
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ACCELERATING TASK GENERALISATION WITH
MULTI-LEVEL HIERARCHICAL OPTIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Creating reinforcement learning agents that generalise effectively to new tasks is
a key challenge in AI research. This paper introduces Fracture Cluster Options
(FraCOs), a multi-level hierarchical reinforcement learning method that achieves
state-of-the-art performance on difficult generalisation tasks. FraCOs identifies
patterns in agent behaviour and forms options based on the expected future use-
fulness of those patterns, enabling rapid adaptation to new tasks. In tabular set-
tings, FraCOs demonstrates effective transfer and improves performance as it
grows in hierarchical depth. We evaluate FraCOs against state-of-the-art deep
reinforcement learning algorithms in several complex procedurally generated en-
vironments. Our results show that FraCOs achieves higher in-distribution and
out-of-distribution performance than competitors.

1 INTRODUCTION

A key goal of AI research is to develop agents that can leverage structured prior knowledge, either
provided or learned, to perform competently in unfamiliar domains (Pateria et al., 2021). This is a
common feature in animals; for example, many newborn mammals, such as foals, can walk shortly
after birth due to innate motor patterns, while human infants display instinctive stepping motions
when supported (Adolph & Robinson, 2013; Dominici et al., 2011). These innate behaviors, shaped
by evolution, act as priors that guide goal-directed actions and enable rapid adaptation.

In parallel, humans are believed to organise behaviors into a hierarchy of temporally extended ac-
tions, which helps break complex tasks into simpler, manageable steps (Rosenbloom & Newell,
1986; Laird et al., 1987). For instance, human decision-making often involves planning with high-
level actions like “pick up glass” or “drive to college,” each of which comprises subtasks such as
“reach for glass” or “pull door handle.” These eventually decompose into basic motor movements.

This hierarchical fragmentation likely arises from sub-experiences of past tasks (Brunskill & Li,
2014). Notably, parts of this hierarchy are shared between tasks; for instance, both “pick up glass”
and “pull door handle” involve similar gripping movements. Such shared temporal actions may fa-
cilitate rapid learning of new tasks beyond those previously experienced. Replicating this hierarchy
in algorithms could allow artificial agents to also adapt quickly (Heess et al., 2016).

Despite advances in hierarchical methods, generalising behaviors across diverse tasks remains a
significant challenge for artificial agents (Cobbe et al., 2019). Many approaches struggle with effec-
tively transferring skills to new environments, limiting their ability to adapt to real-world scenarios
(Pateria et al., 2021).

In this paper, we make two key contributions:

1. We introduce Fracture Cluster Options (FraCOs), a novel framework for defining, forming,
and utilizing multi-level hierarchical options based on their expected future usefulness.

2. We empirically demonstrate that FraCOs significantly enhances out-of-distribution (OOD)
learning. Our method outperforms three baselines—Proximal Policy Optimization (PPO)
(Schulman et al., 2017), Option Critic with PPO (OC-PPO) (Klissarov et al., 2017) and
Phasic Policy Gradient (Cobbe et al., 2021)—in both in-distribution and OOD learning
across several environments from the Procgen benchmark (Cobbe et al., 2020).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

2 BACKGROUND

2.1 REINFORCEMENT LEARNING

Standard Reinforcement Learning (RL) focuses on how agents can “take actions in different states
of an environment to maximize cumulative future reward”, where the reward provides task-specific
feedback (Sutton & Barto, 2018). In any environment, an agent exists in a state s and can perform
an action a, both of which may be discrete, continuous, or multidimensional. Most RL problems are
framed as a Markov Decision Process (MDP). An MDP is defined as a tuple ⟨S,A, P,R, γ⟩, where
S is the set of possible states, A is the set of possible actions, P is the transition probability function
with P (s, a, s′) indicating the probability of transitioning from state s to s′ after action a, R is the
reward function where R(s, a, s′) gives the reward for transitioning from s to s′ via action a, and
γ ∈ [0, 1] is the discount factor. An MDP assumes the Markov property, where the future state and
reward depend only on the current state and action.

At each time step t ≥ 0, the agent makes a decision based on its current state st using a policy,
denoted as π(st). The policy maps states to probabilities over actions, guiding the agent’s behaviour.
The actions taken produce observed experience data of the form (st, at, rt+1, st+1). When the agent
interacts with the environment until it reaches a termination state, the full sequence of observations
is called a trajectory T . The objective of reinforcement learning is to learn a policy that maximises
the cumulative discounted returns, defined as Gt =

∑∞
k=0 γ

krt+k+1.

In this paper, we define an environment as the external system with which the agent interacts, char-
acterized by ⟨S,A, P,R⟩. In our work, a task is defined as a unique MDP.

2.2 HIERARCHICAL REINFORCEMENT LEARNING

Hierarchical Reinforcement Learning (HRL) extends standard RL by organising decision-making
into multiple levels of abstraction. A key paradigm in HRL is the options framework, which en-
capsulates extended sequences of actions into options (Sutton & Barto, 2018). An option consists
of an initiation set I , which defines the states where it can be selected, an intra-option policy πintra,
which governs the actions while the option is active, and a termination condition β : S → [0, 1],
which defines when the option ends. The intra-option policy executes actions until the termination
condition β(s) is satisfied.

Options operate within a Semi-Markov Decision Process (SMDP). An SMDP is an extension of an
MDP where actions can have variable durations. The agent chooses between options and primitive
actions at each decision point, with a policy over options, πopt, deciding which to execute based
on the current state. This hierarchical structuring can improve exploration and learning efficiency
by enabling agents to plan over extended time horizons and break complex tasks into manageable
sub-tasks. This decomposition reduces the decision space, facilitates structured exploration, and
simplifies credit assignment, particularly in environments with sparse rewards (Sutton et al., 1999;
Dayan & Hinton, 1992).

2.3 GENERALISATION

Generalisation in Reinforcement Learning (RL) encompasses a broad class of problems (Kirk et al.,
2021). These problems can be categorised based on the relationship between training and testing
distributions, either falling within Independent and Identically Distributed (IID) scenarios or ex-
tending to Out-of-Distribution (OOD) contexts. Additionally, generalisation can be classified by the
features of the environment that change, including the state space, observation space, dynamics, and
rewards. This classification leads to eight possible combinations of generalisation challenges.

In this work, we define IID generalisation as the ability of agents to generalise within tasks drawn
from the same distribution as their training tasks. In contrast, OOD generalisation refers to an agent’s
ability in tasks that differ from those encountered during training.

We evaluate FraCOs’ generalisation performance in OOD tasks where the state space S and reward
function R vary, while the action space A, transition dynamics P , and discount factor γ remain
constant. This setup reflects real-world scenarios where an agent, such as a robot, operates under
fixed dynamics but faces diverse environments and goals.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

3 RELATED WORK

Policy transfer and single-level option transfer methods, aim to broaden an agent’s task-handling
capabilities. Examples of policy transfer include works by Finn et al. (2017), Grant et al. (2018),
Frans et al. (2017), Cobbe et al. (2021), and Mazoure et al. (2022). Option transfer methods, on
the other hand, focus on learning a set of reusable options to enhance rewards in new situations
(Konidaris & Barto, 2007; Barreto et al., 2019; Tessler et al., 2017; Mann & Choe, 2013). While
a few methods in the literature explore multi-level hierarchies, they do not focus on option transfer
as a mechanism for accelerating task adaptation and generalisation (Riemer et al., 2018; Evans &
Şimşek, 2023; Levy et al., 2017; Fox et al., 2017).

HRL has typically focused on addressing broader challenges such as long-term credit assignment
and structured exploration (Dayan & Hinton, 1992; Parr & Russell, 1997; McGovern & Sutton,
1998; Sutton et al., 1999). Two foundational paradigms within HRL are: 1) sub-goal-based ap-
proaches, which typically decompose tasks into smaller, state-based intermediate objectives, and
2) the options framework, which formalises temporally extended actions as options (Sutton et al.,
1999). In both paradigms the ability to learn transferable abstractions at more than two levels of
hierarchy is still an open research question (Pateria et al., 2021).

Recent work has proposed methods for forming and managing multi-level hierarchies. Levy et al.
(2017) and Evans & Şimşek (2023) introduce sub-goal-conditioned approaches for multi-level ab-
straction. However, due to their reliance on state-based-sub-goals, these methods face difficulties
in sub-goal selection in complex state spaces such as pixel-based representations. Moreover, all
state-based-sub-goal methods struggle to transfer sub-goals to different state spaces. Additionally,
they do not account for the variability in action sequences required to transition between sub-goals;
for example, “booking a holiday” could involve “calling a travel agent” or “using the internet,” each
demanding different skills. In contrast, FraCOs avoids creating state-based-sub-goals, providing a
more flexible framework for transfer across state spaces.

Our work is more closely related to Hierarchical Option Critic (HOC) by Riemer et al. (2018) and
the Discovery of Deep Options (DDO) by Fox et al. (2017), both of which use the options frame-
work. DDO employs an expectation gradient method to construct a hierarchy top-down from expert
demonstrations. However, DDO does not optimize for generality and it remains unclear how the
discovered options perform in unseen tasks. Moreover, the reliance on demonstrations limits the
development of more complex abstractions than those demonstrated. In comparison, FraCOs builds
bottom-up, forming increasingly complex abstractions. FraCOs also selects options based on their
expected usefulness in future tasks, directly addressing generalisation challenges.

HOC generalises the Option-Critic (OC) framework introduced by Bacon et al. (2017) to multiple
hierarchical levels. HOC learns all options simultaneously during training. However, both OC and
HOC suffer from option collapse, where either all options converge to the same behaviour or one
option is consistently chosen (Harutyunyan et al., 2019). Moreover, OC methods introduce addi-
tional complexity to the learning algorithm, which has been shown to slow learning compared to
non-hierarchical approaches like PPO (Schulman et al., 2017; Zhang & Whiteson, 2019). Option
selection within the FraCOs process naturally prevents option collapse, and has been shown to in-
crease the rate of learning over baselines (see Section 5.3).

4 FRACTURE CLUSTER OPTIONS

We hypothesise that identifying reoccurring patterns in an agent’s behaviour across successful tasks
will improve performance on future, unseen tasks. Our method consists of three key stages: 1)
Identifying the underlying reoccurring patterns in an agent’s behaviour across multiple tasks, 2)
selecting the most useful patterns—those likely to appear in successful trajectories of all possible
tasks, and 3) defining these identified patterns as options for the agent’s future use.

