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ABSTRACT

High-resolution visual representation learning remains challenging due to the
quadratic complexity of Vision Transformers and the limitations of existing ef-
ficient approaches, where fixed scanning patterns in recent Mamba-based mod-
els hinder content-adaptive perception. To address these limitations, a novel
Information-aware Scanning mechanism (InfoScan) tailored for state-space visual
backbones is proposed, which dynamically allocates computational resources to
the most salient regions of an image. Specifically, InfoScan rigorously assesses
the informativeness of image patches by integrating entropy with local structural
analyses, formulates a joint optimization objective balancing fine-grained detail
preservation and broader contextual coherence, and learns an adaptive scanning
policy via reinforcement learning. Built upon the innovative Visual Informa-
tion State Space (VISS) block, InfoScan establishes a new family of models that
achieve superior efficiency-accuracy trade-offs across diverse tasks. Extensive
empirical evaluation in different downstream vision tasks demonstrates that our
information-driven dynamic scanning paradigm offers a robust and principled al-
ternative to fixed or global-first traversal methods. Collectively, our work positions
adaptive, content-aware processing as a promising and effective new paradigm for
efficient high-resolution visual representation.

1 INTRODUCTION

Visual representation learning, a cornerstone of computer vision, aims to extract complex patterns
from visual data. Vision Transformers (ViTs) (Dosovitskiy et al., 2021)(Vaswani et al., 2017)
have become a dominant backbone for visual representation learning, achieving widespread suc-
cess across diverse downstream tasks such as classification, segmentation, and detection. By in-
corporating self-attention mechanisms, ViTs demonstrate superior learning capacity on large-scale
datasets. However, their computational cost scales quadratically with the number of input tokens,
making them prohibitively expensive when processing high-resolution images—where the number
of tokens grows significantly.

To mitigate this issue, extensive research has focused on reducing computational complexity while
preserving performance (Dong et al., 2022; Liu et al., 2021). These approaches typically oper-
ate through either token sparsification or hierarchical downsampling. Nevertheless, they still face
a fundamental trade-off: methods that restrict token interaction often limit the effective receptive
field, while aggressive downsampling leads to non-negligible performance degradation across di-
verse tasks. Consequently, achieving both efficiency and strong representational power remains an
open challenge.

Recently, Mamba-based models such as VMamba (Liu et al., 2024), RainMamba (Wu et al., 2024),
and others (Mehta et al., 2023; Zubić et al., 2024; Zhu et al., 2024b; Gu & Dao, 2023b) have
emerged for efficient visual representation learning, leveraging structured scanning patterns within
state-space architectures to compress hidden states and capture long-range dependencies. These ap-
proaches, built upon predefined traversal orders, have alleviated computational bottlenecks to some
extent. However, they perform uniform scanning—such as raster or Hilbert curves—treating all
patches identically regardless of their informational content. This rigid scanning paradigm implic-
itly assumes uniform information distribution across the image, thereby overlooking the varying
significance of local regions and limiting adaptive feature aggregation.
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Figure 1: Performance comparison across resolutions for classification accuracy, segmentation
mIoU, FPS, and GPU memory usage of DeiT-Ti, Vim-Ti, and InfoScan.

In this paper, we propose InfoScan, an information-gain-driven novel Vision model that adaptively
allocates computation based on feature significance. Our framework is built upon the VISS (Vi-
sion Information State Space) block and consists of three key components: an information scoring
module to estimate the informativeness of each patch, a patch selection mechanism to prioritize
content-rich regions, and a sequential scanning policy learned via reinforcement to dynamically ad-
just the processing order. By focusing computation on high-value regions early in the forward pass,
InfoScan achieves strong performance with significantly reduced computational overhead, enabling
efficient and adaptive vision modeling.

Compared with benchmark vision models based on CNNs (ConvNeXt (Liu et al., 2022a)), ViTs
(Swin (Liu et al., 2021), DeiT (Touvron et al., 2021b)), state-space models (Vim (Zhu et al., 2024a)),
and SS2D architectures (VMamba (Liu et al., 2024)), InfoScan achieves consistent improvements
of +0.8% to +1.9% in mIoU and +0.6% to +5.8% in Top-1 accuracy across image classification,
segmentation, and object detection tasks, while reducing model parameters by 18% to 32%. No-
tably, on image classification, InfoScan shows particularly strong gains, outperforming all baselines
by over +1.5% Top-1 on ImageNet-1K. Under the Mask R-CNN framework (Han et al., 2021), it
outperforms Swin-B and ConvNeXt-B on MSCOCO2017 (Lin et al., 2014) with 30M fewer param-
eters. These gains are consistent across model scales and domains, including natural and medical
imaging.

Our contributions are summarized as follows: (1) We introduce an information-aware scanning
mechanism that quantifies the significance of each image patch through a weighted combination of
Shannon entropy and local variance, enabling the model to adaptively prioritize high-information
regions. (2) We propose a principled mathematical framework to jointly optimize patch information
content, information loss, and scanning step size, yielding a more efficient and effective traversal
strategy beyond fixed or heuristic scanning paths. (3) We design a reward-driven dynamic scanning
policy based on a Markov decision process, allowing the model to learn where to attend next accord-
ing to contextual information density, thereby enhancing both local detail preservation and global
context integration.

