
Towards characterizing the value of edge
embeddings in Graph Neural Networks

Anonymous Author(s)
Affiliation
Address
email

Abstract

Graph neural networks (GNNs) are the dominant approach to solving machine1

learning problems defined over graphs. Despite much theoretical and empirical2

work in recent years, our understanding of finer-grained aspects of architectural3

design for GNNs remains impoverished. In this paper, we consider the benefits4

of architectures that maintain and update edge embeddings. On the theoretical5

front, under a suitable computational abstraction for a layer in the model, as well6

as memory constraints on the embeddings, we show that there are natural tasks7

on graphical models for which architectures leveraging edge embeddings can be8

much shallower. Our techniques are inspired by results on time-space tradeoffs in9

theoretical computer science. Empirically, we show architectures that maintain edge10

embeddings almost always improve on their node-based counterparts—frequently11

significantly so in topologies that have “hub” nodes.12

1 Introduction13

Graph neural networks (GNNs) have emerged as the dominant approach for solving machine learning14

tasks on graphs. Over the span of the last decade, many different architectures have been proposed,15

both in order to improve different notions of efficiency, and to improve performance on a variety16

of benchmarks. Nevertheless, theoretical and empirical understanding of the impact of different17

architectural design choices remains elusive.18

One previous line of work (Xu et al., 2018) has focused on characterizing the representational19

limitations stemming from the symmetry-preserving properties of GNNs when the node features are20

not informative (also called “anonymous GNNs”) — in particular, relating GNNs to the Weisfeiler-21

Lehman graph isomorphism test (Leman & Weisfeiler, 1968). Another line of work (Oono & Suzuki,22

2019) focuses on the potential pitfalls of the (over)smoothing effect of deep GNN architectures, with23

particular choices of weights and non-linearities, in an effort to explain the difficulties of training24

deep GNN models. Yet another (Black et al., 2023) focuses on training difficulties akin to vanishing25

introduced by “bottlenecks” in the graph topology.26

In this paper, we focus on the benefits of maintaining and updating edge embeddings over the course27

of the computation of the GNN. A typical way to parametrize a layer l of a GNN (Xu et al., 2018) is28

to maintain, for each node v in the graph, a node embedding h
(l)
v , which is calculated as29

a(l+1)
v = AGGREGATE

(
h(l)
u : u ∈ NG(v)

)
h(l+1)
v = COMBINE

(
a(l+1)
v , h(l)

v

)
(1)

where NG(v) denotes the neighborhood of vertex v. These updates can be viewed as implementing a30

(trained) message-passing algorithm, in which nodes pass messages to their neighbors, which are31

then aggregated and combined with the current state (i.e., embedding) of a node. The initial node32

embeddings h(0)
v are frequently part of the task specification (e.g., a vector of fixed features that can33

Submitted to the Mathematics of Modern Machine Learning Workshop at NeurIPS 2024. Do not distribute.

be associated with each node). When this is not the case, they can be set to fixed values (e.g., the34

all-ones vector) or random values.35

But a more expressive way to parametrize a layer of computation is to maintain, for each edge e, an36

edge embedding h
(l)
e which is calculated as:37

a(l+1)
e = AGGREGATE

(
h(l)
a : a ∈MG(e)

)
h(l+1)
e = COMBINE

(
a(l+1)
e , h(l)

e

)
(2)

where MG(e) denotes the “neighborhood” of edge e: that is, all edges a that share a vertex with e1.38

This paradigm is at least as expressive as (1): we can simulate a layer of (1) by designating the39

embedding of an edge to be the concatenation of the node embeddings of its endpoints, and noticing40

that MG(e) includes all the neighbors of both endpoints of e. In particular, if a task has natural initial41

node embeddings, then their concatenations along edges can be used as initial edge embeddings.42

Additionally, there may be tasks where initial features are most naturally associated with edges (e.g.,43

attributes of the relationship between two nodes) — or the final predictions of the network are most44

naturally associated with edges (e.g., in link prediction, where we want to decide which potential45

links are true links).46

GNNs that fall in the general paradigm of (2) have been used for various applications – including link47

prediction (Cai et al., 2021; Liang & Pu, 2023) as well as reasoning about relations between objects48

(Battaglia et al., 2016), molecular property prediction (Gilmer et al., 2017; Choudhary & DeCost,49

