

knowledge injection into the model. Specifically:279

F z
T (hz) =

{
F z
T−1(vw ⊕ hz), w ̸= ∅,

F z
T−1(hz), w = ∅.

(7)280

In general, the injection layer is typically set to281

be the immediate next layer after the retrieval lay-282

ers, as this allows the injection operation to be283

applied earlier in the network, thereby influencing 284

more subsequent layers and having a deeper im- 285

pact on the model’s reasoning process, similar to 286

the prompt engineering. However, our empirical 287

results suggest that this may not always be the case. 288

Detailed results are shown in Section 4.3.2. 289

3.2.2 Construction of key-memory storage 290

The key-memory storage K is designed to facilitate 291

the retrieval of knowledge relevant to a given query. 292

Based on prior research (Meng et al., 2022), we 293

assume that the semantic information of a subject is 294

primarily aggregated into its last token. For exam- 295

ple, in the question “Who is the current President 296

of the United States?”, the subject (United States) 297

information is primarily aggregated in the final to- 298

ken of "United States". Accordingly, we utilize the 299

last subject token embedding as the target repre- 300

sentation for our retrieval process. Given a series 301

of new knowledge {(xi, yi)}ai=1 related to the sub- 302

ject s, we generate a set of m keys [k1, k2, ..., km] 303

for each retrieval layer, we first extract the embed- 304

ding of the last subject token in each retrieval layer, 305

which serves as the foundation for key generation: 306

oi = Last_Tok(
1

a

a∑
j=1

F 1:ri(p⊕ xj), s). (8) 307
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Methods Lifelong Retrievable Detachable No Other Pre-trained Models No Training Data Reliability Generalization Locality
FT ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✗

ROME ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✗
MEMIT ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✗
SERAC ✓ ✗ ✗ ✓ ✗ ✓ ✗ ✓
MEND ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗

RECIPE ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓
GRACE ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✓
WISE ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓
LLP ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Comparison of current model editing methods.