2 RELATED WORK

2.1 EFFICIENT AND ADAPTIVE COMPUTATION IN VISION

Modern vision models face growing computational demands, especially when processing high-
resolution inputs. A dominant paradigm for efficiency is sparse computation, which reduces FLOPs
by selectively activating model components or processing only a subset of visual tokens. Sparse
attention mechanisms (Child et al., 2019) restrict contextual interactions to local neighborhoods
or top-k salient regions, while dynamic token pruning (Kim et al., 2024) removes low-importance
patches during inference. Concurrently, conditional computation approaches (Bengio et al., 2013;
Wang et al., 2022) adapt model capacity based on input complexity, such as allocating more re-
sources to semantically rich regions.
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Figure 2: Architecture of InfoScan and its key components. (a) Overall network with patch embed-
ding and hierarchical VISS blocks. Mamba block with RMSNorm, DWConv1d, and linear layers.
(b) VSS block integrating SS2D and FFN. (c) VISS block with SPS2D for adaptive scanning.

However, most existing methods operate under a static or reactive paradigm: they either apply fixed
sparsity patterns or reweight tokens after a full forward pass over all patches. In contrast, our work
proposes a proactive efficiency strategy—by learning to scan patches in an order that prioritizes
high-information regions early, we reduce redundant computation at the input level, before feature
aggregation begins. This shifts the efficiency bottleneck from post-hoc pruning to front-loaded
perceptual prioritization, aligning with cognitive principles of selective attention (Itti et al., 2001)
while maintaining end-to-end trainability.

2.2 SCANNING STRAGE

The design of visual scanning policies has long been a foundational consideration in both classical
and modern vision architectures. Early approaches, such as raster (Gu & Dao, 2023a) and zigzag
scanning(Ma et al., 2019), enforce fixed, content-agnostic orders based solely on spatial coordi-
nates. These deterministic strategies are computationally efficient and easy to implement, making
them prevalent in standard State Space Models. Alternatively, space-filling curves like Hilbert (Ka-
mata et al., 1999) and Z-order curves aim to enhance spatial coherence by minimizing the Euclidean
distance between consecutive patches, improving locality in sequential processing. Despite their
geometric elegance, all such methods assume uniform information density across the image—a
strong prior that rarely holds in real-world data. This leads to inefficient computation, as high-
entropy, semantically rich regions (e.g., object boundaries) are processed no earlier than homoge-
neous backgrounds. More recent works explore dynamic attention mechanisms to reweight patch
importance (Dai et al., 2021), but they still rely on globally scanning all patches first.

3 METHODOLOGY

Visual scanning defines a policy π that maps a 2D grid of image patches P = {pi,j} to a 1D
sequence Sπ = (s1, . . . , sN ), where st ∈ P . This sequencing is critical for directional models
such as state-space models (SSMs) and causal Transformers, where the processing order directly
influences contextual integration and computational efficiency. The core problem is thus to find an
optimal policy π∗ ∈ Π that maximizes a task-specific objective F(Sπ). We argue that the optimal
scanning policy must be content-aware. To formalize this principle, we decompose the problem into
two coupled subproblems. (1) Patch Importance Quantification: Define an importance function
finfo : P → R+ that assigns a scalar value Ik = finfo(pk) to each patch based on its content,
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Figure 3: A comparison of InfoScan scanning paths with other scanning patterns. The numbers in
the figure indicate the number of InfoScan scans.

measuring its informativeness. (2) Policy Optimization: Given the importance scores {Ik}, find the
policy π∗ that maximizes the cumulative discounted information gain—a more informed objective:

π∗ = argmax
π∈Π

N∑
t=1

γt−1Ist , (1)

where st denotes the patch selected at step t under policy π, and γ ∈ (0, 1] is a discount factor that
prioritizes early acquisition of high-information regions.

To achieve this information-maximizing scanning policy, we propose an information-gain-driven
novel Vision model: InfoScan, which is built upon Visual Information State Space (VISS) blocks
as illustrated in Figure 2. Each VISS block consists of a single network branch and two residual
modules. In contrast to the standard VSS block, we replace the SS2D component with a Patch
Selection Block (PSB), an Information Scoring Module (ISM), and a Path Planning Module (PPM)
(see Figure 2); further details are provided in the next section. If not specificed, all results reported
in this paper are obtained using InfoScan models instantiated with this architecture.

3.1 INFORMATION SCORING MODULE

The Information Scoring Module provides a content-aware prior for adaptive scanning by quanti-
fying the information content of image patches. We propose a composite score I(S) that jointly
models global color diversity and local texture complexity:

I(S) = ω1Ĥ + ω2V̂ , where ω1, ω2 ≥ 0, ω1 + ω2 = 1. (2)

Here, Ĥ and V̂ denote the zero-mean unit-variance normalized Shannon entropy and local variance,
respectively. The weights ω1 and ω2 are determined via grid search on the ImageNet-1K validation
set to maximize classification accuracy under a fixed scanning budget, and are then fixed across all
downstream experiments. We find the optimal setting to be ω1 = 0.6, ω2 = 0.4, (The feasibility
of ω1 = 0.6, ω2 = 0.4 on other vision tasks is validated in the AppendixC.1.)indicating that both
global and local cues contribute meaningfully, with a slight bias toward color diversity.

Shannon Entropy (Global Diversity). We compute the entropy of quantized color distributions to
measure global color variety (Bromiley et al., 2004). Each RGB channel is uniformly quantized into
C bins, resulting in K = C3 discrete levels. Let pk denote the empirical frequency of bin k. The
entropy is H = −

∑K
k=1 pk log pk (with 0 log 0 ≜ 0), which is then standardized across the dataset

to obtain Ĥ . Higher values indicate greater chromatic variation.

Local Variance (Texture Complexity). To capture fine-grained structure, we compute local in-
tensity variance within 3 × 3 neighborhoods. For a pixel (x, y) with neighborhood N(x, y),
the mean color is ĪN = 1

|N |
∑

(u,v)∈N(x,y) I(u, v), and the local variance is V (x, y) =
1

|N |
∑

(u,v)∈N(x,y) ∥I(u, v) − ĪN∥2, where ∥ · ∥2 denotes the squared Euclidean norm. The patch-

level variance V = 1
n2

∑
(x,y)∈S V (x, y) is standardized to yield V̂ .

