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ABSTRACT

Creating reinforcement learning agents that generalise effectively to new tasks is
a key challenge in AI research. This paper introduces Fracture Cluster Options
(FraCOs), a multi-level hierarchical reinforcement learning method that achieves
state-of-the-art performance on difficult generalisation tasks. FraCOs identifies
patterns in agent behaviour and forms options based on the expected future use-
fulness of those patterns, enabling rapid adaptation to new tasks. In tabular set-
tings, FraCOs demonstrates effective transfer and improves performance as it
grows in hierarchical depth. We evaluate FraCOs against state-of-the-art deep
reinforcement learning algorithms in several complex procedurally generated en-
vironments. Our results show that FraCOs achieves higher in-distribution and
out-of-distribution performance than competitors.

1 INTRODUCTION

A key goal of AI research is to develop agents that can leverage structured prior knowledge, either
provided or learned, to perform competently in unfamiliar domains (Pateria et al., 2021). This is a
common feature in animals; for example, many newborn mammals, such as foals, can walk shortly
after birth due to innate motor patterns, while human infants display instinctive stepping motions
when supported (Adolph & Robinson, 2013; Dominici et al., 2011). These innate behaviors, shaped
by evolution, act as priors that guide goal-directed actions and enable rapid adaptation.

In parallel, humans are believed to organise behaviors into a hierarchy of temporally extended ac-
tions, which helps break complex tasks into simpler, manageable steps (Rosenbloom & Newell,
1986; Laird et al., 1987). For instance, human decision-making often involves planning with high-
level actions like “pick up glass” or “drive to college,” each of which comprises subtasks such as
“reach for glass” or “pull door handle.” These eventually decompose into basic motor movements.

This hierarchical fragmentation likely arises from sub-experiences of past tasks (Brunskill & Li,
2014). Notably, parts of this hierarchy are shared between tasks; for instance, both “pick up glass”
and “pull door handle” involve similar gripping movements. Such shared temporal actions may fa-
cilitate rapid learning of new tasks beyond those previously experienced. Replicating this hierarchy
in algorithms could allow artificial agents to also adapt quickly (Heess et al., 2016).

Despite advances in hierarchical methods, generalising behaviors across diverse tasks remains a
significant challenge for artificial agents (Cobbe et al., 2019). Many approaches struggle with effec-
tively transferring skills to new environments, limiting their ability to adapt to real-world scenarios
(Pateria et al., 2021).

In this paper, we make two key contributions:

1. We introduce Fracture Cluster Options (FraCOs), a novel framework for defining, forming,
and utilizing multi-level hierarchical options based on their expected future usefulness.

2. We empirically demonstrate that FraCOs significantly enhances out-of-distribution (OOD)
learning. Our method outperforms three baselines—Proximal Policy Optimization (PPO)
(Schulman et al., 2017), Option Critic with PPO (OC-PPO) (Klissarov et al., 2017) and
Phasic Policy Gradient (Cobbe et al., 2021)—in both in-distribution and OOD learning
across several environments from the Procgen benchmark (Cobbe et al., 2020).
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2 BACKGROUND

2.1 REINFORCEMENT LEARNING

Standard Reinforcement Learning (RL) focuses on how agents can “take actions in different states
of an environment to maximize cumulative future reward”, where the reward provides task-specific
feedback (Sutton & Barto, 2018). In any environment, an agent exists in a state s and can perform
an action a, both of which may be discrete, continuous, or multidimensional. Most RL problems are
framed as a Markov Decision Process (MDP). An MDP is defined as a tuple ⟨S,A, P,R, γ⟩, where
S is the set of possible states, A is the set of possible actions, P is the transition probability function
with P (s, a, s′) indicating the probability of transitioning from state s to s′ after action a, R is the
reward function where R(s, a, s′) gives the reward for transitioning from s to s′ via action a, and
γ ∈ [0, 1] is the discount factor. An MDP assumes the Markov property, where the future state and
reward depend only on the current state and action.

At each time step t ≥ 0, the agent makes a decision based on its current state st using a policy,
denoted as π(st). The policy maps states to probabilities over actions, guiding the agent’s behaviour.
The actions taken produce observed experience data of the form (st, at, rt+1, st+1). When the agent
interacts with the environment until it reaches a termination state, the full sequence of observations
is called a trajectory T . The objective of reinforcement learning is to learn a policy that maximises
the cumulative discounted returns, defined as Gt =

∑∞
k=0 γ

krt+k+1.

In this paper, we define an environment as the external system with which the agent interacts, char-
acterized by ⟨S,A, P,R⟩. In our work, a task is defined as a unique MDP.

2.2 HIERARCHICAL REINFORCEMENT LEARNING

Hierarchical Reinforcement Learning (HRL) extends standard RL by organising decision-making
into multiple levels of abstraction. A key paradigm in HRL is the options framework, which en-
capsulates extended sequences of actions into options (Sutton & Barto, 2018). An option consists
of an initiation set I , which defines the states where it can be selected, an intra-option policy πintra,
which governs the actions while the option is active, and a termination condition β : S → [0, 1],
which defines when the option ends. The intra-option policy executes actions until the termination
condition β(s) is satisfied.

Options operate within a Semi-Markov Decision Process (SMDP). An SMDP is an extension of an
MDP where actions can have variable durations. The agent chooses between options and primitive
actions at each decision point, with a policy over options, πopt, deciding which to execute based
on the current state. This hierarchical structuring can improve exploration and learning efficiency
by enabling agents to plan over extended time horizons and break complex tasks into manageable
sub-tasks. This decomposition reduces the decision space, facilitates structured exploration, and
simplifies credit assignment, particularly in environments with sparse rewards (Sutton et al., 1999;
Dayan & Hinton, 1992).

2.3 GENERALISATION

Generalisation in Reinforcement Learning (RL) encompasses a broad class of problems (Kirk et al.,
2021). These problems can be categorised based on the relationship between training and testing
distributions, either falling within Independent and Identically Distributed (IID) scenarios or ex-
tending to Out-of-Distribution (OOD) contexts. Additionally, generalisation can be classified by the
features of the environment that change, including the state space, observation space, dynamics, and
rewards. This classification leads to eight possible combinations of generalisation challenges.

In this work, we define IID generalisation as the ability of agents to generalise within tasks drawn
from the same distribution as their training tasks. In contrast, OOD generalisation refers to an agent’s
ability in tasks that differ from those encountered during training.

We evaluate FraCOs’ generalisation performance in OOD tasks where the state space S and reward
function R vary, while the action space A, transition dynamics P , and discount factor γ remain
constant. This setup reflects real-world scenarios where an agent, such as a robot, operates under
fixed dynamics but faces diverse environments and goals.
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3 RELATED WORK

Policy transfer and single-level option transfer methods, aim to broaden an agent’s task-handling
capabilities. Examples of policy transfer include works by Finn et al. (2017), Grant et al. (2018),
Frans et al. (2017), Cobbe et al. (2021), and Mazoure et al. (2022). Option transfer methods, on
the other hand, focus on learning a set of reusable options to enhance rewards in new situations
(Konidaris & Barto, 2007; Barreto et al., 2019; Tessler et al., 2017; Mann & Choe, 2013). While
a few methods in the literature explore multi-level hierarchies, they do not focus on option transfer
as a mechanism for accelerating task adaptation and generalisation (Riemer et al., 2018; Evans &
Şimşek, 2023; Levy et al., 2017; Fox et al., 2017).

HRL has typically focused on addressing broader challenges such as long-term credit assignment
and structured exploration (Dayan & Hinton, 1992; Parr & Russell, 1997; McGovern & Sutton,
1998; Sutton et al., 1999). Two foundational paradigms within HRL are: 1) sub-goal-based ap-
proaches, which typically decompose tasks into smaller, state-based intermediate objectives, and
2) the options framework, which formalises temporally extended actions as options (Sutton et al.,
1999). In both paradigms the ability to learn transferable abstractions at more than two levels of
hierarchy is still an open research question (Pateria et al., 2021).

Recent work has proposed methods for forming and managing multi-level hierarchies. Levy et al.
(2017) and Evans & Şimşek (2023) introduce sub-goal-conditioned approaches for multi-level ab-
straction. However, due to their reliance on state-based-sub-goals, these methods face difficulties
in sub-goal selection in complex state spaces such as pixel-based representations. Moreover, all
state-based-sub-goal methods struggle to transfer sub-goals to different state spaces. Additionally,
they do not account for the variability in action sequences required to transition between sub-goals;
for example, “booking a holiday” could involve “calling a travel agent” or “using the internet,” each
demanding different skills. In contrast, FraCOs avoids creating state-based-sub-goals, providing a
more flexible framework for transfer across state spaces.

Our work is more closely related to Hierarchical Option Critic (HOC) by Riemer et al. (2018) and
the Discovery of Deep Options (DDO) by Fox et al. (2017), both of which use the options frame-
work. DDO employs an expectation gradient method to construct a hierarchy top-down from expert
demonstrations. However, DDO does not optimize for generality and it remains unclear how the
discovered options perform in unseen tasks. Moreover, the reliance on demonstrations limits the
development of more complex abstractions than those demonstrated. In comparison, FraCOs builds
bottom-up, forming increasingly complex abstractions. FraCOs also selects options based on their
expected usefulness in future tasks, directly addressing generalisation challenges.

