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ABSTRACT

Multimodal data in machine learning promises to improve generalization and per-
formance on complex tasks. However, training multimodal models requires exten-
sive paired datasets, can be computationally expensive, and lacks transparency by
entangling shared and modality-specific signals in ways that hinder interpretabil-
ity and control. In this work, we introduce MultiLoReFT: a low-rank represen-
tation fine-tuning framework for multimodal learning using pretrained unimodal
models. Our approach extends low-rank representation finetuning to the multi-
modal setting and learns interpretable projection subspaces that decouple shared
and modality-specific information. MultiLoReFT adaptively learns the rank of
each subspace to best capture complementary contributions of each modality with
minimal trainable parameters. Our method offers an efficient and scalable so-
lution to adapting pretrained representations for multimodal reasoning, enabling
interpretable fine-tuning across both synthetic and real-world benchmarks.

1 INTRODUCTION

The growth of multimodal data, ranging from image-caption pairs to multimodal diagnostic data, has
enabled a wide range of applications (Liang et al., 2024) in vision-and-language modeling (Chen
et al., 2024} [Sun et al., [2025), medical diagnostics (Steyaert et al., [2023} [Zhou et al.| [2023)), and
biology (Cui et al., [2025). These applications require learning effective joint representations that
capture both the common semantics across modalities and the unique information each modality
provides. However, training multimodal models from scratch typically demands large amounts of
aligned, high-quality multimodal data, which are often scarce or expensive to obtain in real-world
settings (Baltrusaitis et al.l|2019). This has motivated recent approaches to reuse powerful unimodal
encoders pretrained on large-scale corpora, and adapt them for multimodal tasks through fine-tuning
(Kim & Kim, 2024; Miyazawa et al.,|2022)).

While fine-tuning enables flexible reuse of pretrained models, it can be computationally intensive
and parameter inefficient. Recent work has introduced parameter-efficient fine-tuning strategies such
as low-rank adaptation (LoRA) (Hu et al., [2021)) and low-rank representation fine-tuning (LoReFT)
(Wu et al,2024) that directly update internal representations in low-dimensional subspaces instead
of fine-tuning the model parameters. These approaches achieve comparable performance to full
fine-tuning with less computation. They are particularly attractive in data-limited regimes, like
multimodal cohorts, as they reduce the risk of overfitting while preserving pretrained knowledge.

In this work, we extend low-rank representation fine-tuning to multimodal representation learning.
We propose MultiLoReFT, a framework that efficiently fuses information from multiple pretrained
unimodal encoders while simultaneously disentangling shared and unique information from each
modality. This decoupling increases interpretability by providing insights into the relative contribu-
tions of each modality (Tsai et al.,[2019), improves generalization across domains, and allows for
better handling of missing modalities. MultiLoReFT offers a self-supervised solution to augment
unimodal representations with cross-modal information that generalize to any downstream label. It
learns structured low-rank projection matrices that define orthogonal shared and modality-specific
subspaces to decouple the unique information contribution of each modality. Leveraging the struc-
ture of each subspace, we incorporate a novel adaptive pruning strategy that enables the model to
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dynamically reduce the rank of each projection matrix. This results in learning the amount of infor-
mation each subspace contains while improving efficiency by avoiding over-parameterization. We
evaluate our approach on synthetic and real-world multimodal datasets, demonstrating its ability
to successfully fuse multimodal representations, learn shared and modality-specific subspaces that
identify and decouple the unique and shared information, and allocate representational capacity ef-
fectively for each subspace. By bridging multimodal representation disentanglement and efficient
fine-tuning, our method offers a principled and lightweight approach to leveraging pretrained uni-
modal models in multimodal scenarios. This lays the groundwork for interpretable and adaptable
multimodal systems in data-scarce settings where training multimodal models can be challenging.

2 RELATED WORK

Multimodal Representation Learning. A central challenge in multimodal learning is how to in-
tegrate heterogeneous signals into effective representations (Liang et al., 2021). Early approaches
rely on simple early, intermediate or late fusion mechanisms (Boulahia et al.| [2021). Coordinated
representation approaches align unimodal encoders into a shared embedding space, often with con-
trastive or retrieval-based objectives (Radford et al., 2021; |Hager et al., 2023). Fusion-based models
remain widely used, ranging from simple concatenation or pooling strategies (Baltrusaitis et al.|
2019) to attention-based architectures that explicitly capture cross-modal interactions (Tsai et al.,
2019; Jayakumar et al., 2020). Recent studies have taken a more analytical view, quantifying redun-
dancy and complementarity information between modalities using Partial Information Decomposi-
tion (PID) (Liang et al.,[2023aj Zhang et al., 2025). These insights emphasize that naive fusion lack
clarity on the structure of modality-specific and shared information, motivating the development of
disentanglement frameworks.

Disentangled Multimodal Representations. A complementary line of work aims to explicitly
separate shared and modality-specific information in multimodal settings. These methods often
define information components with respect to downstream tasks; for instance, FactorCL (Liang
et al.| [2023b) aligns modality-invariant features with supervision signals while preserving unique
factors using a factorized contrastive learning. Triple Disentanglement (Zhou et al., 2025) further
decomposes representations into shared, relevant, and irrelevant modality-specific components us-
ing a transformer-based encoder—fusion design. Other approaches offer self-supervised alternatives
to information decomposition. DRIM-U (Robinet et al., 2024) enforces disentanglement through
reconstruction and adversarial regularization, while APOLLO (Zhang et al.| 2024b) leverages latent
optimization to learn partially shared embeddings that generalize through trained encoders. These
approaches move beyond fusion to provide a more structured account of modality interactions.

Multimodal Fine-tuning. The difficulty of collecting large-scale paired multimodal datasets has
motivated research on leveraging unimodal models for multimodal learning (Zhang et al., 2024a).
Existing approaches range from fusion of unimodal encoders (Miyazawa et al.| 2022} [Norelli et al.,
2023) to direct fine-tuning for multimodal tasks (Zhai et al., 2022). Yet, fine-tuning large models
remains challenging, particularly when available multimodal cohorts are small (Vieira et al.l 2024)).
In language models, representation-level fine-tuning rather than full model adaptation has shown
strong effectiveness for downstream tasks (Wu et al., 2024} Hu et al., [2021). Extensions to multi-
modal learning (Liu et al., [2025) similarly demonstrate gains in both performance and flexibility.
Building on this, our method introduces a multimodal fine-tuning approach that improves task per-
formance and clarifies the division of information between shared and unique components.