Here, p is a randomly generated prefix designed to308

enhance the generalization of the collected hidden309

embeddings, and Last_Tok(·) is the function used310

to get the last token embedding of s in hidden em-311

beddings. Under the guidance of this last subject312

token embedding oi, we generate the key ki. To313

ensure that the newly generated key does not inter-314

fere with existing keys in the key-memory storage315

Ki, we adopt a contrastive learning approach that316

encourages maximal dissimilarity between ki and317

all pre-existing keys in Ki. Specifically, we lever-318

age the InfoNCE (van den Oord et al., 2018) loss319

to optimize this objective:320

L = −log exp(Cos(ki, oi/τ))∑
k−∈Ki

exp(Cos(ki, k−)/τ)
, (9)321

where τ is the temperature in order to adjust the322

sharpness of the similarity distribution in con-323

trastive learning, influencing the model’s ability324

to distinguish between positive and negative sam-325

ples. Afterward, we integrate the newly generated326

keys into the corresponding key-memory storage:327

Ki = Ki ∪ ki. (10)328

3.2.3 Construction of value-memory storage329

The value-memory storage V is designed to ensure330

that the generated prompts satisfy the requirements331

for effective model editing. We adopt a prompt-like332

format for knowledge injection because it aligns333

more naturally with the pre-training paradigm of334

LLMs. Furthermore, since our approach requires335

training only a small number of continuous tokens336

to encode the updated knowledge, both the time337

and memory consumption can be kept within a338

manageable range, making the method efficient339

and scalable in practice. Given a series of new340

knowledge {(xi, yi)}ai=1 related to the subject s.341

We train continuous tokens v to ensure they com-342

prehensively encode all the necessary knowledge343

updates related to the subject s. The training loss344

is formulated as follows:345

Ledit =
1

a

a∑
i=1

−logF (yi|p⊕ xi), (11)346

where F z(hz) = F z(v⊕hz) to concatenate v with 347

input embedding hz of the injection layer. The 348

training loss is designed to ensure the effectiveness 349

and reliability of model editing. Similar to the pro- 350

cess used in constructing the key-memory storage, 351

we incorporate randomly generated prefixes p to 352

improve the generalization capability of generated 353

continuous tokens. 354

3.3 Comparison between LLP and 355

mainstream editing methods 356

Table 1 presents a comparison between mainstream 357

editing methods in terms of lifelong capability, flex- 358

ibility, dependency, and editing effectiveness. LLP 359

effectively addresses lifelong editing challenges 360

without relying on additional resources, as all op- 361

erations are conducted based on the model’s inter- 362

nal embeddings. Moreover, each key-value pair 363

in LLP is explicitly stored, enabling straightfor- 364

ward replacement, modification, and deletion of 365

knowledge. This design makes the method broadly 366

applicable across a wide range of scenarios. 367

4 Experiments 368

4.1 Experimental Settings and Evaluation 369

Metrics 370

Datasets and Metrics We conduct evaluations 371

using LLaMA-3.1-8B (Team., 2024) and Mistral- 372

7B-v0.3 (Jiang et al., 2023), along with two bench- 373

marks: ZsRE (Levy et al., 2017) and SelfCheck- 374

GPT (Manakul et al., 2023). ZsRE is a closed-book 375

question answering (QA) dataset derived from zero- 376

shot relation extraction. We preprocess ZsRE to 377

ensure each knowledge fact appears only once in 378

the dataset, to avoid evaluation inaccuracies in the 379

lifelong editing setting. SelfCheckGPT is a hal- 380

lucination correction dataset designed to assess a 381

model’s capability to rectify factual inconsistencies. 382

Due to the imprecise labeling of the subject in the 383

dataset, we revise the imprecise samples. 384

For the QA setting, each sample contains an edit 385

knowledge {xe, ye}, a paraphrased prompt xg, and 386

an unrelated prompt xloc. We adopt three primary 387
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Method
QA

T = 1 T = 10 T = 100 T = 1000

Rel. Gen. Loc. Avg. Rel. Gen. Loc. Avg. Rel. Gen. Loc. Avg. Rel. Gen. Loc. Avg.

LLaMA-3.1-8B

FT-L 52.60 56.40 77.75 62.25 34.85 32.44 39.62 35.64 16.47 13.66 3.54 11.22 16.51 14.03 1.35 10.63
ROME 99.50 97.21 95.77 97.49 96.06 93.12 74.07 87.75 9.20 9.51 2.69 7.13 2.75 2.42 1.27 2.15
MEMIT 90.14 88.43 98.34 92.30 73.43 69.58 77.21 73.40 13.62 14.37 8.43 12.24 3.14 2.14 1.89 2.39
AlphaEdit 98.78 90.57 99.66 96.34 99.29 91.96 98.52 96.59 99.09 91.24 92.64 94.32 89.72 83.56 45.59 72.96
GRACE 99.89 24.83 100.00 74.91 42.04 24.80 100.00 55.61 39.12 24.82 100.00 54.65 38.38 24.83 100.00 54.40
RECIPE 93.68 93.44 100.00 95.71 93.20 93.07 100.00 95.42 93.14 93.03 100.00 95.39 92.88 92.76 99.94 95.19
WISE 90.26 85.80 100.00 92.02 80.47 64.34 100.00 81.60 62.80 56.66 100.00 73.15 58.57 54.94 100.00 71.17