HOC generalises the Option-Critic (OC) framework introduced by Bacon et al. (2017) to multiple
hierarchical levels. HOC learns all options simultaneously during training. However, both OC and
HOC suffer from option collapse, where either all options converge to the same behaviour or one
option is consistently chosen (Harutyunyan et al., 2019). Moreover, OC methods introduce addi-
tional complexity to the learning algorithm, which has been shown to slow learning compared to
non-hierarchical approaches like PPO (Schulman et al., 2017; Zhang & Whiteson, 2019). Option
selection within the FraCOs process naturally prevents option collapse, and has been shown to in-
crease the rate of learning over baselines (see Section 5.3).

4 FRACTURE CLUSTER OPTIONS

We hypothesise that identifying reoccurring patterns in an agent’s behaviour across successful tasks
will improve performance on future, unseen tasks. Our method consists of three key stages: 1)
Identifying the underlying reoccurring patterns in an agent’s behaviour across multiple tasks, 2)
selecting the most useful patterns—those likely to appear in successful trajectories of all possible
tasks, and 3) defining these identified patterns as options for the agent’s future use.

4.1 IDENTIFYING PATTERNS IN AGENT BEHAVIOUR

We seek to identify and cluster reoccurring patterns of states and actions in agent behavior. To
achieve this, we introduce the concept of fractures. A fracture is defined as a state st paired with
a sequence of subsequent actions. The length of this action sequence is determined by a parameter
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known as the chain length b, which specifies the number of actions following the state st. More
formally, a fracture is represented as:

ϕ = (st, at, at+1, . . . , at+b−1) (1)

where at, at+1, . . . , at+b−1 represent the subsequent actions from st. The parameter b controls the
temporal extent of the fracture.

We can derive fractures from the trajectories of tasks which an agent has experienced. Consider a
trajectory of length n. The set of fractures F derived from this trajectory is defined as:

F = {(st, at, at+1, . . . , at+b−1) | 0 ≤ t ≤ n− b}. (2)

For a set of trajectories T , we derive fractures from each individual trajectory. The complete set
of fractures from all trajectories is denoted by Φ = {F1, F2, . . . , F|T |}. Individual trajectories are
denoted by τ , with τ ∈ T .

Figure 1: A two-dimensional representation of the
fractures (b = 2) formed by agents acting for
10,000 steps in the Four Rooms environment.

We investigate whether fractures capture un-
derlying structure by first identifying them in
the Four Rooms environment. Four Rooms is
a classic grid-based reinforcement learning en-
vironment, consisting of four connected rooms
separated by walls with narrow doorways. The
agent’s objective is to navigate through the
rooms to reach a specified goal, receiving a re-
ward for reaching this goal. Four Rooms is de-
picted in the top left corner of Figure 1, see Ap-
pendix A.7 for more detail. In all of our grid-
world implementations, the agent can observe
only a 7x7 area centered on itself and a scalar
indicating the direction of the reward. This is
similar to MiniGrid, except that our observa-
tions are ego-centric (Chevalier-Boisvert et al.,
2023).

We train a tabular Q-learning agent to solve multiple different reward locations in Four Rooms
and generate trajectories for both the trained agent and a random agent. Fractures are then created
following Equation 4.1, with b = 2. To reveal the structural differences between the fractures
of the random agent and the trained agent, we use UMAP (McInnes et al., 2018), a dimension
reduction technique that projects the high-dimensional fracture data into a two-dimensional space.
UMAP is particularly useful for this task because it preserves local similarities within the data.
We plot the resulting two-dimensional visualization in Figure 1. This highlights a near-uniform
distribution for the random agent, while the trained agent’s fractures form distinct clusters, reflecting
underlying behaviour structures. This phenomenon is consistent across other environments (see
Appendix A.7.4).

We employ unsupervised clustering techniques to identify and formalise the fracture clusters, de-
noted as ϕc. Specifically, we use HDBSCAN for all tabular methods in this work (Campello et al.,
2013). Fractures with a chain length of b = 4 are grouped into clusters, and four clusters are ran-
domly selected for visualisation in Figure 2. Each visualisation shows all fractures within a cluster,
demonstrating that, despite differences in starting states, action sequences, and terminal states, the
fractures within each cluster share similar semantic meanings.

4.2 SELECTING USEFUL FRACTURE CLUSTERS

In Section 4.1 fracture clusters are formed based on behaviour similarity; however, the number of
potential clusters can be extensive, with some being highly task-specific. Selecting all clusters as
options may burden the agent with unnecessary choices. Therefore, it is essential to identify the
most useful clusters—those likely to appear in future tasks.

First, consider the hypothetical scenario in which we can observe all possible trajectories across
all possible tasks. In this ideal setting, the set of all successful fractures, denoted as Φs, would
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Four Rooms Discovered Clusters 

Figure 2: Four examples of discovered fracture clusters (b = 4) within the Four Rooms environment.
The graph represents fracture clusters of a trained agent in the Four Rooms environment, colours
are used to visualise cluster boundaries. In the four examples, the green point represents possible
starting states, blue arrows indicate actions, the width of the arrows shows the frequency of the state-
action pair within the cluster, and the red point indicates possible terminal states.

be derived from fractures within the successful trajectories, where each trajectory is represented as
τs ∈ Ts. Here, Ts refers to the collection of all trajectories deemed successful. A trajectory is
considered successful if its cumulative return exceeds a predefined threshold, similar to the criterion
proposed by Chollet (2019), see Table 10 for all minimum returns. The tasks corresponding to
these successful trajectories are denoted as xs ∈ Xs, where Xs represents the set of all tasks with
successful outcomes.

To sensibly select fracture clusters, we must evaluate their potential for reuse in future tasks. We do
this by defining the usefulness U of a fracture cluster ϕc based on its likelihood of contributing to
success across tasks. Specifically, usefulness is determined by three key factors:

1. Appearance Probability (P [ϕc ∈ τs | xs]): This measures the likelihood that any fracture
ϕ ∈ ϕc appears in the trajectory τs of any given successful task xs. Higher probability
indicates that this ϕc frequently contributes to success across tasks.

2. Relative Frequency (P [ϕc | Φs]): This term represents the proportion of times that any
fracture ϕ ∈ ϕc appears among all successful fractures Φs. A higher relative frequency
implies its importance in the agent’s overall success.

3. Entropy of Usage (H(ϕc | Xs)): This captures the diversity of a fracture cluster’s usage
across different tasks in Xs. A higher entropy indicates that a ϕc is useful across various
tasks, enhancing its generalisation potential.

The usefulness of a fracture cluster ϕc is defined as the normalised sum of these factors; see Ap-
pendix A.17 for an ablation study to understand the impact of each of the terms:

U(ϕc) =
1

3
(P [ϕc ∈ τs | xs] + P [ϕc | Φs] +H(ϕc | Xs)) . (3)

In an ideal scenario we could observe all possible tasks and trajectories and directly calculate the
usefulness of each fracture cluster U(ϕc). This would allow us to exactly compute the appearance
probability, relative frequency, and entropy for each fracture cluster ϕc, yielding a true measure of
usefulness across all potential tasks. However, this is impractical since we cannot observe all pos-
sible tasks and trajectories. Instead, we must rely on available data, using the tasks and trajectories
encountered during training to estimate the usefulness.

1. Estimating Appearance Probability: We approximate P [ϕc ∈ τs | xs] using a Bayesian
approach, modeling the occurrence of a fracture cluster ϕc in a successful trajectory as a binomial
likelihood with a Beta conjugate prior. The prior parameters α and β, both set to 1, reflect an
uninformative prior. Let n denote an individual task, and N the total number of experienced tasks.
The appearance indicator ωn = 1 if any fracture ϕ ∈ ϕc appears in trajectory τn, and 0 otherwise.
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2. Estimating Relative Frequency: We estimate P [ϕc | Φs] by counting the occurrences of ϕc

in Φs, where Φs is formed from N experienced tasks. This count is then normalised by the total
number of fractures in Φs.

3. Estimating Entropy: Finally, the entropy H(ϕc | Xs), is approximated using Shannon’s entropy
formulation (Shannon, 1948).

We derive the full approximation in Appendix A.2, the result is expressed as the expected usefulness,

E[U(ϕc)] =
1

3


∑N

n=1 ωn + α

N + α+ β︸ ︷︷ ︸
(1) Appearance Probability

+
count(ϕc,Φs)

|Φs|︸ ︷︷ ︸
(2) Relative Frequency

−
∑

τs∈Ts

count(ϕc, τs)

|τs|
logNϕc

(
count(ϕc, τs)

|τs|

)
︸ ︷︷ ︸

(3) Estimated Entropy

 .

(4)

We can then select fracture clusters which yield the highest expected usefulness. To demonstrate
the effectiveness of Equation 4 we formulate a new experiment. In the Nine Rooms environment
(see Appendix A.7) 100 tabular Q-learning agents are trained separately on 100 different tasks, each
defined with a new reward function. Evaluation trajectories are gathered and fractures are formed
(with a chain length b = 4). The fractures are clustered and finally the expected usefulness is
calculated. In Figure 3 we plot the eight fracture clusters with the highest expected usefulness.