3 MULTIMODAL REPRESENTATION FINETUNING (MULTILOREFT)

We introduce a low-rank representation fine-tuning framework for multimodal learning called Mul-
tiLoReFT that decomposes pretrained unimodal representations into shared and modality-specific
components. As shown in Figure |1} our method operates on top of frozen pretrained encoders,
requiring only a small number of additional parameters. This design enables efficient multimodal
fusion while adding interpretability by explicitly disentangling modality-specific contributions from
shared information.
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Figure 1: Overview of MultiLoReFT. Pretrained unimodal encoders (with frozen parameters) pro-
duce representations i1 and hs, which are fine-tuned through low-rank projections into shared (R;)
and modality-specific (R,,1, Ry2) subspaces. Nonlinear transforms (fs, f,,,) learn the representa-
tion edit (§) in the lower-rank space that needs to be subtracted from the projection of the repre-
sentations. Once edited in the low-rank space, the representations are projected back to form the
fine-tuned representations ®; and ®5. The right panel illustrates the decoupling of information into
shared (z,) and modality-unique (2,1, Z,2) components.

3.1 REPRESENTATION FINE-TUNING WITH MULTILOREFT

We build on representation fine-tuning (Wu et al) [2024) to adapt pretrained unimodal encoders
for multimodal learning. The key idea is to apply structured, low-rank interventions on pretrained
representations, steering them toward disentangled multimodal subspaces that capture both shared
and modality-specific factors. Consider two pretrained unimodal encoders E; and E5 for modalities
1 and 2. Given inputs x; and x5, the encoders produce representations hy, hy € R?. We learn fine-
tuned representations &1, ®, € R that (i) preserve the expressive power of the representations, (ii)
capture multimodal interactions, and (iii) disentangle shared and modality-specific information.

We introduce three low-rank subspaces: one shared across modalities and two modality-specific.
Projection matrices Rg, Ry,1, R € Rr>d map fine-tuned representations into these subspaces,
yielding the components in Eq.[l} In this formulation, zs represents shared information, while z,,;
and z,,o capture information unique to each modality, providing interpretable building blocks for
downstream multimodal tasks.

z, = Rs® = Ry®2, 2Zp1 = Ri®1,  Zpmo = Rppo®o. (H

Instead of finetuning encoders, MultiLoReFT learns lightweight transformations fs;, f;,; in the low-
rank subspaces. The fine-tuned representation of each modality ¢ € {1, 2} is computed as:

@1 =hy + R] (fsr(h1) = Rshy) + Ry (fmr (hy) — Ripihy), 2)
@y =hy + R (fs2(ha) — Rsha) + R 5 (fma(ha) — Rinoho). 3)

These edits operate only in the low-rank subspaces, making training efficient while ensuring inter-
pretability. The shared subspace isolates common information, and the modality-specific subspaces
capture unique signals. The transformations learn how to update the representations in each space.

3.2 OBIECTIVE

Unlike prior ReFT methods, fine-tuning in our framework is not guided by a supervised task ob-
jective but instead by structural constraints imposed on the representation space. The goal is to
adapt pretrained unimodal embeddings so that their projections into learned subspaces exhibit dis-
entanglement while still enabling effective multimodal fusion. To this end, we optimize a composite
objective that encourages (i) independence between shared and modality-specific components, (ii)
orthogonality between subspaces, and (iii) preservation of information from the original unimodal
embeddings. The overall loss is composed of 3 componenets:

L= >\1Lindep + A2‘corth + >\3LMI~ “4)
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Independence loss. (Lingep) To ensure that shared and modality-specific components capture
complementary information, we minimize their statistical dependence using the Hilbert—Schmidt
Independence Criterion (HSIC) (Gretton et al.l [2007). HSIC is a nonparametric measure of statis-
tical dependence between two random variables. Given random variables X and Y with kernels k
and [, when the kernels are characteristic (e.g., Gaussian RBF or Laplace), HSIC(X,Y") = 0 if and
only if X and Y are statistically independent. Independence is enforced not only between the shared
and private subspaces of each modality but also between the two modality-specific subspaces. This
prevents leakage of redundant shared information into the private components:

Lindep = HSIC (241, 2m1) + HSIC(252, Zma) + HSIC(Z1m1, Zm2). (5)

MultiLoReFT uses an empirical, unbiased estimator of H that can be minimized during training
to enforces nonlinear independence between the representation components as HSIC(X, Y) =
o= 1)2 tr(K L), where K, L. € R™*™ are centered kernel matrices. We use an RBF kernel in all

experiments.

Orthogonality loss. (Lon) While independence ensures statistical separation, we further enforce
disjointness between the shared subspace s and modality-specific subspaces R,,; and R,,2. This
is done by minimizing the Frobenius norm of their pairwise inner products:

Lo = |Rs Ry |7 + |1 Rs Ryl - (6)

This constraint strengthens disentanglement by ensuring the subspaces are orthogonal. While HSIC
guarantees that subspaces do not carry redundant information, orthogonality ensures that their basis
vectors do not overlap in representation space. For instance, two statistically independent variables
could still align geometrically (colinear bases), and two orthogonal directions could still exhibit
nonlinear dependence.

Cross-modal mutual information loss. (Lyp) To ensure that the fine-tuned projections retain
information from the original unimodal embeddings h, we adopt an InfoNCE-style contrastive loss
as shown in Equation [/] InfoNCE provides a lower bound on the true mutual information, and
maximizing this bound reserves high mutual information between the projections and their sources.
Therefore, the disentangled shared and modality-specific projections remain sufficient summaries of
their original embeddings.

exp (h;,z" ))/7')

Ly = —— 1 .
Z j 1exp ((hi,z(3)>/7')

Where 7 is the temperature parameter that controls the sharpness of the similarity distribution in-
side the softmax, h; is the pretrained embedding of modality ¢, and NV is the batch size. Here, z(®)
is formed by concatenating the modality-specific projection from modality ¢ with the shared pro-
jection from the opposite modality. This design enforces consistency of shared components across
modalities, ensuring that they encode modality-agnostic information.