4.1 IDENTIFYING PATTERNS IN AGENT BEHAVIOUR

We seek to identify and cluster reoccurring patterns of states and actions in agent behavior. To
achieve this, we introduce the concept of fractures. A fracture is defined as a state st paired with
a sequence of subsequent actions. The length of this action sequence is determined by a parameter

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

known as the chain length b, which specifies the number of actions following the state st. More
formally, a fracture is represented as:

ϕ = (st, at, at+1, . . . , at+b−1) (1)

where at, at+1, . . . , at+b−1 represent the subsequent actions from st. The parameter b controls the
temporal extent of the fracture.

We can derive fractures from the trajectories of tasks which an agent has experienced. Consider a
trajectory of length n. The set of fractures F derived from this trajectory is defined as:

F = {(st, at, at+1, . . . , at+b−1) | 0 ≤ t ≤ n− b}. (2)

For a set of trajectories T , we derive fractures from each individual trajectory. The complete set
of fractures from all trajectories is denoted by Φ = {F1, F2, . . . , F|T |}. Individual trajectories are
denoted by τ , with τ ∈ T .

Figure 1: A two-dimensional representation of the
fractures (b = 2) formed by agents acting for
10,000 steps in the Four Rooms environment.

We investigate whether fractures capture un-
derlying structure by first identifying them in
the Four Rooms environment. Four Rooms is
a classic grid-based reinforcement learning en-
vironment, consisting of four connected rooms
separated by walls with narrow doorways. The
agent’s objective is to navigate through the
rooms to reach a specified goal, receiving a re-
ward for reaching this goal. Four Rooms is de-
picted in the top left corner of Figure 1, see Ap-
pendix A.7 for more detail. In all of our grid-
world implementations, the agent can observe
only a 7x7 area centered on itself and a scalar
indicating the direction of the reward. This is
similar to MiniGrid, except that our observa-
tions are ego-centric (Chevalier-Boisvert et al.,
2023).

We train a tabular Q-learning agent to solve multiple different reward locations in Four Rooms
and generate trajectories for both the trained agent and a random agent. Fractures are then created
following Equation 4.1, with b = 2. To reveal the structural differences between the fractures
of the random agent and the trained agent, we use UMAP (McInnes et al., 2018), a dimension
reduction technique that projects the high-dimensional fracture data into a two-dimensional space.
UMAP is particularly useful for this task because it preserves local similarities within the data.
We plot the resulting two-dimensional visualization in Figure 1. This highlights a near-uniform
distribution for the random agent, while the trained agent’s fractures form distinct clusters, reflecting
underlying behaviour structures. This phenomenon is consistent across other environments (see
Appendix A.7.4).

We employ unsupervised clustering techniques to identify and formalise the fracture clusters, de-
noted as ϕc. Specifically, we use HDBSCAN for all tabular methods in this work (Campello et al.,
2013). Fractures with a chain length of b = 4 are grouped into clusters, and four clusters are ran-
domly selected for visualisation in Figure 2. Each visualisation shows all fractures within a cluster,
demonstrating that, despite differences in starting states, action sequences, and terminal states, the
fractures within each cluster share similar semantic meanings.

4.2 SELECTING USEFUL FRACTURE CLUSTERS

In Section 4.1 fracture clusters are formed based on behaviour similarity; however, the number of
potential clusters can be extensive, with some being highly task-specific. Selecting all clusters as
options may burden the agent with unnecessary choices. Therefore, it is essential to identify the
most useful clusters—those likely to appear in future tasks.

First, consider the hypothetical scenario in which we can observe all possible trajectories across
all possible tasks. In this ideal setting, the set of all successful fractures, denoted as Φs, would

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Four Rooms Discovered Clusters

Figure 2: Four examples of discovered fracture clusters (b = 4) within the Four Rooms environment.
The graph represents fracture clusters of a trained agent in the Four Rooms environment, colours
are used to visualise cluster boundaries. In the four examples, the green point represents possible
starting states, blue arrows indicate actions, the width of the arrows shows the frequency of the state-
action pair within the cluster, and the red point indicates possible terminal states.

be derived from fractures within the successful trajectories, where each trajectory is represented as
τs ∈ Ts. Here, Ts refers to the collection of all trajectories deemed successful. A trajectory is
considered successful if its cumulative return exceeds a predefined threshold, similar to the criterion
proposed by Chollet (2019), see Table 10 for all minimum returns. The tasks corresponding to
these successful trajectories are denoted as xs ∈ Xs, where Xs represents the set of all tasks with
successful outcomes.

To sensibly select fracture clusters, we must evaluate their potential for reuse in future tasks. We do
this by defining the usefulness U of a fracture cluster ϕc based on its likelihood of contributing to
success across tasks. Specifically, usefulness is determined by three key factors:

1. Appearance Probability (P [ϕc ∈ τs | xs]): This measures the likelihood that any fracture
ϕ ∈ ϕc appears in the trajectory τs of any given successful task xs. Higher probability
indicates that this ϕc frequently contributes to success across tasks.

2. Relative Frequency (P [ϕc | Φs]): This term represents the proportion of times that any
fracture ϕ ∈ ϕc appears among all successful fractures Φs. A higher relative frequency
implies its importance in the agent’s overall success.

3. Entropy of Usage (H(ϕc | Xs)): This captures the diversity of a fracture cluster’s usage
across different tasks in Xs. A higher entropy indicates that a ϕc is useful across various
tasks, enhancing its generalisation potential.

The usefulness of a fracture cluster ϕc is defined as the normalised sum of these factors; see Ap-
pendix A.17 for an ablation study to understand the impact of each of the terms:

U(ϕc) =
1

3
(P [ϕc ∈ τs | xs] + P [ϕc | Φs] +H(ϕc | Xs)) . (3)

In an ideal scenario we could observe all possible tasks and trajectories and directly calculate the
usefulness of each fracture cluster U(ϕc). This would allow us to exactly compute the appearance
probability, relative frequency, and entropy for each fracture cluster ϕc, yielding a true measure of
usefulness across all potential tasks. However, this is impractical since we cannot observe all pos-
sible tasks and trajectories. Instead, we must rely on available data, using the tasks and trajectories
encountered during training to estimate the usefulness.

1. Estimating Appearance Probability: We approximate P [ϕc ∈ τs | xs] using a Bayesian
approach, modeling the occurrence of a fracture cluster ϕc in a successful trajectory as a binomial
likelihood with a Beta conjugate prior. The prior parameters α and β, both set to 1, reflect an
uninformative prior. Let n denote an individual task, and N the total number of experienced tasks.
The appearance indicator ωn = 1 if any fracture ϕ ∈ ϕc appears in trajectory τn, and 0 otherwise.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

2. Estimating Relative Frequency: We estimate P [ϕc | Φs] by counting the occurrences of ϕc

in Φs, where Φs is formed from N experienced tasks. This count is then normalised by the total
number of fractures in Φs.

3. Estimating Entropy: Finally, the entropy H(ϕc | Xs), is approximated using Shannon’s entropy
formulation (Shannon, 1948).

We derive the full approximation in Appendix A.2, the result is expressed as the expected usefulness,

E[U(ϕc)] =
1

3


∑N

n=1 ωn + α

N + α+ β︸ ︷︷ ︸
(1) Appearance Probability

+
count(ϕc,Φs)

|Φs|︸ ︷︷ ︸
(2) Relative Frequency

−
∑

τs∈Ts

count(ϕc, τs)

|τs|
logNϕc

(
count(ϕc, τs)

|τs|

)
︸ ︷︷ ︸

(3) Estimated Entropy

 .

(4)

We can then select fracture clusters which yield the highest expected usefulness. To demonstrate
the effectiveness of Equation 4 we formulate a new experiment. In the Nine Rooms environment
(see Appendix A.7) 100 tabular Q-learning agents are trained separately on 100 different tasks, each
defined with a new reward function. Evaluation trajectories are gathered and fractures are formed
(with a chain length b = 4). The fractures are clustered and finally the expected usefulness is
calculated. In Figure 3 we plot the eight fracture clusters with the highest expected usefulness.

Figure 3: The eight fracture clusters with the highest expected usefulness in the Nine Rooms envi-
ronment, ordered right and then down. Green points represent possible starting states, blue arrows
indicate actions taken, with arrow width proportional to their frequency in the cluster, and red points
denote possible termination states.

The fracture cluster in Figure 3 with the highest expected usefulness takes the agent from the starting
state in all sensible directions without repetitions of movements. The majority of the other fracture
clusters transverse bottlenecks, sharing the same fracture cluster where areas of local structure re-
main similar.

Forming multiple levels of the hierarchy. After identifying the most useful fracture clusters, they
can be converted into options (as explained in Section 4.3), which extend the agent’s action space.
When learning a new task, the agent can now choose from both primitive actions and these newly
discovered options. The process of identifying fractures and clustering is repeated, but now the tra-
jectories (and therefore fractures) may consist of a mix of primitive actions and higher-level options.
This iterative approach naturally leads to the creation of a multi-level hierarchical structure.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

4.3 USING FRACTURE CLUSTERS

After selecting the most useful fracture clusters, we need to transform each cluster into an option,
called a Fracture Cluster Option (FraCO). Each FraCO is characterized by an initiation set Iz , a
termination condition βz , and a policy πz . We denote a single FraCO as z and the set of all FraCOs
as Z. Each FraCO is associated with the fracture cluster ϕc that forms it. We use these clusters to
predict initiation states.

Initiation Set. Suppose the agent is in a state s, and has access to a set of actions A. For each state
s, we consider possible sequences of actions of chain length b. Each such sequence is represented
as:

a = (a1, a2, . . . , ab) | ai ∈ A, (5)

We can now define the set of all possible fractures starting from state s as,

Fs = {(s,a) | a ∈ Ab}, (6)

where Ab represents all sequences of length b drawn from the action set A.

For each fracture ϕ = (s,a) in Fs, we estimate the likelihood that it belongs to a FraCO z. The set
of fractures assigned to cluster z in state s can be defined as:

Gz,s = {ϕ ∈ Fs | P (ϕ ∈ z) > θ},

where P (ϕ ∈ z) denotes the estimated probability that fracture ϕ belongs to cluster z, and θ is a
threshold hyperparameter that determines cluster membership. The method for estimating P (ϕ ∈ z)
can vary depending on the implementation. In our tabular implementation, we directly use the
prediction function provided by HDBSCAN. In our deep implementation, a neural network predicts
this probability.