2021), and detecting clusters of communities in graphs (Chen et al., 2017) – with robust empirical50

benefits. These approaches instantiate the edge-based paradigm in a plethora of ways. However, it is51

difficult to disentangle to what degree performance improvements come from added information from52

domain-specific initial edge embeddings, versus properties of the particular architectural choices for53

the aggregation functions in (2), versus inherent benefits of the edge-based paradigm itself (whether54

representational, or via improved training dynamics).55

We focus on theoretically and empirically quantifying the added representational benefit from56

maintaining edge embeddings. Viewing the GNN as a computational model, we can think of57

the intermediate embeddings as a “scratch pad”. Since we maintain more information per layer58

compared to the node-based paradigm (1), we might intuitively hope to be able to use a shallower59

edge embedding model. However, formally proving depth lower bounds both for general neural60

networks (Telgarsky, 2016) and for specific architectures (Sanford et al., 2024b,a) frequently requires61

non-trivial theoretical insights – as is the case for our question of interest. In this paper, we show that:62

• Theoretically, for certain graph topologies, edge embeddings can have substantial representational63

benefits in terms of the depth of the model, when the amount of memory (i.e., total bit complexity)64

per node or edge embedding is bounded. Our results illuminate some subtleties of using particular65

lenses to understand design aspects of GNNs: for instance, we prove that taking memory into66

account reveals depth separations that the classical lens of invariance (Xu et al., 2018) alone cannot.67

• Empirically, when given the same input information, edge-based models almost always lead to68

performance improvements compared to their node-based counterpart — and often by a large69

margin if the graph topology includes “hub” nodes with high degree.70

2 Overview of results71

2.1 Representational benefits from maintaining edge embeddings.72

Our theoretical results elucidate the representational benefits of maintaining edge embeddings. More73

precisely, we show that there are natural tasks on graphs that can be solved by a shallow model74

maintaining constant-size edge embeddings, but can only be solved by a model maintaining constant-75

size node embeddings if it is much deeper.76

To reason about the impact of depth on the representational power of edge-embedding-based and77

node-embedding-based architectures, we introduce two local computation models. In the node-78

embedding case, we assume each node of the graph G supports a processor that maintains a state79

with a fixed amount of memory. In one round of computation, each node receives messages from the80

1The graph is assumed to be undirected, as is most common in the GNN literature.

2

adjacent nodes, which are aggregated by the node into a new state. In this abstraction, we think of the81

memory of the processor as the total bits of information each embedding can retain, and we think82

of one round of the protocol as corresponding to one layer of a GNN. The edge-embedding case is83

formalized in a similar fashion, except that the processors are placed on the edges of the graph, and84

two edge processors are “adjacent” if the edges share a vertex in common. In both cases, the input is85

distributed across the edges of the graph, and is only locally accessible.86

With this setup in mind, our first result focuses on probabilistic inference on graphs, specifically, the87

task of maximum a-posteriori (MAP) estimation in a pairwise graphical model on a graph G = (V,E).88

For this task, given edge attributes describing the pairwise interactions ϕ{a,b}, the goal is to compute89

argmaxx∈{0,1}V pϕ(x), where pϕ(x) ∝ exp
(∑

{a,b}∈E ϕ{a,b}(xa, xb)
)
.90

Theorem (Informal). Consider the task of using a GNN to calculate MAP (maximum a-posteriori)91

values in a pairwise graphical model, in which the pairwise interactions are given as input embeddings92

to a node-embedding or edge-embedding architecture. Then, there exists a graph with O(n) vertices93

and edges, such that:94

• Any node message-passing protocol with T rounds and O(1) bits of memory per node processor95

requires T = Ω(
√
n).96

• There is an edge message-passing protocol with O(1) rounds and O(1) bits of memory.97

The proof techniques are of standalone interest: the lower bound on node message-passing protocols is98

inspired by tracking the “flow of information” in the graph, reminiscent of graph pebbling techniques99

used to prove time-space tradeoffs in theoretical computer science (Grigor’ev, 1976; Abrahamson,100

1991). The formal result is Theorem 1, and the proof sketch is included in Section 5.101

The view from symmetry. Above, we are not imposing any symmetry constraints – that is,102

invariance of the computation at a node or edge to its identity and the identities of its neighbors.103