Figure 3: The eight fracture clusters with the highest expected usefulness in the Nine Rooms envi-
ronment, ordered right and then down. Green points represent possible starting states, blue arrows
indicate actions taken, with arrow width proportional to their frequency in the cluster, and red points
denote possible termination states.

The fracture cluster in Figure 3 with the highest expected usefulness takes the agent from the starting
state in all sensible directions without repetitions of movements. The majority of the other fracture
clusters transverse bottlenecks, sharing the same fracture cluster where areas of local structure re-
main similar.

Forming multiple levels of the hierarchy. After identifying the most useful fracture clusters, they
can be converted into options (as explained in Section 4.3), which extend the agent’s action space.
When learning a new task, the agent can now choose from both primitive actions and these newly
discovered options. The process of identifying fractures and clustering is repeated, but now the tra-
jectories (and therefore fractures) may consist of a mix of primitive actions and higher-level options.
This iterative approach naturally leads to the creation of a multi-level hierarchical structure.
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4.3 USING FRACTURE CLUSTERS

After selecting the most useful fracture clusters, we need to transform each cluster into an option,
called a Fracture Cluster Option (FraCO). Each FraCO is characterized by an initiation set Iz , a
termination condition βz , and a policy πz . We denote a single FraCO as z and the set of all FraCOs
as Z. Each FraCO is associated with the fracture cluster ϕc that forms it. We use these clusters to
predict initiation states.

Initiation Set. Suppose the agent is in a state s, and has access to a set of actions A. For each state
s, we consider possible sequences of actions of chain length b. Each such sequence is represented
as:

a = (a1, a2, . . . , ab) | ai ∈ A, (5)

We can now define the set of all possible fractures starting from state s as,

Fs = {(s,a) | a ∈ Ab}, (6)

where Ab represents all sequences of length b drawn from the action set A.

For each fracture ϕ = (s,a) in Fs, we estimate the likelihood that it belongs to a FraCO z. The set
of fractures assigned to cluster z in state s can be defined as:

Gz,s = {ϕ ∈ Fs | P (ϕ ∈ z) > θ},

where P (ϕ ∈ z) denotes the estimated probability that fracture ϕ belongs to cluster z, and θ is a
threshold hyperparameter that determines cluster membership. The method for estimating P (ϕ ∈ z)
can vary depending on the implementation. In our tabular implementation, we directly use the
prediction function provided by HDBSCAN. In our deep implementation, a neural network predicts
this probability.

A FraCO z can be initiated in state s if Gz,s is not empty. Such that the initiation set is defined as,

Iz = {s ∈ S | Gz,s ̸= ∅}. (7)

Algorithm 1: Option policy πz(Gz,s, Z, s)

Input: Gz,s, set of options Z, state s
Initialize: Select the fracture ϕz = (s,a) from
Gz,s with the highest probability P (ϕz ∈ z),
where a is a sequence of actions (a1, a2, . . . , ab)

for each action aj in a do
if aj is a primitive action then

Execute aj , resulting in new state s;
else

aj is another option z′;
Compute Gz′,s;
Recursively call πz′(Gz′,s, Z, s);

end
end

Policy Execution. When FraCO z is executed
in state s, it follows the policy πz , as described
in Algorithm 1. The policy selects the frac-
ture ϕz = (s,a) from Gz,s with the highest
probability P (ϕz ∈ z), and then executes the
sequence of actions a = (a1, a2, . . . , ab). If
one of the selected actions is another FraCO z′,
the agent must compute a new Gz′,s and recur-
sively call the policy until the option terminates.

Termination Condition. The FraCO z termi-
nates under two conditions: either when all ac-
tions in the selected fracture ϕz have been ex-
ecuted, or when no matching fracture can be
found in the current state (i.e., Gz,s = ∅).

The termination condition β(s) is defined as:

β(s) =


1 if all actions in ϕz have been executed
1 if Gz,s = ∅
0 otherwise

(8)

Learning with FraCOs. In our approach, FraCOs are fixed once identified. The agent learns
to choose between primitive actions and available FraCOs using standard reinforcement learning
algorithms (e.g., Q-learning for tabular settings, PPO for deep learning implementations).

7
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Example FraCO usage: An agent is in state s. It looks at all possible fractures in that state
to form Fs. For each FraCO zi ∈ Z, the agent estimates the probability P (ϕ ∈ zi) that each
fracture ϕ ∈ Fs belongs to zi. If any fractures have a probability above a threshold θ, then zi
becomes available as an option.

The agent’s policy πopt selects from the available FraCOs and primitive actions. Suppose it
selects FraCO z1. The agent picks the fracture ϕz1 with the highest probability P (ϕz1 ∈ z1)
and executes the sequence a.

As the agent executes these actions, if one is another FraCO, say z2, then it forms a new Fs′ ,
estimates P (ϕ ∈ z2), and selects the most probable fracture for z2. This process repeats until
the termination condition βz1 = 1 is met, completing z1’s execution.

5 EXPERIMENTAL RESULTS

We evaluate FraCOs in three different experiments. The first focuses on OOD reward generalisation
tasks using a tabular FraCOs agent in the Four Rooms, Nine Rooms, and Ramesh Maze Ramesh
et al. (2019) grid-world environments (see Appendix A.7). The second examines OOD learning in
state generalisation tasks within a novel environment called MetaGrid (see Appendix A.7). The final
experiment evaluates a deep FraCOs agent, implemented with a three-level hierarchy using PPO in
the procgen suite of environments (Cobbe et al., 2020). We compare its performance with CleanRL’s
Procgen PPO and PPG implementations (Huang et al., 2022) and, Option Critic with PPO (OC-PPO)
(Klissarov et al., 2017), see Appendices A.13 and A.13 for full method details. In the grid-world
environments, the agent receives a reward of +1 for reaching the goal and a penalty of −0.001
per time step. Episodes have a maximum length of 500 steps, and a fracture chain length b = 2.
For Procgen environments, reward functions remain unchanged, and b = 3 (see Appendix A.8 for
chain-length selection details).

5.1 EXPERIMENT 1: TABULAR REWARD GENERALISATION

In this experiment, FraCOs are learned in a fixed state space S while we vary the reward function
R. The agent is allowed to discover FraCOs in 50 tasks, such that each task corresponds to a
different reward location. We reserve 10 unique tasks for testing. Separate agents are trained to
convergence—defined as achieving consistent performance across episodes. The top 20 FraCOs are
extracted from the final trajectories of the agents, as described in Section 4, and incorporated into
the action space. This extraction process is repeated four times, corresponding to each level of the
hierarchy.

Four agents are created, each with an additional hierarchical level of FraCOs. After resetting their
policies over options, the agents are trained on the test tasks, and evaluation episodes are conducted
periodically. As shown in Figure 4, results from the Four Rooms, Nine Rooms, and Ramesh Maze
environments indicate that learning is progressively accelerated on these unseen tasks as the hierar-
chy depth increases.

Figure 4: The interquartile mean evaluation episode rewards of a tabular FraCOs agent trained in the
Four Rooms, Grid, and Ramesh Maze environments. Results are averaged over 10 independently
seeded experiments, with shaded areas indicating the standard error.
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5.2 EXPERIMENT 2: TABULAR STATE GENERALISATION

In this experiment, we introduce a novel environment called MetaGrid, which is designed to test
state and reward generalisation. MetaGrid is a navigational grid-world constructed from structured
7 × 7 building blocks that can be combined randomly to create novel state spaces while preserving
certain areas of local structure. The agent is provided with a 7×7 window of observation, consistent
with our other grid-worlds. For more detailed information on MetaGrid, see Appendix A.7.

At each hierarchy level, 20 FraCOs are learned from 100 randomly generated 14 × 14 MetaGrid
tasks. A task in this experiment corresponds to a differnt space space S and reward location R. For
each hierarchy level, a separate agent is created, and their policies over options are reset. These
agents are then evaluated in previously unseen 14 × 14 domains and larger 21 × 21 domains. Pe-
riodic evaluation episodes are conducted during training to track performance, results are shown in
Figure 5. These results also demonstrate an increase in the rate of learning as the hierarchy depth
increases.

Figure 5: The interquartile mean evaluation episode rewards for tabular FraCOs in unseen MetaGrid
domains of varying sizes. Results are averaged over 10 independently seeded experiments, with
shaded areas indicating the standard error.

5.3 EXPERIMENT 3: DEEP STATE AND REWARD GENERALISATION IN COMPLEX
ENVIRONMENTS

In this experiment, we test FraCOs in OOD tasks from the Procgen benchmark, focusing on unseen
states spaces S and reward functions R. We compare with three methods: Option Critic with PPO
(OC-PPO) (Klissarov et al., 2017), a baseline PPO (Schulman et al., 2017), and Phasic Policy Gra-
dient (PPG) (Cobbe et al., 2021) across eight Procgen environments (Cobbe et al., 2020). Procgen is
a suite of procedurally generated arcade-style environments designed to assess generalisation across
diverse tasks; see Appendix A.7 for full details.

Figure 6: A comparison of learning curves of a sample of three Procgen environments.