A FraCO z can be initiated in state s if Gz,s is not empty. Such that the initiation set is defined as,

Iz = {s ∈ S | Gz,s ̸= ∅}. (7)

Algorithm 1: Option policy πz(Gz,s, Z, s)

Input: Gz,s, set of options Z, state s
Initialize: Select the fracture ϕz = (s,a) from
Gz,s with the highest probability P (ϕz ∈ z),
where a is a sequence of actions (a1, a2, . . . , ab)

for each action aj in a do
if aj is a primitive action then

Execute aj , resulting in new state s;
else

aj is another option z′;
Compute Gz′,s;
Recursively call πz′(Gz′,s, Z, s);

end
end

Policy Execution. When FraCO z is executed
in state s, it follows the policy πz , as described
in Algorithm 1. The policy selects the frac-
ture ϕz = (s,a) from Gz,s with the highest
probability P (ϕz ∈ z), and then executes the
sequence of actions a = (a1, a2, . . . , ab). If
one of the selected actions is another FraCO z′,
the agent must compute a new Gz′,s and recur-
sively call the policy until the option terminates.

Termination Condition. The FraCO z termi-
nates under two conditions: either when all ac-
tions in the selected fracture ϕz have been ex-
ecuted, or when no matching fracture can be
found in the current state (i.e., Gz,s = ∅).

The termination condition β(s) is defined as:

β(s) =


1 if all actions in ϕz have been executed
1 if Gz,s = ∅
0 otherwise

(8)

Learning with FraCOs. In our approach, FraCOs are fixed once identified. The agent learns
to choose between primitive actions and available FraCOs using standard reinforcement learning
algorithms (e.g., Q-learning for tabular settings, PPO for deep learning implementations).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Example FraCO usage: An agent is in state s. It looks at all possible fractures in that state
to form Fs. For each FraCO zi ∈ Z, the agent estimates the probability P (ϕ ∈ zi) that each
fracture ϕ ∈ Fs belongs to zi. If any fractures have a probability above a threshold θ, then zi
becomes available as an option.

The agent’s policy πopt selects from the available FraCOs and primitive actions. Suppose it
selects FraCO z1. The agent picks the fracture ϕz1 with the highest probability P (ϕz1 ∈ z1)
and executes the sequence a.

As the agent executes these actions, if one is another FraCO, say z2, then it forms a new Fs′ ,
estimates P (ϕ ∈ z2), and selects the most probable fracture for z2. This process repeats until
the termination condition βz1 = 1 is met, completing z1’s execution.

5 EXPERIMENTAL RESULTS

We evaluate FraCOs in three different experiments. The first focuses on OOD reward generalisation
tasks using a tabular FraCOs agent in the Four Rooms, Nine Rooms, and Ramesh Maze Ramesh
et al. (2019) grid-world environments (see Appendix A.7). The second examines OOD learning in
state generalisation tasks within a novel environment called MetaGrid (see Appendix A.7). The final
experiment evaluates a deep FraCOs agent, implemented with a three-level hierarchy using PPO in
the procgen suite of environments (Cobbe et al., 2020). We compare its performance with CleanRL’s
Procgen PPO and PPG implementations (Huang et al., 2022) and, Option Critic with PPO (OC-PPO)
(Klissarov et al., 2017), see Appendices A.13 and A.13 for full method details. In the grid-world
environments, the agent receives a reward of +1 for reaching the goal and a penalty of −0.001
per time step. Episodes have a maximum length of 500 steps, and a fracture chain length b = 2.
For Procgen environments, reward functions remain unchanged, and b = 3 (see Appendix A.8 for
chain-length selection details).

5.1 EXPERIMENT 1: TABULAR REWARD GENERALISATION

In this experiment, FraCOs are learned in a fixed state space S while we vary the reward function
R. The agent is allowed to discover FraCOs in 50 tasks, such that each task corresponds to a
different reward location. We reserve 10 unique tasks for testing. Separate agents are trained to
convergence—defined as achieving consistent performance across episodes. The top 20 FraCOs are
extracted from the final trajectories of the agents, as described in Section 4, and incorporated into
the action space. This extraction process is repeated four times, corresponding to each level of the
hierarchy.

Four agents are created, each with an additional hierarchical level of FraCOs. After resetting their
policies over options, the agents are trained on the test tasks, and evaluation episodes are conducted
periodically. As shown in Figure 4, results from the Four Rooms, Nine Rooms, and Ramesh Maze
environments indicate that learning is progressively accelerated on these unseen tasks as the hierar-
chy depth increases.

Figure 4: The interquartile mean evaluation episode rewards of a tabular FraCOs agent trained in the
Four Rooms, Grid, and Ramesh Maze environments. Results are averaged over 10 independently
seeded experiments, with shaded areas indicating the standard error.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

5.2 EXPERIMENT 2: TABULAR STATE GENERALISATION

In this experiment, we introduce a novel environment called MetaGrid, which is designed to test
state and reward generalisation. MetaGrid is a navigational grid-world constructed from structured
7 × 7 building blocks that can be combined randomly to create novel state spaces while preserving
certain areas of local structure. The agent is provided with a 7×7 window of observation, consistent
with our other grid-worlds. For more detailed information on MetaGrid, see Appendix A.7.

At each hierarchy level, 20 FraCOs are learned from 100 randomly generated 14 × 14 MetaGrid
tasks. A task in this experiment corresponds to a differnt space space S and reward location R. For
each hierarchy level, a separate agent is created, and their policies over options are reset. These
agents are then evaluated in previously unseen 14 × 14 domains and larger 21 × 21 domains. Pe-
riodic evaluation episodes are conducted during training to track performance, results are shown in
Figure 5. These results also demonstrate an increase in the rate of learning as the hierarchy depth
increases.

Figure 5: The interquartile mean evaluation episode rewards for tabular FraCOs in unseen MetaGrid
domains of varying sizes. Results are averaged over 10 independently seeded experiments, with
shaded areas indicating the standard error.

5.3 EXPERIMENT 3: DEEP STATE AND REWARD GENERALISATION IN COMPLEX
ENVIRONMENTS

In this experiment, we test FraCOs in OOD tasks from the Procgen benchmark, focusing on unseen
states spaces S and reward functions R. We compare with three methods: Option Critic with PPO
(OC-PPO) (Klissarov et al., 2017), a baseline PPO (Schulman et al., 2017), and Phasic Policy Gra-
dient (PPG) (Cobbe et al., 2021) across eight Procgen environments (Cobbe et al., 2020). Procgen is
a suite of procedurally generated arcade-style environments designed to assess generalisation across
diverse tasks; see Appendix A.7 for full details.

Figure 6: A comparison of learning curves of a sample of three Procgen environments.

FraCOs modifications. To handle the challenges of applying traditional clustering to high-
dimensional pixel data, we simplify the approach by grouping fractures with the same action se-

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

quences, regardless of state differences. Additionally, a neural network is used to estimate initiation
states and policies, which reduces the computational burden of performing a discrete search over the
complex 64× 64× 3 state space and managing 15 possible actions during millions of training steps.
These modifications do not change the theory of FraCOs, just the implementation. Full details of
these modifications are provided in Appendix A.10, with further information on the experiments,
baselines, and hyperparameters in Appendix A.11.

Method

(a)

(b)

OOD

IID

Figure 7: Final min-max normalised
IQM returns with standard errors
across Procgen environments.

FraCOs and OC-PPO both learn options during a 20-million
time-step warm-up phase, with tasks drawn from the first
100 levels of each Procgen environment. FraCOs learns
two sets of 25 options, corresponding to different hierarchy
levels, while OC-PPO learns a total of 25 options. After
the warm-up, the policy over options is reset, and training
continues for an additional 5 million time steps. During this
phase, we periodically conduct evaluation episodes on both
IID and OOD tasks, with OOD tasks drawn from Procgen
levels beyond 100.

We test two versions of FraCOs: one where the policy over
options is completely reinitialized after the warm-up phase,
and another that transfers a Shared State Representation
(SSR), referred to as FraCOs-SSR. In the SSR, a shared
convolutional layer encodes the state, followed by distinct
linear layers for the critic, policy over options, and op-
tion policies. These convolutional layers are not reset after
warm-up, enabling a shared feature representation across
tasks. Since OC-PPO inherently relies on a shared state rep-
resentation to define its options and meta-policy, comparing
it with FraCOs-SSR offers a fairer evaluation. Without this
shared representation, OC-PPO struggles to maintain stable
and meaningful options across tasks. Despite this adjust-
ment for fairness, we find that FraCOs, even without SSR,
consistently outperforms both baselines. For further imple-
mentation details of FraCOs-SSR, see Appendix A.11.

Figure 7 (a) provides the min-max normalised interquartile
mean (IQM) across all Procgen environments. Figure 7 (b)
provides the results of each environment. We also provide
three example learning curves in Figure 6. Each experiment
was repeated with eight seeds. On average we observe that
FraCOs and FraCOs-SSR are able to improve both IID and
OOD returns over all baselines.

6 DISCUSSION AND LIMITATIONS

This study introduced Fracture Cluster Options (FraCOs)
as a novel framework for multi-level hierarchical reinforce-
ment learning. In tabular settings, FraCOs demonstrated accelerated learning on unseen tasks, with
performance improving as hierarchical depth increased. In deep RL experiments, FraCOs outper-
formed OC-PPO, PPO, and PPG on both in-distribution (IID) and out-of-distribution (OOD) tasks,
showcasing its potential for robust generalization. While PPG maintained a smaller generalization
gap (the difference between IID and OOD performance), integrating FraCOs with a PPG baseline
could achieve both higher performance and reduced generalisation gaps. Error bars

However, FraCOs faces limitations. Clustering methods struggle with prediction accuracy as en-
vironments grow more complex, and while simplified techniques and neural networks were intro-
duced, further research into scalable clustering solutions is needed. Additionally, this work focused
on discrete action spaces; extending FraCOs to continuous action spaces remains as future work.

Despite these limitations, FraCOs provides a strong foundation for advancing hierarchical reinforce-
ment learning and improving generalisation across tasks.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Karen E. Adolph and Scott R. Robinson. 403The Road to Walking: What Learning to
Walk Tells Us About Development. In The Oxford Handbook of Developmental Psychol-
ogy, Vol. 1: Body and Mind. Oxford University Press, 03 2013. ISBN 9780199958450.
doi: 10.1093/oxfordhb/9780199958450.013.0015. URL https://doi.org/10.1093/
oxfordhb/9780199958450.013.0015.

Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. In Proceedings of
the AAAI conference on artificial intelligence, volume 31, 2017.

André Barreto, Diana Borsa, Shaobo Hou, Gheorghe Comanici, Eser Aygün, Philippe Hamel, Daniel
Toyama, Shibl Mourad, David Silver, Doina Precup, et al. The option keyboard: Combining skills
in reinforcement learning. Advances in Neural Information Processing Systems, 32, 2019.