Boundary Information. We further model inter-patch transitions by defining boundary salience.
For a boundary e between patches S1 and S2, we define Ib(e) = I(S1) · I(S2), encouraging
scanning paths to traverse between high-information regions and enhance contextual coherence in
sequential processing.
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3.2 PATCH SELECTION MODEL

Let Np denote the side length of square image patches (i.e., patch size is Np ×Np). When dividing
an image into such patches, there is a fundamental trade-off: smaller Np disrupts spatial context and
incurs high computational overhead due to the generation of numerous patches; larger Np, on the
other hand, risks losing fine-grained details and increases processing latency per patch. To balance
efficiency and information fidelity, we select the optimal patch size N⋆

p by minimizing the total cost
function Ctotal(Np):

Ctotal(Np) = λCe(Np) + (1− λ)Cinfo(Np), λ ∈ [0, 1], (3)

where I = WH is the total number of pixels in the image, N = I/N2
p is the number of patches,

Ce(Np) measures efficiency-related costs, Cinfo(Np) quantifies information loss, Ttotal(Np) = N ·
Tpatch(Np) represents the total time required to scan the entire image, and Tpatch(Np) is the time
needed to process one Np ×Np patch.

Efficiency Term. We model the delay per patch using a power-law model fitted on a calibration
dataset Dcalib. Specifically, Dcalib consists of 50K images from ImageNet-1K Val set, covering mul-
tiple classes to ensure diversity. For each image xi ∈ Dcalib, we measure the execution times yi
under different Np settings on the target hardware. This leads to the model: Tpatch(Np) = kp · Nα

p

and Ce(Np) = N · Tpatch(Np) = k1I · Nα−2
p , where k1 := kp. Here, α reflects the effective time

complexity of patch processing. When α > 2, the efficiency cost Ce(Np) increases with Np; it
remains constant when α = 2; and decreases when α < 2.

Information Term. We model information loss as a U-shaped function, capturing the dual risk of
insufficient global context at small Np and lost local details at large Np:

Cinfo(Np) =
k2

Nβ
p

+ k3N
γ
p , k2, k3 > 0, β, γ > 0. (4)

The first term decays with increasing Np (indicating more complete global context), while the sec-
ond term grows with Np (indicating worse local resolution).

Optimization and Solution Strategy. The optimal patch size is given by:

N⋆
p = argmin

Np

[
λk1IN

α−2
p + (1− λ)

(
k2

Nβ
p

+ k3N
γ
p

)]
. (5)

We solve this numerically: first, identify an interval containing the minimum over the feasible set S
(determined by image dimensions, stride constraints, and memory limits); then apply golden-section
search in the continuous relaxation space; finally, round the result to the nearest valid Np ∈ S. The
trade-off parameter λ is calibrated once to meet preset latency or memory budgets and remains fixed
in subsequent experiments. Complete algorithmic details are provided in AppendixA.2.Notably, the
determination of parameters k1, k2, and k3 is detailed in Appendix A.4.

3.3 PATH PLANNING MODULE

We reframe image scanning as an adaptive sequential decision process, moving beyond fixed,
content-agnostic paths (e.g., raster, zigzag, or space-filling curves). Our core idea is to model the
scanner as an agent traversing the image plane, where the scanning path is dynamically shaped by
the underlying content.

Formally, we partition the image into an n × n grid of patches, with each patch indexed by its
coordinates (i, j), where i, j ∈ {1, 2, . . . , n}. The state space is defined as:

S = {(i, j) | i, j ∈ {1, 2, . . . , n}}. (6)

The scanning process is modeled as a trajectory τ = (s0, s1, . . . , sT ), where st ∈ S denotes the
agent’s location at time t, starting from an initial patch s0.

Unlike traditional random walks with uniform transition probabilities, we formulate scanning as a
guided random walkZhu & Ghahramani (2002), which can be formalized as a Markov Decision

5
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Figure 4: (a) Spatial repetition enables priority decay with reward attenuation for high-information
regions,(b) dynamic rehearsal adjusts revisit intervals based on content importance, and (c) demon-
strates that the proposed method achieves a significant 98% improvement in cumulative information
gain compared to traditional scanning strategies.

Process (MDP)M = (S,A, P, r, γ):
(State:)st = (it, jt), optionally augmented with a visitation map Vt ∈ {0, 1}n×n, where Vt(i, j) =
1 if patch (i, j) has been visited before t.
(Action:) A = {↑, ↓,←,→} (4-connectivity), so at ∈ A(st) moves the agent to a neighboring
patch.
(Transition:)Under a policy πθ(at | st), the next state is deterministic: st+1 = f(st, at).
(Discount:) γ ∈ [0, 1] weights immediate rewards more heavily.

The goal is to learn a policy, the details of the policy model are provided in AppendixA.5 πθ that
maximizes the expected cumulative return:

max
θ

Eτ∼πθ
[G] = Eπθ

[
T−1∑
t=0

γtr(st, at, st+1)

]
. (7)

Markov Decision Process unifies two key objectives: (1) exploration of unvisited regions, and (2)
exploitation of semantically rich areas.

3.4 REWARD-DRIVEN SCANNING

Adaptively discovering the optimal scanning path requires a reward mechanism that dynamically
prioritizes information-rich regions while ensuring broad coverage. Our design is inspired by cog-
nitive principles in human learning—specificallyLevin (1986), spaced repetition and focused re-
hearsal—where important stimuli are revisited over time to strengthen perception and memory. To
emulate this behavior, we introduce a content-adaptive reward function that slows the decay of revisit
incentives for semantically salient patches, enabling periodic re-scanning while avoiding redundant
fixations.