LLP 99.95 98.64 100.00 99.53 99.87 98.43 100.00 99.43 99.77 98.12 100.00 99.30 99.22 98.00 99.95 99.06

Mistral-7B

FT-L 57.12 41.07 99.54 65.91 49.80 40.54 97.36 62.57 43.40 40.08 93.16 58.88 44.43 40.85 75.77 53.68
ROME 87.86 83.16 98.35 89.79 80.49 80.24 82.21 80.98 7.94 6.26 1.52 5.24 0.18 0.15 0.06 0.13
MEMIT 88.67 86.03 99.43 91.38 78.04 74.90 77.37 76.97 10.17 8.68 4.48 7.78 3.49 3.49 1.76 2.91
AlphaEdit 93.82 84.32 99.73 92.62 91.37 80.04 97.33 89.58 89.41 77.46 88.15 85.01 81.32 73.28 30.15 61.58
GRACE 99.47 33.06 100.00 77.51 47.12 33.13 100.00 60.08 44.49 32.13 100.00 58.87 44.12 31.40 100.00 58.51
RECIPE 96.21 95.80 100.00 97.34 95.44 94.74 100.00 96.73 94.11 93.67 100.00 95.93 93.92 93.44 99.97 95.78
WISE 95.52 91.79 100.00 95.77 90.72 84.10 99.96 91.59 86.18 79.70 99.92 88.60 70.22 67.41 99.83 79.15

LLP 99.51 98.52 100.00 99.34 99.32 98.55 100.00 99.29 99.11 98.52 99.98 99.20 98.41 97.40 99.57 98.46

Table 2: Main editing results for QA setting (ZsRE dataset). T : Num Edits.

evaluation metrics: Reliability (Rel.), Generality388

(Gen.), and Locality (Loc.) (Zhang et al., 2024).389

These metrics respectively assess: (1) Rel. eval-390

uates the accuracy rate of the model editing. (2)391

Gen. evaluates the generalization ability of the392

edit to paraphrased queries, and (3) Loc. evaluates393

the extent to which the edit preserves the original394

behavior of the model on unrelated inputs. The395

formal definitions of each metric are provided:396

Rel. = 1(FT (xe) = ye),

Gen. = 1(FT (xg) = ye),

Loc. = 1(FT (xloc) = F0(xloc)).

(12)397

For the hallucination setting, each sample con-398

tains an edit knowledge {xe, ye} and an unrelated399

question xloc. We primarily use two metrics: Per-400

plexity (PPL) and Locality (Loc.), where PPL mea-401

sures the residual hallucination after editing and402

Loc. is similar to the QA setting. Unlike previ-403

ous settings, there is no proper metric to measure404

generalization ability.405

Details of the datasets and our processing are406

provided in Appendix B.1.407

Baselines We compare our approach against sev-408

eral effective model editing methods, including: FT-409

L (Zhu et al., 2020), which additionally imposes a410

parameter-space L∞ norm constraint on weight411

changes; ROME (Meng et al., 2022), MEMIT412

(Meng et al., 2023), and AlphaEdit (Fang et al.,413

2024), which employ causal tracing followed by414

targeted editing; and GRACE (Hartvigsen et al., 415

2023), RECIPE (Chen et al., 2024), WISE (Wang 416

et al., 2024), which represent retrieval-based ap- 417

proaches. Details of the baselines and experiments 418

are found in Appendix B.2. 419

4.2 Main Results 420

Our main results are summarized in Table 2 and 421

Table 3, which report the performance of LLP com- 422

pared to baseline methods under the QA and hal- 423

lucination settings, respectively. The results re- 424

veal several observations: 1) LLP consistently out- 425

performs existing methods in model editing tasks, 426

achieving superior results across the reliability, gen- 427

erality, and locality metrics, while also demonstrat- 428

ing substantial improvements in hallucination cor- 429

rection. 2) In the lifelong editing setting, as the 430

number of edits increases, LLP maintains stable 431

performance without significant degradation. In 432

contrast, parameter-editing approaches such as FT- 433

L, ROME, and MEMIT rapidly deteriorate after 434

multiple edits. AlphaEdit effectively mitigates dis- 435

ruption to the original model parameters by project- 436

ing weight updates into a knowledge-preserving 437

null space, however, it is essentially still a batch 438

editing method. As the number of edits increases 439

(e.g., T = 1000), AlphaEdit struggles to maintain 440

locality. Although lifelong methods are generally 441

more resilient to repeated edits, approaches like 442

GRACE and WISE also suffer from noticeable per- 443

formance degradation when the number of edits 444

becomes large (e.g., T = 1000). 445
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Method
Hallucination