Indeed, the edge message-passing protocol constructed above is highly non-symmetric. However,104

we show there is a (different, but also natural) task where even symmetric edge message-passing105

protocols achieve a better depth/memory tradeoff than node message-passing protocols. We state the106

informal result below; the formal result is Theorem 4.107

Theorem (Informal). Let n be a positive integer. There is a graph G with O(n) vertices and O(n)108

edges, and a computational task on G, such that:109

• Any node message-passing protocol with T rounds and O(1) bits of memory per node processor110

requires T = Ω(
√
n) to solve this task.111

• There is a symmetric edge message-passing protocol that solves this task with O(1) rounds and112

O(1) bits of memory.113

Importance of the memory lens. The memory constraints are crucial for the results above. Without114

memory constraints, we can show that the node message-passing architecture can simulate the edge115

message-passing architecture, while only increasing the depth by 1 (Proposition 3). Moreover, the116

symmetric node message-passing architecture can simulate the symmetric edge message-passing117

architecture, again while only increasing the depth by 1. We state the informal result below; the118

formal result is Theorem 5.119

Theorem (Informal). For any graph G, any symmetric edge message-passing protocol on G with T120

rounds can be represented by a symmetric node message-passing protocol with T + 1 rounds.121

We note that unlike prior work that focuses on understanding the representational power of GNN122

architectures under symmetry constraints (Xu et al., 2018) — which requires that the initial node123

features are the same for all nodes — our simulation theorem above holds for arbitrary choices of124

initial node features.125

We view this as evidence that many fine-grained properties of architectural design for GNNs cannot126

be adjudicated by solely considering them through the lens of symmetries of the network.127

3

2.2 Empirical benefits of edge-based architectures.128

The theory, while only characterizing representational power, suggests that architectures that main-129

tain edge embeddings should have strictly better performance compared to their node embedding130

counterparts. We verify this in both real-life benchmarks and natural synthetic sandboxes.131

First, we consider several popular GNN benchmarks (inspired by both predicting molecular properties,132

and image-like data), and show that equalizing for all other aspects of the architecture (e.g., depth,133

dimensionality of the embeddings) — the accuracy the edge-based architectures achieve is at least134

as good as their node-based counterparts. Note, the goal of these experiments is not to propose135

a new architecture — there are already a variety of (very computationally efficient) GNNs that in136

some manner maintain edge embeddings. The goal is to confirm that — all other things being equal137

— the representational advantages of edge-based architectures do not introduce additional training138

difficulties. Details are included in Section 8.1.139

Next, we consider two synthetic settings to stress test the performance of edge-based architectures.140

Inspired by the graph topology that provides a theoretical separation between edge and node-based141

protocols (Theorem 1 and Theorem 4), we consider graphs in which there is a hub node, and tasks142

that are “naturally” solved by an edge-based architecture. Precisely, we consider a star graph, in143

which the labels on the leaves are generated by a “planted” edge-based architecture with randomly144

chosen weights. The node-based architecture, on the other hand, has to pass messages between the145

leaves indirectly through the center of the star. Empirically, we indeed observe that the performance146

of edge-based architectures is significantly better. Details are included in Section 8.2147

Finally, again inspired by the theoretical setting in Theorem 1, we consider probabilistic inference148

on tree graphs — precisely, learning a GNN that calculates node marginals for an Ising model, a149

pairwise graphical model in which the pairwise interactions are just the product of the end points. An150

added motivation for this setting is the fact that belief propagation — a natural algorithm to calculate151

the marginals — can be written as an edge-based message-passing algorithm. Again, empirically we152

see that edge-based architectures perform at least as well as node-based architectures. This advantage153

is maintained even if we consider “directed” versions of both architectures, in which case embeddings154

are maintained to be sent along each direction of the edge, and the message for the outgoing direction155

of an edge depends only on the embeddings corresponding to the incoming directions of the edges.156

Details are included in Section 8.3.157

3 Related Works158

The symmetry lens on GNNs: The most extensive theoretical work on GNNs has concerned itself159

with the representational power of different GNN architectures, while trying to preserve equivariance160

(to permuting the neighbors) of each layer. (Xu et al., 2018) connected the expressive power of such161

architectures to the Weisfeiler-Lehman (WL) test for graph isomorphism. Subsequent works (Maron162

et al., 2019; Zhao et al., 2021) focused on strengthening the representational power of the standard163