FraCOs modifications. To handle the challenges of applying traditional clustering to high-
dimensional pixel data, we simplify the approach by grouping fractures with the same action se-

9
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quences, regardless of state differences. Additionally, a neural network is used to estimate initiation
states and policies, which reduces the computational burden of performing a discrete search over the
complex 64× 64× 3 state space and managing 15 possible actions during millions of training steps.
These modifications do not change the theory of FraCOs, just the implementation. Full details of
these modifications are provided in Appendix A.10, with further information on the experiments,
baselines, and hyperparameters in Appendix A.11.

Method

(a)

(b)

OOD

IID

Figure 7: Final min-max normalised
IQM returns with standard errors
across Procgen environments.

FraCOs and OC-PPO both learn options during a 20-million
time-step warm-up phase, with tasks drawn from the first
100 levels of each Procgen environment. FraCOs learns
two sets of 25 options, corresponding to different hierarchy
levels, while OC-PPO learns a total of 25 options. After
the warm-up, the policy over options is reset, and training
continues for an additional 5 million time steps. During this
phase, we periodically conduct evaluation episodes on both
IID and OOD tasks, with OOD tasks drawn from Procgen
levels beyond 100.

We test two versions of FraCOs: one where the policy over
options is completely reinitialized after the warm-up phase,
and another that transfers a Shared State Representation
(SSR), referred to as FraCOs-SSR. In the SSR, a shared
convolutional layer encodes the state, followed by distinct
linear layers for the critic, policy over options, and op-
tion policies. These convolutional layers are not reset after
warm-up, enabling a shared feature representation across
tasks. Since OC-PPO inherently relies on a shared state rep-
resentation to define its options and meta-policy, comparing
it with FraCOs-SSR offers a fairer evaluation. Without this
shared representation, OC-PPO struggles to maintain stable
and meaningful options across tasks. Despite this adjust-
ment for fairness, we find that FraCOs, even without SSR,
consistently outperforms both baselines. For further imple-
mentation details of FraCOs-SSR, see Appendix A.11.

Figure 7 (a) provides the min-max normalised interquartile
mean (IQM) across all Procgen environments. Figure 7 (b)
provides the results of each environment. We also provide
three example learning curves in Figure 6. Each experiment
was repeated with eight seeds. On average we observe that
FraCOs and FraCOs-SSR are able to improve both IID and
OOD returns over all baselines.

6 DISCUSSION AND LIMITATIONS

This study introduced Fracture Cluster Options (FraCOs)
as a novel framework for multi-level hierarchical reinforce-
ment learning. In tabular settings, FraCOs demonstrated accelerated learning on unseen tasks, with
performance improving as hierarchical depth increased. In deep RL experiments, FraCOs outper-
formed OC-PPO, PPO, and PPG on both in-distribution (IID) and out-of-distribution (OOD) tasks,
showcasing its potential for robust generalization. While PPG maintained a smaller generalization
gap (the difference between IID and OOD performance), integrating FraCOs with a PPG baseline
could achieve both higher performance and reduced generalisation gaps. Error bars

However, FraCOs faces limitations. Clustering methods struggle with prediction accuracy as en-
vironments grow more complex, and while simplified techniques and neural networks were intro-
duced, further research into scalable clustering solutions is needed. Additionally, this work focused
on discrete action spaces; extending FraCOs to continuous action spaces remains as future work.

Despite these limitations, FraCOs provides a strong foundation for advancing hierarchical reinforce-
ment learning and improving generalisation across tasks.

10
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A APPENDIX

A.1 GLOSSARY

GLOSSARY OF TERMS AND DERIVATIONS

Term/Symbol Definition/Derivation
MDP (Markov Deci-
sion Process)

A mathematical framework for modeling decision-making, defined by
the tuple ⟨S,A, P,R, γ⟩, where:

• S: Set of possible states.
• A: Set of possible actions.
• P : Transition probability function, P (s, a, s′).
• R: Reward function, R(s, a, s′).
• γ: Discount factor, γ ∈ [0, 1].

S Set of possible states in an MDP.
A Set of possible actions in an MDP.
P Transition probability function; P (s, a, s′) gives the probability of tran-

sitioning from state s to s′ after action a.
R Reward function; R(s, a, s′) is the reward received when transitioning

from s to s′ via action a.
γ Discount factor in an MDP, γ ∈ [0, 1], representing the importance of

future rewards.
st State of the agent at time step t.
at Action taken by the agent at time step t.
s′ Next state after taking action at from state st.
π(st) Policy of the agent, mapping state st to a probability distribution over

actions.
Gt Cumulative discounted return from time t, defined as Gt =∑∞

k=0 γ
krt+k+1.

Trajectory (τ ∈ T ) A sequence of states, actions, and rewards experienced by the agent: τ =
(s0, a0, r1, s1, a1, r2, . . . ).

Task A task is defined as a unique MDP.
Reward generalisa-
tion tasks

MDPs with R values outside of the training distribution, while S, A, P ,
and γ remain within distribution.

State generalisation
tasks

MDPs with S and R values outside of the training distribution, while A,
P , and γ remain within distribution.

Option In HRL, a temporally extended action, defined by:
• I: Initiation set.
• πintra: Intra-option policy.
• β(s): Termination condition.

I Initiation set of an option; the set of states where the option can be initi-
ated.

πintra Intra-option policy; the policy followed while the option is active.
β(s) Termination condition of an option; gives the probability of terminating

the option in state s.
FraCOs (Fracture
Cluster Options)

The proposed method for defining, forming, and utilizing multi-level hi-
erarchical options based on expected future usefulness.

Continued on next page...
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Term/Symbol Definition/Derivation
ϕ A fracture; a state paired with a sequence of actions:

ϕ = (st, at, at+1, . . . , at+b−1)

b Chain length of a fracture; specifies the number of actions following the
state st.

F Set of fractures derived from a single trajectory:

F = {(st, at, at+1, . . . , at+b−1) | 0 ≤ t ≤ n− b}

Φ Complete set of fractures from all trajectories:

Φ = {F1, F2, . . . , F|T |}

ϕc A fracture cluster; a group of fractures with similar behaviors.
Usefulness Metric
(U(ϕc))

A measure to evaluate fracture clusters based on their potential for reuse
in future tasks:

U(ϕc) =
1

3
(P [ϕc ∈ τs | xs] + P [ϕc | Φs] +H(ϕc | Xs))

Expected Usefulness
terms • ωn: Appearance indicator; ωn = 1 if any fracture ϕ ∈ ϕc ap-

pears in trajectory τn, else 0.
• α, β: Parameters of the Beta prior distribution, typically set to
1.

• N : Total number of experienced tasks.
• Φs: Set of all successful fractures.
• Ts: Set of successful trajectories.
• Nϕc : Normalization constant for entropy calculation.

Derivation of Ap-
pearance Probabil-
ity

Using Bayesian inference, the appearance probability is estimated as:

P [ϕc ∈ τs | xs] =

∑N
n=1 ωn + α

N + α+ β
(9)

Where ωn are observations modeled as Bernoulli random variables with
a Beta prior.

Derivation of Rela-
tive Frequency

Calculated as:

P [ϕc | Φs] =
count(ϕc,Φs)

|Φs|
(10)

Where count(ϕc,Φs) is the number of times fractures in ϕc appear among
all successful fractures Φs.

Derivation of En-
tropy of Usage

The entropy of a fracture cluster’s usage is:

H(ϕc | Xs) = −
∑

τs∈Ts

count(ϕc, τs)

|τs|
logNϕc

(
count(ϕc, τs)

|τs|

)
(11)

This measures the diversity of the fracture cluster’s usage across tasks.
α, β Parameters of the Beta distribution used in Bayesian estimation; set to

α = 1, β = 1 for an uninformative prior.
ωn Appearance indicator for task n; ωn = 1 if any fracture in ϕc appears in

trajectory τn, else 0.
Z Set of all Fracture Cluster Options (FraCOs).

Continued on next page...
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Term/Symbol Definition/Derivation
z A single FraCO; an option derived from a fracture cluster.
Iz Initiation set of FraCO z; states where z can be initiated:

Iz = {s ∈ S | Gz,s ̸= ∅}

βz Termination condition of FraCO z; z terminates when all actions in the
selected fracture have been executed or when no matching fracture is
found:

β(s) =


1 if all actions in ϕz have been executed
1 if Gz,s = ∅
0 otherwise

πz Policy of FraCO z; defines the sequence of actions when the option is
active (see Algorithm 1 in the paper).

Gz,s Set of fractures assigned to cluster z in state s:

Gz,s = {ϕ ∈ Fs | P (ϕ ∈ z) > θ}

θ Threshold hyperparameter for cluster membership; determines if a frac-
ture belongs to a cluster based on probability.

N Total number of experienced tasks or samples.
T Set of all trajectories.
τ An individual trajectory from the set T .
τs A successful trajectory; meets a predefined success criterion.
Ts Set of successful trajectories.
Xs Set of tasks corresponding to successful trajectories.
A Action set of the environment; may include primitive actions and options.
Nc Number of cluster-options (options derived from fracture clusters).