At each step, the model receives a reward that balances revisiting informative regions and exploring
unvisited areas. Let I(s) ∈ R+ denote the information content of patch s. Let k(st+1) be the
number of times patch st+1 has been visited within the past t steps (with k = 0 if never visited).
The decay factor α ∈ (0, 1) is content-adaptive: we set α = αhigh if I(s) > θ, and α = αlow < αhigh
otherwise. This ensures that high-salience regions are “remembered” longer, promoting sustained
yet sparse revisits. The visitation indicator Vt(s) ∈ {0, 1} is 1 if patch s has been observed before
time t, and 0 otherwise. The weight λ > 0 controls the exploration bonus.

The reward function is then defined as:

r(st, at, st+1) = I(st+1) · αk(st+1)︸ ︷︷ ︸
adaptive revisitation incentive

+λ ·
(
1− Vt(st+1)

)︸ ︷︷ ︸
exploration bonus

+ β ·Nvisited(st+1)︸ ︷︷ ︸
neighborhood information gain

. (8)

The adaptive revisitation incentive aligns with human-like visual behavior—repeatedly attending
to meaningful content—while the exploration bonus ensures systematic scanning across the entire
image. As shown in the Figure4, Our reward design captures 98% of the achievable information
gain, demonstrating high efficiency in perceptual resource allocation.
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4 EXPERIMENTS

In this section, we conduct a series of experiments to evaluate the performance of InfoScan across
various vision tasks and compare it with mainstream baseline models. The results are presented in
the accompanying Figure1. We further validate the effectiveness of each component in the proposed
scanning strategy. All experiments are conducted on a server equipped with 16 V100 GPUs.

4.1 IMAGE CLASSIFICATION

Settings: We evaluate on ImageNet-1K (1.28M train, 50K val) (Deng et al., 2009) using 224× 224
resolution. We primarily adopt the hyperparameter settings and experimental configurations from
VMamba. During training, we use AdamW optimizer, cosine decay (initial LR 1 × 10−3), and
standard augmentations (e.g., random crop, flip, label smoothing).

Results: As shown in Table 1a, InfoScan outperforms CNN (Liu et al., 2022b),(Koonce, 2021)
Transformer, and SSM baselines in accuracy and efficiency. InfoScan-S achieves 84.64% top-1
accuracy, surpassing DeiT-S (Touvron et al., 2021a) (+4.0%) with fewer parameters. Compared to
VMamba-S (83.24%), InfoScan-S gains +1.4% accuracy with 26M fewer parameters. These results
demonstrate that information-aware dynamic scanning enables stronger and more efficient visual
representation learning.

Table 1: (a) ImageNet-1K classification at 2242 input (DeiT-B∗ at 3842). Throughput: per-GPU
img/s. (b) Mask R-CNN on MSCOCO2017 val (512×2048). APb/APm: box/mask AP; Sch.: sched-
ule; MS: multi-scale; P: Params (M); F: FLOPs (G).

(a) Image Classification
Method P(M) F(G) Thr./Train Acc(%)

DeiT-S 22 4.6 96.4/137.3 74.70
DeiT-B 85 17.4 24.8/55.9 80.11
DeiT-B∗ 86 55.3 18.7/20.1 83.23

Swin-T 28 4.6 68.6/59.8 81.60
Swin-S 50 8.7 40.4/35.8 83.23
Swin-B 88 15.4 20.6/18.7 83.91

VMamba-T 31 4.9 77.2/24.8 82.47
VMamba-S 50 8.7 47.1/17.0 83.24
VMamba-B 89 15.4 29.4/12.2 84.32

InfoScan-T 10 2.5 91.7/46.5 83.43
InfoScan-S 24 4.8 63.8/33.6 84.64
InfoScan-B 38 8.4 54.0/26.2 85.19

(b) Object Detection

Backbone Sch. APb APm P(M)

Swin-T 1× 42.9 38.1 48
Swin-S 1× 44.5 39.6 69
Swin-B 1× 45.6 41.5 107
Swin-T 3×MS 46.5 41.5 48

ConvNeXt-T 1× 44.3 39.6 48
ConvNeXt-S 1× 45.5 40.9 70
ConvNeXt-B 1× 47.2 42.4 108
ConvNeXt-T 3×MS 46.1 41.3 48

VMamba-T 1× 46.8 42.9 50
VMamba-S 1× 48.4 43.3 70
VMamba-B 1× 49.1 44.3 108
VMamba-T 3×MS 48.3 43.6 50

InfoScan-T 1× 47.1 41.2 42
InfoScan-S 1× 48.8 43.4 59
InfoScan-B 1× 49.8 44.7 78
InfoScan-T 3×MS 48.6 43.2 42

4.2 OBJECT DETECTION

Setting: We conduct experiments for object detection on the MSCOCO2017(Lin et al., 2014)
dataset, and we provide detailed experimental settings in the AppendixB.2.
Results: Table 1b demonstrates that InfoScan achieves competitive segmentation performance while
maintaining a good parameter efficiency. It’s worthy note that InfoScan-B achieves the highest
APbox (49.8 %) and APmask (44.7 %) scores among all methods tested, while using significantly
fewer parameters (78M) compared to the other high-performing backbones like Swin-B (107M) and
ConvNeXt-B (108M). The results verify InfoScan’s effectiveness for detection tasks, which also im-
plies that the information-aware scanning mechanism can be transfered well to detection tasks, not
only classification and segmentation.

7
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4.3 SEMANTIC SEGMENTATION

Table 2: Semantic segmentation performance on
ADE20K and BraTS2021 with UPerNet at 512 × 512.
P:Params; F:FLops.