(7

To avoid hand-tuning regularization weights A\, we adopt Gradient Normalization (Chen et al.,|2018)),
which balances the contributions of each objective by equalizing their gradient magnitudes. We
demonstrate the contribution of each loss component to successful representation learning through
an ablation study presented in the Appendix

3.3 TRAINING
3.3.1 TRAINING PROCEDURE

We adopt a multi-stage training strategy that progressively learns different components of the model,
as outlined in Algorithm T]and described through the following steps.

 Stage 1 (Shared). We first optimize only the shared subspace R, and associated parameters to
capture cross-modal information that is maximally aligned between the two modalities. At this
stage, training is driven solely by the mutual information loss L.
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» Stage 2 (Private). Next, we optimize the modality-specific subspaces R,,; and R,,2 to extract
private components that encode complementary information to the learned shared while remaining
independent of the shared space.

» Stage 3 (Joint). Finally, we fine-tune all parameters jointly and initiate the adaptive pruning
process, allowing the model to refine both shared and modality-specific representations.

Transitions between stages are determined adaptively using a validation-based convergence crite-
rion. Specifically, we monitor the validation loss and trigger a stage switch when (i) its relative
improvement falls below a minimum threshold, and (ii) this condition persists for a number of con-
secutive epochs specified by the patience parameter. In all our experiments, we use a minimum
relative improvement of 0.001 within a patience window of 40 epochs (increased to 100 epochs for
the joint stage, to account for recovery after pruning). Appendix [A.2.2] provides ablation results to
show the importance of staged learning and the pruning procedure.

Algorithm 1: MultiLoReFT Training

Input: Multimodal datasets (Dyain, Dvar); pretrained encoders (E1, Es); pruning threshold e
; Convergence criteria
Variables: Projection matrices Ry, R,,,1, Ry,2; transform functions fs1, fs2, fin1, fm2

trainable_stage < “shared”
while not converged do
foreach minibatch (x1,X2) in Dyygin do
(hi, hs) + Ei(x1), Fa(x2)
®; =h; + R;(fs(hﬁ — Rshy) + R;ﬂfm(hl) — Rpihy)
¢'2 = h2 + Rs (fS(hQ) - Rsh2) + Rm2(fm(h2) - RmQhQ)
Zs1 < RS(I)U Zm1 < leq)ﬁ
Zsy < Rs®2;  Zmao < Ripa®o;
if trainable_stage = shared then
L + GradNorm([Lp,])
Train: Rs’ fsl» fsQ
else if trainable_stage = private then
L+ GradNorm([Lmh, Lind; LmiD
Train: le» Rm2a fml: fm2
else joint
L« GradNorm([Lonh, Linda Lmi])
L Train: Rs’ fsl» fsQa le’ Rm?v fm17 fm2

// Validation, pruning, and stage control
Evaluate validation losses Ly, on Dyy
if stage is joint and MI within 10% of best MI then
| Adaptive Rank pruning(e) (Alg.
if Convergence criteria is met w.r.t £, then
| advance stage: shared — private — joint

3.4 RANK ADAPTATION VIA PRUNING

A key challenge in disentangled representation learning is determining the dimensionality of shared
and modality-specific subspaces: fixing ranks a priori risks underfitting when too small, or redun-
dancy and leakage when too large. To address this, we adopt a dynamic rank adaptation mecha-
nism that prunes low-energy directions. During training, we compute the singular value decom-
position (SVD) of each projection matrix Ry, R,,1, Rin2 as R = USVT, with singular values

S = diag(oy, . ..,0,). Dimensions with o; below a threshold ¢ are pruned, and the matrices are up-

dated with a rotated, compressed basis R = diag(5S. k)VlTk, ensuring orthogonality and alignment

with dominant directions (Algorithm [2). This rank adaptation improves robustness and eliminates
the need for manual rank tuning, as further shown in Appendix
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Algorithm 2: Adaptive Rank Pruning

Input: Matrices Ry, R,,1, Ry,2; threshold e

foreach R € {R;, Rin1, Rima} do

R =Udiag(S)VT

Find projected ranks k based on S; < €

Select k by pruning singular values below € (clip to keep at least one)

Form R « diag(Sy.x) V|1,;
For each associated f, replace last Linear layer to output k and rotate weights by U, :)Tl: &
R+ R

Refresh optimizer param groups

4 EXPERIMENTS

We evaluate MultiLoReFT on both simulated and real-world datasets. Our experiments are designed
to answer two key questions: (1) Does the model effectively decouple shared and modality-specific
information, and how is modality-relevant information distributed across these components? (2)
Does fine-tuning improve multimodal representations for downstream tasks by capturing joint infor-
mation more effectively?

4.1 DATASETS AND BASELINES

We first conduct controlled evaluations on simulated datasets, where the ground-truth generative
structure is known. Each dataset includes conditional, joint, and unique labels, enabling targeted
validation of different aspects of multimodal representation learning. We then scale to large, real-
world datasets to assess the applicability of our method with pretrained encoders.

 Simulation I & II. Two synthetic multimodal datasets with controlled generative processes. Sim-
ulation I is constructed from independent latent factors drawn from diverse distributions, while
Simulation II introduces dependencies across some factors, creating correlated shared and unique
components. Both datasets provide labels that are modality-specific, shared, and conditional, en-
abling systematic evaluation of disentanglement. Full details in Appendix [A.T]

* Flickr30K-Multi (Elliott et al.,|2016). A multilingual extension of the Flickr30K dataset contain-
ing image—caption pairs in five languages. Each image is paired with one caption per language,
making language a modality-specific factor while semantic content remains shared across modal-
ities. We use English and French captions for our experiments.