A.2 DERIVATION OF USEFULNESS METRIC

In this appendix, we derive the usefulness (U ) metric for fracture clusters. This metric is used to
identify which fracture clusters have the greatest potential for reuse across different tasks. Useful-
ness is a function of the following three factors:

1. The probability that a fracture cluster appears in any given successful task:

P [ϕc ∈ τs|xs]

2. The probability that a fracture cluster is selected from the set of successful fracture clusters:

P [ϕc|Φs]

3. The entropy of the fracture cluster’s usage across all successful tasks:

H(ϕc | Ts)

Usefulness (U ) is then defined as the normalized sum of these three factors:

U =
1

3
(P [ϕc ∈ τs|xs] + P [ϕc|Φs] +H(ϕc | Ts))

The objective is to select fracture clusters that maximize the usefulness, i.e.,

argmax
ϕc

U(ϕc)
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A.3 DERIVING P [ϕc ∈ τs|xs] USING BAYESIAN INFERENCE

We want to model the probability that a fracture cluster ϕc appears in any given successful task,
P [ϕc ∈ τs|xs]. For each successful task xs from the set of successful tasks Xs, the presence of
fracture cluster ϕc in the corresponding trajectory τs is represented by a binary random variable ωs,
where:

ωs =

{
1 ifϕc ∈ τs (fracture cluster appears in the trajectory),
0 otherwise

The variable ωs is modeled as a Bernoulli random variable:

ωs ∼ Bernoulli(p)

where p is the probability that fracture cluster ϕc appears in the trajectory τs of task xs.

Since we are uncertain about the true value of p, we place a Beta distribution prior on p:

p ∼ Beta(α, β)

where α and β are hyperparameters representing our prior belief about the likelihood of ϕc appearing
in a trajectory.

Given a total of N tasks, the likelihood for each observation ωs is:

P (ωn|p) = pωn(1− p)1−ωn

where ωn is 1 if ϕc appears in trajectory τs for task xn, and 0 otherwise.

Using Bayes’ theorem, the posterior distribution of p after observing data is:

P (p|ω1, . . . , ωN ) ∝ P (ω1, . . . , ωN |p)P (p)

Substituting the likelihood and the Beta prior, we get:

P (p|ω1, . . . , ωN ) ∝
N∏

n=1

pωn(1− p)1−ωn · pα−1(1− p)β−1

This simplifies to:

P (p|ω1, . . . , ωN ) ∝ p
∑N

n=1 ωn+α−1(1− p)N−
∑N

n=1 ωn+β−1

Thus, the posterior distribution for p follows a Beta distribution:

p|ω1, . . . , ωN ∼ Beta(αN , βN )

where:

αN =
N∑

n=1

ωn + α, βN = N −
N∑

n=1

ωn + β

In our experiments, we set α = 1 and β = 1, representing an uninformative prior.

A.4 DERIVING P [ϕc|Φs]

The second component of the usefulness metric, P [ϕc|Φs], is the probability that fracture cluster
ϕc is selected from the set of successful fracture clusters. This can be computed as the relative
frequency of ϕc in the set Φs of successful clusters:

P [ϕc|Φs] =
count(ϕc,Φs)

|Φs|

where count(ϕc,Φs) is the number of times ϕc appears in the set of successful clusters, and |Φs| is
the total number of successful clusters.
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A.5 DERIVING H(ϕc | Ts)

The entropy term H(ϕc | Ts) measures the unpredictability or diversity of the usage of fracture
cluster ϕc across successful tasks. Entropy is defined as:

H(ϕc | Ts) = −
∑
τs∈Ts

p[ϕc | τs] · logNϕc
(p[ϕc | τs])

where p[ϕc | τs] is the proportion of times that fracture cluster ϕc appears in trajectory τs:

p[ϕc | τs] =
count(ϕc, τs)

|τs|

Here, |τs| represents the length of the trajectory τs, and Nϕc
is the total number of fracture clusters

considered. The choice of logarithm base, Nϕc
, reflects the fact that we normalize entropy relative

to the number of fracture clusters.

A.6 EXPECTED USEFULNESS

Having derived the empirical estimations of the three components of usefulness we can now combine
these elements to calculate the expected usefulness of each fracture cluster. The expected usefulness
incorporates the posterior distribution from Bayesian inference for P [ϕc ∈ τs|xs], as well as the
empirical counts for the other components.

Thus, the expected usefulness for each fracture cluster is calculated as:

E[U(ϕc)] =
1

3

(∑N
n=1 ωn + α

N + α+ β
+

count(ϕc,Φs)

|Φs|
−
∑
τs∈Ts

count(ϕc, τs)

|τs|
· logNϕc

(
count(ϕc, τs)

|τs|

))

where α and β are the parameters of the beta distribution, which we set to α = 1 and β = 1 in our
experiments.

By calculating this expected usefulness, we can rank the fracture clusters according to their potential
for reuse in future tasks. The ranking helps focus on fracture clusters that are more likely to appear
in successful outcomes and contribute to the agent’s performance across diverse scenarios.

A.7 ENVIRONMENTS

This section provides details on the environments used in our experiments, including standard grid-
world domains (Four Rooms, Grid, Ramesh Maze), MetaGrid, and the Procgen suite. Each environ-
ment has been designed to evaluate different aspects of the agent’s behaviour, such as navigation,
exploration, and task performance.

A.7.1 GRID-WORLD ENVIRONMENTS

We use three standard grid-world environments: Four Rooms, Grid, and Ramesh Maze. Figure 8
illustrates these environments.

In these grid-world environments, the action space is discrete, with four possible (primitive) actions:

A = {0, 1, 2, 3}

These actions correspond to moving Up, Down, Left, and Right, respectively. The agent’s observa-
tion space is a 7x7 grid centered on itself, meaning it only observes a portion of the environment
at any given time. This localized view allows the agent to learn how to navigate based on nearby
features. This design is similar to MiniGrid (Chevalier-Boisvert et al., 2023), but in our case, the
observations are ego-centric, always centered on the agent.

In tabular learning, the agent uses this 7x7 observation space to predict initiation states, though the
Q-function is still based on absolute coordinates. We do not employ state-transition graphs in any
of our experiments.
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(a) Four rooms (b) Grid (c) Ramesh maze

Figure 8: Examples of the Four Rooms (a), Grid (b), and Ramesh Maze (c) environments. In each,
black represents walls, blue represents the agent, yellow represents the goal, and white represents
empty space. The agent can move up, down, left, and right, receiving a reward upon reaching the
goal. The goal’s location in these figures is an example of one of many possible positions. These
versions of Four Rooms, Grid and Ramesh Maze are part of the MetaGrid suite and thus have a 7x7
observation space centered on the agent.

Figure 9: a) - e) demonstrate the building blocks which MetaGrid domains can be created from. f)
and g) demonstrate two 21x21 configurations using these building blocks.

A.7.2 METAGRID ENVIRONMENT

The MetaGrid environment extends the standard grid-world setup by allowing for procedurally gen-
erated maps of varying sizes. MetaGrid introduces randomness in the layout of walls and goal
locations, ensuring that the agent encounters a diverse set of environments during training and eval-
uation. Figure 9 demonstrates the building blocks which all environments in MetaGrid are formed
from, and Figure 10 shows examples of MetaGrid environments in two different sizes: 14x14 and
21x21.

The action space in MetaGrid is identical to the one used in the standard grid worlds, with four
discrete actions: Up, Down, Left, and Right. Similarly, the agent observes a 7x7 grid centered
on itself, allowing it to make decisions based on local information. The procedural generation in
MetaGrid provides varied environments for the agent to adapt to, making it a more challenging and
dynamic environment compared to static grid worlds.
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(a) (b) (c) (d)

Figure 10: Examples of randomly generated MetaGrid environments. The blue square represents
the agent, yellow represents the reward, white represents empty space, and black represents walls.
Subfigures (a) and (b) show 14x14 grids, while (c) and (d) show 21x21 grids.

A.7.3 PROCGEN ENVIRONMENTS

Procgen is a suite of procedurally generated environments designed to test generalisation and per-
formance across diverse tasks such as navigation, exploration, combat, and puzzle-solving. Each
environment provides a different variation on every reset, preventing the agent from memorizing
specific layouts or solutions. Please see Cobbe et al. (2020) for the full details of these environ-
ments.

Action Space Procgen environments feature discrete actions like movement (up, down, left, right)
and interactions (e.g., jump, shoot). Depending on the task, the action space can range from 5 to 15
actions, covering basic navigation and task-specific interactions.

Observation Space Unlike grid-based environments, Procgen uses 64x64 RGB pixel observations,
providing rich visual input. The agent must interpret features such as walls, enemies, and obstacles
to navigate and interact effectively.

Rewards Rewards in Procgen are sparse, given for completing tasks like reaching goals or defeating
enemies. The agent must learn to explore efficiently and develop strategies for long-term success.

Optional Parameters To simplify learning and reduce computational cost, we activated the follow-
ing Procgen parameters:

• Distribution mode = “easy”: Provides easier levels.

• Use backgrounds = “False”: Backgrounds are black to avoid additional noise.

• Restrict themes = “True”: Limits visual variation to a single theme, such as consistent
wall styles in environments like CoinRun.

Overall, these environments—ranging from grid-world environments with discrete action spaces
and ego-centric observations to the more complex Procgen environments with pixel-based observa-
tions—offer a diverse set of challenges for our agents. The combination of procedurally generated
environments in MetaGrid and Procgen ensures that the agents are tested on both fixed and highly
variable environments, making them suitable for evaluating the robustness of the learning algorithms
used in our experiments.

