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ABSTRACT

Knowledge distillation (KD) has become a cornerstone for compressing large
language models (LLMs). However, existing LLM-KD methods have primarily
focused on logit-based approaches, which achieve good performance but overlook
the rich internal representations of LLMs. Feature-level KD could leverage this
structure to provide complementary benefits, yet it remains underexplored because
current feature-KD approaches typically assume identical teacher–student hidden
sizes, a restrictive and unrealistic assumption. A common workaround is to train a
linear projector to align their feature spaces; however, this introduces additional
parameters, distorts teacher embeddings, and often degrades downstream perfor-
mance, especially in generative tasks. We propose Flex-KD, a parameter-free
framework for task-driven feature distillation for LLMs. Instead of projecting the
entire teacher representation, Flex-KD uses gradient-based scores to identify the
most task-relevant dimensions of the teacher’s hidden states and distills only this
subspace into the student. This ensures that the student’s limited capacity is allo-
cated to informative components, while avoiding projector-induced distortion and
extra parameters. Flex-KD integrates seamlessly with existing KD pipelines and
supports differing teacher–student hidden sizes. Extensive experiments across both
classification and generative tasks, i.e., instruction-following and summarization,
show that Flex-KD consistently boosts the student performance, achieving up to a
3.75% performance gain over the linear projection baseline.

1 INTRODUCTION

Recently, there has been a surge in using large language models (LLMs) for classification (Liang
et al., 2021; Jiao et al., 2020; Sanh et al., 2019) and generative tasks (Liu et al., 2024; OpenAI,
2023; Team et al., 2023), where they achieved strong performance across diverse applications (Zhuge
et al., 2024; OpenAI, 2023; Touvron et al., 2023; Wang et al., 2023b). Despite their remarkable
success, these models are computationally intensive and often impractical for deployment in resource-
constrained environments. Hence, there has been an interest in making LLMs more efficient in terms
of storage and computation through knowledge distillation (KD) (Hinton, 2015; Zhu et al., 2024; Xu
& McAuley, 2022). KD can be applied during pre-training to create general-purpose compressed
models (Jiao et al., 2020; Sanh et al., 2019; Liu et al., 2024), or more efficiently, motivated by findings
from Kovaleva et al. (2019), KD can be applied during fine-tuning to produce task-specific distilled
models (Zhou et al., 2021; Liang et al., 2020; Sun et al., 2019a; Gu et al., 2024a; Ko et al., 2024b).

In the era of LLMs, most KD research has focused on logit distillation (Ko et al., 2024b; Gu et al.,
2024a; Taori et al., 2023; Kim & Rush, 2016), i.e., transferring the output probabilities (soft labels)
of the teacher model to the student. In contrast, feature distillation (Sanh et al., 2019), which transfers
intermediate hidden representations from teacher to student, has received far less attention, even
though it has demonstrated strong results in classification tasks (Sun et al., 2019b; Dasgupta & Cohn,
2025; Saadi et al., 2023b). This disparity can be attributed to a fundamental limitation of conventional
feature distillation methods: the requirement that teacher and student models have identical hidden
dimensionalities (Muralidharan et al., 2024; Sun et al., 2019a; Sanh et al., 2019), which considerably
restricts their applicability across diverse architectures. A common solution is to introduce a learnable
linear projector to match the student’s feature representation with that of the teacher (Chen et al.,
2022; Jiao et al., 2020). While this approach has proven effective in removing the constraint (Miles
& Mikolajczyk, 2024; Chen et al., 2022; Jiao et al., 2020), it adds extra parameters that must be
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trained from scratch during the fine-tuning distillation process and may distort the teacher’s feature
representations. This can harm student performance, particularly in downstream distillation scenarios
where training data is limited (Dasgupta & Cohn, 2025).

In this paper, we propose a novel task-specific KD method, Flex-KD, which enables effective hidden
state matching between teacher and student models with differing hidden sizes, without introducing
any additional parameters. The key intuition behind Flex-KD is that LLMs are over-parameterized
for domain-specific tasks and that only a subset of their units contributes significantly to a given task
(Hase et al., 2024; Kovaleva et al., 2019). Flex-KD focuses on identifying these task-relevant units
and distilling knowledge only from their subspace to the student model.

In the standard task-based KD framework for LLMs, the teacher is typically a large, versatile
model (Gu et al., 2024a), pre-trained on diverse datasets (Wang et al., 2023a; OpenAI, 2023).
Distillation often transfers all components of the teacher uniformly to the student (Gu et al.,
2024a; Peng et al., 2023; Kim & Rush, 2016; Sanh et al., 2019), a strategy that would help if
the goal was to train generally capable student models (Jiao et al., 2020; Sanh et al., 2019). How-
ever, many real-world applications prioritize performance on specific downstream tasks (Ge et al.,
2023), where transferring the full versatility of the teacher may introduce unnecessary complexity.

Figure 1: Last-layer activation magni-
tudes (z-axis) of a fine-tuned GPT-xlarge
on a downstream example, with values
< 2 set to zero. The x/y axes denote
sequence and features.

In fact, recent studies (Hase et al., 2024; Gromov et al.,
2024; Luo et al., 2024; Dai et al., 2021) show that only
a subset of LLM components significantly contribute to
task performance. To further confirm this phenomenon,
in Figure 1, we visualize the activations of the last hidden
layer on a downstream task example: many units display
near-zero or low-magnitude activations, suggesting limited
contribution to the final output. This indicates that indeed
distilling all hidden units from the teacher is not only un-
necessary but may even hinder specialization. Additional
visualizations with varying thresholds are provided in Ap-
pendix A. Our proposed approach Flex-KD is designed
to leverage these findings and, rather than relying on uni-
form transfer or rigid projector-based mappings, effective
task-based distillation should be selective.

Flex-KD is a novel task-driven distillation method that
enables hidden state matching between teacher and stu-
dent models with differing hidden sizes, without intro-
ducing any additional parameters. Specifically, given a
student with hidden size dS << dT (the teacher model
with size dT ), for a given task, our method first assigns
task-conditioned importance scores to different units in the
teacher hidden layer. These nodes are then ranked by their importance, and the subspace formed by
top dS units are selected and prioritized for distillation. This forces the student model to concentrate
its limited capacity on the most relevant teacher components, thereby improving performance while
accommodating flexible hidden layer sizes.

In summary, our contributions are as follows:

• We propose Flex-KD, a novel task-driven feature distillation method that enables effective knowl-
edge transfer between teacher and student models with differing hidden sizes, consistently outper-
forming existing baselines while supporting flexible student architectures.

• Unlike existing methods, we design Flex-KD to be selective and parameter-free, enabling faithful
transfer of task-relevant knowledge from teacher embeddings. Moreover, it can be seamlessly
integrated with existing logit-based distillation methods to further enhance performance.