Backbone ADE20K BraTS2021
mIoU P(M) mIoU P(M)

ResNet-50 41.9 67 17.4 67
ResNet-101 45.2 86 20.7 86
DeiT-T 38.3 11 14.3 11
DeiT-S 42.4 43 21.3 43
Vim-T 40.3 13 18.7 13
Vim-S 45.3 46 20.4 46
InfoScan-T 40.9 10 19.3 10
InfoScan-S 45.8 38 22.3 38

Settings: We evaluate semantic segmenta-
tion on ADE 20K (Zhou et al., 2017) and
BraTS2021 (Baid et al., 2021) using Uper-
Net at 512 × 512. The training process fol-
lows standard protocols, and full details can
be found in AppendixB.1.Notably, we addi-
tionally conducted generalization experiments
on BraTS2021 and ADE20K. The experimen-
tal results and detailed analysis can be found in
the AppendixC.2.

Results: As shown in Table 2, INFOSCAN
achieves superior accuracy-efficiency trade-
offs. On ADE 20K, INFOSCAN-TI obtains
40.9% mIoU (vs. DeiT-Ti: 38.3%) with fewer
parameters, and INFOSCAN-S reaches 45.8%
(+0.5% over Vim-S) with 38M params. On BraTS2021, it achieves 19.3% (TI) and 22.3% (S),
outperforming DeiT and Vim. Notably, InfoScan-S matches UperNet–ResNet-101 (45.2%/20.7%)
on both datasets with 56% fewer parameters. These results demonstrate strong generalization across
natural and medical images.

4.4 ABLATION STUDY

We first conduct ablation experiments on the path scanning module and the patch planning module,
using Vision Mamba as our baseline model for comparison. We fix the input image size to 512×512
and evaluate on three datasets. As shown in Table 3, on ImageNet-1K, the path scanning module
improves InfoScan’s accuracy from the baseline 82.5% to 83.4%, and the patch selection module
further increases it to 85.9%.

Table 3: Ablation on core modules. E1 (Patch Selection), E2 (Path Planning).

E1 E2 ImageNet-1K ADE-20K BraTS-2021
Top-1 Acc (%) mIoU (%) mIoU (%)

✗ ✗ 82.5 45.3 18.7
✓ ✗ 83.4 45.7 18.9
✓ ✓ 85.9 45.9 19.3

We conduct ablation experiments on the three components of the reward function, using Vision
Mamba as the baseline model. We fix the input image resolution to 512×512 and evaluate on three
datasets. As shown in the Table 4, on ImageNet-1K, the combined effect of the adaptive revisitation
incentive, exploration bonus, and neighborhood information gain boosts InfoScan’s accuracy from
84.2% to 85.9%.

Notably, the ablation studies on Shannon Entropy and Local Variance in the Information Scoring
Module are provided in the AppendixA.3.

Table 4: Ablation on reward components. M1 (revisitation), M2 (exploration), M3 (neighborhood
gain).

M1 M2 M3 ImageNet-1K ADE-20K BraTS-2021
Top-1 Acc (%) mIoU (%) mIoU (%)

✗ ✗ ✗ 80.4 42.3 16.7
✓ ✗ ✗ 81.1 42.7 17.8
✓ ✓ ✗ 84.2 43.6 18.3
✓ ✓ ✓ 85.9 45.9 19.1
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Figure 5: Visualization of the content-adaptive scanning path in InfoScan.

4.5 SCANNING METHOD VISUAL COMPARISON

Figure 5 illustrates the visualization of the learned adaptive scanning path in InfoScan. From left to
right: (1) the input image, (2) the information heatmap computed by combining Shannon entropy
and local variance, where warmer colors (red/orange) indicate regions with higher complexity and
richer content, and (3) the overlaid scanning trajectory on the heatmap. The red lines represent
the adaptive scan path, which dynamically adjusts its density based on content importance: sparse
scanning is applied in low-information areas (e.g., uniform walls), while dense, multi-pass traver-
sal is adopted in complex regions (e.g., the suitcase and surrounding clutter). This demonstrates
that InfoScan effectively prioritizes informative regions through a content-aware scanning strategy,
achieving both efficiency and accuracy.

5 ANALYSES

A key question is whether performance gains stem from scan repetition or adaptive routing. To
disentangle these factors, we conduct ablation studies with fixed scanning patterns under different
configurations, as summarized in Table 5.

Repetition yields diminishing returns. Comparing single vs. triple passes of fixed patterns (ID
1 vs. ID 2, ID 3 vs. ID 5), we find that repeating scans brings marginal or even negative gains.
Specifically, Triple Raster Scan (ID 2) achieves no improvement in Top-1 accuracy and degrades
ADE20K mIoU to 41.8%, likely due to redundant computation on low-salience regions. Triple
Hilbert Scan (ID 5) improves ImageNet Top-1 by only +0.7% and ADE20K mIoU by +0.6%,
but reduces BraTS-2021 mIoU by −0.6%, indicating poor adaptation to structural heterogeneity in
medical images.

Stochastic initialization enhances coverage. Randomizing the scan origin (ID 4) improves Single
Hilbert Scan from 83.6% to 84.5% Top-1 and 42.9% to 43.5% mIoU on ADE20K, confirming that
random starts enhance spatial diversity. However, even with randomization, fixed-pattern methods
plateau (e.g., ID 5), suggesting inherent limitations of static routing.

Adaptive routing outperforms repetition and randomness. InfoScan with random initialization
(ID 7) achieves 85.9% Top-1 and 45.9% mIoU, surpassing all static baselines. Crucially, even with
fixed initialization (ID 6), InfoScan (84.2%, 44.6%) outperforms all ablated variants—including
Triple Hilbert (ID 5) and the randomized Single Hilbert (ID 4)—demonstrating that learned adaptive
routing is the primary driver of gains, not mechanical repetition or stochastic exploration.