LLaMA-3.1-8B Mistral-7B

T = 1 T = 10 T = 100 T = 600 T = 1 T = 10 T = 100 T = 600

PPL(↓) Loc.(↑) PPL(↓) Loc.(↑) PPL(↓) Loc.(↑) PPL(↓) Loc. PPL(↓) Loc.(↑) PPL(↓) Loc.(↑) PPL(↓) Loc.(↑) PPL(↓) Loc.(↑)

FT-L 5.97 91.47 29.06 62.65 175.52 20.03 3785.17 6.21 8.01 99.65 8.83 38.49 90.82 32.56 342.55 8.47]
ROME 1.85 97.18 17.83 70.92 647.74 1.04 1489.56 1.86 1.95 98.22 2.36 91.40 748.32 3.52 2132.58 0.25
MEMIT 1.74 87.93 16.32 68.58 472.82 2.25 945.98 1.25 1.72 99.15 10.57 80.62 184.65 2.83 684.31 0.92
AlphaEdit 1.60 99.70 1.82 98.91 3.87 94.54 5.27 46.28 1.58 99.75 1.95 98.22 3.55 95.56 6.43 44.12
GRACE 1.20 100.00 9.21 100.00 15.48 100.00 18.43 100.00 1.41 100.00 10.33 100.00 10.67 100.00 20.15 100.00
RECIPE - - - - - - - - - - - - - - - -
WISE 1.60 100.00 2.38 99.78 3.31 99.75 10.85 97.62 1.52 99.80 2.44 97.14 2.62 96.95 5.17 92.41

LLP 1.03 100.00 1.08 100.00 1.15 99.92 1.39 99.56 1.05 100.00 1.07 100.00 1.17 100.00 1.38 99.97

Table 3: Main editing results for hallucination setting (SelfCheckGPT dataset). T : Num Edits. Due to the lack
of entries for evaluating generality in the SelfCheckGPT dataset, which are required by the training module of the
RECIPE method, we are unable to report its performance under the hallucination setting.

4.3 Further Analysis446

4.3.1 Analysis of Retrieval447

Figure 3: Effectiveness of the generated keys. Dataset:
ZsRE. T : 1000. Retrieval layer: 8-th layer of LLaMA-
3.1-8B.

To illustrate the effectiveness of key memory,448

we analyze the behavior of the generated keys, as449

shown in Figure 3. On the ZsRE dataset with T450

= 1000 as an example, orange points denote the451

similarity between the generated key and the last452

subject token of the unseen paraphrased prompt.453

Blue points indicate the average similarity between454

the generated key and other keys stored in the key455

memory. Yellow points represent the average simi-456

larity between those other keys and the last subject457

token of the paraphrased prompt. These results458

demonstrate that our generated keys align well with459

previously unseen paraphrased prompts, as the sim-460

ilarity for most orange points exceeds 0.8. At the461

same time, they remain sufficiently distinct from462

one another, with all yellow and blue points below463

0.5, thereby reducing the likelihood of collisions464

during retrieval.465

Then we evaluate the retrieval performance at466

Figure 4: Localization Analysis of Retrieval. The solid
lines represent the hit count using multi-layer voting.
Dataset: ZsRE. T : 1000.