• Extensive experiments across various language generation (seven datasets and six models) and
classification (six datasets and two models) benchmarks demonstrate that Flex-KD consistently
outperforms state-of-the-art baselines. Specifically, we achieve performance gains of up to 1.79%
on classification, 2.1% on instruction-following, and up to 3.75% on summarization compared to
the standard linear projection approach.
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2 RELATED WORK

Knowledge distillation (Schmidhuber, 1992; Hinton, 2015) is a widely used model compression
technique that transfers knowledge from a large teacher model to a small, efficient student model (Sanh
et al., 2019; Gou et al., 2021). In natural language processing (NLP), KD has been predominantly
applied to text classification tasks by aligning the student model with the teacher’s output distributions
(Liang et al., 2021; Zhang et al., 2023b), hidden representations (Sun et al., 2019b; Jiao et al., 2020),
or attention matrices (Wang et al., 2020; 2021). These approaches effectively reduce model size
while preserving performance, making them suitable for resource-constrained setups. However, the
application of KD in language generation tasks is more complex than in classification tasks (Gu et al.,
2024a). Unlike the fixed-label space of classification, open-ended text generation involves producing
discrete token sequences of varying lengths, which adds inherent complexity.

Logit distillation (Hinton, 2015) aims to minimize the distance between student and teacher output
distributions. Current KD techniques for generative models are mainly centered around logit-based
methods, where they primarily minimize the forward Kullback-Leibler divergence (FKLD) (Kullback,
1951) between the teacher and student model output distributions (Sanh et al., 2019; Kim et al.,
2024b). This may involve supervision using the teacher’s outputs at each generation step (Kim &
Rush, 2016; Taori et al., 2023), training on teacher-generated text (Peng et al., 2023), or employing
reverse Kullback-Leibler divergence (RKLD)(Gu et al., 2024a; Kim et al., 2024a; Gu et al., 2024b),
which makes the student distribution focus on certain modes in the teacher’s distribution. Recent
work (Wang et al., 2025; Ko et al., 2024a) has found that the performance difference of FKLD and
RKLD closely depends on the dataset and the task at hand.

Feature distillation (Muralidharan et al., 2024; Jiao et al., 2020) has received less attention in genera-
tive tasks (Muralidharan et al., 2024) compared to logit-based methods, which can be explained by the
inherent limitation of conventional feature KD approaches that enforce equal hidden dimensionalities
between teachers and students. This restriction reduces both student architectural flexibility and com-
pressibility. A common workaround, adapted from vision and classification (Chen et al., 2022; Jiao
et al., 2020), is to train an additional linear projector to align the teacher’s and student’s feature spaces
(Jiao et al., 2020). While effective in pre-training (Jiao et al., 2020), projectors often under-perform
in downstream tasks (Dasgupta & Cohn, 2025), where data is scarce, introduce extra parameters,
and may distort teacher features. The work closest to ours is Dasgupta & Cohn (2025), which also
tackles the problem of feature distillation between teacher and student with differing hidden sizes.
Their approach introduces a metric to compute similarity between tensors of mismatched dimensions,
enabling flexible hidden state distillation. However, it still uniformly transfers knowledge from all
teacher components without considering their task relevance. As shown in Table 3, this limitation can
degrade student performance in several cases. This motivates the need for filtering out non-relevant
units and focusing on the task-relevant subspace, the core idea of our proposed approach.

3 FLEX-KD

In this section, we introduce Flex-KD, which enables feature KD between teacher and student models
with different hidden sizes. Figure 2 illustrates the Flex-KD workflow: a teacher model, fine-tuned
on the downstream task t, provides hidden representations hT that capture task-relevant features.
Our goal is to distill only the teacher dimensions that matter for task t. Concretely, we minimize the
student-teacher cross-correlation on a selected teacher subspace (Eq 5). To obtain that subspace we
compute gradient-based importance scores (Eq 1- 4) and select the top units. Specifically, we compute
the gradient of the output with respect to each unit’s activation. The gradient magnitude reflects each
unit’s influence on the output, serving as a task relevance score (Krishna et al., 2024; Simonyan et al.,
2014). Units with higher scores are prioritized for distillation. Subsections 3.1 and 3.2 describe our
approach for selecting the top task-relevant units and detail the distillation framework, respectively.

3.1 TASK-RELEVANT UNITS LOCALIZATION

In this subsection, we describe our method for identifying task-relevant units in the teacher model.
Formally, let the teacher model T be a neural network F with hidden size dT , and let the student
model S be a neural network with hidden size dS , where dS << dT . The teacher model T is
fine-tuned on dataset D = {x1, x2, . . . , xN} to perform task t. Focusing on the last hidden layer,
we assume that the hidden states of the teacher and student networks are hT ∈ RdT and hS ∈ RdS ,
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Figure 2: Overview of Flex-KD.

respectively. In our approach, we use the gradient ∂F (xj)
∂hT to quantify the influence of each component

of the hidden state hT on the model’s output for a given input xj ∈ D. Intuitively, the gradient allows
us to capture how small variations in the hidden representation hT affect the model’s prediction
F (xj). A unit output (i.e., a dimension in hT ) with a large gradient magnitude is considered highly
sensitive, indicating that it plays an important role in determining the model’s output for the sample
xj . Hence, such a unit is prioritized during distillation.

Formally, the importance scores of all the hidden units in the hidden state hT for the input sample xj

are computed as follows:

g(xj) =

∣∣∣∣∂F (xj)

∂hT

∣∣∣∣ ∈ RdT , (1)

where |·| denotes the element-wise absolute value. Here, entry g(xj)i represents the importance score
of the i-th unit to perform prediction on the input xj .

Importance Scores. In the context of LLMs, recent work have highlighted the effectiveness of
gradient-based methods, i.e., the derivatives of the loss or output with respect to weights, masks,
or activations, for identifying key network components (e.g., units), in contrast to gradient-free
approaches such as magnitude-based metrics (Iurada et al., 2025; Guo et al., 2025; Ma et al., 2023;
Fu et al., 2022; Yu et al., 2022; Liu et al., 2021). More advanced gradient techniques, such as
Integrated Gradients (IG) (Sundararajan et al., 2017), provide more robust attribution signals but
come at significant computational cost. Standard gradient methods (Nielsen et al., 2022; Ding &
Koehn, 2021; Li et al., 2016), by requiring only a single backpropagation pass, offer a favorable
balance between efficiency and accuracy. While it can suffer from saturation in deep networks, this
issue is largely mitigated when analyzing the gradient of the output with respect to the final layer, as
done in our proposed Flex-KD (Subsection 3.2). The final layer directly reflects model predictions,
offering an efficient and reliable importance signal. To further motivate our choice, in Subsection
4.1 Figure 3a, we conduct an experiment to investigate different selection strategies, showing that
standard gradients outperform both activation magnitudes and IG, achieving higher performance with
lower variance, thereby confirming its stability.