A.7.4 UMAP VISUALISATIONS OF OTHER ENVIRONMENTS

The structure observed in the latent projections of clustered Fracos as seen in Section 4.1 is also
demonstrated in trained agents of other simple environments; Figure 11 visualises fracture structures
in Grid (Nine rooms), CartPole, and LunarLander. The Grid environment is shown in Figure 8,
CartPole and LunarLander are standard environments from the Farama Foundation Gymnasium
suite Towers et al. (2023).

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

CartPole Grid

Fracture Visualisation in 2D latent Space

LunarLander

Figure 11: Two dimensional visualisations of the fractures formed for trained agents in CartPole,
Grid (Nine Rooms) and LunarLander .

A.8 FRACOS CHAIN LENGTHS AND DEPTH LIMITS

In our FraCOs method, the process of matching clusters involves conducting a discrete search over
potential action permutations. This process requires forming all possible permutations of actions
and passing them through the saved clusterer to determine which permutation is currently viable for
the meta-policy to choose. The complexity of this search is captured by the permutation formula:

BPNc
=

Nc!

(Nc −B)!

where B is the length of the action chain, and Nc is the total number of cluster-options. As a result,
the time complexity for performing this search grows factorially, O

(
Nc!

(Nc−B)!

)
, as more cluster-

options are introduced or when the chain length is increased. This rapidly becomes computationally
expensive as these numbers increase.

A.8.1 CHAIN LENGTH AND DEPTH IN TABULAR EXPERIMENTS

Due to this factorial growth, it is crucial to limit the number of cluster-options and the chain length in
experiments that involve discrete cluster search (Experiments 1, 2 and 3.1). For all experiments using
cluster search, we chose a chain length of 2 to keep the computational complexity manageable.
Additionally, we restricted the depth of the FraCOs hierarchy to 3 or 4 levels, depending on the
complexity of the environment.

This limitation on depth and chain length helps maintain a balance between the richness of the
learned options and the feasibility of performing the cluster search in a reasonable amount of time.
The factorial growth of the search process becomes prohibitive as more cluster-options or deeper
chains are introduced, making this constraint necessary for efficient execution of our experiments.

A.8.2 WHY THIS ISN’T A PROBLEM FOR NEURAL NETWORK CLUSTER PREDICTIONS

In contrast, when we extend the FraCOs initiation and action estimation to be used with neural
networks, the limitation of conducting computationally expensive permutation searches is alleviated.
Neural networks can learn initiation sets and make predictions in a continuous manner, bypassing
the need for discrete cluster searches. This removes the necessity of factorially growing search
complexity, allowing for more flexibility in chain lengths and depth.

However, the challenge in neural network experiments lies in the sheer number of timesteps required
for training and evaluation. For example, in our deep experiments (at a depth of two), training
involved many millions of timesteps across nine different environments, totaling 180 million steps
for pre-training, repeated for three seeds. Testing required an additional 120 million steps, also
repeated for three seeds. This was only for FraCOs. When we include experiments using OC
(Option Critic), PPO, and PPO25, the total number of timesteps across all experiments becomes
3.06 billion.

To manage these computational demands, we used a chain length of 3. This allowed us to con-
duct only two warm-up phases, while ensuring that options could still be executed for a reasonable
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duration (a maximum of nine steps, i.e., 3x3). This setup enabled us to complete the necessary
pre-training and testing without sacrificing the quality of the learned options while maintaining
computational feasibility.

A.9 FRACOS EXPERIMENT PARAMETERS FOR TABULAR METHODS

Tabular Q-Learning is a reinforcement learning algorithm where the agent learns the optimal action-
value function Q(s, a), which estimates the expected cumulative reward for taking action a in state
s and following the optimal policy thereafter. The agent interacts with the environment, updates the
Q-values for each state-action pair based on rewards, and converges to the optimal policy over time
Sutton & Barto (2018). We implement a vectorized Q learning method.

The key hyperparameters used in all Tabular Q-Learning experiments are listed in Table 2.

Table 2: Hyperparameters for Tabular Q-Learning Experiment

Hyperparameter Value Description
eps 0.1 Exploration rate for ϵ-greedy policy. Determines the

probability of taking a random action instead of the ac-
tion with the highest Q-value.

alpha 0.1 Learning rate for Q-value updates. Controls how much
the Q-value is updated in each iteration.

gamma 0.99 Discount factor for future rewards.
num steps 64 Number of steps per episode before environment reset.
max ep length 1000 Maximum timesteps allowed in an episode.
anneal lr True Whether to anneal the learning rate as training pro-

gresses.
batch size 64 Number of state-action-reward tuples processed in a

batch.
Number of Envs 64 Number of vectorized environments

In Tabular Q-Learning, the agent repeatedly updates its Q-values for each state-action pair, gradually
converging to the optimal policy. By balancing exploration and exploitation, adjusting the learning
rate, and prioritizing long-term rewards, the agent learns to optimize its decision-making in the given
environment.

FraCOs (Fracture Cluster Options) for Tabular Methods: For reproducibility, the key hyperpa-
rameters used in the clustering process and other implementation details are outlined below.

In all tabular experiments, we use HDBSCAN as the clustering method (Campello et al., 2013). The
clustering hyperparameters are:

Table 3: Clustering Hyperparameters for FraCOs

Hyperparameter Value
Chain length (b) 2
Minimum cluster size 15
Metric Euclidean
Minimum samples 1
Generate minimum spanning tree True

The following table lists the minimum success rewards required for each environment:

FraCOs-Specific Hyperparameters:

The generalisation strength represents the threshold a fracture cluster must pass to be considered
for initiation. The threshold is defined as 1− HDBSCAN.predict.strength > generalisation
strength.

The FraCOs bias factor determines how much initial Q-values should be scaled to encourage transfer,
similar to optimistic initial values. For FraCOs bias depth annealing, the bias depth increases with
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Table 4: Minimum Success Reward per Environment

Environment Minimum Success Reward
Four Rooms 0.97
Grid 0.60
Ramesh Maze 0.70
MetaGrid 14x14 0.95

Table 5: FraCOs Hyperparameters

Hyperparameter Value
Generalisation strength 0.01
FraCOs bias factor 100
FraCOs bias depth anneal True

deeper FraCOs. For example, with a bias factor of 100 and depth of 3, the first bias is scaled by the
cube root of 100, the second by the square root, and the final by 100.

A.10 FRACOS MODIFICATIONS FOR DEEP LEARNING

In our experiments with deep learning, particularly in environments with large state spaces such
as the 64x64x3-dimensional Procgen environments, we found that HDBSCAN failed to accurately
capture meaningful clusters or predict clusters effectively. Initially, we attempted to integrate a
Variational Autoencoder (VAE) to use its latent space representation in the fracture formation pro-
cess Kingma & Welling (2013). However, clustering methods still struggled to deliver satisfactory
results.

Consequently, we adopted a simpler clustering approach and shifted to using neural networks to
predict both the initiation states and the policy.

Simpler Clustering. To simplify the clustering process, we based clusters solely on sequences of
actions. For instance, with a chain length of three, any fracture formed by the action sequence “up”,
“up”, “right” was clustered together, independent of the state. While this approach overlooks some
intricacies captured by state-based fracture formations, it was necessary to handle the increased
complexity of environments like Procgen.

Cluster Selection. The cluster selection process remained unchanged. We continued to use the
usefulness metric, as defined in Equation 4, to select clusters.

Initiation Prediction. Instead of relying on clustering methods to predict initiation states, we trained
a neural network to predict the states corresponding to each fracture cluster. This process involved
two steps:

1. First, we trained a Generative Adversarial Network (GAN) to augment the states in each
fracture cluster (since neural networks typically require large datasets).

2. Using both the real and generated states, we trained a neural network as a classifier to
predict which fracture cluster a given state belonged to. One neural network was trained
to predict all initiations at each hierarchical level. This method significantly improved
efficiency, reducing the need for permutation-based discrete searches to a single forward
pass.

Policy Prediction. For policy prediction, we utilized a shortcut. Since all FraCOs are derived from
trajectories generated by a pre-trained agent, the policy of this trained agent already serves as an
approximation for the FraCO policy. We saved the agent’s policy at the end of trajectory generation
and used it as the policy for all FraCOs. This reuse of the agent’s policy minimized additional
computation without sacrificing accuracy.

Termination Condition. The termination condition for each FraCO was determined solely by the
chain length, maintaining a fixed execution limit per option.
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A.11 EXPERIMENT PARAMETERS FOR DEEP METHODS

All deep methods in our experiments were based on CleanRL’s implementation of PPO for the
Procgen environments, and we used the same hyperparameters from this implementation. This
ensured that the PPO baseline was hyperparameter-tuned, providing a strong and well-optimized
baseline for comparison. However, FraCOs and OC-PPO were not specifically hyperparameter-
tuned for these environments. Despite this, we consider it reasonable to assume that FraCOs and OC-
PPO would perform near their best, as they share similar PPO update mechanisms and underlying
structures with the baseline PPO.

While there exists an implementation of OC-PPO by Klissarov et al. (2017), we opted to implement
our own version to maintain consistency with CleanRL’s PPO implementation. This approach was
necessary to ensure that any observed differences in performance were due to algorithmic design
rather than implementation differences.