each individual layer of the 32-layer Transformer 467

model LLaMA-3.1-8B and the 32-layer Trans- 468

former model Mistral-7B. In our experiments, we 469

set Topk in Equation 3 to Top1 and fix tlayer at 0.7. 470

As Figure 4 shows, retrieval performance generally 471

declines as the layer depth increases. This trend 472

aligns with previous findings, which suggest that 473

earlier layers primarily capture lower-level seman- 474

tic features, such as parts of speech, while deeper 475

layers encode more complex linguistic phenom- 476

ena, including anaphora and coreference resolution 477

(Jawahar et al., 2019; Otmakhova et al., 2022; Ten- 478

ney et al., 2019). In deeper layers, hidden represen- 479

tations become semantically richer but less aligned 480

with surface entities, thus complicating retrieval 481

operation. Furthermore, we compare the accuracy 482

of multi-layer voting against single-layer retrieval. 483

Our results indicate that multi-layer voting con- 484

sistently yields higher and more stable retrieval 485

accuracy, validating its robustness. 486
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4.3.2 Analysis of Injection487

We next investigate how the choice of injection488

layer affects model editing performance. The ex-489

perimental setup follows that of Table 2, using490

LLaMA-3.1-8B with T = 1000, except that the491

retrieval operation was omitted. The results are pre-492

sented in Table 4. In summary, layer-level prompts493

prove to be effective for model editing, as injec-494

tions at different layers lead to minimal variation495

in reliability and generality metrics. However, a496

significant degradation in locality was observed497

when edits were applied to middle layers of the498

model (e.g., layer = 16 and 20). This decline aligns499

closely with the same layers where the hit count500

also decreases substantially in Figure 4. Prior in-501

terpretability studies suggest that middle layers in502

LLMs play a critical role in semantic understand-503

ing and transition (Meng et al., 2022; Biran et al.,504

2024). We thus posit that injecting knowledge at505

these layers interferes with semantic processing,506

making it particularly disruptive to locality.507

Layer Rel. Gen. Loc. Avg.

4 99.88 99.89 40.44 80.07
8 99.65 99.47 42.74 80.62
12 99.91 99.67 47.09 82.22
16 99.98 99.82 14.78 71.53
20 99.82 99.71 33.00 77.51
24 99.93 99.57 42.68 80.73
28 99.66 99.29 48.27 82.41
32 99.67 99.38 46.19 81.76

Table 4: Localization Analysis of Injection. Dataset:
ZsRE. T : 1000. Model: LLaMA-3.1-8B.

4.3.3 Larger-Scale Lifelong Editing508

We evaluate the large-scale lifelong editing per-509

formance of LLP, with detailed results presented510

in Table 5. As the number of edits scales up sub-511

stantially, LLP consistently maintains stable per-512

formance across all evaluation metrics. Notably,513

there is no observable degradation in effectiveness,514

and LLP obviously outperforms all baseline meth-515

ods reported in Table 2. These results underscore516

LLP’s capability in tackling lifelong editing tasks.517

4.3.4 Time Cost518

We evaluate the runtime efficiency of the proposed519

LLP method on the NVIDIA A6000 GPUs. Specif-520

ically, we measure the time required to generate521

keys (m = 8) and the corresponding value for each522

T Rel. Gen. Loc. Avg.

2000 99.03 97.52 99.46 98.67
3000 98.75 97.56 99.45 98.59
5000 98.57 97.25 98.55 98.12
8000 98.50 97.08 98.41 98.00
10000 97.92 97.01 98.37 97.77

Table 5: Scaling to larger lifelong edits. Dataset:
ZsRE. Model: LLaMA-3.1-8B.

sample, as well as the model’s forward pass time 523

before and after the editing. For each edit, the time 524

required to update the value memory was consis- 525

tently under 8 seconds, with an average time of 526

4.27 seconds. The time to update the key memory 527

remained below 0.7 seconds, with an average of 528

0.32 seconds. Since we set the upper limit for neg- 529

ative sampling to 1000 (Equation 9), all available 530

keys are used, leading to increased computation in 531

key updating. With a further increase in the number 532

of edits, this time cost tends to stabilize. After in- 533

tegrating an LLP memory containing 1000 entries, 534

the inference time of LLaMA-3.1-8B increased by 535

an average of 74 milliseconds. Overall, the runtime 536

overhead of LLP is well within a reasonable range. 537

Figure 5: Time Cost of LLP. Dataset: ZsRE. T : 1000.
Model: LLaMA-3.1-8B.