Emma Brunskill and Lihong Li. Pac-inspired option discovery in lifelong reinforcement learning.
In International conference on machine learning, pp. 316–324. PMLR, 2014.

Ricardo JGB Campello, Davoud Moulavi, and Jörg Sander. Density-based clustering based on hier-
archical density estimates. In Pacific-Asia conference on knowledge discovery and data mining,
pp. 160–172. Springer, 2013.

Maxime Chevalier-Boisvert, Bolun Dai, Mark Towers, Rodrigo de Lazcano, Lucas Willems, Salem
Lahlou, Suman Pal, Pablo Samuel Castro, and Jordan Terry. Minigrid & miniworld: Modu-
lar & customizable reinforcement learning environments for goal-oriented tasks. arXiv preprint
arXiv:2306.13831, 2023.

François Chollet. On the measure of intelligence. arXiv preprint arXiv:1911.01547, 2019.

Karl Cobbe, Oleg Klimov, Chris Hesse, Taehoon Kim, and John Schulman. Quantifying generaliza-
tion in reinforcement learning. In International conference on machine learning, pp. 1282–1289.
PMLR, 2019.

Karl Cobbe, Chris Hesse, Jacob Hilton, and John Schulman. Leveraging procedural generation to
benchmark reinforcement learning. In International conference on machine learning, pp. 2048–
2056. PMLR, 2020.

Karl W Cobbe, Jacob Hilton, Oleg Klimov, and John Schulman. Phasic policy gradient. In Interna-
tional Conference on Machine Learning, pp. 2020–2027. PMLR, 2021.

Peter Dayan and Geoffrey E Hinton. Feudal reinforcement learning. Advances in neural information
processing systems, 5, 1992.

Nadia Dominici, Yuri P Ivanenko, Germana Cappellini, Andrea d’Avella, Vito Mondı̀, Marika Ci-
cchese, Adele Fabiano, Tiziana Silei, Ambrogio Di Paolo, Carlo Giannini, et al. Locomotor
primitives in newborn babies and their development. Science, 334(6058):997–999, 2011.

Joshua B Evans and Özgür Şimşek. Creating multi-level skill hierarchies in reinforcement learning.
arXiv preprint arXiv:2306.09980, 2023.

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you need:
Learning skills without a reward function. arXiv preprint arXiv:1802.06070, 2018.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In International conference on machine learning, pp. 1126–1135. PMLR, 2017.

Roy Fox, Sanjay Krishnan, Ion Stoica, and Ken Goldberg. Multi-level discovery of deep options.
arXiv preprint arXiv:1703.08294, 2017.

Kevin Frans, Jonathan Ho, Xi Chen, Pieter Abbeel, and John Schulman. Meta learning shared
hierarchies. arXiv preprint arXiv:1710.09767, 2017.

Erin Grant, Chelsea Finn, Sergey Levine, Trevor Darrell, and Thomas Griffiths. Recasting gradient-
based meta-learning as hierarchical bayes. arXiv preprint arXiv:1801.08930, 2018.

11

https://doi.org/10.1093/oxfordhb/9780199958450.013.0015
https://doi.org/10.1093/oxfordhb/9780199958450.013.0015

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Anna Harutyunyan, Will Dabney, Diana Borsa, Nicolas Heess, Remi Munos, and Doina Precup.
The termination critic. arXiv preprint arXiv:1902.09996, 2019.

Nicolas Heess, Greg Wayne, Yuval Tassa, Timothy Lillicrap, Martin Riedmiller, and David Silver.
Learning and transfer of modulated locomotor controllers. arXiv preprint arXiv:1610.05182,
2016.

Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, Jeff Braga, Dipam Chakraborty, Ki-
nal Mehta, and JoÃĢo GM AraÃšjo. Cleanrl: High-quality single-file implementations of deep
reinforcement learning algorithms. Journal of Machine Learning Research, 23(274):1–18, 2022.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Robert Kirk, Amy Zhang, Edward Grefenstette, and Tim Rocktäschel. A survey of generalisation in
deep reinforcement learning. arXiv preprint arXiv:2111.09794, 2021.

Martin Klissarov, Pierre-Luc Bacon, Jean Harb, and Doina Precup. Learnings options end-to-end
for continuous action tasks. arXiv preprint arXiv:1712.00004, 2017.

George Dimitri Konidaris and Andrew G Barto. Building portable options: Skill transfer in rein-
forcement learning. In IJCAI, volume 7, pp. 895–900, 2007.

John E Laird, Allen Newell, and Paul S Rosenbloom. Soar: An architecture for general intelligence.
Artificial intelligence, 33(1):1–64, 1987.

Andrew Levy, George Konidaris, Robert Platt, and Kate Saenko. Learning multi-level hierarchies
with hindsight. arXiv preprint arXiv:1712.00948, 2017.

Timothy A Mann and Yoonsuck Choe. Directed exploration in reinforcement learning with trans-
ferred knowledge. In European Workshop on Reinforcement Learning, pp. 59–76. PMLR, 2013.

Bogdan Mazoure, Ilya Kostrikov, Ofir Nachum, and Jonathan J Tompson. Improving zero-shot
generalization in offline reinforcement learning using generalized similarity functions. Advances
in Neural Information Processing Systems, 35:25088–25101, 2022.

Amy McGovern and Richard S Sutton. Macro-actions in reinforcement learning: An empirical
analysis. Computer Science Department Faculty Publication Series, pp. 15, 1998.

Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approximation and
projection for dimension reduction. arXiv preprint arXiv:1802.03426, 2018.

Volodymyr Mnih. Asynchronous methods for deep reinforcement learning. arXiv preprint
arXiv:1602.01783, 2016.

Ronald Parr and Stuart Russell. Reinforcement learning with hierarchies of machines. Advances in
neural information processing systems, 10, 1997.

Shubham Pateria, Budhitama Subagdja, Ah-hwee Tan, and Chai Quek. Hierarchical reinforcement
learning: A comprehensive survey. ACM Computing Surveys (CSUR), 54(5):1–35, 2021.

Rahul Ramesh, Manan Tomar, and Balaraman Ravindran. Successor options: An option discovery
framework for reinforcement learning. arXiv preprint arXiv:1905.05731, 2019.

Matthew Riemer, Miao Liu, and Gerald Tesauro. Learning abstract options. Advances in neural
information processing systems, 31, 2018.

Paul S Rosenbloom and Allen Newell. The chunking of goal hierarchies: A generalized model of
practice. Machine learning-an artificial intelligence approach, 2:247, 1986.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Claude Elwood Shannon. A mathematical theory of communication. The Bell system technical
journal, 27(3):379–423, 1948.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A frame-
work for temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181–
211, 1999.

Chen Tessler, Shahar Givony, Tom Zahavy, Daniel Mankowitz, and Shie Mannor. A deep hier-
archical approach to lifelong learning in minecraft. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 31, 2017.

Mark Towers, Jordan K. Terry, Ariel Kwiatkowski, John U. Balis, Gianluca de Cola, Tristan Deleu,
Manuel Goulão, Andreas Kallinteris, Arjun KG, Markus Krimmel, Rodrigo Perez-Vicente, An-
drea Pierré, Sander Schulhoff, Jun Jet Tai, Andrew Tan Jin Shen, and Omar G. Younis. Gymna-
sium, March 2023. URL https://zenodo.org/record/8127025.

Shangtong Zhang and Shimon Whiteson. Dac: The double actor-critic architecture for learning
options. Advances in Neural Information Processing Systems, 32, 2019.

13

https://zenodo.org/record/8127025

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 GLOSSARY

GLOSSARY OF TERMS AND DERIVATIONS

Term/Symbol Definition/Derivation
MDP (Markov Deci-
sion Process)

A mathematical framework for modeling decision-making, defined by
the tuple ⟨S,A, P,R, γ⟩, where:

• S: Set of possible states.
• A: Set of possible actions.
• P : Transition probability function, P (s, a, s′).
• R: Reward function, R(s, a, s′).
• γ: Discount factor, γ ∈ [0, 1].

S Set of possible states in an MDP.
A Set of possible actions in an MDP.
P Transition probability function; P (s, a, s′) gives the probability of tran-

sitioning from state s to s′ after action a.
R Reward function; R(s, a, s′) is the reward received when transitioning

from s to s′ via action a.
γ Discount factor in an MDP, γ ∈ [0, 1], representing the importance of

future rewards.
st State of the agent at time step t.
at Action taken by the agent at time step t.
s′ Next state after taking action at from state st.
π(st) Policy of the agent, mapping state st to a probability distribution over

actions.
Gt Cumulative discounted return from time t, defined as Gt =∑∞

k=0 γ
krt+k+1.

Trajectory (τ ∈ T) A sequence of states, actions, and rewards experienced by the agent: τ =
(s0, a0, r1, s1, a1, r2, . . .).

Task A task is defined as a unique MDP.
Reward generalisa-
tion tasks

MDPs with R values outside of the training distribution, while S, A, P ,
and γ remain within distribution.

State generalisation
tasks

MDPs with S and R values outside of the training distribution, while A,
P , and γ remain within distribution.

Option In HRL, a temporally extended action, defined by:
• I: Initiation set.
• πintra: Intra-option policy.
• β(s): Termination condition.

I Initiation set of an option; the set of states where the option can be initi-
ated.

πintra Intra-option policy; the policy followed while the option is active.
β(s) Termination condition of an option; gives the probability of terminating

the option in state s.
FraCOs (Fracture
Cluster Options)

The proposed method for defining, forming, and utilizing multi-level hi-
erarchical options based on expected future usefulness.

Continued on next page...

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Term/Symbol Definition/Derivation
ϕ A fracture; a state paired with a sequence of actions:

ϕ = (st, at, at+1, . . . , at+b−1)

b Chain length of a fracture; specifies the number of actions following the
state st.

F Set of fractures derived from a single trajectory:

F = {(st, at, at+1, . . . , at+b−1) | 0 ≤ t ≤ n− b}

Φ Complete set of fractures from all trajectories:

Φ = {F1, F2, . . . , F|T |}

ϕc A fracture cluster; a group of fractures with similar behaviors.
Usefulness Metric
(U(ϕc))

A measure to evaluate fracture clusters based on their potential for reuse
in future tasks:

U(ϕc) =
1

3
(P [ϕc ∈ τs | xs] + P [ϕc | Φs] +H(ϕc | Xs))

Expected Usefulness
terms • ωn: Appearance indicator; ωn = 1 if any fracture ϕ ∈ ϕc ap-

pears in trajectory τn, else 0.
• α, β: Parameters of the Beta prior distribution, typically set to
1.