* Crema-D (Cao et al.,[2014). An audio—visual dataset of multimodal emotion expression and per-
ception, comprising 7,442 clips from 91 actors across diverse demographics. Each clip contains
both facial and vocal expressions of fixed sentences. The dataset provides both shared emotional
signals and modality-specific cues, along with contextual metadata (e.g., age, ethnicity).

We use established pretrained models for each modality: DINO Vision Transformer for images
(Caron et al., 2021, BERT-base for English text (Devlin et al.|2019), LaBSE for multilingual text
(Feng et al., [2022)), Wav2Vec 2.0 base pretrained on Librispeech-960h for audio (Baevski et al.,
2020), and a 3D ResNet-18 video encoder pretrained on Kinetics-400 (He et al.| 2016} Kay et al.,
2017). We compare our method against a broad set of multimodal representation learning frame-
works, grouped into two categories:

* General fusion approaches. These methods integrate multimodal signals through concatenation,
attention, or interaction mechanisms. As baselines, we use late fusion (Baltrusaitis et al., [2019)),
which simply concatenates modality representations, and an attention-based fusion model, which
projects each modality into a common space and applies a lightweight self-attention layer to let
the two embeddings interact before pooling into a fused representation. We also evaluate mul-
tiplicative interactions (MI) (Jayakumar et al.| |2020), which extend tensor product fusion with
learnable parameters to capture higher-order dependencies, and contrastive learning, which en-
courage aligned representations by pulling paired modalities closer and unpaired samples further.
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* Decoupling approaches. These methods explicitly separate shared and modality-specific informa-
tion. We consider APOLLO (Zhang et al., 2024b), an autoencoder-based model that decouples
shared and unique components through latent optimization, directly learning embeddings for train-
ing samples before training encoders to generalize. We also benchmark DRIM-U (Robinet et al.,
2024), which disentangles multimodal representations using three complementary objectives: en-
forcing similarity across shared embeddings, ensuring reconstruction fidelity, and adversarially
regularizing unique modality-specific components. Since the original DRIM-U relies on task la-
bels, we adopt its self-supervised variant presented in the paper, making it more comparable to
our setting.

For fairness, all baselines are trained on the same pretrained unimodal embeddings as input. The
only architectural differences lie in the method-specific adapters—for example, DRIM-U uses a
discriminator-based decoupling module, whereas APOLLO learns latent parameters directly.

5 RESULTS

In this section, we present two sets of evaluations: (i) demonstrating that MultiLoReFT learns de-
coupled representations that correctly encode shared and modality-specific information, and (ii)
showing that these decoupled representations also serve as strong multimodal features that improve
downstream prediction tasks by leveraging cross-modal learning during fine-tuning.

5.1 DECOUPLING SHARED AND MODALITY-SPECIFIC INFORMATION

The objective of disentangling shared and modality-specific signals is to assess the unique and com-
mon information that each modality contributes in a multimodal setting. We compare MultiLoReFT
against benchmark methods designed for disentanglement, and evaluate how the extracted compo-
nents predict labels tied either to modality-specific or shared generative factors.

On the simulated datasets, we have labels corresponding to one of the underlying generative factors
(Shared, M1, and M2). We measure the predictability of each representation component (zg, Z,1,
Z2) for these labels to test whether 1) the information is embedded in the right component, and
2) how well it is removed from the other components. Table E] summarizes these results, measured
as the performance of a logistic regression model trained on different representation components to
predict the corresponding label. For continuous labels we measure the Mean Squared Error (MSE)
and for categorical variables we use Accuracy. The underlined entries indicate the component that
should perform best in predicting each label, and the A entries show the performance gap between
the representation components. The larger this gap, the better the decoupling. All benchmarks
except for M1 label with APOLLO learn the most relevant information for each label in the right
representation component. However, in many instances, especially with Simulation II, we see a low
A value, showing that information is replicated in the other components as well. MultiLoReFT
produces a larger performance gap between correct and incorrect components compared to base-
lines for the majority of labels, indicating that information has been more cleanly separated and
removed from the wrong subspaces. In some cases, like the M2 label for Simulation I, APOLLO
achieves a larger gap, but this is mainly due to a generally lower performance for all components.
Figure |2| visualizes the subspaces learned by MultiLoReFT, demonstrating that the shared label is
clearly separable in the shared space, while each modality-specific label is best separated in its own
subspace.

The real data further validate the performance of MultiLoReFT (Table[2) and demonstrate its utility
on complex data. In Flickr (M1:Image, M2:Caption), where the label indicates whether captions are
in English or French, the modality-specific representation of text is the only component that reliably
encodes this information. This is also visible from the well-separated clusters of Caption Language
in Figure [3] MultiLoReFT not only captures this information in the right subspace, but also has
the largest A among all tested methods. The shared representation performance is random, mean-
ing the language information is completely removed from this subspace. In Crema-D (M1:Video,
M2:Audio), which pairs video and audio, we consider three labels: (i) Sentence ID, best captured
by the audio modality; (ii) Ethnicity; and (iii) Sex, both conveyed primarily through video. Mul-
tiLoReFT aligns each label with the correct component, but also achieves larger performance gaps
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Figure 2: Visualization of subspaces learned by MultiLoReFT on Simulation I. Each panel shows
a 2D PCA projection of the shared or modality-specific representations, colored by the underlying
generative label. For the shared label (left block), clear clustering emerges in the shared subspace
while modality-specific subspaces remain unstructured, indicating successful disentanglement. For
the modality I and II labels (middle and right blocks), the corresponding modality-specific subspace
captures the structure, whereas the shared subspaces remain agnostic.

between relevant and irrelevant components for Sentence ID and Ethnicity labels. Figure [3] scatter
plots also demonstrate this separation.

Table 1: Measuring the decoupling of shared and modality-specific information on simulated data.
We report the predictability of different representation components (zs, Z,1, Zm2) for the under-
lying generative variables, using accuracy (Acc) for categorical and mean squared error (MSE) for
continuous variables. Large performance gap A indicates better decoupling.