Learned policy enables intelligent revisitation. These results confirm that performance improve-
ments arise not from redundancy, but from when and how regions are revisited—guided by a reward-
driven policy that balances exploration, uncertainty-based refinement, and local coherence. Intelli-
gent policy design, rather than scan repetition, enables robust generalization across domains.

9
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Table 5: Ablation study on scanning policy and starting point. “Fixed” denotes a predefined starting
position; “Random” denotes a stochastically chosen start. InfoScan uses a reward-driven adaptive
scanning policy with random initialization.

ID Method Start ImageNet-1K ADE20K BraTS-2021
Top-1 (%) mIoU (%) mIoU (%)

1 Single Raster Scan Fixed 83.5 42.9 15.3
2 Triple Raster Scan Fixed 83.6 41.8 16.5
3 Single Hilbert Scan Fixed 83.6 42.9 17.1
4 Single Hilbert Scan Random 84.5 43.5 18.3
5 Triple Hilbert Scan Fixed 84.8 44.2 16.8
6 InfoScan Fixed 84.2 44.6 18.0
7 InfoScan Random 85.9 45.9 19.3

6 CONCLUSION

This paper presents InfoScan, a novel visual backbone that introduces information-aware dynamic
scanning for efficient high-resolution representation learning. By casting 2D spatial traversal as
a sequential decision process guided by a learned salience metric, InfoScan departs from fixed or
heuristic scanning patterns and adaptively allocates computation to informative regions. The core
mechanism is integrated into a state space framework through the Visual Information State Space
block, which supports flexible, content-dependent paths while maintaining near-linear complexity.
Compared to prior state space and hierarchical vision models, InfoScan achieves improved efficiency
and robust generalization across diverse vision tasks, including classification, dense prediction, and
medical imaging. Notably, the learned scanning policy exhibits strong interpretability, aligning with
human visual attention and enabling diagnostic analysis of model behavior. The design principle—
scanning less but smarter—opens a new direction for efficient visual architectures beyond static
token processing. In future work, we will explore extending InfoScan to video modeling and adapt-
ing it to vision-language models.
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ETHICS STATEMENT

This work focuses on advancing the efficiency and adaptability of visual representation learning
through algorithmic innovation. All experiments are conducted on publicly available datasets, in-
cluding ImageNet-1K, ADE20K, MSCOCO2017, and BraTS2021, which have been widely used in
prior research under established ethical guidelines. We do not collect or use any private or sensitive
data. The proposed method does not involve human subjects, personal information, or biometric
identification. While the framework is general-purpose, potential misuse (e.g., in surveillance or
deepfakes) is not specific to our approach and remains a broader concern for the machine learning
community.

REPRODUCIBILITY STATEMENT

We are committed to full reproducibility. All experimental details necessary to reproduce our results
are provided in the main paper and the appendix, including model architectures, hyperparameters,
training schedules, and optimization settings. We use standard benchmarks and publicly available
datasets. The codebase, including training and evaluation scripts, will be released. Pre-trained
models and detailed inference instructions will also be made publicly available. All experiments are
conducted on standard hardware (16× NVIDIA V100 GPUs).
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A MATHEMATICAL DERIVATIONS

A.1 PATCH SIZE OPTIMIZATION DERIVATION

Here we provide the complete derivation of the optimal patch size formula from Section 3.1. Starting
from the total cost function:

Ctotal(Np) = λk1I Nα−2
p + (1− λ)

(
k2

Nβ
p

+ k3N
γ
p

)
(9)

Taking the derivative with respect to P and setting it to zero:

d

dNp
Ctotal(Np) = λk1I(α− 2) Nα−3

p − (1− λ)k2β N−β−1
p + (1− λ)k3γ Nγ−1

p = 0 (10)

Multiplying through by P β+1 to eliminate negative exponents:

λk1I(α− 2)Nα+β−2
p − (1− λ)k2β + (1− λ)k3γN

γ+β+1
p = 0 (11)

Let m = α+ β − 2, n = γ + β + 1 and

A = λk1I(α− 2), B = (1− λ)k2β,C = (1− λ)k3γ,

we arrive at
ANm

p + CNn
p = B.

A.2 INFORMATION THEORY FOUNDATIONS

Normalization of Information Scores: Given a dataset of patches {S1, S2, . . . , SN}, the normal-
ization of Shannon entropy H and local variance V proceeds as follows:

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Figure 6: Patch size P affects cost components differently: (a) efficiency cost increases with P ,
governed by exponent α; (b) information cost drops sharply at small p, reflecting local redundancy;
(c) total cost balances both, revealing an optimal p∗ ≈ 1.0 and sensitivity to trade-off weight λ.

For Shannon entropy:

µH =
1

N

N∑
i=1

H(Si) (12)

σ2
H =

1

N − 1

N∑
i=1

(H(Si)− µH)2 (13)

Ĥ(Si) =
H(Si)− µH

σH
(14)

Similarly for local variance V . This ensures E[Ĥ] = E[V̂ ] = 0 and Var[Ĥ] = Var[V̂ ] = 1.

Boundary Information Justification: The boundary information Ib(e) = I(S1) × I(S2) is mo-
tivated by the principle that transitions between high-information regions carry multiplicative im-
portance. This captures the intuition that moving from one informative patch to another informative
patch provides compound value for the scanning process.

A.3 ANALYSES OF INFORMATION METRIC VALIDITY

To validate the necessity and effectiveness of our information metric, we conduct an ablation study
on the components used to compute the information map: Shannon entropy (Q1) and local pixel
variance (Q2). Results in Table 6 show that Shannon entropy component alone improves perfor-
mance over the baseline without any information scoring (79.7%→ 81.6% Top-1 on ImageNet-1K),
confirming their individual utility in guiding adaptive scanning.