• N : Total number of experienced tasks.
• Φs: Set of all successful fractures.
• Ts: Set of successful trajectories.
• Nϕc : Normalization constant for entropy calculation.

Derivation of Ap-
pearance Probabil-
ity

Using Bayesian inference, the appearance probability is estimated as:

P [ϕc ∈ τs | xs] =

∑N
n=1 ωn + α

N + α+ β
(9)

Where ωn are observations modeled as Bernoulli random variables with
a Beta prior.

Derivation of Rela-
tive Frequency

Calculated as:

P [ϕc | Φs] =
count(ϕc,Φs)

|Φs|
(10)

Where count(ϕc,Φs) is the number of times fractures in ϕc appear among
all successful fractures Φs.

Derivation of En-
tropy of Usage

The entropy of a fracture cluster’s usage is:

H(ϕc | Xs) = −
∑

τs∈Ts

count(ϕc, τs)

|τs|
logNϕc

(
count(ϕc, τs)

|τs|

)
(11)

This measures the diversity of the fracture cluster’s usage across tasks.
α, β Parameters of the Beta distribution used in Bayesian estimation; set to

α = 1, β = 1 for an uninformative prior.
ωn Appearance indicator for task n; ωn = 1 if any fracture in ϕc appears in

trajectory τn, else 0.
Z Set of all Fracture Cluster Options (FraCOs).

Continued on next page...

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Term/Symbol Definition/Derivation
z A single FraCO; an option derived from a fracture cluster.
Iz Initiation set of FraCO z; states where z can be initiated:

Iz = {s ∈ S | Gz,s ̸= ∅}

βz Termination condition of FraCO z; z terminates when all actions in the
selected fracture have been executed or when no matching fracture is
found:

β(s) =


1 if all actions in ϕz have been executed
1 if Gz,s = ∅
0 otherwise

πz Policy of FraCO z; defines the sequence of actions when the option is
active (see Algorithm 1 in the paper).

Gz,s Set of fractures assigned to cluster z in state s:

Gz,s = {ϕ ∈ Fs | P (ϕ ∈ z) > θ}

θ Threshold hyperparameter for cluster membership; determines if a frac-
ture belongs to a cluster based on probability.

N Total number of experienced tasks or samples.
T Set of all trajectories.
τ An individual trajectory from the set T .
τs A successful trajectory; meets a predefined success criterion.
Ts Set of successful trajectories.
Xs Set of tasks corresponding to successful trajectories.
A Action set of the environment; may include primitive actions and options.
Nc Number of cluster-options (options derived from fracture clusters).

A.2 DERIVATION OF USEFULNESS METRIC

In this appendix, we derive the usefulness (U) metric for fracture clusters. This metric is used to
identify which fracture clusters have the greatest potential for reuse across different tasks. Useful-
ness is a function of the following three factors:

1. The probability that a fracture cluster appears in any given successful task:

P [ϕc ∈ τs|xs]

2. The probability that a fracture cluster is selected from the set of successful fracture clusters:

P [ϕc|Φs]

3. The entropy of the fracture cluster’s usage across all successful tasks:

H(ϕc | Ts)

Usefulness (U) is then defined as the normalized sum of these three factors:

U =
1

3
(P [ϕc ∈ τs|xs] + P [ϕc|Φs] +H(ϕc | Ts))

The objective is to select fracture clusters that maximize the usefulness, i.e.,

argmax
ϕc

U(ϕc)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A.3 DERIVING P [ϕc ∈ τs|xs] USING BAYESIAN INFERENCE

We want to model the probability that a fracture cluster ϕc appears in any given successful task,
P [ϕc ∈ τs|xs]. For each successful task xs from the set of successful tasks Xs, the presence of
fracture cluster ϕc in the corresponding trajectory τs is represented by a binary random variable ωs,
where:

ωs =

{
1 ifϕc ∈ τs (fracture cluster appears in the trajectory),
0 otherwise

The variable ωs is modeled as a Bernoulli random variable:

ωs ∼ Bernoulli(p)

where p is the probability that fracture cluster ϕc appears in the trajectory τs of task xs.

Since we are uncertain about the true value of p, we place a Beta distribution prior on p:

p ∼ Beta(α, β)

where α and β are hyperparameters representing our prior belief about the likelihood of ϕc appearing
in a trajectory.

Given a total of N tasks, the likelihood for each observation ωs is:

P (ωn|p) = pωn(1− p)1−ωn

where ωn is 1 if ϕc appears in trajectory τs for task xn, and 0 otherwise.

Using Bayes’ theorem, the posterior distribution of p after observing data is:

P (p|ω1, . . . , ωN) ∝ P (ω1, . . . , ωN |p)P (p)

Substituting the likelihood and the Beta prior, we get:

P (p|ω1, . . . , ωN) ∝
N∏

n=1

pωn(1− p)1−ωn · pα−1(1− p)β−1

This simplifies to:

P (p|ω1, . . . , ωN) ∝ p
∑N

n=1 ωn+α−1(1− p)N−
∑N

n=1 ωn+β−1

Thus, the posterior distribution for p follows a Beta distribution:

p|ω1, . . . , ωN ∼ Beta(αN , βN)

where:

αN =
N∑

n=1

ωn + α, βN = N −
N∑

n=1

ωn + β

In our experiments, we set α = 1 and β = 1, representing an uninformative prior.

A.4 DERIVING P [ϕc|Φs]

The second component of the usefulness metric, P [ϕc|Φs], is the probability that fracture cluster
ϕc is selected from the set of successful fracture clusters. This can be computed as the relative
frequency of ϕc in the set Φs of successful clusters:

P [ϕc|Φs] =
count(ϕc,Φs)

|Φs|

where count(ϕc,Φs) is the number of times ϕc appears in the set of successful clusters, and |Φs| is
the total number of successful clusters.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A.5 DERIVING H(ϕc | Ts)

The entropy term H(ϕc | Ts) measures the unpredictability or diversity of the usage of fracture
cluster ϕc across successful tasks. Entropy is defined as:

H(ϕc | Ts) = −
∑
τs∈Ts

p[ϕc | τs] · logNϕc
(p[ϕc | τs])

where p[ϕc | τs] is the proportion of times that fracture cluster ϕc appears in trajectory τs:

p[ϕc | τs] =
count(ϕc, τs)

|τs|

Here, |τs| represents the length of the trajectory τs, and Nϕc
is the total number of fracture clusters

considered. The choice of logarithm base, Nϕc
, reflects the fact that we normalize entropy relative

to the number of fracture clusters.

A.6 EXPECTED USEFULNESS

Having derived the empirical estimations of the three components of usefulness we can now combine
these elements to calculate the expected usefulness of each fracture cluster. The expected usefulness
incorporates the posterior distribution from Bayesian inference for P [ϕc ∈ τs|xs], as well as the
empirical counts for the other components.

Thus, the expected usefulness for each fracture cluster is calculated as:

E[U(ϕc)] =
1

3

(∑N
n=1 ωn + α

N + α+ β
+

count(ϕc,Φs)

|Φs|
−
∑
τs∈Ts

count(ϕc, τs)

|τs|
· logNϕc

(
count(ϕc, τs)

|τs|

))

where α and β are the parameters of the beta distribution, which we set to α = 1 and β = 1 in our
experiments.

By calculating this expected usefulness, we can rank the fracture clusters according to their potential
for reuse in future tasks. The ranking helps focus on fracture clusters that are more likely to appear
in successful outcomes and contribute to the agent’s performance across diverse scenarios.

A.7 ENVIRONMENTS

This section provides details on the environments used in our experiments, including standard grid-
world domains (Four Rooms, Grid, Ramesh Maze), MetaGrid, and the Procgen suite. Each environ-
ment has been designed to evaluate different aspects of the agent’s behaviour, such as navigation,
exploration, and task performance.

A.7.1 GRID-WORLD ENVIRONMENTS

We use three standard grid-world environments: Four Rooms, Grid, and Ramesh Maze. Figure 8
illustrates these environments.

In these grid-world environments, the action space is discrete, with four possible (primitive) actions:

A = {0, 1, 2, 3}

These actions correspond to moving Up, Down, Left, and Right, respectively. The agent’s observa-
tion space is a 7x7 grid centered on itself, meaning it only observes a portion of the environment
at any given time. This localized view allows the agent to learn how to navigate based on nearby
features. This design is similar to MiniGrid (Chevalier-Boisvert et al., 2023), but in our case, the
observations are ego-centric, always centered on the agent.

In tabular learning, the agent uses this 7x7 observation space to predict initiation states, though the
Q-function is still based on absolute coordinates. We do not employ state-transition graphs in any
of our experiments.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

(a) Four rooms (b) Grid (c) Ramesh maze

Figure 8: Examples of the Four Rooms (a), Grid (b), and Ramesh Maze (c) environments. In each,
black represents walls, blue represents the agent, yellow represents the goal, and white represents
empty space. The agent can move up, down, left, and right, receiving a reward upon reaching the
goal. The goal’s location in these figures is an example of one of many possible positions. These
versions of Four Rooms, Grid and Ramesh Maze are part of the MetaGrid suite and thus have a 7x7
observation space centered on the agent.

Figure 9: a) - e) demonstrate the building blocks which MetaGrid domains can be created from. f)
and g) demonstrate two 21x21 configurations using these building blocks.

A.7.2 METAGRID ENVIRONMENT

The MetaGrid environment extends the standard grid-world setup by allowing for procedurally gen-
erated maps of varying sizes. MetaGrid introduces randomness in the layout of walls and goal
locations, ensuring that the agent encounters a diverse set of environments during training and eval-
uation. Figure 9 demonstrates the building blocks which all environments in MetaGrid are formed
from, and Figure 10 shows examples of MetaGrid environments in two different sizes: 14x14 and
21x21.

The action space in MetaGrid is identical to the one used in the standard grid worlds, with four
discrete actions: Up, Down, Left, and Right. Similarly, the agent observes a 7x7 grid centered
on itself, allowing it to make decisions based on local information. The procedural generation in
MetaGrid provides varied environments for the agent to adapt to, making it a more challenging and
dynamic environment compared to static grid worlds.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

(a) (b) (c) (d)

Figure 10: Examples of randomly generated MetaGrid environments. The blue square represents
the agent, yellow represents the reward, white represents empty space, and black represents walls.
Subfigures (a) and (b) show 14x14 grids, while (c) and (d) show 21x21 grids.