In our method, to compute the overall importance scores for task t, we aggregate the results over all
N samples in D as follows:

G =
1

N

N∑
j=1

g(xj) ∈ RdT , (2)

where Gi represents the importance score of the i-th unit in the teacher hidden layer to perform task
t. Since the importance scores of all dT teacher units have been computed for task t, we select the
top dS most relevant units to match the hidden size of the student model (dS is the student hidden
size ). We achieve that by ranking the units based on their obtained importance scores as follows:

R =
{
Gi1 , . . . , GidT

∣∣∣ Gi1 ≥ · · · ≥ GidT

}
, (3)

where {i1, . . . , idT
} ∈ [dT ] and R correspond to the set of rearranged importance scores so that the

highest score is the first in the set and the lowest score is the last in the set. Thus, the top task-relevant
units are those corresponding to the top scores in R. In particular, the ranked set R enables us to
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select flexible hidden representations from the teacher model that capture the most task-relevant
knowledge. For instance, hT

i1:i8
, where i8 ≪ idT

denotes the output feature representations of the
top-8 relevant units for task t. Since the student model has a hidden size of dS , we select the top-dS
units from the teacher model corresponding to the highest dS scores in the ranked set R, and use their
corresponding subspace as distillation target. The top-dS task-relevant units from the teacher are:

E = {i1, i2, . . . , idS
}, (4)

where each ik refers to the index of the k-th selected unit in the given teacher hidden layer. This
carefully selected set E allows us to perform flexible hidden state matching between student and
teacher models with different hidden dimensions dS and dT , respectively. To sum up, Flex-KD
enables flexible and effective feature distillation by directing the student’s limited capacity toward the
most relevant teacher components, while disregarding less informative or irrelevant ones.

3.2 DISTILLATION

As we have identified and selected the top-dS task-relevant units from the teacher model, in this
subsection, we describe the distillation process. To transfer the knowledge of the subspace of the
carefully selected set of units to the student model S, we employ a correlation loss function, which
was shown to be more effective than traditional mean squared error (MSE) and cosine distance in
capturing meaningful relationships in the feature space (Saadi et al., 2023a; Fard & Mahoor, 2022).
For completeness, our results in Table 6 in Appendix B.1.2 show that the correlation-based loss
outperforms other alternatives. While Flex-KD can in principle be applied across multiple layers,
in this work we demonstrate that matching the student’s final hidden layer with the teacher’s final
hidden layer is sufficient to outperform existing baselines.

Formally, the input batch X with n samples is fed simultaneously to T and S to produce the batches
of features representation hT and hS , respectively. Since in the previous subsection, we already
identified the indices of the top task-relevant units in the teacher hidden layer, i.e., E. From hT ,
we only select the output of the units of indices from E, resulting in a hidden representation hTdS

with the same size as hS . To simplify notations, hTdS and hS are assumed to be mean-centered
along the batch dimension, such that each unit has mean output 0 over the batch. Maximizing
the cross-correlation along the batch dimension between hTdS and hS resulting in minimizing the
following loss function:

LFlex-KD =

dS∑
m=1

(1− Cmm)2, (5)

where LFlex-KD is the student and teacher features matching loss. Cmm is the cross-correlation value
between the variables h

TdS
im

and hS
m and is computed as follows:

Cmm =

∑n
j=1 h

TdS
j,im

hS
j,m√∑n

j=1 (h
TdS
j,im

)2
√∑n

j=1 (h
S
j,m)2

, (6)

where h
TdS
,im

and hS
,m are the output feature representations of the unit of index im and m from the

teacher T and the student S, respectively. The final distillation loss of the student model is:
LKD = αLFlex-KD + βLlogit, (7)

where Llogit is the logit distillation loss, e.g., Gu et al. (2024a); Sanh et al. (2019). LFlex-KD can be
applied as a standalone loss for distillation without Llogit. Typically, the final student training loss is:

LFinal = LKD + λL1, (8)
where L1 is the supervised training loss, e.g., the cross-entropy loss in classification (Sanh et al.,
2019) and the language modeling loss in generation (Dasgupta & Cohn, 2025). α, β, and λ are
hyper-parameters to control the contribution of each term in the final loss. For instance, β = 0
corresponds to pure feature distillation.

4 EXPERIMENTAL RESULTS

We evaluate our approach across three core tasks: text classification, instruction-following, and
summarization. Following Dasgupta & Cohn (2025); Jiao et al. (2020); Sanh et al. (2019), in our
work, all teacher models are static during the distillation process.
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Table 1: Test accuracy (%) on the IMDB dataset, averaged over three random seeds. Values in green
denote gains over the KD baseline, while values in red indicate drops. For GPT2, distillation is from
hT = 1024 to hS = 768; for BERT, from hT = 768 to hS = 312.

Method 345M → 124M 110M → 14M
GPT2 BERT

Teacher 95.47 94.06

FT (Devlin et al., 2019) 94.20± 0.30 89.24± 0.08
KD (Hinton, 2015) 94.21± 0.42 89.58± 0.10
Projector (Jiao et al., 2020) 94.01± 0.12 (-0.20) 89.39± 0.05 (-0.19)
CKA (Dasgupta & Cohn, 2025) 94.65± 0.10 (+0.44) 90.13± 0.06 (+0.55)
Flex-KD 95.09 ± 0.04 (+0.88) 90.60 ± 0.04 (+1.02)

Table 2: Results (in %) averaged over three random seeds. The teacher model is GPT2-medium
(345M parameters) and the student model is GPT2-small (124M parameters). “AVG” denotes the
average performance across all tasks. Values in green indicate performance gains over the KD
baseline, while those in red indicate performance drops. Feature distillation is performed from
hT = 1024 to hS = 768. For the full table with standard deviations, see Table 7 in Appendix B.1.

Method SST-2 STS-B MRPC RTE MNLI AVG

Teacher(12 x 1024) 94.49 88.23 84.09 68.23 85.10 84.02

FT (Devlin et al., 2019) 91.32 86.58 81.68 65.95 81.78 81.46
KD (Hinton, 2015) 91.63 86.56 83.35 64.98 81.12 81.52
Projector (Jiao et al., 2020) 90.88 86.66 83.73 64.14 81.98 81.47 (-0.05)
CKA (Dasgupta & Cohn, 2025) 91.32 86.93 82.40 64.62 82.52 81.55 (+0.03)
Flex-KD 92.67 87.14 83.20 64.86 82.30 82.03 (+0.51)

4.1 CLASSIFICATION

In this experiment, we evaluate our approach on the Internet Movie Database (IMDB) dataset (Maas
et al., 2011) and several tasks from the GLUE benchmark (Wang et al., 2018). Experimental details
and baselines are discussed in Appendix B.1.

For IMDB, as shown in Table 1, our proposed method consistently achieves the highest performance
across all models. Specifically, it attains an accuracy of 95.09% with the distilled GPT2-small model
and 90.60% with the distilled TinyBERT model. This corresponds to improvements of 0.44% and
1.08% over CKA and Projector, respectively, in the GPT2-small setting. Furthermore, it yields up
to 1.21% gain with TinyBERT relative to the Projector baseline. Beyond accuracy, our method also
exhibits a lower standard deviation, highlighting its stability and consistency. Notably, while Projector
frequently degrade student performance, our approach consistently enhances it.

On the GLUE benchmark, as presented in Table 2, Flex-KD consistently outperforms baselines,
achieving the highest average score of 82.03% across five tasks. It surpasses both CKA and Projector
on four of five tasks, demonstrating its robustness across diverse language understanding settings. For
instance, on SST-2, Flex-KD achieves improvements of 1.35% and 1.87% over CKA and Projector,
respectively. While standard fine-tuning (FT) outperforms all distillation-based methods on RTE,
among feature distillation approaches (Projector, CKA, and Flex-KD), ours delivers the best result.
Projector, on average, degrades student performance, whereas Flex-KD consistently improves it.