Simulation I

Simulation IT

Model Rep. Shared (Acc)t MI1(MSE)], M2 (MSE)| | Shared (Acc)t  MI (Acc)t
MultiLoReFT  z, 1.000£0.000  0.048+0.014  0.059£0.010 | 1.000£0.000  0.537+£0.075
Zm1  0.798£0.144  0.009+0.003  0.081£0.006 | 0.500+£0.000  1.000+0.000
Zm2  0.756£0.115  0.075£0.007 0.005+0.002 | 0.598+0.196  0.500+0.000
A 0.223+0.130  0.038+0.014  0.054+0.010 | 0.451+0.098  0.463+0.075
DRIM-U Zs 1.000£0.000  0.063+0.008 0.061£0.007 | 1.000+0.000  0.757+0.008
Zm1  0.997£0.004  0.001+0.000 0.083£0.003 | 1.000£0.000  1.000+0.000
Zm2 1.000£0.000  0.081£0.009  0.007£0.001 | 0.967+0.006  0.500+0.000

A 0.001£0.002  0.062+0.008 0.054+0.007 | 0.033£0.006  0.243£0.008
APOLLO Zs 1.000£0.000  0.027+0.004  0.076£0.009 | 1.000+0.000  1.000+£0.000
Zm1  0.998£0.003  0.043+0.005 0.086£0.007 | 1.000£0.000  1.000+0.000
Zm2 1.000£0.000  0.087+0.018  0.019£0.002 | 1.000£0.000  0.500+0.000
A 0.001£0.001  0.016£0.006  0.057+0.009 | 0.000£0.000  0.000£0.000

A key strength of MultiLoReFT lies in its adaptive rank learning. While benchmark methods re-
quire fixing the size of shared and modality-specific representations, we set their dimensionalities
equal to the final rank learned by MultiLoReFT. This provides the benchmarks with an advantage to
leverage the learned ranks. Because as shown in Table[d]in the Appendix, benchmark performance
degrades substantially when dimensionalities are varied, as they tend to redundantly encode infor-
mation across all components. By contrast, MultiLoReFT automatically prunes the dimensionality
of each subspace during training, directly discovering the appropriate structure from the data. Ta-
ble [/|in the Appendix shows the inital and converged ranks for all experiments and demonstrates
consistency across random seeds, yielding compact, stable representations.

5.2 LEARNING CROSS-MODAL INFORMATION

Multimodal training enables representations to capture information from complementary modali-
ties, thereby improving downstream predictive performance. We demonstrate that fine-tuning with
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Table 2: Measuring the decoupling of shared and modality-specific information on Crema-D and
Flickr30. We report classification accuracy for each representation component (zs1, Zs2, Zm1, Zm2)
across Sentence identity, Ethnicity, Sex, and Language tasks. High performance concentrated in
the corresponding component, with others near chance, reflects effective separation of shared and
modality-specific information.

CremaD Flickr30
Model Rep. Sentence ID (Acc.)f Ethnicity (Acc.) T Sex (Acc.) T \ Language (Acc.)t
MultiLoReFT  z, 0.303+0.041 0.5004+0.000 0.788+0.033 0.50040.000
Zm1 0.244+0.021 0.9814+0.031 1.000+0.000 0.500+0.000
Zmo 0.9754+0.010 0.5004-0.000 0.500+£0.000 1.000+0.001
A 0.6721+0.042 0.481+0.031 0.21240.033 0.500+0.001
DRIM-U Zg 0.54040.032 0.50040.000 0.500+0.000 0.699+0.071
Zm1 0.201+0.017 0.968+0.006 0.99240.003 0.5004-0.000
Zm2 0.980+0.012 0.50040.000 0.535+0.046 1.000+0.000
A 0.44040.034 0.468+0.006 0.492+0.003 0.30140.071
APOLLO Zs 0.717+0.014 0.50040.000 0.911+0.021 1.0004+0.000
Zm1 0.181+0.012 0.9544+0.006 0.992+0.007 0.500+0.000
Zmo 0.7384+0.018 0.5004-0.000 0.500+0.000 1.0004-0.000
A 0.021+0.023 0.45440.006 0.008+0.022 0.000+0.000
Sentence ID Sex Caption Language

Modality-specific video Shared video

Modality-specific video Shared video

Figure 3: PCA visualizations of learned representations on Crema-D and Flickr30. Task-relevant
information (Sentence ID, Sex, Caption Language) is concentrated in the corresponding modality-
specific components, while other components remain closer to random structure, illustrating effec-
tive disentanglement.

MultiLoReFT yields representations that, when fused, outperform a range of benchmarks (Table [3a).
These include both disentanglement-based methods and classical fusion strategies, all applied on top
of pretrained embeddings. We also examine the impact of stronger pretrained unimodal encoders on
multimodal performance in Appendix the[A.5] As expected, more powerful encoders capture richer
structure in the data and consequently yield higher-quality multimodal representations.

Beyond fused representations, we show that fine-tuning also improves each individual modality by
allowing it to incorporate information from the other. Figure [3b]illustrates this effect by compar-
ing the predictive performance of the fine-tuned embeddings ®; and ®- against their pretrained
counterparts h; and ho, as well as against contrastive fine-tuning baselines. Across both modali-
ties, fine-tuning consistently enhances predictive accuracy, with MultiLoReFT achieving the largest
gains. Notably, the weaker modality in each pair benefits the most, reflecting its ability to leverage
cross-modal information provided by the stronger modality.
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@) (b)
Method Simulation 1 Crema-D Joint label ( Slmulatlo-n Il N Emotion label (Crema-D)
joint label emotion 0.0 = '
MultiLoReFT  0.009+0.002  0.460+0.031 0.08 o
APOLLO 0.009+£0.001 0.313+0.012 2406 go3
DRIM-U 0.01240.001  0.443+0.018 * c
Late fusion 0.05440.005 0.4524+0.039 - o
Cross attention ~ 0.00940.003  0.304-+0.032 '
Contrastive 0.056+0.006 0.41940.025 0.00 0.0
MI 0.01640.002  0.29640.022 (yo\‘d (yo\‘ (yo\‘d éa\\

Table 3: Comparison of fusion methods for multimodal prediction on Simulation I (joint label pre-
diction) and Crema-D (emotion prediction). (a) Table reports mean = std of each baseline predicting
the label using the fused representations. Figure shows predictive performance of all modality
representations, comparing pretrained representations i with representations fine-tuned with con-
trastive learning ¢ and using MultiLoReFT &, showing how finetuning enhances each representa-
tions’ predictive power.