We chose OC-PPO over the standard Option Critic for two primary reasons. First, in our experiments
with the standard Option Critic, we observed that the options collapsed quickly, converging to the
same behaviour. By integrating the entropy bonus provided by the PPO update, we were able to
alleviate this collapse and maintain more diverse option behaviours. Second, PPO has demonstrated
significantly better performance than Advantage Actor Critic (A2C) (Mnih, 2016) in the Procgen
environments. Given that the original Option Critic framework is based on A2C, using it as a
baseline would have led to an unfair comparison, as A2C has been shown to be less effective in
these environments. Therefore, incorporating PPO in both FraCOs and OC-PPO allowed for a fairer
and more balanced comparison.

We outline the hyperparameters which we used in the implementation below. All code will be
provided from the authors github upon publication.

A.11.1 PPO

We use CleanRL’s Procgen implementation as our baseline Huang et al. (2022). The only adaption
we make is that we implement entropy annealing, we also have some wrappers which mean Procgen
can be used with the Gymnasium API. We have another wrapper which is used for handling multi-
level FraCOs in vectorized environments. These wrappers are also applied to the baseline PPO.

Hyperparameters Table 6 provide hyperparameters for PPO.

Parameter Value Explanation
easy 1 1 activates “easy” Procgen setting
gamma 0.999 The discount factor.
vf coef 0.5 Coefficient for the value function loss.
ent coef 0.01 Entropy coefficient.
norm adv true Whether to normalize advantages.
num envs 64 Number of parallel environments.
anneal lr true Whether to linearly anneal the learning rate.
clip coef 0.1 Clipping coefficient for the policy objective in PPO.
num steps 256 Number of decisions per environment per update.
anneal ent false Whether to anneal the entropy coefficient over time.
clip vloss true Whether to clip the value loss in PPO.
gae lambda 0.95 The lambda parameter for Generalized Advantage Estimation

(GAE).
proc start 1 Indicates the starting level for Procgen environments.
learning rate 0.0005 The learning rate for the PPO optimizer.
max grad norm 0.5 Maximum norm for gradient clipping.
update epochs 2 Number of epochs per update.
num minibatches 8 Number of minibatches.
max clusters per clusterer 25 The maximum number FraCOs per level.

Table 6: Selected parameters for the FraCOs implementation with PPO
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A.11.2 FRACOS

Neural Network architectures.

• Input: c× h× w (image observation).
• Convolutional Layer 1: 16 filters, kernel size 3×3, stride 1, padding 1, followed by ReLU

activation.
• Convolutional Layer 2: 32 filters, kernel size 3×3, stride 1, padding 1, followed by ReLU

activation.
• Convolutional Layer 3: 32 filters, kernel size 3×3, stride 1, padding 1, followed by ReLU

activation.
• Flatten Layer: Converts the output of the last convolutional layer into a 1D tensor.
• Fully Connected Layer: 256 units, followed by ReLU activation.
• Actor Head: A linear layer with 256 input units and total action dims output units,

initialized with a standard deviation of 0.01.
• Critic Head: A linear layer with 256 input units and 1 output unit (for the value function),

initialized with a standard deviation of 1.

The model consists of two heads:

• Actor Head: Outputs a probability distribution over the action space for the agent to select
actions.

• Critic Head: Outputs the value function, which estimates the expected return for the cur-
rent state.

The network uses ReLU activations after each convolutional and fully connected layer, and the actor
and critic heads share the same convolutional layers but have distinct fully connected output layers.
In the FraCOs-SSR implementation, the convolutional layers are not reset after the warm-up phase.

Shared State Representation (SSR) details.

In the above architecture, both the actor and critic heads share a common set of convolutional layers.
These shared layers process the raw image observations from the environment and extract useful
spatial features that are fed into both the actor and critic branches. The use of shared convolutional
layers allows the model to leverage the same learned feature representations for both policy and
value estimation, promoting efficiency and consistency in learning.

In the FraCOs-SSR implementation, the shared convolutional layers are trained during the initial
warm-up phase, but they are not reset afterward. This allows the network to retain its learned feature
representations across multiple tasks and reuse them for both policy and value estimation during
subsequent training phases. By freezing these convolutional layers after the warm-up phase, the
network preserves its ability to generalize, while the distinct fully connected layers in the actor and
critic heads continue to adapt to new tasks.

Hyperparameters

Table 7 provides the full list of FraCOs hyperparameters in experimentation.
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Parameter Value Explanation
easy 1 1 activates “easy” Procgen setting
gamma 0.999 The discount factor.
vf coef 0.5 Coefficient for the value function loss.
ent coef 0.01 Entropy coefficient.
norm adv true Whether to normalize advantages.
num envs 64 Number of parallel environments.
anneal lr true Whether to linearly anneal the learning rate.
clip coef 0.1 Clipping coefficient for the policy objective in PPO.
num steps 128 Number of decisions per environment per update.
anneal ent true Whether to anneal the entropy coefficient over time.
clip vloss true Whether to clip the value loss in PPO
gae lambda 0.95 The lambda parameter for Generalized Advantage Estimation

(GAE).
proc start 1 Indicates the starting level for Procgen environments.
learning rate 0.0005 The learning rate for the PPO optimizer.
max grad norm 0.5 Maximum norm for gradient clipping
update epochs 2 Number of epochs per update.
num minibatches 8 Number of minibatches
max clusters per clusterer 25 The maximum number FraCOs per level

Table 7: Selected parameters for the FraCOs implementation with PPO

A.11.3 OC-PPO

Architectures

• Input: c× h× w (image observation).

• Convolutional Layer 1: 32 filters, kernel size 3×3, stride 2, followed by ReLU activation.

• Convolutional Layer 2: 64 filters, kernel size 3×3, stride 2, followed by ReLU activation.

• Convolutional Layer 3: 64 filters, kernel size 3×3, stride 2, followed by ReLU activation.

• Flatten Layer: Converts the output of the last convolutional layer into a 1D tensor.

• Fully Connected Layer: 512 units, followed by ReLU activation.

The model consists of several heads:

• Option Selection Head: A linear layer with 512 input units and num options output units
(for selecting options), initialized with orthogonal weight initialization and a bias of 0.0.

• Intra-Option Action Head: A linear layer with 512 input units and num actions output
units (for selecting actions within an option), initialized with orthogonal weight initializa-
tion and a bias of 0.0.

• Critic Head: A linear layer with 512 input units and 1 output unit (for the value function),
initialized with orthogonal weight initialization and a standard deviation of 1.

• Termination Head: A linear layer with 512 input units and 1 output unit (for predicting
termination probabilities), followed by a sigmoid activation to output a probability between
0 and 1.

The architecture is designed to share a common state representation across different heads (option
selection, intra-option action selection, value estimation, and option termination). Each head uses
the shared state representation for their specific outputs:

• Option Selection Head: Outputs a probability distribution over available options.

• Intra-Option Action Head: Outputs a probability distribution over the primitive actions
available within the current option.
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• Critic Head: Outputs the value function, estimating the expected return for the current
state.

• Termination Head: Outputs a termination probability for each option, determining
whether the agent should terminate the option at the current state.

Hyperparameters. Table 8 provide the hyperparameters used in OC-PPO.

Parameter Value Explanation
easy 1 Activates the “easy” Procgen setting.
gamma 0.999 The discount factor for future rewards.
vf coef 0.5 Coefficient for the value function loss in PPO.
norm adv true Whether to normalize advantages before policy update.
num envs 32 Number of parallel environments for training.
anneal lr true Linearly anneals the learning rate throughout training.
clip coef 0.1 Clipping coefficient for the PPO policy objective.
num steps 256 Number of steps per environment before an update is performed.
anneal ent true Whether to anneal the entropy coefficient over time.
clip vloss false Whether to clip the value loss in PPO updates.
gae lambda 0.95 Lambda for Generalized Advantage Estimation (GAE).
proc start 1 Indicates the starting level for the Procgen environment.
num options 25 Number of options learned by the agent.
ent coef action 0.01 Coefficient for the entropy of the action policy.
ent coef option 0.01 Coefficient for the entropy of the option policy.
learning rate 0.0005 Learning rate for the PPO optimizer.
max grad norm 0.1 Maximum norm for gradient clipping.
update epochs 2 Number of epochs per PPO update.
num minibatches 4 Number of minibatches per PPO update.

Table 8: Selected hyperparameters for OC-PPO implementation

A.12 OC-PPO UPDATE MECHANISM

The Option-Critic with PPO (OC-PPO) extends the standard Proximal Policy Optimization (PPO)
algorithm by incorporating hierarchical options through the Option-Critic (OC) framework. The
following key components distinguish OC-PPO from the standalone PPO and OC implementations:

1. Separate Action and Option Policy Updates: In OC-PPO, two sets of policy updates are
performed: one for the action policy within an option and one for the option selection policy. Both
policies are optimized using the clipped PPO objective, but they operate at different levels of the
hierarchy:

• Action Policy: The action policy selects the primitive actions based on the current option.
For each option, the log-probabilities of actions are calculated, and the advantage function
is used to update the action policy.

• Option Policy: The option policy determines which option should be selected at each state.
This option selection is also updated using the PPO objective, with its own log-probabilities
and advantage terms.