A.7.3 PROCGEN ENVIRONMENTS

Procgen is a suite of procedurally generated environments designed to test generalisation and per-
formance across diverse tasks such as navigation, exploration, combat, and puzzle-solving. Each
environment provides a different variation on every reset, preventing the agent from memorizing
specific layouts or solutions. Please see Cobbe et al. (2020) for the full details of these environ-
ments.

Action Space Procgen environments feature discrete actions like movement (up, down, left, right)
and interactions (e.g., jump, shoot). Depending on the task, the action space can range from 5 to 15
actions, covering basic navigation and task-specific interactions.

Observation Space Unlike grid-based environments, Procgen uses 64x64 RGB pixel observations,
providing rich visual input. The agent must interpret features such as walls, enemies, and obstacles
to navigate and interact effectively.

Rewards Rewards in Procgen are sparse, given for completing tasks like reaching goals or defeating
enemies. The agent must learn to explore efficiently and develop strategies for long-term success.

Optional Parameters To simplify learning and reduce computational cost, we activated the follow-
ing Procgen parameters:

• Distribution mode = “easy”: Provides easier levels.

• Use backgrounds = “False”: Backgrounds are black to avoid additional noise.

• Restrict themes = “True”: Limits visual variation to a single theme, such as consistent
wall styles in environments like CoinRun.

Overall, these environments—ranging from grid-world environments with discrete action spaces
and ego-centric observations to the more complex Procgen environments with pixel-based observa-
tions—offer a diverse set of challenges for our agents. The combination of procedurally generated
environments in MetaGrid and Procgen ensures that the agents are tested on both fixed and highly
variable environments, making them suitable for evaluating the robustness of the learning algorithms
used in our experiments.

A.7.4 UMAP VISUALISATIONS OF OTHER ENVIRONMENTS

The structure observed in the latent projections of clustered Fracos as seen in Section 4.1 is also
demonstrated in trained agents of other simple environments; Figure 11 visualises fracture structures
in Grid (Nine rooms), CartPole, and LunarLander. The Grid environment is shown in Figure 8,
CartPole and LunarLander are standard environments from the Farama Foundation Gymnasium
suite Towers et al. (2023).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

CartPole Grid

Fracture Visualisation in 2D latent Space

LunarLander

Figure 11: Two dimensional visualisations of the fractures formed for trained agents in CartPole,
Grid (Nine Rooms) and LunarLander .

A.8 FRACOS CHAIN LENGTHS AND DEPTH LIMITS

In our FraCOs method, the process of matching clusters involves conducting a discrete search over
potential action permutations. This process requires forming all possible permutations of actions
and passing them through the saved clusterer to determine which permutation is currently viable for
the meta-policy to choose. The complexity of this search is captured by the permutation formula:

BPNc
=

Nc!

(Nc −B)!

where B is the length of the action chain, and Nc is the total number of cluster-options. As a result,
the time complexity for performing this search grows factorially, O

(
Nc!

(Nc−B)!

)
, as more cluster-

options are introduced or when the chain length is increased. This rapidly becomes computationally
expensive as these numbers increase.

A.8.1 CHAIN LENGTH AND DEPTH IN TABULAR EXPERIMENTS

Due to this factorial growth, it is crucial to limit the number of cluster-options and the chain length in
experiments that involve discrete cluster search (Experiments 1, 2 and 3.1). For all experiments using
cluster search, we chose a chain length of 2 to keep the computational complexity manageable.
Additionally, we restricted the depth of the FraCOs hierarchy to 3 or 4 levels, depending on the
complexity of the environment.

This limitation on depth and chain length helps maintain a balance between the richness of the
learned options and the feasibility of performing the cluster search in a reasonable amount of time.
The factorial growth of the search process becomes prohibitive as more cluster-options or deeper
chains are introduced, making this constraint necessary for efficient execution of our experiments.

A.8.2 WHY THIS ISN’T A PROBLEM FOR NEURAL NETWORK CLUSTER PREDICTIONS

In contrast, when we extend the FraCOs initiation and action estimation to be used with neural
networks, the limitation of conducting computationally expensive permutation searches is alleviated.
Neural networks can learn initiation sets and make predictions in a continuous manner, bypassing
the need for discrete cluster searches. This removes the necessity of factorially growing search
complexity, allowing for more flexibility in chain lengths and depth.

However, the challenge in neural network experiments lies in the sheer number of timesteps required
for training and evaluation. For example, in our deep experiments (at a depth of two), training
involved many millions of timesteps across nine different environments, totaling 180 million steps
for pre-training, repeated for three seeds. Testing required an additional 120 million steps, also
repeated for three seeds. This was only for FraCOs. When we include experiments using OC
(Option Critic), PPO, and PPO25, the total number of timesteps across all experiments becomes
3.06 billion.

To manage these computational demands, we used a chain length of 3. This allowed us to con-
duct only two warm-up phases, while ensuring that options could still be executed for a reasonable

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

duration (a maximum of nine steps, i.e., 3x3). This setup enabled us to complete the necessary
pre-training and testing without sacrificing the quality of the learned options while maintaining
computational feasibility.

A.9 FRACOS EXPERIMENT PARAMETERS FOR TABULAR METHODS

Tabular Q-Learning is a reinforcement learning algorithm where the agent learns the optimal action-
value function Q(s, a), which estimates the expected cumulative reward for taking action a in state
s and following the optimal policy thereafter. The agent interacts with the environment, updates the
Q-values for each state-action pair based on rewards, and converges to the optimal policy over time
Sutton & Barto (2018). We implement a vectorized Q learning method.

The key hyperparameters used in all Tabular Q-Learning experiments are listed in Table 2.

Table 2: Hyperparameters for Tabular Q-Learning Experiment

Hyperparameter Value Description
eps 0.1 Exploration rate for ϵ-greedy policy. Determines the

probability of taking a random action instead of the ac-
tion with the highest Q-value.

alpha 0.1 Learning rate for Q-value updates. Controls how much
the Q-value is updated in each iteration.

gamma 0.99 Discount factor for future rewards.
num steps 64 Number of steps per episode before environment reset.
max ep length 1000 Maximum timesteps allowed in an episode.
anneal lr True Whether to anneal the learning rate as training pro-

gresses.
batch size 64 Number of state-action-reward tuples processed in a

batch.
Number of Envs 64 Number of vectorized environments

In Tabular Q-Learning, the agent repeatedly updates its Q-values for each state-action pair, gradually
converging to the optimal policy. By balancing exploration and exploitation, adjusting the learning
rate, and prioritizing long-term rewards, the agent learns to optimize its decision-making in the given
environment.

FraCOs (Fracture Cluster Options) for Tabular Methods: For reproducibility, the key hyperpa-
rameters used in the clustering process and other implementation details are outlined below.

In all tabular experiments, we use HDBSCAN as the clustering method (Campello et al., 2013). The
clustering hyperparameters are:

Table 3: Clustering Hyperparameters for FraCOs

Hyperparameter Value
Chain length (b) 2
Minimum cluster size 15
Metric Euclidean
Minimum samples 1
Generate minimum spanning tree True

The following table lists the minimum success rewards required for each environment:

FraCOs-Specific Hyperparameters:

The generalisation strength represents the threshold a fracture cluster must pass to be considered
for initiation. The threshold is defined as 1− HDBSCAN.predict.strength > generalisation
strength.

The FraCOs bias factor determines how much initial Q-values should be scaled to encourage transfer,
similar to optimistic initial values. For FraCOs bias depth annealing, the bias depth increases with

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 4: Minimum Success Reward per Environment

Environment Minimum Success Reward
Four Rooms 0.97
Grid 0.60
Ramesh Maze 0.70
MetaGrid 14x14 0.95

Table 5: FraCOs Hyperparameters

Hyperparameter Value
Generalisation strength 0.01
FraCOs bias factor 100
FraCOs bias depth anneal True

deeper FraCOs. For example, with a bias factor of 100 and depth of 3, the first bias is scaled by the
cube root of 100, the second by the square root, and the final by 100.

A.10 FRACOS MODIFICATIONS FOR DEEP LEARNING

In our experiments with deep learning, particularly in environments with large state spaces such
as the 64x64x3-dimensional Procgen environments, we found that HDBSCAN failed to accurately
capture meaningful clusters or predict clusters effectively. Initially, we attempted to integrate a
Variational Autoencoder (VAE) to use its latent space representation in the fracture formation pro-
cess Kingma & Welling (2013). However, clustering methods still struggled to deliver satisfactory
results.

Consequently, we adopted a simpler clustering approach and shifted to using neural networks to
predict both the initiation states and the policy.

Simpler Clustering. To simplify the clustering process, we based clusters solely on sequences of
actions. For instance, with a chain length of three, any fracture formed by the action sequence “up”,
“up”, “right” was clustered together, independent of the state. While this approach overlooks some
intricacies captured by state-based fracture formations, it was necessary to handle the increased
complexity of environments like Procgen.

Cluster Selection. The cluster selection process remained unchanged. We continued to use the
usefulness metric, as defined in Equation 4, to select clusters.

Initiation Prediction. Instead of relying on clustering methods to predict initiation states, we trained
a neural network to predict the states corresponding to each fracture cluster. This process involved
two steps:

1. First, we trained a Generative Adversarial Network (GAN) to augment the states in each
fracture cluster (since neural networks typically require large datasets).

2. Using both the real and generated states, we trained a neural network as a classifier to
predict which fracture cluster a given state belonged to. One neural network was trained
to predict all initiations at each hierarchical level. This method significantly improved
efficiency, reducing the need for permutation-based discrete searches to a single forward
pass.

Policy Prediction. For policy prediction, we utilized a shortcut. Since all FraCOs are derived from
trajectories generated by a pre-trained agent, the policy of this trained agent already serves as an
approximation for the FraCO policy. We saved the agent’s policy at the end of trajectory generation
and used it as the policy for all FraCOs. This reuse of the agent’s policy minimized additional
computation without sacrificing accuracy.

Termination Condition. The termination condition for each FraCO was determined solely by the
chain length, maintaining a fixed execution limit per option.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

A.11 EXPERIMENT PARAMETERS FOR DEEP METHODS

All deep methods in our experiments were based on CleanRL’s implementation of PPO for the
Procgen environments, and we used the same hyperparameters from this implementation. This
ensured that the PPO baseline was hyperparameter-tuned, providing a strong and well-optimized
baseline for comparison. However, FraCOs and OC-PPO were not specifically hyperparameter-
tuned for these environments. Despite this, we consider it reasonable to assume that FraCOs and OC-
PPO would perform near their best, as they share similar PPO update mechanisms and underlying
structures with the baseline PPO.