However, combining both Q1 and Q2 yields the best performance across all datasets—85.9% Top-1
accuracy on ImageNet-1K, +4.3% over Q1-only and +6.2% over no scoring—demonstrating that en-
tropy and variance capture complementary aspects of visual information: global semantic diversity
and local texture richness, respectively.

These results support the design of our composite information metric as not only empirically effec-
tive but also functionally justified. The significant gains in downstream tasks (e.g., +8.7% mIoU
on BraTS-2021) further confirm that accurate information estimation is critical for efficient and
adaptive vision modeling.

Table 6: Ablation on Information Scoring module. Q1 (Shannon Entropy), Q2 (Local Variance).

Q1 Q2 ImageNet-1K ADE-20K BraTS-2021
Top-1 Acc (%) mIoU (%) mIoU (%)

✗ ✗ 79.7 37.2 12.1
✓ ✗ 81.6 43.2 17.2
✓ ✓ 85.9 45.9 19.3
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A.4 PARAMETER ESTIMATION FOR THE PATCH SIZE OPTIMIZATION FRAMEWORK

We detail the procedure for estimating the model parameters k1, k2, and k3 used in the total cost
function:

Ctotal(Np) = λCe(Np) + (1− λ)Cinfo(Np),

where Ce(Np) = k1I ·Nα−2
p and Cinfo(Np) =

k2

Nβ
p
+ k3N

γ
p .

k1: Efficiency scaling coefficient. The parameter k1 (equivalent to kp in the patch timing model)
captures the hardware- and model-specific constant in the power-law relationship Tpatch(Np) =
kp · Nα

p . It is estimated via linear regression on log-transformed timing measurements from the
calibration dataset Dcalib. Specifically, we collect execution times {yi} for varying Np on 50K im-
ages from ImageNet-1K Val, and fit:

log Tpatch(Np) = α logNp + log kp.

Using ordinary least squares, we obtain estimates for α and log kp, from which k1 = kp is derived.
This ensures Ce(Np) accurately reflects empirical computational latency.

k2, k3: Information loss coefficients. To estimate k2 and k3, Let ϕ(x;Np) denote the deep fea-
tures extracted from an image x using patch size Np. We measure information loss as the deviation
from a reference representation ϕ(x;N ref

p ), where N ref
p = 8 is chosen as a high-resolution baseline:

Linfo(x,Np) =
∥∥ϕ(x;Np)− ϕ(x;N ref

p )
∥∥2
2
.

We compute Linfo(x,Np) across Dcalib for multiple Np values and average to obtain empirical infor-
mation loss L̄(Np).

We then fit the parametric model Cinfo(Np) = k2N
−β
p + k3N

γ
p to L̄(Np) using non-linear least

squares, the resulting k2 and k3 ensure that the information cost term reflects the U-shaped trade-off
between global context and local detail preservation.

A.5 POLICY NETWORK ARCHITECTURE

The policy network in InfoScan is responsible for learning an adaptive scanning policy π(at|st; θ)
that selects the next patch to process based on the current state st. The network is trained via
reinforcement learning to maximize the cumulative discounted information gain.

State Representation The input state st at step t is a 4-channel tensor composed of:

• Current position (it, jt): encoded as two scalar maps where each spatial location (i, j) is
assigned the normalized coordinates

(
i
n ,

j
n

)
.

• Information Map InfoMapt: the spatial map of information scores I(pi,j) computed by the
Information Scoring Module (ISM), normalized to [0, 1].

• Visitation Map Vt: a binary map indicating which patches have been visited (1 if visited, 0
otherwise).

These four channels are concatenated to form the input tensor of shape n× n× 4.

Network Structure The policy network is a lightweight convolutional neural network (CNN) with
the following layers:

1. Input: n× n× 4 state tensor.

2. Convolutional Layer 1: 3× 3 kernel, 64 filters, ReLU activation, stride 1, padding 1.

3. Convolutional Layer 2: 3× 3 kernel, 64 filters, ReLU activation, stride 1, padding 1.

4. Global Average Pooling: reduces spatial dimensions to 1× 1× 64.

5. Fully Connected Layer: 64 units, ReLU activation.
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6. Output Layer: 4 units (corresponding to actions {↑, ↓,←,→}), followed by softmax to
produce action probabilities.

This design ensures near-constant computational cost regardless of image resolution, as the final
layers operate on a fixed-size vector.

Action Masking To prevent out-of-bound moves, we apply action masking during inference: if
the agent is at the image boundary (e.g., it = 1), the “up” action is masked (set to zero probability)
before softmax.

Training Procedure We train the scanning policy using Proximal Policy Optimization (PPO).
The agent interacts with the image grid environment over episodes of fixed length T = 10 steps,
corresponding to a sparse scan path across the image.

At each step t, the policy network takes as input the state tensor st ∈ Rn×n×4 and outputs a prob-
ability distribution over the four movement actions. An action at is sampled from this distribution
during training for exploration. After executing at, the agent transitions to patch st+1 and receives
a reward rt = r(st, at, st+1), composed of adaptive revisitation incentive, exploration bonus, and
neighborhood gain.

The total objective maximizes the discounted cumulative reward:

J(θ) = Eτ∼πθ

[
T∑

t=0

γtrt

]
,

with discount factor γ = 0.99. To stabilize training:

• Reward normalization: We maintain a moving average of recent rewards and normalize
each rt online using zero-mean, unit-variance scaling.

• Entropy regularization: We include an entropy bonus Lentropy to encourage exploration in
early stages.

• Gradient clipping: Global norm clipped at 0.5.

We use the Adam optimizer with learning rate 3 × 10−4, batch size 64 (aggregated over 8 parallel
environments), and update the policy every T = 10 steps using 3 PPO epochs per update. The value
head (an additional output branch from the penultimate FC layer) is trained jointly to estimate state
value V (st), with coefficient λv = 0.5 balancing the value loss. Training runs for 200K iterations
on ImageNet-1K training set images resized to 512× 512.