Conclusion 538

In this paper, we propose LLP, a lifelong editing 539

method that operates through a Layer-Level Prompt 540

mechanism. LLP enables model editing purely 541

through manipulation and influencing of the inter- 542

nal token embeddings of LLMs, without relying on 543

auxiliary models or external training data. More- 544

over, the explicitly stored memory mechanism sup- 545

ports efficient modification and deletion of edited 546

knowledge. Experimental results validate the effec- 547

tiveness of LLP in the lifelong editing scenario, ex- 548

hibiting no significant degradation in performance 549

even as the number of edits scales. 550
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Limitations551

LLP presents several limitations. First, as a552

retrieval-based approach, while each edit results553

in only a marginal increase in memory usage, the554

total memory consumption grows linearly with the555

number of edits. When the number of edits exceeds556

a certain threshold—e.g., beyond 5,000—the asso-557

ciated memory overhead becomes non-negligible.558

Additionally, because retrieval in our framework is559

based on the last subject token, an advantage is that560

multiple knowledge updates related to the same561

subject can be consolidated into a single key-value562

pair. However, this design choice also introduces a563

limitation in flexibility.564
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Algorithm 1 Updating of LLP Memory

1: Input: LLM to be edited F , knowledge pairs
{(xi, yi)}ai=1 related to the subject s, key mem-
ory K = [K1,K2, ...,Km], value memory V ,
retrieval layers R = [r1, r2, ..., rm], injection
layer z and length of prompt value p.

2: function UPDATE KEY

3: for i← 1 to m do:
4: get oi using Equation 8 with xi
5: initialize ki using oi
6: sample k− from Ki

7: train ki using Equation 9
8: append ki to Ki

9: end for
10: end function
11: function UPDATE KEY

12: initialize v using last p token embedding
of {xi ⊕ yi}ai=1

13: train v using Equation 11
14: append v to V
15: end function

Algorithm 2 Inference of LLM Equipped with LLP

1: Input: LLM to be edited F , number of F layer
L, embedding layer Emb, input prompt x, key
memory K = [K1,K2, ...,Km], value mem-
ory V , retrieval layers R = [r1, r2, ..., rm], and
injection layer z.

2: h1 = Emb(x)
3: for i← 1 to L do:
4: if i = z then
5: get w using Equation 6 with {Hj}mj=1

6: if r ̸= ∅ then
7: hi = vw ⊕ hi
8: end if
9: end if

10: hi+1 = F i(hi)
11: if i in R then
12: get Hi using Equation 3 with hi+1

13: end if
14: end for

includes numerous redundant edits targeting the 882

same piece of knowledge, introducing undesirable 883

noise for evaluating lifelong model editing. An 884

example of which is provided in the accompanying 885

table 6. To address this, we re-filtered the dataset 886

and selected 10,668 unique samples.

Table 6: Two samples illustrating why the original ZsRE
dataset is not suitable for evaluating lifelong model edit-
ing. Sample 1) and sample 2) In fact edit the same
factual knowledge, but have different editing targets,
which can affect the evaluation results during testing.

xe

1) Which person is the architect of Lahti
Town Hall?
2) Which designer was responsible for
Lahti Town Hall?

ye
1) Willem Marinus Dudok.
2) Aimee Teegarden.

xg

1) Who was the architect of Lahti Town
Hall?
2) What was the name of the architect
who worked on Lahti Town Hall?

xloc

1) Who plays alec ramsay in the black
stallion?
2) Who are the judges on do you think
you can dance?