Both the action and option policies are clipped to prevent overly large updates, following the stan-
dard PPO procedure:

Losspolicy = max

(
A(π) · πnew

πold
, A(π) · clip

(
πnew

πold
, 1− ϵ, 1 + ϵ

))
Here, πnew and πold represent the new and old policies for both actions and options, and A(π) is the
advantage function. This clipping is applied separately for both action and option updates, providing
stability in training.
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2. Shared State Representation for Action and Option Policies: The OC-PPO architecture shares
the state representation between the action and option policies but maintains distinct linear layers
for each policy. The state representation is learned via a shared convolutional network. This shared
representation ensures that both action and option policies are informed by the same state encoding,
allowing for consistent hierarchical decision-making.

• Action Policy Head: Receives the state representation and outputs the action logits for the
current option.

• Option Policy Head: Receives the state representation and outputs the option logits for
option selection.

3. Termination Loss for Options: A unique component of OC-PPO is the termination loss, which
encourages the agent to decide when to terminate an option and select a new one. The termina-
tion function outputs the probability that the current option should terminate. This probability is
combined with the advantage function to compute the termination loss:

Losstermination = E[termination probability · (return − value)]

The termination loss is minimized when the agent terminates the option appropriately, i.e., when the
return associated with continuing the current option is less than the estimated value of switching to
a new option. The termination probability is computed by a separate network head from the shared
state representation.

4. Hierarchical Advantage Calculation: OC-PPO calculates separate advantage terms for actions
and options:

• Action Advantage: Based on the immediate rewards from the environment while following
the current option’s policy.

• Option Advantage: Based on the value of switching to a new option versus continuing with
the current option.

Each advantage is normalized independently, and separate PPO updates are applied to both the action
and option policies based on their respective advantage functions.

5. Regularization via Entropy for Both Action and Option Policies: As in standard PPO, en-
tropy regularization is applied to encourage exploration. However, in OC-PPO, this regularization
is applied both at the action level (to encourage diverse action selection within an option) and at
the option level (to encourage exploration of different options). The overall loss function includes
separate entropy terms for actions and options:

Lossentropy = αaction ·H(πaction) + αoption ·H(πoption)

6. Clipping for Value Function: Like in PPO, OC-PPO also employs clipping for the value function
updates to prevent large changes in the value estimate between consecutive updates. This applies
to the shared value function, which evaluates the expected returns from both primitive actions and
options.

Lossvalue = 0.5 ·max
(
(Vnew −R)2, (Vold + clip(Vnew − Vold,−ϵ, ϵ))

2
)

A.13 HYPERPARAMETER SWEEPS

In this appendix we provide evidence of hyperparameter sweeps for both OC-PPO and HOC. We
use the hyperparameters found for OC-PPO in our final results for Procgen. We decided not to use
HOC after having difficulty with option collapse.

We conduct all hyperparameter sweeps for 2 million time-steps on a the Procgen environments of
Fruitbot, Starpilot and Bigfish. OC-PPO had 105 total experiments and HOC had 170.

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

A.13.1 OC-PPO

In Figure 12 we visualise all experiments conducted over all seeds for learning rates [1e-3, 1e-4,
1e-5] and entropy coefficients of [1e-1, 1e-2, 1e-3]. In Table 9 we state the averaged results. We
decided on 0.01 for the learning rate and 0.001 for the entropy coefficient.
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Figure 12: Parallel coordinates plot demonstrating effects of hyperparameters. This is for OC-PPO

Learning Rate Entropy Coefficient Final Returns
0.00001 0.83

0.001 0.79
0.1 0.86

0.0001 3.2
0.001 5.67
0.01 1.92
0.1 0.83

0.001 12.67
0.001 15.83
0.01 12.22
0.1 11.75

Table 9: Results for different learning rates and entropy coefficients for OC-PPO.
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A.14 FULL PROCGEN RESULTS

Learning curves across all tested Procgen environments and shown in Figure 13

Figure 13: Learning curves for all methods on all Procgen environments

A.15 SUCCESS CRITERIA HYPERPARAMETERS

A.16 CLUSTERING ANALYSIS

We compared different clustering methods and hyperparameters to ensure we were using a sensible
combination. We desired our clustering method to have prediction functionality for new data and we
didn’t want to specify the number of clusters. The only sensible clustering method which remained
was HDBSCAN. Regardless we analysed others to ensure HDBSCAN was not significantly worse.

We first generated trajectories in the Nine Rooms environment, created embeddings using UMAP
and then conducted clustering with various methods and parameters. Figures 14 – 19 provide visual-
isations of the results. We decided on HDBSCAN with minimum size of 15 and Eucledian distance
metrics.
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Environment Minimum Success Returns
Four Rooms 0.97
Nine Rooms 0.60
Ramesh Maze 0.70
MetaGrid 14x14 0.95
BigFish 5
Climber 7
CoinRun 7.5
Dodgeball 5
FruitBot 7.5
Leaper 7
Ninja 7.5
Plunder 10

Table 10: Minimum Success Returns for Various Environments

Figure 14: HDBSCAN clustering comparison
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Figure 15: DBSCAN clustering comparison

Figure 16: Mean Shift clustering comparison
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Figure 17: Optics clustering comparison

Figure 18: Kmeans clustering comparison

Figure 19: GMM clustering comparison
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A.17 USEFULNESS WEIGHTING QUALITATIVE ANALYSIS

The usefulness equation assumes equal weighting of appearance probability, relative frequency, and estimated entropy. Here, we qualitatively demonstrate the
effects of altering these weights. We rewrite the equation below and, in Tables 11 and 12, conduct ablation studies and visualize the top eight selected Fracture
Clusters in the nine rooms environment. For this experiment, we set the success threshold to 0.97 and use a chain length of four.

The usefulness equation assumes equal weighting of appearance probability, relative frequency, and estimated entropy. Here, we qualitatively demonstrate the
effects of altering these weights. We rewrite the equation below and, in Tables 11 and 12, conduct ablation studies and visualize the top eight selected Fracture
Clusters in the nine rooms environment. For this experiment, we set the success threshold to 0.97 and use a chain length of four.

The tables demonstrate that each metric selects reasonable fracture clusters. Comparing the top and bottom eight fracture clusters of each metric, we intuitively
observe that the top-ranked clusters are more likely to be useful for future tasks. However, the rankings exhibit distinct differences depending on the ablations. For
instance, when A = 0, B = 1, C = 0, the ranking prioritizes the relative frequency of selecting a fracture cluster, regardless of whether the corresponding trajectory
was deemed successful. This is evident in the first-ranked fracture cluster for this configuration. With B = 1, the top-ranked cluster represents trajectories that
frequently move away from the initial state—a common occurrence. Conversely, with A = 1, the selected cluster traverses a bottleneck, reflecting the prioritization
of appearance probability. This outcome aligns with intuition since most failed trajectories also originate from the initial state, causing such clusters to rank lower
when A = 1.

The effects of the entropy term (C) are harder to interpret intuitively without a detailed understanding of the full training set.

While tuning A, B, and C in Equation 12 could offer benefits during the research phase, we adopted the equal-weight assumption. This approach simplifies the
model’s hyper-parameters and provides a baseline for future work. Adopting equal weights is not uncommon; for instance, Eysenbach et al. (2018) use equal
weighting in their skill discovery objective.

E[U(ϕc)] =
1

3

A

∑N
n=1 ωn + α

N + α+ β︸ ︷︷ ︸
(1) Appearance Probability

+B
count(ϕc,Φs)

|Φs|︸ ︷︷ ︸
(2) Relative Frequency

−C
∑

τs∈Ts

count(ϕc, τs)

|τs|
logNϕc

(
count(ϕc, τs)

|τs|

)
︸ ︷︷ ︸

(3) Estimated Entropy

 . (12)
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Table 11: Ranking of fracture clusters based on different weight configurations. Each cell contains an image visualization of that fracture cluster.

Rank A=1, B=1, C=1 A=1, B=0, C=0 A=0, B=1, C=0 A=0, B=0, C=1

1

2
Continued on next page...
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Rank A=1, B=1, C=1 A=1, B=0, C=0 A=0, B=1, C=0 A=0, B=0, C=1

3

4
Continued on next page...
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Rank A=1, B=1, C=1 A=1, B=0, C=0 A=0, B=1, C=0 A=0, B=0, C=1

5

6
Continued on next page...
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Rank A=1, B=1, C=1 A=1, B=0, C=0 A=0, B=1, C=0 A=0, B=0, C=1

7

8
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Table 12: Ranking of fracture clusters based on different weight configurations. Each cell contains an image visualisation of that fracture cluster. Here negative
indicates worst rank. -1 is the lowest rank cluster for instance.

Rank A=1, B=1, C=1 A=1, B=0, C=0 A=0, B=1, C=0 A=0, B=0, C=1

-1

-2
Continued on next page...
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Rank A=1, B=1, C=1 A=1, B=0, C=0 A=0, B=1, C=0 A=0, B=0, C=1

-3

-4
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Rank A=1, B=1, C=1 A=1, B=0, C=0 A=0, B=1, C=0 A=0, B=0, C=1

-5
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Continued on next page...

41



2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078

U
nderreview

as
a

conference
paperatIC

L
R

2025

Rank A=1, B=1, C=1 A=1, B=0, C=0 A=0, B=1, C=0 A=0, B=0, C=1
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