B EXPERIMENTAL SETUP DETAILS

B.1 SETTINGS FOR SEMANTIC SEGMENTATION.

We conduct semantic segmentation experiments on the ADE20K and BraTS2021 datasets. ADE20K
contains 150 fine-grained semantic categories, with 20K images for training, 2K for validation, and
3K for testing. BraTS2021 includes three semantic classes (tumor sub-regions), and we use T1-
weighted MRI scans as input. The training, validation, and test sets contain 21K, 3K, and 6K
slices, respectively. We adopt UperNet as the base framework. During training, we use the AdamW
optimizer with a weight decay of 0.01 and a total batch size of 24. The learning rate is initialized
to 8 × 10−5, decayed linearly, and warmed up over the first 2,000 iterations. Total training runs
for 180K iterations. Standard data augmentations are applied: random horizontal flipping, random
rescaling within the range [0.5, 2.0], and random photometric distortion. At evaluation, input images
are resized such that the shorter side is 512 pixels.

B.2 SETTINGS FOR OBJECT DETECTION.

We conduct object detection experiments on the MS-COCO 2017 dataset. The dataset contains
118K training images, 5K validation images, and 20K test images. We adopt the standard Cascade
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Mask R-CNN as the base framework. For ViT-based backbones, we follow ViTDet and apply addi-
tional designs—such as interleaved window and global attention—to handle high-resolution inputs.
For SSM-based Vim backbones, we use the original architecture without modifications. All other
training and evaluation settings remain consistent across variants. We optimize using AdamW with
a weight decay of 0.1 and a total batch size of 64. The learning rate is initialized to 1 × 10−4 and
decayed linearly over 380K iterations.

C GENERALIZATION EXPERIMENTS

C.1 FEASIBILITY OF THE INFORMATION SCORING WEIGHT IN OTHER TASKS

The weights ω1 and ω2 in the information scoring module are determined via grid search on the
ImageNet-1K validation set to maximize classification accuracy under a fixed computational bud-
get. To validate the generalization of this optimal setting to other vision tasks, we evaluate the per-
formance of InfoScan on two distinct downstream tasks—semantic segmentation on ADE20K and
medical image segmentation on BraTS2021—using the same fixed weights, without task-specific
re-tuning.

Results in Table 7 demonstrate that the weight configuration optimized on ImageNet-1K (ω1 =
0.6, ω2 = 0.4) consistently yields the best performance across both datasets. This indicates strong
transferability of the information scoring mechanism, suggesting that the relative importance of
global color diversity (ω1) and local texture complexity (ω2) learned from natural images generalizes
well to both complex scene parsing and fine-grained medical analysis.

Table 7: Ablation on information scoring weights ω1 (entropy) and ω2 (variance) evaluated on
ADE20K and BraTS2021. The optimal weights (ω1 = 0.6, ω2 = 0.4) selected on ImageNet-1K
achieve the highest mIoU on both tasks, confirming their cross-task effectiveness.

ω1 ω2 ADE20K mIoU (%) BraTS2021 mIoU (%)

0.5 0.5 36.7 18.7
0.4 0.6 42.7 20.4
0.6 0.4 45.8 22.3

C.2 GENERALIZATION EXPERIMENTS ON SEGMENTATION TASKS

We conduct cross-task and cross-domain generalization experiments in semantic segmentation.
Specifically, we test whether models trained on one segmentation dataset can generalize to a sig-
nificantly different one without fine-tuning, simulating real-world deployment where target-domain
labels are unavailable.

We compare InfoScan-T with standard CNN (ResNet-50) and recent vision architectures (DeiT-T,
Vim-T) under a zero-shot domain transfer setting. All models use the same segmentation head
UPerNet, are trained on one dataset, and directly evaluated on the other. Input resolution is fixed
at 512 × 512. The two datasets represent highly distinct domains: Results are reported in Table 8,
measured by mean Intersection-over-Union (mIoU).

D LIMITATIONS

(i) First, the current implementation assumes a uniform patch size and grid structure, which may
not optimally capture multi-scale semantics in high-resolution images. Future work could explore
adaptive patching or hierarchical scanning strategies.

(ii)Second, the information scoring module, though lightweight, introduces additional latency during
inference. end-to-end deployment in real-time systems requires further optimization of the scoring
and policy inference pipeline.

(iii)Third, the reward function contains hyperparameters (e.g., αhigh, λ) that currently require mild
tuning for extreme domain shifts (e.g., natural to medical). Although we observe consistent rank-
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Table 8: Zero-shot cross-dataset generalization performance on semantic segmentation tasks. Mod-
els are trained on one dataset and evaluated on the other without fine-tuning. InfoScan-T shows
superior transferability, achieving higher mIoU in both directions, indicating stronger generalization
to unseen domains and modalities.

Backbone Train Dataset Test Dataset mIoU (%)

ResNet-50 ADE20K BraTS2021 4.9
ResNet-50 BraTS2021 ADE20K 5.3

DeiT-T ADE20K BraTS2021 8.7
DeiT-T BraTS2021 ADE20K 8.2

Vim-T ADE20K BraTS2021 7.8
Vim-T BraTS2021 ADE20K 7.9

InfoScan-T ADE20K BraTS2021 11.4
InfoScan-T BraTS2021 ADE20K 11.2

ing across settings, fully automatic adaptation without any validation feedback remains an open
challenge.

(iv)Finally, all experiments focus on 2D images; extension to 3D Videos would require re-designing
the action space and scanning policy, which we leave for future work.

E LLM USAGE

The manuscript was polished using a large language model (LLM). After revision, the methodolog-
ical and experimental details were verified and confirmed by the authors.
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