887

Hallucination setting The dataset used for the 888

Hallucination setting is SelfCheckGPT (Manakul 889

et al., 2023), which contains a large number of 890

hallucinated passages generated by GPT-3 (Brown 891

et al., 2020), with the hallucinated content replaced 892

by corresponding sentences from actual Wikipedia 893

entries. The examples in this dataset are signifi- 894

cantly longer than those in other datasets, making 895

them more representative of real-world scenarios. 896

At the same time, this also increases the challenge 897

of the dataset. Our experimental setup follows 898

WISE (Wang et al., 2024), including 306 training 899

samples and 600 testing samples. Each sample 900

contains an editing question xe, an editing target 901

ye, and a locality question xloc. A representative 902

example is shown in the table 7. In addition, due 903

to the imprecise subject labeling in parts of the 904

dataset, we manually corrected several subject la- 905

bels. Examples of such samples are shown in Table 906

8. 907
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Table 7: A sample of SelfCheckGPT dataset.

xe

This is a Wikipedia passage about carole gist. Carole Gist (born April 28, 1969)
is an American beauty pageant titleholder from Detroit, Michigan who was
crowned Miss USA 1990. She was the first African-American woman to win
the Miss USA title. Gist represented the United States at the Miss Universe
1990 pageant held in Los Angeles, California, where she placed first runner-up
to Mona Grudt of Norway. Gist was the first African-American woman to place
in the Miss Universe pageant.

ye
She was also the first contestant from Michigan to win Miss USA, and broke
the five-year streak of winners from Texas.

xloc

Description Map of South America.
This map has a small scratch near the centerfold in the right part of the map.
Looking for an antique map, historica

Table 8: Several examples of corrected subject labels.