Units selection strategies. For completeness, in this experiment, we compare three common
approaches for estimating unit importance in LLMs: activation-based methods (Muralidharan et al.,
2024; Zhang et al., 2023a), standard gradients (Iurada et al., 2025; Guo et al., 2025; Song et al.,
2024), and integrated gradients (Dai et al., 2021). As shown in Figure 3a, while all methods yielded
similar overall performance, the standard gradient method achieved the highest performance with
the smallest standard deviation. These results support our choice of using standard gradients for unit
importance estimation.

Batch vs all samples aggregation. In our work, during the unit selection stage, we adopt a global
aggregation strategy over the entire dataset, as empirical evidence indicates that this approach yields

6
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(3a) Flex-KD with different unit se-
lection methods on IMDB.

(3b) Flex-KD with two aggregation methods on IMDB classification
(leflt) and XSum summarization (right).

the most efficient training and highest performance. To illustrate this, in Figure 3b, we show that the
global aggregation approach consistently outperforms per-batch aggregation by a substantial margin,
reaching improvements of up to 8%. We attribute this to the fact that frequently updating the selected
nodes at every iteration, or every few iterations, introduces instability during training, which can
degrade performance and hinder the student model’s ability to focus effectively.

Figure 4: Student model performance on
the IMDB dataset as a function of α.

Sensitivity analysis. We investigate the impact of the hy-
perparameter α, which controls the weight of the LFlex-KD
loss, on the student model performance on the IMDB
dataset. The final training objective is a weighted combi-
nation of LFlex-KD and the supervised cross-entropy loss,
where the weight of the supervised component is fixed at
0.5, and α is varied across the range [0.05, 0.1, 0.5, 1, 10].
We used the same setup outlined in Section 4.1. Each
experiment is repeated for 3 random seeds and the average
is reported. As shown in Figure 4, Flex-KD consistently
outperforms the Projector baseline across all α values,
demonstrating its robustness and effectiveness.

4.2 INSTRUCTION-FOLLOWING

In this stage, we consider instruction-following (Ouyang et al., 2022) as a conditional text generation
task, where models are trained to generate responses conditioned on instructions. A teacher model is
fine-tuned on a dataset D comprising instruction–response pairs. We then evaluate various knowledge
distillation methods by assessing the instruction-following capabilities of the student model on the
same task. Full experimental details and baselines discussions are available in Appendix B.2.

As shown in Table 3, Flex-KD consistently outperforms state-of-the-art baselines across most
datasets. For GPT2-small, it achieves the highest average performance, with a 20.45% ROUGE-L
score. Notably, it surpasses the Projector baseline on all datasets, with gains of up to 1.23% on S-NI
and 0.94% on SelfInst, and outperforms CKA on four of five datasets. Similarly, for OPT-1.3B,
Flex-KD delivers the best average performance across datasets, exceeding Projector by up to 2.1% on
UnNI and 1.79% on S-NI, and outperforming CKA on four of five datasets, with gains of 1.52% on
UnNI, 1.41% on S-NI, and 1.47% on SelfInst. On LlaMA, Flex-KD leads on three of five datasets
and ranks second on the rest. It outperforms Projector and CKA by 1.39% and 2.71% on UnNI, and
by 0.64% and 2.89% on S-NI, respectively. Overall, while Projector and CKA often degrade OPT and
GPT performance, Flex-KD consistently improves it. On LlaMA, although Projector outperforms
CKA, Flex-KD still surpasses both, consistently achieving the best overall results.

4.3 SUMMARIZATION

Following Dasgupta & Cohn (2025), in this subsection, we distill large encoder–decoder models
on the task of single-document news summarization. Specifically, we distill BART-large (Lewis
et al., 2019) into a set of smaller student architectures, varying in depth (6 and 12 layers) and hidden
dimensionality (640 and 768), and evaluate on the CNN/DailyMail (Hermann et al., 2015) and XSum
(Narayan et al., 2018) datasets. Experimental details and baselines are discussed in Appendix B.3.
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Table 3: The Rouge-L score (%) of the different approaches. * means the result is reported from Gu
et al. (2024a). #Pars represents the number of parameters. “AVG” represents the average performance
across all evaluated tasks. Values highlighted in green denote positive performance gains relative to
the KD baseline, whereas values in red indicate negative changes.

Model #Pars Method Dolly SelfInst Vicuna S-NI UnNI AVG

7B Teacher 28.85 20.89 18.88 32.88 36.48 27.60

FT* (Devlin et al., 2019) 25.85 14.59 17.41 24.13 28.22 22.04
KD* (Hinton, 2015) 26.17 15.13 17.34 24.97 29.22 22.57

Llama 1.3B SeqKD* (Kim & Rush, 2016) 25.98 15.00 17.66 25.36 29.83 22.76
MiniLLM (Gu et al., 2024a) 25.66 15.01 18.34 27.89 32.39 23.86
Projector (Jiao et al., 2020) 26.17 17.15 19.12 30.59 34.19 25.44 (+1.58)
CKA (Dasgupta & Cohn, 2025) 25.63 15.83 18.20 28.34 32.87 24.17 (+0.31)
Flex-KD 25.92 17.21 18.91 31.23 35.58 25.77 (+1.91)

1.5B Teacher 27.20 13.55 17.02 27.46 32.39 22.92

FT* (Devlin et al., 2019) 23.30 10.00 14.70 16.30 18.50 16.56
KD* (Hinton, 2015) 22.80 10.08 13.40 19.70 22.00 17.59

GPT2 120M SeqKD* (Kim & Rush, 2016) 22.70 10.10 14.30 16.40 18.80 16.46
MiniLLM (Gu et al., 2024a) 24.18 12.33 17.92 22.67 24.60 20.34
Projector (Jiao et al., 2020) 23.60 11.36 17.61 21.78 24.63 19.79 (-0.55)
CKA (Guo et al., 2025) 24.07 12.15 17.83 22.74 24.35 20.22 (-0.12)
Flex-KD 24.45 12.30 17.62 23.01 24.87 20.45 (+0.11)

6.7B Teacher 28.48 16.74 18.23 29.92 32.64 25.20

FT* (Devlin et al., 2019) 26.00 11.40 15.60 23.10 28.40 20.90
OPT MiniLLM (Gu et al., 2024a) 25.50 13.54 17.47 24.57 27.46 21.70

1.3B Projector (Jiao et al., 2020) 25.44 12.77 16.84 23.98 26.62 21.13 (-0.57)
CKA (Dasgupta & Cohn, 2025) 25.25 12.84 17.25 24.36 27.20 21.38 (-0.32)
Flex-KD 25.54 14.31 17.06 25.77 28.72 22.28 (+0.58)

Table 4: ROUGE-2 (R2) and ROUGE-L (RL) scores for different BART students on the CNN/DailyMail and
XSum datasets. Every BART student has an equal number of encoder and decoder layers. All baseline results
are taken from Dasgupta & Cohn (2025). Values in green indicate a positive performance gain over the KD
baseline. P(M) is number of parameters in Million. C.R. is the compression ratio.