6 DISCUSSION

This work introduces MULTILOREFT, a low-rank representation fine-tuning framework for mul-
timodal representation learning that disentangles shared and modality-specific information for im-
proved interpretability. Our approach is model-agnostic, only requires learning a small number
of parameters, and enables efficient multimodal fusion without sacrificing interpretability. MUL-
TILOREFT uses an adaptive rank pruning that allows the model to learn the proper size of each
subspace, improving both performance and insight into information. The broader importance of
this contribution lies in its ability to leverage pretrained unimodal encoders for multimodal down-
stream tasks. By decoupling shared from modality-specific information, MultiLoReFT provides
interpretable insights into what each modality contributes, while adaptive rank learning offers a
practical solution in settings where the dimensionality of shared and private subspaces is unknown.
These properties make the method particularly valuable for scientific discovery domains such as
healthcare, where interpretability and data efficiency are critical.

In this work we focus on 2 modalities. While in theory, MultiLoReFT can be extended to multiple
modalities by defining a set of projection subspaces for each combination of shared information
and expanding the independence constraints across all relevant component pairs, this added granu-
larity could also reduce interpretability as it becomes unclear what constitutes “shared information
between two modalities but not a third”, or how such partial factors would be utilized in down-
stream tasks. We therefore focus on the bimodal case for consistency with prior work and lack
of ground truth labels for validation, but future work can investigate such extension. Also, Multi-
LoReFT builds on top of frozen pretrained embeddings, its performance is inherently constrained by
the quality and coverage of those unimodal encoders. If the pretrained representations fail to capture
modality-relevant information, the gains from fine-tuning will be limited. Future work could explore
coupling MultiLoReFT with joint pretraining, scaling to larger multimodal corpora, and extending
the framework to more than two modalities.
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A APPENDIX

A.1 SIMULATED DATASETS

To systematically evaluate the functionality of our approach, we constructed two simulated datasets
in which the underlying generative factors are explicitly controlled and well understood. These
datasets enable us to verify whether each component of MultiLoReFT captures the intended signal.
We provide a brief description of each below.

A.1.1 SIMULATION I

Simulation I generates two modalities from a combination of shared and modality-specific latent
variables, sampled from non-Gaussian distributions. In total, nhiggen = 2 + 2 + 2 = 6 hidden
variables are defined: two shared, two private to modality 1, and two private to modality 2.

Shared latent factors. The shared variables z, € R? are sampled from a binomial distribution and
slightly perturbed with Gaussian noise to introduce variability:

zs ~ Binomial(1,0.5) + AN(0,0.011).

Modality-specific latent factors. Each modality has its own private factors drawn from distinct
non-Gaussian distributions:

Zm1 ~ Weibull(1.5) x 0.3, 22 ~ Beta(3,2).

Labels. Each data point is annotated with four labels to probe shared and modality-specific infor-
mation:

Z'(Zml)j ifys =1,
s 0717273 s ml — E i j > m2 — E j o nd — J .
Ys € { } Ym1 . (Z nl)] Ym2 ; (27712)] Yeond {27 (ZmQ)j if ys = O,
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where y, is a multi-class label (0-3) derived from the unique binomial combinations of zs, Ym1
and y,,2 are continuous regression targets based on private modality factors, and yconq conditionally
selects between the two modalities.

Representations. Observed features are constructed by concatenating shared and modality-specific
variables and projecting them into higher-dimensional spaces via learned linear encoders:

hy = [Z’HLla Zs]Wla ha = [ng, ZS]WQa

where Wy, W5 are projection matrices sampled from a uniform distribution. The output dimension-
ality is set to 10 per modality.

This design produces paired representations (hy, ho) with explicitly defined non-Gaussian structure
and labels that probe shared, private, and conditional information, enabling controlled evaluation of
disentanglement and multimodal fusion.

A.1.2 SIMULATION II

Simulation II generates two modalities from five latent variables with structured dependencies that
introduce both shared and modality-specific components, as well as partial overlap.
Shared latent factors. Two variables define the shared information:

z1 ~ Ber(0.5), zo = z1 +v0.0045T(5, 1),

where 27 is a binary Bernoulli variable and 25 is a continuous variable correlated with z; through an
additive Gamma perturbation.

Modality-specific latent factors. Modality 1 has two private factors:
z3 ~ Ber(0.5), z4 = 222 + 23 + v0.00125T°(2, 2),

while Modality 2 has one private factor:

25 = 22+ V0.0075(3,2).

This setup ensures overlap, as 2z influences both z4 and z5, creating cross-modal dependencies while
maintaining modality-specific variation.

Labels. Labels are directly tied to the latent variables, enabling controlled evaluation of shared
versus modality-specific representations. Binary classification tasks can be derived from z; (shared)
or zs (modality 1 specific), while regression targets can be defined from z» (shared), z4 (modality 1
specific), or z5 (modality 2 specific).

Representations. As in Simulation I, observed features for each modality are constructed by
concatenating the corresponding shared and private variables and projecting them into higher-
dimensional feature spaces via random linear transformations:

hl = [Zml,ZS]Wl, h2 = [Zm27ZS]W2,

where W7, Wy are sampled from uniform distributions. The output dimensionality is set to 40 and
80 for each modality.

This design complements Simulation I by introducing structured overlap and dependence between
modalities, testing whether models can disentangle shared information from modality-specific sig-
nals in the presence of cross-modal dependencies.

A.2 SUPPLEMENTARY RESULTS

A.2.1 THE EFFECT OF LEARNING THE RIGHT RANK IN THE PERFORMANCE OF BENCHMARKS

As discussed in the results section, we size benchmark representations to match the ranks learned
by MultiLoReFT. This choice is critical, since the appropriate subspace dimensionality is rarely
known in advance and strongly affects performance. Table ] reports benchmark results on simulated
settings when their representation size is instead fixed to the initial input dimensionality used by
MultiLoReFT. In this case, performance degrades noticeably, with substantial leakage of informa-
tion across components, underscoring the importance of adaptive rank selection.