Original subject Corrected label

john holman chemist john holman
joe brown utility player joe brown

danny smith coach danny smith

B.2 Baselines908

FT-L FT-L (Zhu et al., 2020) is a variant of FT909

that incorporates an additional l∞ norm term into910

the loss function to strengthen the evidence sup-911

porting modified facts.912

ROME ROME (Meng et al., 2022) locates fac-913

tual knowledge within the MLP layers of the Trans-914

former architecture via causal tracing, and per-915

forms targeted knowledge editing under the as-916

sumption that MLP layers function as key-value917

memory modules (Geva et al., 2021).918

MEMIT MEMIT (Meng et al., 2023) extends919

ROME from single-editing to batch-editing, en-920

abling the simultaneous updating of hundreds of921

facts. Unlike ROME, which confines edits to a922

single layer, MEMIT updates multiple layers.923

AlphaEdit AlphaEdit (Fang et al., 2024) ad-924

dresses the substantial performance degradation925

observed in ROME and MEMIT after repeated926

edits. It mitigates interference with unrelated pa-927

rameters by projecting updates into the null space928

of MLP layers, thereby maintaining model perfor-929

mance even after hundreds of edits.930

GRACE GRACE (Hartvigsen et al., 2023)931

adopts a retrieval-based strategy that edits knowl-932

edge through a discrete key-value codebook. When 933

a relevant key is retrieved, its corresponding value 934

is directly replaced with the output of a model layer 935

to perform the edit. 936

RECIPE RECIPE (Chen et al., 2024) trains the 937

model to generate continuous prompt tokens for 938

editing and corresponding keys for retrieval. Once 939

trained, each new edit can be performed via simple 940

model inference, significantly reducing the per-edit 941

time. 942

WISE WISE (Wang et al., 2024) isolates editable 943

knowledge within a newly introduced side memory 944

FFN layer, ensuring that the primary model mem- 945

ory remains unaffected. Knowledge is randomly 946

assigned to this side memory, and the model dynam- 947

ically routes between the main and side memories 948

to determine when to apply edited content. 949

Our experiments were conducted on four 950

NVIDIA A6000 GPUs and two NVIDIA A100 951

GPUs. Since our experimental setting focuses on 952

lifelong model editing, we set the batch size to 1 953

for batch-editing methods such as MEMIT (Meng 954

et al., 2023) and AlphaEdit (Fang et al., 2024). Ex- 955

cept for RECIPE (Chen et al., 2024), we follow the 956

same training and evaluation settings as described 957

in EasyEdit (Wang et al., 2023). For RECIPE, we 958

adopt the same setup and train on each dataset sep- 959

arately with a batch size of 8 for at least 150,000 960

iterations. 961

B.3 LLP 962

We evaluate LLP on two NVIDIA A6000 GPUs. 963

The hyperparameters for ZsRE and SelfCheck- 964

GPT are identical. We set the retrieval layers as 965
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Table 9: Dataset statistics for main results.

SETTING EDITING DATA. T edit prompts((LLaMA/Mistral) paraphrased prompts((LLaMA/Mistral)

QA ZsRE 1000 25.85/33.94 24.82/33.13
Hallucination SelfCheckGPT 600 33.04/33.13 -/-

[0,1,2,3,4,5,6,7], and the injection layer is 10. The966

parameters vlayer and vvote used for the retrieval967

operation are set to 0.7 and 4. The learning rate for968

training v is 5e-2, and the learning rate for training969

k is 5e-3.970

C More Results and Analyse971

Table 10: Scaling to larger lifelong edits. Dataset: ZsRE,
Model: Mistral-7B

T Rel. Gen. Loc. Avg.

2000 98.25 97.31 99.68 98.41
3000 97.94 97.19 99.47 98.20
5000 97.63 96.94 98.10 97.56
8000 97.47 96.44 97.59 97.17
10000 97.02 96.10 97.34 96.82

The analysis of Mistral-7B under higher edit972

counts and time consumption can be found in Ta-973

ble 10 and Figure 6. For Mistral-7B, the effective-974

ness of editing remains well-preserved even with a975

significant increase in the number of edits.

Figure 6: Time Cost of LLP. Using 1000 samples of
ZsRE with Mistral-7B.

976
Both the editing time and inference time are kept977

within a reasonable range.978

D Case Study979

D.1 Failure Cases of Retrieval Operations980

We select several failed retrieval cases, as shown981

in the Table 11. We observe that these failures982

mainly involve examples with relatively unusual983

last subject tokens, such as ’)’. This is because such984

tokens carry limited semantic information, making 985

it difficult to retrieve the correct key even when 986

some surrounding semantic context is captured. 987

D.2 Failure Cases of Injection Operations 988

Most of the failures in knowledge injection can be 989

attributed to imperfections in the operation itself 990

in Table 12. However, we also identify some inter- 991

esting cases caused by inaccuracies in the dataset. 992

For example, in response to the question “Is Bao 993

Yixin a man or woman?”, the output“man” is actu- 994

ally more appropriate than the editing target "male". 995

This case also demonstrates, to some extent, that 996

the LLP method possesses a certain degree of gen- 997

eralization and reasoning ability, rather than merely 998

overfitting to the editing target. 999
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Table 11: Failure Cases of Retrieval Opeartions

Editing Prompt Paraphrased Prompt

Which is the manufacturer of USS Leedstown
(APA-56)?

What manufacturer of USS Leedstown (APA-56)
is it?

What type of aquatic unit is USS Baltimore (SSN-
704)?

What type of submarine was USS Baltimore
(SSN-704) classified as?

What artist created Halle Berry (She’s Fine)? What artist has Halle Berry (She’s Fine) created?
What type of submarine was USS Kete (SS-369)
classified as?

Which water unit is USS Kete (SS-369)?

Table 12: Failure Cases of Injection Operations

Paraphrased Prompt Editing Target Output

What is the label of Automatic Midnight? Myrrh Records The rrh \n
What’s the label of You’ll See? Epic Records Album Records
What kind of maritime vessel was SM UB-103? German Type UB

III destroyer
German Sub UB III
destroyer

Which year was 503 Evelyn discovered? 17 503 17th 503
Is Bao Yixin a man or woman? male man
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