Model #P(M) C.R. R2(CNN) RL(CNN) R2(XSum) RL(XSum)

BART-large (24 × 1024) 440 1.0× 21.00 30.60 21.80 36.50

KD (6 × 640) (Hinton, 2015) 80 5.5× 15.10 25.80 13.50 27.40
Projector (6 × 640) (Jiao et al., 2020) 80 5.5× 14.80 (-0.30) 25.60 (-0.20) 12.70 (-0.80) 26.70 (-0.70)
CKA (6 × 640) (Dasgupta & Cohn, 2025) 80 5.5× 16.80 (+1.70) 26.80 (+1.00) 15.00 (+1.50) 29.20 (+1.80)
Flex-KD (6 × 640) 80 5.5× 17.38 (+2.28) 27.62 (+1.82) 15.96 (+2.46) 30.45 (+3.05)

KD (6 × 768) (Hinton, 2015) 100 4.4× 16.40 26.80 15.10 29.20
Projector (6 × 768) (Jiao et al., 2020) 100 4.4× 15.50 (-0.90) 26.20 (-0.60) 14.10 (-1.00) 28.20 (-1.00)
CKA (6 × 768) (Dasgupta & Cohn, 2025) 100 4.4× 17.70 (+1.30) 27.70 (+0.90) 16.50 (+1.40) 31.00 (+1.80)
Flex-KD (6 × 768) 100 4.4× 17.70 (+1.30) 27.96 (+1.16) 16.65 (+1.55) 31.13 (+1.93)

As shown in Table 4, student models trained with our Flex-KD approach consistently achieve superior
ROUGE scores compared to all baselines. Under a 5.5× compression ratio, Flex-KD demonstrates
a substantial performance improvement, achieving up to a 3.75-point increase in ROUGE-L score
(RL) over Projector, which notably degrades student performance relative to the logit KD (KD)
baseline on the CNN/DailyMail and XSum datasets. Flex-KD also outperforms the CKA baseline
on both datasets, yielding improvements of up to 0.58% as ROUGE-2 (R2) and 0.82% as RL on the
CNN/DailyMail dataset. Gains are even more significant on the XSum dataset, with improvements of
up to 0.96% (R2) and 1.25% (RL). Under a 4.4× compression ratio, Flex-KD again surpasses both
Projector and CKA, delivering RL improvements of up to 2.93% over Projector.

Although Flex-KD transfers knowledge only between the final encoder and decoder layers of the
teacher and student, it consistently outperforms multi-layer distillation methods (Projector and CKA)
that transfer knowledge to all student layers, maintaining superior performance even under substantial
compression ratios. Results with deeper layers are reported in Table 8 of Appendix B.3.

Multi-Layer distillation. In Figure 5a, we evaluate Flex-KD under a multi-layer distillation setup on
XSum, where knowledge is transferred from multiple teacher layers to student layers. T and S are the
total number of teacher and student hidden layers. The x-axis illustrates the element-wise mapping
between teacher and student layers. Our results show that applying Flex-KD solely on the final hidden
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layer is sufficient to achieve strong performance, leading to the best performance/efficiency balance.
This contrasts with methods such as CKA (Dasgupta & Cohn, 2025), which require distillation across
all hidden layers. We argue that multi-layer distillation introduces a more complex optimization
process, whereas last-layer distillation is simpler and more efficient. Prior work has also highlighted
the importance of the final hidden state in LLMs, showing its significance for both generative and
classification tasks (Gromov et al., 2024; Men et al., 2024; Saadi et al., 2023a).

Ablation study. In Figure 5b, we conduct an ablation study evaluating the contribution of each loss
component on XSum summarization, using BART (6×640) as the student architecture. The results
demonstrate that all three components of the final loss are essential, as their combination yields
the strongest overall performance. In particular, our proposed Flex-KD loss (LFlex−KD) provides
substantial gains, improving ROUGE-2 by 2.46% and ROUGE-L by 3.05%.

(5a) Flex-KD with different layers distillation. (5b) Flex-KD loss components.

4.4 ROBUSTNESS TO DATA SCARCITY

Flex-KD relies on access to training data in order to compute task-relevant unit importance scores
through gradient attribution. A natural concern is whether its performance degrades significantly when
only limited data is available for this computation. To investigate that, we conduct an experiment using
only a small subset, 5% the Dolly dataset. We follow the same setup of the GPT2 in Subsection 4.2,
with the exception that the teacher model is fine-tuned for five epochs, and distillation is performed for
1,000 steps. Despite this significant reduction in supervision signal, Flex-KD is still able to identify
meaningful units subsets and consistently outperforms baseline approaches. As shown in Table 5, our
method achieves an average Rouge-L score of 19.01%, outperforming both baselines, which obtain
average scores of 18.08% and 18.68%, respectively. Notably, Flex-KD also matches or surpasses other
methods across most individual tasks, demonstrating its robustness even in low-resource scenarios.

Table 5: The Rouge-L score of the different approaches with 5% of the dolly data.

Method Dolly SelfInst Vicuna S-NI UnNI AVG

Teacher 21.84 12.74 15.63 22.87 25.99 19.81

Projector (Jiao et al., 2020) 22.13 10.72 16.95 19.80 20.81 18.08
CKA (Dasgupta & Cohn, 2025) 22.51 10.89 17.65 20.37 21.98 18.68
Flex-KD 23.07 10.84 17.09 21.50 22.58 19.01

5 CONCLUSION
Feature-level knowledge distillation has long promised richer information transfer from teacher to
student for large language model compression, but in practice, it has been constrained by the restrictive
assumption of matched teacher–student hidden sizes or by learned projectors that introduce parameters
and often distort representations. In this work, we introduced Flex-KD, a parameter-free, task-driven
framework that overcomes these limitations by selecting and transferring only the most task-relevant
teacher dimensions. In doing so, Flex-KD directs the student’s limited capacity toward informative
signals from the teacher, enabling effective and flexible feature distillation across heterogeneous
model sizes. Extensive experiments across classification, summarization, and instruction-following
tasks, spanning 13 different datasets and 8 models, demonstrate consistent improvements, even
in low-data regimes, showing that feature-level KD, with Flex-KD, is both practical and broadly
beneficial for LLM compression. Future work includes extending Flex-KD to vision and exploring
its application beyond standard transformer architectures, such as to Mamba or between completely
heterogeneous network architectures.
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Khouloud Saadi, Jelena Mitrović, and Michael Granitzer. Intra-class similarity-guided feature
distillation. In ENLSP NeurIPS Workshop, 2023b.

Victor Sanh, L Debut, J Chaumond, and T Wolf. Distilbert, a distilled version of bert: Smaller, faster,
cheaper and lighter. arxiv 2019. arXiv preprint arXiv:1910.01108, 2019.

Jürgen Schmidhuber. Learning complex, extended sequences using the principle of history compres-
sion. Neural computation, 4(2):234–242, 1992.

K Simonyan, A Vedaldi, and A Zisserman. Deep inside convolutional networks: visualising image
classification models and saliency maps. In Proceedings of the International Conference on
Learning Representations (ICLR). ICLR, 2014.

Ran Song, Shizhu He, Shuting Jiang, Yantuan Xian, Shengxiang Gao, Kang Liu, and Zhengtao
Yu. Does large language model contain task-specific neurons? In Yaser Al-Onaizan, Mohit
Bansal, and Yun-Nung Chen (eds.), Proceedings of the 2024 Conference on Empirical Meth-
ods in Natural Language Processing, pp. 7101–7113, Miami, Florida, USA, November 2024.
Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.403. URL
https://aclanthology.org/2024.emnlp-main.403/.

S. Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. Patient knowledge distillation for bert model
compression. In Conference on Empirical Methods in Natural Language Processing, 2019a.

Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. Patient knowledge distillation for BERT model
compression. In Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan (eds.), Proceedings of the
2019 Conference on Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 4323–4332, Hong Kong,
China, November 2019b. Association for Computational Linguistics. doi: 10.18653/v1/D19-1441.
URL https://aclanthology.org/D19-1441.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In
International conference on machine learning, pp. 3319–3328. PMLR, 2017.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B Hashimoto. Stanford alpaca: An instruction-following llama model, 2023.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman. GLUE:
A multi-task benchmark and analysis platform for natural language understanding. In Proceedings
of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for
NLP, pp. 353–355. Association for Computational Linguistics, November 2018.

Guanghui Wang, Zhiyong Yang, Zitai Wang, Shi Wang, Qianqian Xu, and Qingming Huang. Abkd:
Pursuing a proper allocation of the probability mass in knowledge distillation via α-β-divergence.
In Forty-second International Conference on Machine Learning, 2025.

Haifeng Wang, Jiwei Li, Hua Wu, Eduard Hovy, and Yu Sun. Pre-trained language models and their
applications. Engineering, 25:51–65, 2023a.

Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan Yang, and Ming Zhou. Minilm: Deep self-
attention distillation for task-agnostic compression of pre-trained transformers. Advances in Neural
Information Processing Systems, 33:5776–5788, 2020.

13

https://aclanthology.org/2024.emnlp-main.403/
https://aclanthology.org/D19-1441


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Wenhui Wang, Hangbo Bao, Shaohan Huang, Li Dong, and Furu Wei. MiniLMv2: Multi-
head self-attention relation distillation for compressing pretrained transformers. In Chengqing
Zong, Fei Xia, Wenjie Li, and Roberto Navigli (eds.), Findings of the Association for Com-
putational Linguistics: ACL-IJCNLP 2021, pp. 2140–2151, Online, August 2021. Associa-
tion for Computational Linguistics. doi: 10.18653/v1/2021.findings-acl.188. URL https:
//aclanthology.org/2021.findings-acl.188.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A Smith, Daniel Khashabi, and
Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions.
arXiv preprint arXiv:2212.10560, 2022a.

Yizhong Wang, Swaroop Mishra, Pegah Alipoormolabashi, Yeganeh Kordi, Amirreza Mirzaei,
Atharva Naik, Arjun Ashok, Arut Selvan Dhanasekaran, Anjana Arunkumar, David Stap, Eshaan
Pathak, Giannis Karamanolakis, Haizhi Lai, Ishan Purohit, Ishani Mondal, Jacob Anderson,
Kirby Kuznia, Krima Doshi, Kuntal Kumar Pal, Maitreya Patel, Mehrad Moradshahi, Mihir
Parmar, Mirali Purohit, Neeraj Varshney, Phani Rohitha Kaza, Pulkit Verma, Ravsehaj Singh Puri,
Rushang Karia, Savan Doshi, Shailaja Keyur Sampat, Siddhartha Mishra, Sujan Reddy A, Sumanta
Patro, Tanay Dixit, and Xudong Shen. Super-NaturalInstructions: Generalization via declarative
instructions on 1600+ NLP tasks. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.),
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pp.
5085–5109, Abu Dhabi, United Arab Emirates, December 2022b. Association for Computational
Linguistics. doi: 10.18653/v1/2022.emnlp-main.340. URL https://aclanthology.org/
2022.emnlp-main.340/.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel Khashabi, and
Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions. In
Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 13484–
13508, Toronto, Canada, July 2023b. Association for Computational Linguistics. doi: 10.18653/
v1/2023.acl-long.754. URL https://aclanthology.org/2023.acl-long.754/.

Canwen Xu and Julian McAuley. A survey on model compression for natural language processing.
arXiv preprint arXiv:2202.07105, 2022.

Xin Yu, Thiago Serra, Srikumar Ramalingam, and Shandian Zhe. The combinatorial brain surgeon:
Pruning weights that cancel one another in neural networks. In International Conference on
Machine Learning, pp. 25668–25683. PMLR, 2022.

Jiarui Zhang, Heyan Huang, Yue Hu, Ping Guo, and Yuqiang Xie. Importance-based neuron selective
distillation for interference mitigation in multilingual neural machine translation. In International
Conference on Knowledge Science, Engineering and Management, pp. 140–150. Springer, 2023a.

Rongzhi Zhang, Jiaming Shen, Tianqi Liu, Jialu Liu, Michael Bendersky, Marc Najork, and Chao
Zhang. Do not blindly imitate the teacher: Using perturbed loss for knowledge distillation. arXiv
preprint arXiv:2305.05010, 2023b.

Wangchunshu Zhou, Canwen Xu, and Julian McAuley. Bert learns to teach: Knowledge distillation
with meta learning. arXiv preprint arXiv:2106.04570, 2021.

Xunyu Zhu, Jian Li, Yong Liu, Can Ma, and Weiping Wang. A survey on model compression for large
language models. Transactions of the Association for Computational Linguistics, 12:1556–1577,
2024.

Mingchen Zhuge, Wenyi Wang, Louis Kirsch, Francesco Faccio, Dmitrii Khizbullin, and Jürgen
Schmidhuber. Gptswarm: Language agents as optimizable graphs. In Forty-first International
Conference on Machine Learning, 2024.

14

https://aclanthology.org/2021.findings-acl.188
https://aclanthology.org/2021.findings-acl.188
https://aclanthology.org/2022.emnlp-main.340/
https://aclanthology.org/2022.emnlp-main.340/
https://aclanthology.org/2023.acl-long.754/


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A ADDITIONAL FIGURES

(6a) (6b)

(6c) (6d)

(6e)
Figure 6: Activation magnitudes (z-axis) after feeding training samples from the downstream task
to a fine-tuned GPT-xlarge. x and y axes are sequence and feature dimensions, respectively: (a) We
threshold values below 1 to zero. (b) We threshold values below 0.5 to zero. (c) We threshold values
below 2 to zero.
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In Figure 6, we visualize the activations of the last hidden layer of a fine-tuned GPT-xlarge model on
downstream examples. In 6a and 6b, we threshold values < 1 to 0. In 6c and 6d, we threshold values
< 0.5 to 0. In 6e, we threshold values < 2 to 0. As it can be seen, many units display near-zero or
low-magnitude activations, suggesting limited contribution to the final output.

B EXPERIMENTAL DETAILS AND ADDITIONAL RESULTS

B.1 CLASSIFICATION

In this setup, we distill the last layer of the teacher to the last layer of the student. Each method is
added as a stand-alone regularizer to the student’s standard supervised training loss. This stand-alone
performance evaluation allows us to assess the effectiveness of Flex-KD compared to the baselines.
For comparison, we also report the performance of the student model trained via standard fine-tuning
(FT), without any distillation.