14



Under review as a conference paper at ICLR 2026

Table 4: Benchmark performance on simulated datasets when representation size is fixed to the
initial input dimensionality used by MultiLoReFT. Performance degrades compared to using the
learned ranks, with clear leakage of information across components, highlighting the importance of

learning rank.

Simulation I

Simulation II

Model Rep. Shared (Acc.)  Shared (Sill.) M1 (MSE) M2 (MSE) \ Shared (Acc.) M1 (Acc.)
APOLLO  zg 1.00+0.00 0.838 +0.006  0.006 + 0.001  0.083 + 0.012 | 1.0004+0.000  1.000+0.000
Zs2 1.001+0.00 0.801 +0.007  0.080 +0.005  0.001 + 0.000 | 1.0004+0.000  0.500+0.000
Zm1 1.00+0.00 0.446 +0.021  0.005 +0.002  0.089 + 0.004 | 1.0004+0.000  1.000+0.000
Zm2 1.004+0.00 0.487 +0.049  0.081 +0.012  0.001 + 0.000 | 1.0004+0.000  0.500+0.000
DRIM-U  z4 1.00+0.00 0.75340.005 0.037+0.004 0.08940.012 | 0.686+0.021  0.500+0.000
Zs2 1.00+0.00 0.760+0.006 0.080+0.013 0.032+0.006 | 0.706+0.018  0.500+0.000
Zm1 1.00+0.00 0.29340.015 0.000+0.000 0.08440.006 1.000+0.000  1.000+0.000
Zm2 1.00+0.00 0.381+0.007 0.082+0.010 0.002+0.000 1.000+0.000  0.500+0.000

A.2.2 ABLATION STUDY FOR PRUNING AND STAGING

To assess the contribution of individual design choices in MultiLoReFT, we conduct ablation experi-
ments removing either the pruning mechanism or the staged training procedure. Results are summa-
rized in Table[5] Both components are critical: eliminating pruning leads to inflated subspace sizes
and information leakage across components, while skipping staged training reduces stability and
weakens decoupling. The full model, which combines both pruning and staged optimization, con-
sistently achieves the highest predictive accuracy across simulated and real datasets, underscoring
their complementary benefits.

Table 5: Ablation study of MultiLoReFT on simulated and real datasets. Removing either the
pruning mechanism or the staged training procedure reduces performance, while the full model
combining both achieves the best results.

Simulation I Simulation II

Model Rep. Shared (Acc.) M1 (MSE) M2 (MSE) \ Shared (Acc.) M1 (Acc.)
MultiLoReFT Zs 1.000+0.000  0.048+0.014  0.059+0.010 | 1.000+0.000  0.537+0.075
Zm1  0.798+0.144  0.00940.003 0.081£0.006 | 0.50040.000  1.0004-0.000
Zm2  0.756£0.115  0.0754+0.007 0.005+0.002 | 0.5984+0.196  0.5004-0.000
MultiLoReFT Zs 1.000+0.000  0.002+0.001  0.018+0.007 | 1.000+0.000  0.500+0.000
(No pruning)  z,,1  0.99440.006  0.000£0.000 0.083£0.007 | 0.50040.000  1.00040.000
Zm2  0.961£0.034 0.0784+0.008  0.004+0.00 | 0.66440.099  0.5004-0.000
MultiLoReFT Zs 1.000+0.000  0.066+0.013  0.075+0.008 | 1.000+0.000  0.705+0.165
(No staging)  Zp,,1 0.817£0.138  0.008+0.003  0.082+0.007 | 0.5004+0.000  1.00040.000
Zm2  0.64240.269  0.076+0.005 0.016+£0.016 | 0.774+£0.229  0.500+0.000

Furthermore, Table [6] shows the effect of different components of the loss term in the overall per-
formance of MultiLoReFT. Each row presents the results with one component removed. We see
that for modality-specific labels, the orthogonality loss alone is sufficient to encourage decoupling,
since these targets depend mainly on unimodal geometry—each modality’s signal lies on its own
manifold, so ensuring linear disjointness prevents interference without needing additional statistical
constraints.

In contrast, the shared categorical label relies on both orthogonality and independence, because
it emerges from the joint statistical structure across modalities; orthogonality separates the spaces
geometrically, while independence removes nonlinear correlations and redundancy, allowing the
shared subspace to capture only the truly cross-modal information rather than correlated modality-
specific noise. Mutual-information (MI) retention loss preserves unimodal content. Without MI,
linear-probe and few-shot performance drop across all subspaces (shared and private).
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Table 6: Ablation of the MultiLoReFT objective. The first row is the full model. The next three
rows remove the indicated loss term (one at a time). The final row trains with fixed loss weights
instead of automatic weighting via GradNorm.