While there exists an implementation of OC-PPO by Klissarov et al. (2017), we opted to implement
our own version to maintain consistency with CleanRL’s PPO implementation. This approach was
necessary to ensure that any observed differences in performance were due to algorithmic design
rather than implementation differences.

We chose OC-PPO over the standard Option Critic for two primary reasons. First, in our experiments
with the standard Option Critic, we observed that the options collapsed quickly, converging to the
same behaviour. By integrating the entropy bonus provided by the PPO update, we were able to
alleviate this collapse and maintain more diverse option behaviours. Second, PPO has demonstrated
significantly better performance than Advantage Actor Critic (A2C) (Mnih, 2016) in the Procgen
environments. Given that the original Option Critic framework is based on A2C, using it as a
baseline would have led to an unfair comparison, as A2C has been shown to be less effective in
these environments. Therefore, incorporating PPO in both FraCOs and OC-PPO allowed for a fairer
and more balanced comparison.

We outline the hyperparameters which we used in the implementation below. All code will be
provided from the authors github upon publication.

A.11.1 PPO

We use CleanRL’s Procgen implementation as our baseline Huang et al. (2022). The only adaption
we make is that we implement entropy annealing, we also have some wrappers which mean Procgen
can be used with the Gymnasium API. We have another wrapper which is used for handling multi-
level FraCOs in vectorized environments. These wrappers are also applied to the baseline PPO.

Hyperparameters Table 6 provide hyperparameters for PPO.

Parameter Value Explanation
easy 1 1 activates “easy” Procgen setting
gamma 0.999 The discount factor.
vf coef 0.5 Coefficient for the value function loss.
ent coef 0.01 Entropy coefficient.
norm adv true Whether to normalize advantages.
num envs 64 Number of parallel environments.
anneal lr true Whether to linearly anneal the learning rate.
clip coef 0.1 Clipping coefficient for the policy objective in PPO.
num steps 256 Number of decisions per environment per update.
anneal ent false Whether to anneal the entropy coefficient over time.
clip vloss true Whether to clip the value loss in PPO.
gae lambda 0.95 The lambda parameter for Generalized Advantage Estimation

(GAE).
proc start 1 Indicates the starting level for Procgen environments.
learning rate 0.0005 The learning rate for the PPO optimizer.
max grad norm 0.5 Maximum norm for gradient clipping.
update epochs 2 Number of epochs per update.
num minibatches 8 Number of minibatches.
max clusters per clusterer 25 The maximum number FraCOs per level.

Table 6: Selected parameters for the FraCOs implementation with PPO

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

A.11.2 FRACOS

Neural Network architectures.

• Input: c× h× w (image observation).
• Convolutional Layer 1: 16 filters, kernel size 3×3, stride 1, padding 1, followed by ReLU

activation.
• Convolutional Layer 2: 32 filters, kernel size 3×3, stride 1, padding 1, followed by ReLU

activation.
• Convolutional Layer 3: 32 filters, kernel size 3×3, stride 1, padding 1, followed by ReLU

activation.
• Flatten Layer: Converts the output of the last convolutional layer into a 1D tensor.
• Fully Connected Layer: 256 units, followed by ReLU activation.
• Actor Head: A linear layer with 256 input units and total action dims output units,

initialized with a standard deviation of 0.01.
• Critic Head: A linear layer with 256 input units and 1 output unit (for the value function),

initialized with a standard deviation of 1.

The model consists of two heads:

• Actor Head: Outputs a probability distribution over the action space for the agent to select
actions.

• Critic Head: Outputs the value function, which estimates the expected return for the cur-
rent state.

The network uses ReLU activations after each convolutional and fully connected layer, and the actor
and critic heads share the same convolutional layers but have distinct fully connected output layers.
In the FraCOs-SSR implementation, the convolutional layers are not reset after the warm-up phase.

Shared State Representation (SSR) details.

In the above architecture, both the actor and critic heads share a common set of convolutional layers.
These shared layers process the raw image observations from the environment and extract useful
spatial features that are fed into both the actor and critic branches. The use of shared convolutional
layers allows the model to leverage the same learned feature representations for both policy and
value estimation, promoting efficiency and consistency in learning.

In the FraCOs-SSR implementation, the shared convolutional layers are trained during the initial
warm-up phase, but they are not reset afterward. This allows the network to retain its learned feature
representations across multiple tasks and reuse them for both policy and value estimation during
subsequent training phases. By freezing these convolutional layers after the warm-up phase, the
network preserves its ability to generalize, while the distinct fully connected layers in the actor and
critic heads continue to adapt to new tasks.

Hyperparameters

Table 7 provides the full list of FraCOs hyperparameters in experimentation.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Parameter Value Explanation
easy 1 1 activates “easy” Procgen setting
gamma 0.999 The discount factor.
vf coef 0.5 Coefficient for the value function loss.
ent coef 0.01 Entropy coefficient.
norm adv true Whether to normalize advantages.
num envs 64 Number of parallel environments.
anneal lr true Whether to linearly anneal the learning rate.
clip coef 0.1 Clipping coefficient for the policy objective in PPO.
num steps 128 Number of decisions per environment per update.
anneal ent true Whether to anneal the entropy coefficient over time.
clip vloss true Whether to clip the value loss in PPO
gae lambda 0.95 The lambda parameter for Generalized Advantage Estimation

(GAE).
proc start 1 Indicates the starting level for Procgen environments.
learning rate 0.0005 The learning rate for the PPO optimizer.
max grad norm 0.5 Maximum norm for gradient clipping
update epochs 2 Number of epochs per update.
num minibatches 8 Number of minibatches
max clusters per clusterer 25 The maximum number FraCOs per level

Table 7: Selected parameters for the FraCOs implementation with PPO

A.11.3 OC-PPO

Architectures

• Input: c× h× w (image observation).

• Convolutional Layer 1: 32 filters, kernel size 3×3, stride 2, followed by ReLU activation.

• Convolutional Layer 2: 64 filters, kernel size 3×3, stride 2, followed by ReLU activation.

• Convolutional Layer 3: 64 filters, kernel size 3×3, stride 2, followed by ReLU activation.

• Flatten Layer: Converts the output of the last convolutional layer into a 1D tensor.

• Fully Connected Layer: 512 units, followed by ReLU activation.

The model consists of several heads:

• Option Selection Head: A linear layer with 512 input units and num options output units
(for selecting options), initialized with orthogonal weight initialization and a bias of 0.0.

• Intra-Option Action Head: A linear layer with 512 input units and num actions output
units (for selecting actions within an option), initialized with orthogonal weight initializa-
tion and a bias of 0.0.

• Critic Head: A linear layer with 512 input units and 1 output unit (for the value function),
initialized with orthogonal weight initialization and a standard deviation of 1.

• Termination Head: A linear layer with 512 input units and 1 output unit (for predicting
termination probabilities), followed by a sigmoid activation to output a probability between
0 and 1.

The architecture is designed to share a common state representation across different heads (option
selection, intra-option action selection, value estimation, and option termination). Each head uses
the shared state representation for their specific outputs:

• Option Selection Head: Outputs a probability distribution over available options.

• Intra-Option Action Head: Outputs a probability distribution over the primitive actions
available within the current option.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

• Critic Head: Outputs the value function, estimating the expected return for the current
state.

• Termination Head: Outputs a termination probability for each option, determining
whether the agent should terminate the option at the current state.

Hyperparameters. Table 8 provide the hyperparameters used in OC-PPO.

Parameter Value Explanation
easy 1 Activates the “easy” Procgen setting.
gamma 0.999 The discount factor for future rewards.
vf coef 0.5 Coefficient for the value function loss in PPO.
norm adv true Whether to normalize advantages before policy update.
num envs 32 Number of parallel environments for training.
anneal lr true Linearly anneals the learning rate throughout training.
clip coef 0.1 Clipping coefficient for the PPO policy objective.
num steps 256 Number of steps per environment before an update is performed.
anneal ent true Whether to anneal the entropy coefficient over time.
clip vloss false Whether to clip the value loss in PPO updates.
gae lambda 0.95 Lambda for Generalized Advantage Estimation (GAE).
proc start 1 Indicates the starting level for the Procgen environment.
num options 25 Number of options learned by the agent.
ent coef action 0.01 Coefficient for the entropy of the action policy.
ent coef option 0.01 Coefficient for the entropy of the option policy.
learning rate 0.0005 Learning rate for the PPO optimizer.
max grad norm 0.1 Maximum norm for gradient clipping.
update epochs 2 Number of epochs per PPO update.
num minibatches 4 Number of minibatches per PPO update.

Table 8: Selected hyperparameters for OC-PPO implementation

A.12 OC-PPO UPDATE MECHANISM

The Option-Critic with PPO (OC-PPO) extends the standard Proximal Policy Optimization (PPO)
algorithm by incorporating hierarchical options through the Option-Critic (OC) framework. The
following key components distinguish OC-PPO from the standalone PPO and OC implementations:

1. Separate Action and Option Policy Updates: In OC-PPO, two sets of policy updates are
performed: one for the action policy within an option and one for the option selection policy. Both
policies are optimized using the clipped PPO objective, but they operate at different levels of the
hierarchy:

• Action Policy: The action policy selects the primitive actions based on the current option.
For each option, the log-probabilities of actions are calculated, and the advantage function
is used to update the action policy.

• Option Policy: The option policy determines which option should be selected at each state.
This option selection is also updated using the PPO objective, with its own log-probabilities
and advantage terms.

Both the action and option policies are clipped to prevent overly large updates, following the stan-
dard PPO procedure:

Losspolicy = max

(
A(π) · πnew

πold
, A(π) · clip

(
πnew

πold
, 1− ϵ, 1 + ϵ

))
Here, πnew and πold represent the new and old policies for both actions and options, and A(π) is the
advantage function. This clipping is applied separately for both action and option updates, providing
stability in training.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

2. Shared State Representation for Action and Option Policies: The OC-PPO architecture shares
the state representation between the action and option policies but maintains distinct linear layers
for each policy. The state representation is learned via a shared convolutional network. This shared
representation ensures that both action and option policies are informed by the same state encoding,
allowing for consistent hierarchical decision-making.

• Action Policy Head: Receives the state representation and outputs the action logits for the
current option.

• Option Policy Head: Receives the state representation and outputs the option logits for
option selection.

3. Termination Loss for Options: A unique component of OC-PPO is the termination loss, which
encourages the agent to decide when to terminate an option and select a new one. The termina-
tion function outputs the probability that the current option should terminate. This probability is
combined with the advantage function to compute the termination loss:

Losstermination = E[termination probability · (return − value)]

The termination loss is minimized when the agent terminates the option appropriately, i.e., when the
return associated with continuing the current option is less than the estimated value of switching to
a new option. The termination probability is computed by a separate network head from the shared
state representation.