B.1.1 EXPERIMENTAL SETUP

On IMDB. For the IMDB, we use two distinct teacher–student model pairs. In the first setting,
we use BERT-base-uncased (110M parameters) (Devlin et al., 2019), fine-tuned on IMDB, as the
teacher and TinyBERT-General-4L-312D (14M parameters) (Jiao et al., 2020) as the student. In the
second setting, GPT2-medium (345M parameters) (OpenAI, 2023), fine-tuned on IMDB, serves as
the teacher, with GPT2-base (124M parameters) (OpenAI, 2023) as the student. The test classification
accuracy is reported as the evaluation metric. The teacher models are fine-tuned on the IMDB dataset
for 3 epochs with a batch size of 8 and an Adam optimizer with a learning rate equal to 5e − 5.
During the distillation process, the student models are trained for 3 epochs, the batch size is set to 8,
the optimizer is set to Adam with a learning rate of 5e− 5. Each experiment is repeated for 3 times
and the average and the standard deviations are reported. The weight of each KD stand-alone loss
and the weight of the hard loss are fixed to 0.5 (Sanh et al., 2019; Jiao et al., 2020), for instance, for
Flex-KD, we have α = 0.5, β = 0, and λ = 0.5.

On GLUE. For the GLUE benchmark, we selected 5 datasets that cover different categories and
sizes, small-size (RTE, STS-B), medium-size (MRPC, SST-2), and large-size (MNLI), to ensure
varied scenarios. MRPC and STS-B for paraphrase and semantic similarity. SST-2 for sentiment
classification, and MNLI and RTE for natural language inference. We report results for CKA
(Dasgupta & Cohn, 2025), which is a recently proposed feature distillation method that does not
require the student and the teacher to have equal hidden dimensions, linear projection (Projector)
(Jiao et al., 2020), vanilla KD (KD) (Hinton, 2015), and our proposed approach (Flex-KD). In this
setting, we use GPT2-medium (345M parameters), fine-tuned on each of the tasks, as the teacher
and GPT2-base (124M parameters) as the student. For MRPC, we report the average of F1 score
and accuracy; for STS-B, we report the average of Pearson and Spearman correlations. Accuracy is
used as the evaluation metric for the remaining tasks. Here, the teacher is trained for 3 epochs with
batch size 8, and and Adam optimizer with a learning rate of 5e− 5. For the distillation process, the
number of epochs, the batch size, the learning rate are set to 3, 16, and 5e − 5, respectively. The
weight of each KD stand-alone loss and the weight of the hard loss are fixed to 0.5 (Sanh et al., 2019;
Jiao et al., 2020), for instance, for Flex-KD, α = 0.5, β = 0, and λ = 0.5. For the vanilla-KD (KD),
the logit loss weight was set to 0.1. All experiments are repeated for three random seeds and the
average and the standard deviations are reported. For fair comparison, in this task, we used the same
correlation loss as for our proposed method for the projector approach. As demonstrated in prior
work (Chen et al., 2022; Jiao et al., 2020), projecting the student’s feature representations into the
teacher’s feature space yields superior performance compared to the reverse direction. Accordingly,
in our implementation of the projector-based approach, we align the student’s hidden representations
to those of the teacher via a learned projection.

B.1.2 LOSS

In Table 6, we conduct an experiment comparing the performance of three feature distillation loss
functions: MSE, cosine distance, and a correlation-based loss on the IMDB classification task. The
teacher model is BERT-base (110M) and the student model is TinyBERT (14M). As shown in the
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table, the student model trained with the correlation-based loss achieves better performance and
exhibits lower standard deviation, demonstrating its effectiveness.

Table 6: Comparison between MSE, Cosine distance and Correlation as feature loss functions.

Method 110M → 14M (BERT)
MSE Cosine Correlation

Teacher 94.14

Flex-KD 89.94± 0.07 90.05± 0.13 90.80 ± 0.03

B.1.3 PERFORMANCE ON GLUE

In Table 7, we present the performance of different KD approaches on several tasks from the glue
benchmark. Results (in %) are averaged over three random seeds. The teacher model is GPT2-
medium (345M parameters), and the student model is GPT2-small (124M parameters). “AVG”
represents the average performance across all evaluated tasks. For feature distillation, here we distill
from a hidden size of 1024 to a hidden size of 768.

Table 7: Results (%) are averaged over 3 random seeds. M for million. Teacher is gpt2-medium and
Student is gpt2-small. AVG is for the average performance across all the tasks.

Method SST-2 STS-B MRPC RTE MNLI AVG

Teacher 94.49 88.23 84.09 68.23 85.10 84.02

FT 91.32± 0.29 86.58± 0.33 81.68± 1.34 65.95 ± 2.45 81.78± 0.11 81.46
KD 91.63± 0.11 86.56± 0.29 83.35± 0.87 64.98± 0.00 81.12± 0.06 81.52
Projector 90.88± 0.72 86.66± 1.45 83.73 ± 0.54 64.14± 1.45 81.98± 0.27 81.47
CKA 91.32±0.77 86.93± 0.03 82.40± 1.43 64.62± 0.00 82.52 ± 0.27 81.55
Flex-KD 92.67 ± 0.13 87.14 ± 0.21 83.20± 1.19 64.86± 1.98 82.30± 0.21 82.03

B.2 INSTRUCTION-FOLLOWING

The conducted experiments follow a similar setup to the one outlined in Gu et al. (2024a). We evaluate
our method on three teacher–student model pairs. First, the Llama model (7B parameters), fine-tuned
on the instruction-following Dolly dataset 1, serves as the teacher, with Llama (1.3B parameters)
as the student . In the second setting, the GPT2-XL model (1.5B parameters), fine-tuned on the
instruction-following Dolly dataset, serves as the teacher, with GPT2-small (124M parameters) as the
student. In the third setting, the OPT-6.7B model, fine-tuned on the Dolly dataset, is distilled into the
smaller OPT-1.3B student model. We compare our approach against several approaches, including
the standard fine-tuning (FT) of the student model, KD (Sanh et al., 2019), SeqKD (Taori et al., 2023),
MiniLLM (Gu et al., 2024a), as well as the direct competitive feature KD methods, i.e., Projector
(Jiao et al., 2020) and CKA (Dasgupta & Cohn, 2025). For evaluation metrics, similar to Gu et al.
(2024a), we report the Rouge-L (Lin, 2004) score on the following benchmark datasets: Dolly test
set, SelfInst (Wang et al., 2022a), Vicuna (Chiang et al., 2023), S-NI (Wang et al., 2022b), and UnNI
(Honovich et al., 2023) datasets. The Rouge-L score measures the precision of the model generation
and it was shown by Wang et al. (2022b) that it is suitable for large-scale instruction-following
evaluation.

Across all settings, we adopt a consistent distillation framework. The student model is first fine-tuned
for 3 epochs, and the checkpoint with the lowest validation loss is used as the initialization point for
subsequent distillation. The distillation process is run for 5,000 iterations with a total batch size of 8,
using the Adam optimizer configured with an ϵ = 1e-8, and a weight decay of 1e-6. The learning
rate is set to 5e-6. All reported results are averaged over three random seeds (10, 20, 30) for training
and five seeds (10, 20, 30, 40, 50) for evaluation. Except for Llama we only did the evaluation
across 5 seeds, i.e.,(10, 20, 30, 40, 50). The final evaluation is always conducted using the last saved
checkpoint.