Simulation I Simulation II

Model Rep. Shared (Acc)t M1 (MSE)J M2 (MSE)| ‘ Shared (Acc)t M1 (Acc)t
MultiLoReFT Zs 1.0004-0.000 0.0484+0.014  0.05940.010 | 1.000+0.000  0.53740.075
Zm1 0.7984+0.144 0.00940.003  0.081£0.006 | 0.50040.000  1.0004-0.000
Zm2 0.75640.115 0.0754+0.007  0.00540.002 | 0.598+0.196  0.500=0.000
A 0.2234-0.130 0.0384+0.014  0.05440.010 | 0.451+0.098 0.463+0.075
MultiLoReFT Zs 1.000£0.000 0.02940.034  0.02140.009 1.000£0.000  0.5004:0.000
- orthogonality ~ Zm,1 1.00040.000 0.003+0.000  0.08140.006 | 0.748+0.204  1.000=£0.000
Zm2 0.99840.004 0.0724+0.007  0.00540.002 1.000£0.000  0.50040.000
A 0.00140.002 0.0264+0.034  0.016£0.009 | 0.12640.102  0.50040.000
MultiLoReFT Zs 1.00040.000 0.0644+0.006  0.06940.012 1.0004+0.000  0.599+0.140
- independence  Zy,1 0.99940.002 0.0064+0.001  0.08040.006 | 0.735+0.051 1.00040.000
Zm2 0.9934+0.007 0.073+0.007  0.00540.003 1.0004+0.001  0.50040.000
A 0.00440.005 0.0584+0.006  0.064+0.012 | 0.133+0.026  0.401=£0.140
MultiLoReFT Zs 0.93140.098 0.062+0.018  0.0634+0.013 | 0.987+0.019  0.629+0.095
-MI Zm1 0.83540.066 0.0064+0.001  0.08140.007 | 0.599+0.071  0.746+0.180
Zm2 0.85040.139 0.0734+0.008  0.0084+0.004 | 0.570+0.100  0.500+0.000
A 0.08940.103 0.056+0.018  0.0554+0.013 | 0.403+0.064  0.11740.204
MultiLoReFT Zs 1.00040.000 0.0674£0.013  0.063£0.021 1.000£0.000  0.597+0.069
- GradNorm Zm1 1.0004:0.000 0.0054+0.001  0.07940.005 | 0.997+0.004 1.0000.000
Zm2 0.98340.025 0.07940.009  0.020£0.011 1.000£0.000  0.50040.000
A 0.00940.013 0.0621+0.013  0.043+0.021 0.0024+0.002  0.403+0.069

A.3 RANK-ADAPTATION

Table [7] reports the initial and converged dimensionalities of the shared (zs) and modality-specific
(Zm1, Zm2) subspaces across different datasets. These results are averaged over multiple random
seeds, with standard deviations shown to reflect variability. We observe that MULTILOREFT con-
sistently prunes high-dimensional initializations down to compact and stable subspaces, with only
minor variation across runs. This consistency highlights that the model is able to reliably identify
the rank of shared versus modality-specific information.

The results presented in the main paper are achieved with these compact representations, demon-
strating that strong disentanglement and predictive performance do not require large subspace sizes.
Instead, the rank adaptation procedure ensures both efficiency and interpretability, by automatically
converging to low-dimensional but informative representations across datasets.

Table 7: Shared and modality-specific subspace dimensionalities learned by MultiLoReFT. Entries
show the initial rank — converged rank mean and standard deviation on 4 different random seeds

Flickr

700 — 310 £ 3.0
700 — 142+ 5.0
700 — 105+ 2.0

Crema-D

700 — 29.75 £ 7.22
700 — 113.5 £ 4.36
700 — 196.75 £ 10.68

Simulation II

40 -+ 4.0£0.70
40 — 2.0 £0.00
40 - 2.2 £0.42

Simulation I

Zs 10 — 5.2 4+0.38
10 — 4.6 +0.48
10 — 4.6 £0.48

Zm1
Zm?2

A.4 PARAMETER SIZE COMPARISON

A central motivation behind PEFT methods is to achieve parameter-efficient fine-tuning. Rather than
updating all weights of large pretrained encoders, recent methods introduce lightweight modules
whose size scales with the input representation dimension d and the learned subspace size d*. This
allows fair comparison across benchmarks in terms of their parameter overhead.

For MultiLoReFT, the number of trainable parameters is on the order of:

#params =~ 770d d*,
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corresponding to the projection matrices and small transformation functions. Importantly, we begin
with a large parameter space but prune down subspaces dynamically during training, which further
reduces the effective size.

For APOLLO (Zhang et al.,|2024b), the parameter cost includes adaptor layers and explicit sample-
wise representations, yielding:

#params ~ 2048 dd* + 3d"Nyin,

where the second term scales linearly with the number of training samples n,i,, making the method
less efficient for large datasets.

For DRIM-U (Robinet et al.| [2024), adaptor heads, decoders, and discriminators introduce higher
overhead:
#params ~ 1536 dd* + 65.5d".

These expressions approximate d* as the average subspace size across shared and modality-specific
components. While exact sizes may vary, the relative scaling highlights the efficiency of Multi-
LoReFT, enabling scalable fine-tuning in multimodal settings and making training feasible under
limited computational budgets.

A.5 EFFECT OF UNIMODAL ENCODER STRENGTH ON MULTIMODAL PERFORMANCE

Table [§] compares multimodal performance on different pre-trained encoders on the CREMA-D
emotion recognition task. In the first configuration (Encoders I), we use simpler unimodal en-
coders, Wav2Vec 2.0 Base pretrained on Librispeech-960h (Baevski et al., 2020) for audio and 3D
ResNet-18 pretrained on Kinetics-400 (He et al., 2016; |[Kay et al., 2017) for video. In the second
configuration (Encoders II), we replace these with stronger encoders, MViT-V2-S pretrained on
Kinetics-400 (Li et al., [2022)) for video and WavLM-Base+ for audio (Chen et al., 2022)).

As shown, all multimodal baselines improve with higher-capacity unimodal encoders, but the gains
are more pronounced for MultiLoReFT. Importantly, the relative ordering of methods remains sta-
ble, indicating that MultiLoReFT’s advantage is complementary to the underlying encoder strength.
This property is an advantage of methods that leverage unimodal encoders, as unimodal models con-
tinue to advance, their improved representational quality can be benefited from to construct higher-
performing multimodal representations, even under limited multimodal supervision.

Table 8: The effect of Unimodal Encoder Strength on Multimodal Performance on Crema-D dataset
for emotion detection. Encoders I setup uses relatively simpler video and audio encoders while
Encoders II setup uses more advanced pretrained models.

Method Crema-D emotion Crema-D emotion
Encoders I Encoders 11
MultiLoReFT 0.460+0.031 0.810+£0.017
APOLLO 0.3134+0.012 0.534+0.017
DRIM-U 0.443+0.018 0.733+£0.008
Late fusion 0.45240.039 0.792+0.017
Cross attention 0.30440.032 0.79540.022
Contrastive 0.419+0.025 0.764+0.009
MI 0.29640.022 0.79140.022
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