4. Hierarchical Advantage Calculation: OC-PPO calculates separate advantage terms for actions
and options:

• Action Advantage: Based on the immediate rewards from the environment while following
the current option’s policy.

• Option Advantage: Based on the value of switching to a new option versus continuing with
the current option.

Each advantage is normalized independently, and separate PPO updates are applied to both the action
and option policies based on their respective advantage functions.

5. Regularization via Entropy for Both Action and Option Policies: As in standard PPO, en-
tropy regularization is applied to encourage exploration. However, in OC-PPO, this regularization
is applied both at the action level (to encourage diverse action selection within an option) and at
the option level (to encourage exploration of different options). The overall loss function includes
separate entropy terms for actions and options:

Lossentropy = αaction ·H(πaction) + αoption ·H(πoption)

6. Clipping for Value Function: Like in PPO, OC-PPO also employs clipping for the value function
updates to prevent large changes in the value estimate between consecutive updates. This applies
to the shared value function, which evaluates the expected returns from both primitive actions and
options.

Lossvalue = 0.5 ·max
(
(Vnew −R)2, (Vold + clip(Vnew − Vold,−ϵ, ϵ))

2
)

A.13 HYPERPARAMETER SWEEPS

In this appendix we provide evidence of hyperparameter sweeps for both OC-PPO and HOC. We
use the hyperparameters found for OC-PPO in our final results for Procgen. We decided not to use
HOC after having difficulty with option collapse.

We conduct all hyperparameter sweeps for 2 million time-steps on a the Procgen environments of
Fruitbot, Starpilot and Bigfish. OC-PPO had 105 total experiments and HOC had 170.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

A.13.1 OC-PPO

In Figure 12 we visualise all experiments conducted over all seeds for learning rates [1e-3, 1e-4,
1e-5] and entropy coefficients of [1e-1, 1e-2, 1e-3]. In Table 9 we state the averaged results. We
decided on 0.01 for the learning rate and 0.001 for the entropy coefficient.

1e-5

2e-5

3e-5
4e-5
5e-5

1e-4

2e-4

3e-4
4e-4
5e-4

1e-3

Learning Rate

1e-3

2e-3

3e-3
4e-3
5e-3

1e-2

2e-2

3e-2
4e-2
5e-2

1e-1

Entropy Coeff

-5

0

5

10

15

20

25

30

35

Return

Figure 12: Parallel coordinates plot demonstrating effects of hyperparameters. This is for OC-PPO

Learning Rate Entropy Coefficient Final Returns
0.00001 0.83

0.001 0.79
0.1 0.86

0.0001 3.2
0.001 5.67
0.01 1.92
0.1 0.83

0.001 12.67
0.001 15.83
0.01 12.22
0.1 11.75

Table 9: Results for different learning rates and entropy coefficients for OC-PPO.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

A.14 FULL PROCGEN RESULTS

Learning curves across all tested Procgen environments and shown in Figure 13

Figure 13: Learning curves for all methods on all Procgen environments

A.15 SUCCESS CRITERIA HYPERPARAMETERS

A.16 CLUSTERING ANALYSIS

We compared different clustering methods and hyperparameters to ensure we were using a sensible
combination. We desired our clustering method to have prediction functionality for new data and we
didn’t want to specify the number of clusters. The only sensible clustering method which remained
was HDBSCAN. Regardless we analysed others to ensure HDBSCAN was not significantly worse.

We first generated trajectories in the Nine Rooms environment, created embeddings using UMAP
and then conducted clustering with various methods and parameters. Figures 14 – 19 provide visual-
isations of the results. We decided on HDBSCAN with minimum size of 15 and Eucledian distance
metrics.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Environment Minimum Success Returns
Four Rooms 0.97
Nine Rooms 0.60
Ramesh Maze 0.70
MetaGrid 14x14 0.95
BigFish 5
Climber 7
CoinRun 7.5
Dodgeball 5
FruitBot 7.5
Leaper 7
Ninja 7.5
Plunder 10

Table 10: Minimum Success Returns for Various Environments

Figure 14: HDBSCAN clustering comparison

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Figure 15: DBSCAN clustering comparison

Figure 16: Mean Shift clustering comparison

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Figure 17: Optics clustering comparison

Figure 18: Kmeans clustering comparison

Figure 19: GMM clustering comparison

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814

U
nderreview

as
a

conference
paperatIC

L
R

2025

A.17 USEFULNESS WEIGHTING QUALITATIVE ANALYSIS

The usefulness equation assumes equal weighting of appearance probability, relative frequency, and estimated entropy. Here, we qualitatively demonstrate the
effects of altering these weights. We rewrite the equation below and, in Tables 11 and 12, conduct ablation studies and visualize the top eight selected Fracture
Clusters in the nine rooms environment. For this experiment, we set the success threshold to 0.97 and use a chain length of four.

The usefulness equation assumes equal weighting of appearance probability, relative frequency, and estimated entropy. Here, we qualitatively demonstrate the
effects of altering these weights. We rewrite the equation below and, in Tables 11 and 12, conduct ablation studies and visualize the top eight selected Fracture
Clusters in the nine rooms environment. For this experiment, we set the success threshold to 0.97 and use a chain length of four.

The tables demonstrate that each metric selects reasonable fracture clusters. Comparing the top and bottom eight fracture clusters of each metric, we intuitively
observe that the top-ranked clusters are more likely to be useful for future tasks. However, the rankings exhibit distinct differences depending on the ablations. For
instance, when A = 0, B = 1, C = 0, the ranking prioritizes the relative frequency of selecting a fracture cluster, regardless of whether the corresponding trajectory
was deemed successful. This is evident in the first-ranked fracture cluster for this configuration. With B = 1, the top-ranked cluster represents trajectories that
frequently move away from the initial state—a common occurrence. Conversely, with A = 1, the selected cluster traverses a bottleneck, reflecting the prioritization
of appearance probability. This outcome aligns with intuition since most failed trajectories also originate from the initial state, causing such clusters to rank lower
when A = 1.

The effects of the entropy term (C) are harder to interpret intuitively without a detailed understanding of the full training set.

While tuning A, B, and C in Equation 12 could offer benefits during the research phase, we adopted the equal-weight assumption. This approach simplifies the
model’s hyper-parameters and provides a baseline for future work. Adopting equal weights is not uncommon; for instance, Eysenbach et al. (2018) use equal
weighting in their skill discovery objective.

E[U(ϕc)] =
1

3

A

∑N
n=1 ωn + α

N + α+ β︸ ︷︷ ︸
(1) Appearance Probability

+B
count(ϕc,Φs)

|Φs|︸ ︷︷ ︸
(2) Relative Frequency

−C
∑

τs∈Ts

count(ϕc, τs)

|τs|
logNϕc

(
count(ϕc, τs)

|τs|

)
︸ ︷︷ ︸

(3) Estimated Entropy

 . (12)

34

1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847

U
nderreview

as
a

conference
paperatIC

L
R

2025

Table 11: Ranking of fracture clusters based on different weight configurations. Each cell contains an image visualization of that fracture cluster.

Rank A=1, B=1, C=1 A=1, B=0, C=0 A=0, B=1, C=0 A=0, B=0, C=1

1

2
Continued on next page...

35

1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880

U
nderreview

as
a

conference
paperatIC

L
R

2025

Rank A=1, B=1, C=1 A=1, B=0, C=0 A=0, B=1, C=0 A=0, B=0, C=1

3

4
Continued on next page...

36

1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913

U
nderreview

as
a

conference
paperatIC

L
R

2025

Rank A=1, B=1, C=1 A=1, B=0, C=0 A=0, B=1, C=0 A=0, B=0, C=1

5

6
Continued on next page...

37

1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946

U
nderreview

as
a

conference
paperatIC

L
R

2025

Rank A=1, B=1, C=1 A=1, B=0, C=0 A=0, B=1, C=0 A=0, B=0, C=1

7

8

38

1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979

U
nderreview

as
a

conference
paperatIC

L
R

2025

Table 12: Ranking of fracture clusters based on different weight configurations. Each cell contains an image visualisation of that fracture cluster. Here negative
indicates worst rank. -1 is the lowest rank cluster for instance.

Rank A=1, B=1, C=1 A=1, B=0, C=0 A=0, B=1, C=0 A=0, B=0, C=1

-1

-2
Continued on next page...

39

1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012

U
nderreview

as
a

conference
paperatIC

L
R

2025

Rank A=1, B=1, C=1 A=1, B=0, C=0 A=0, B=1, C=0 A=0, B=0, C=1

-3

-4
Continued on next page...

40

2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045

U
nderreview

as
a

conference
paperatIC

L
R

2025

Rank A=1, B=1, C=1 A=1, B=0, C=0 A=0, B=1, C=0 A=0, B=0, C=1

-5

-6
Continued on next page...

41

2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078

U
nderreview

as
a

conference
paperatIC

L
R

2025

Rank A=1, B=1, C=1 A=1, B=0, C=0 A=0, B=1, C=0 A=0, B=0, C=1

-7

-8

42

	Introduction
	Background
	Reinforcement Learning
	Hierarchical Reinforcement Learning
	Generalisation

	Related Work
	Fracture Cluster Options
	Identifying Patterns in Agent Behaviour
	Selecting Useful Fracture Clusters
	Using Fracture Clusters

	Experimental Results
	Experiment 1: Tabular Reward Generalisation
	Experiment 2: Tabular State Generalisation
	Experiment 3: Deep State and Reward Generalisation in Complex Environments

	Discussion and Limitations
	Appendix
	Glossary
	Derivation of Usefulness Metric
	Deriving P[c s | xs] Using Bayesian Inference
	Deriving P[c | s]
	Deriving H(c Ts)
	Expected Usefulness
	Environments
	Grid-World Environments
	MetaGrid Environment
	Procgen Environments
	UMAP visualisations of other environments

	FraCOs Chain Lengths and Depth Limits
	Chain Length and Depth in Tabular Experiments
	Why This Isn’t a Problem for Neural Network Cluster Predictions

	FraCOs Experiment Parameters for Tabular Methods
	FraCOs Modifications for Deep Learning
	Experiment Parameters for Deep Methods
	PPO
	FraCOs
	OC-PPO

	OC-PPO Update Mechanism
	Hyperparameter Sweeps
	OC-PPO

	Full Procgen results
	Success Criteria Hyperparameters
	Clustering Analysis
	Usefulness weighting qualitative analysis