1https://github.com/databrickslabs/dolly/tree/master
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For the MiniLLM baseline, we employ only the reverse Kullback-Leibler divergence distillation loss,
as outlined in Gu et al. (2024a), between the teacher and student logits as the training objective for
the student model. For our method (Flex-KD), as well as the CKA and Projector baselines, we use
a combination of the logit distillation loss used to train MiniLLM (RKLD) and the corresponding
feature-level distillation loss for the student training. For Feature distillation methods, we distill only
the teacher last hidden layer to the student last hidden layer.

Specifically, for Flex-KD, α = 0.05. Following the configurations from Dasgupta & Cohn (2025),
both CKA and projector baselines use a feature loss weighted by 1. The logit-level loss (reverse KL
divergence) is consistently weighted by 1 across all methods. In the projector setup, we used mean
squared error (MSE) as the loss function, in line with Dasgupta & Cohn (2025); Jiao et al. (2020).
For teacher model fine-tuning, all teachers are trained for 10 epochs. GPT2 uses a batch size of 8 and
a learning rate of 1e-4, while OPT and Llama are trained with a total batch size of 8 and a learning
rate of 1e-5.

The following are some details related to the competitive methods:

• FT (Devlin et al., 2019) refers to standard fine-tuning.
• KD (Sanh et al., 2019) namely, word-level KD, where the student model is trained on the

teacher model’s output at each token step.
• SeqKD (Taori et al., 2023) refers to sequence-level knowledge distillation, where the student

model is trained on data generated by the teacher model.
• MiniLLM (Gu et al., 2024a) employs reverse KL divergence to distill knowledge from the

teacher model’s logits.

We evaluate our models on the following instruction-following datasets:

• Dolly: 500 samples from the databricks-dolly-15K dataset used as test set.
• SelfInst (Wang et al., 2022a): A user-oriented instruction-following set consisting of 252

samples.
• Vicuna (Chiang et al., 2023): The set of 80 difficult questions used for the Vicuna evaluation.
• S-NI (Wang et al., 2022b): The SUPER-NATURALINSTRUCTIONS test set comprises 9K

samples spanning 119 tasks. Following Gu et al. (2024a), we divide it into three subsets
based on ground truth response lengths: [0, 5], [6, 10], [11,+∞] and we use the [11,+∞]
subset.

• UnNI (Honovich et al., 2023): The core set of UNNATURALINSTRUCTIONS comprises
60K samples. Following a similar approach to S-NI, we evaluate on a randomly selected
subset of 10K examples from the [11,+∞] range.

B.3 SUMMARIZATION

In this experiment, we follow a similar experimental setup to that outlined in Dasgupta & Cohn
(2025). The student training objective consists of three components: (1) a supervised cross-entropy
loss on the target summary, (2) a logit distillation loss, which is the Kullback-Leibler (KL) divergence
loss between the teacher and student output distributions, and (3) a feature distillation loss. For the
feature distillation, we evaluate three methods: our proposed Flex-KD, CKA (Dasgupta & Cohn,
2025), and a linear projection-based mean squared error (MSE) (Projector) (Dasgupta & Cohn, 2025;
Jiao et al., 2020) . Additionally, we report results for standard logit-level KD (Sanh et al., 2019)
without any feature distillation.

As described in Dasgupta & Cohn (2025), CKA and Projector losses are applied between each student
layer and uniformly spaced layers from the teacher model. For the Projector variant, hidden states
from the student and teacher are aligned via learned linear projections, followed by MSE as in Jiao
et al. (2020); Dasgupta & Cohn (2025). For our Flex-KD, LFlex-KD equation 5 is only applied between
the last encoder layers and the last decoder layers of the student and the teacher models.

For Flex-KD, we utilize only 640 samples (40 batches) to identify the top task-relevant units in the
teacher model and the hyperparameters are set as follows: α = 0.05, β = 1, λ = 1, and the batch
size is 16. Following the setup in Dasgupta & Cohn (2025), training is performed using the Adam
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optimizer with a learning rate of 1 × 10−4 and a weight decay of 5 × 10−4. The maximum input
context length is set to 1,024 tokens, and the output summary is constrained to 128 tokens. All
experiments are conducted on a single NVIDIA A100 GPU with 80 GB of memory.

B.3.1 SUMMARIZATION ON XSUM: STUDENT MODEL WITH DEEPER LAYERS

To further evaluate Flex-KD robustness with deeper student models, Table 8 reports results on the
XSum dataset, where Flex-KD achieves consistent improvements over the baselines, including up to
a 1.43-point gain in ROUGE-L over Projector.

Table 8: R2 and RL for deeper BART students on the XSum dataset. All baseline results are taken
from Dasgupta & Cohn (2025). Teacher is BART-Large (24 × 1024) and student is BART (12 ×
768).

Model R2(XSum) RL(XSum)
BART-large 21.80 36.50

KD (Hinton, 2015) 17.60 32.00
Projector (Jiao et al., 2020) 17.70 (+0.10) 32.10 (+0.10)
CKA (Dasgupta & Cohn, 2025) 18.70 (+1.10) 33.50 (+1.50)
Flex-KD 18.93 (+1.33) 33.53 (+1.53)

B.3.2 SUMMARIZATION ON XSUM AND CNN/DAILYMAIL: OVERLAP OF SELECTED UNITS
ACROSS RANDOM SEEDS

In Figure 7, we evaluate the stability and consistency of the selected units across five random seeds.
As described in the experimental setup, for the CNN/DailyMail and XSum datasets, we randomly
sampled 40 batches of examples to compute the task-relevant units. Thus, in this case, checking the
consistency of unit selection remains important. As shown in the following figures, the 5 lists of
indices obtained from the five random seeds exhibit a high overlap, with 91.5% for XSum and 96.3%
for CNN/DailyMail, demonstrating that our unit selection strategy is both stable and consistent, even
with a limited number of samples.

Figure 7: Overlap of selected units across 5 random seeds on (Left) XSum dataset and (right)
CNN/DailyMail dateset.

B.3.3 SUMMARIZATION ON XSUM AND CNN/DAILYMAIL: COMPUTE OVERHEAD

It is important to note that Flex-KD involves a one-time computation to identify task-relevant units
from the teacher model. Since this step is performed only once, it does not pose efficiency concerns.
Nevertheless, in Table 9, we conduct an experiment to assess the compute overhead of Flex-KD
on the summarization tasks, which involves selecting the task-relevant units for distillation. In this
setting, the teacher model is BART-large with 406M parameters, and all experiments were run on a
single A100 GPU. In our proposed method, units are selected only from the teacher’s last hidden layer.
The results show that the additional gradient-based selection step introduces a negligible increase
in runtime, around 26 seconds for XSum and 23 seconds for CNN/DailyMail, demonstrating that
Flex-KD remains efficient in practice.
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Table 9: Compute overhead, results are averaged over 5 random seeds.

XSum CNN/DailyMail
time (seconds) 25.98± 1.27 22.80± 2.81

C LLMS USAGE IN THE PAPER

LLMs were used only occasionally to help polish the writing (propose new words, grammar and
spelling correction). All technical ideas, experimental designs, analyses, conclusions, writing were
developed and carried out entirely by the authors. The authors have full responsibility for the final
text.
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