GNN architectures from the perspective of symmetries—more precisely, to simulate the k-WL test,164

which for k as large as the size of the graph becomes as powerful as testing graph isomorphism. Our165

work suggests that this perspective may be insufficient to fully understand the representational power166

of different architectures.167

GNNs as a computational machine: Two recent papers (Loukas, 2019, 2020) considered properties168

of GNNs when viewed as “local computation” machines, in which a layer of computation allows a169

node to aggregate the current values of the neighbors (in an arbitrary fashion, without necessarily170

considering symmetries). Using reductions from the CONGEST model, they provide lower bounds171

on width and depth for the standard node-embedding based architecture. However, they do not172

consider architectures with edge embeddings, which is a focus of our work.173

Communication complexity methods to prove representational separations: Tools from dis-174

tributed computation and communication complexity have recently been applied not only to under-175

stand the representational power of GNNs (Loukas, 2019, 2020), but also the representational power176

of other architectures like transformers (Sanford et al., 2024b,a). In particular, (Sanford et al., 2024a)177

draws a connection between number of rounds for a MPC (Massively Parallel Computation) protocol,178

and the depth of attention-based architectures.179

4

GNNs for inference and graphical models: The paper (Xu & Zou, 2023) considers the approx-180

imation power of GNNs for calculating marginals for pairwise graphical models, if the family of181

potentials satisfies strong symmetries. They do not consider the role of edge embeddings or memory.182

4 Setup183

Notation. We will denote the graph associated with the GNN as G = (V,E), denoting the vertex184

set as V and the edge set as E. The graph induces adjacency relations on both edges and nodes,185

namely for v, v′ ∈ V and e, e′ ∈ E, we have: v ∼ v′ if {v, v′} ∈ E; v ∼ e if e = {u, v} for some186

u ∈ V ; and e ∼ e′ if e, e′ share at least one vertex. For all graphs considered in this paper, we187

assume that {v, v} ∈ E for all v ∈ V , so that adjacency is reflexive. We then define adjacency188

functions NG : V ∪ E → V and MG : V ∪ E → E as NG(a) := {v ∈ V : a ∼ v} and189

MG(a) := {e ∈ E : a ∼ e}.190

Local memory-constrained computation. In order to reason about the required depth with dif-191

ferent architectures, we will define a mathematical abstraction for one layer of computation in the192

GNN. We will define two models for local computation, one for each of the edge-embedding and193

node-embedding architecture. Unlike much prior work on GNNs and distributed computation, we194

will also have memory constraints — more precisely, we will constrain the bit complexity of the node195

and edge embeddings being maintained.196

In both models, there is an underlying graph G = (V,E), and the goal is to compute a function197

g : ΦE → {0, 1}V , where Φ is the fixed-size input alphabet,via several rounds of message-passing198

on the graph G. This domain of g is ΦE because in both models, the inputs are given on the edges of199

the graph — the node model will just be unable to store any additional information on the edges. As200

we will see in Section 5, this is a natural setup for probabilistic inference on graphs.201

In both models, a protocol is parametrized by the number of rounds T required, and the amount202

of memory B required per local processor. For notational convenience, for B ∈ N we define203

XB := {0, 1}B , i.e. the length-B binary strings. Recall that NG(v),MG(v) denote the sets of204

vertices and edges adjacent to vertex v in graph G, respectively.205

Definition 1 (Node message-passing protocol). Let T,B ∈ N and let G = (V,E) be a graph. A206

node message-passing protocol P on graph G with T rounds and B bits of memory is a collection of207

functions (ft,v)t∈[T],v∈V where ft,v : XNG(v)
B × ΦMG(v) → XB for all t, v. For an input I ∈ ΦE ,208

the computation of P at a round t ∈ [T] is the map Pt(·; I) : V → XB defined inductively by209

Pt(v; I) := ft,v((Pt−1(v
′; I))v′∈NG(v), (I(e))e∈MG(v)) where P0 ≡ 0. We say that P computes a210

function g : ΦE → {0, 1}V on inputs I ⊆ ΦE if PT (v; I)1 = g(I)v for all v ∈ V and all I ∈ I.211

In words, the value computed by vertex v at round t is some function of the previous values stored212

at the neighbors v′ ∈ NG(v), as well as possibly the problem inputs on the edges adjacent to v (i.e.213

(I(e))e∈MG(v))). Note that Pt(v; I) may indeed depend on Pt−1(v; I), due to our convention that214

v ∈ NG(v). We can define the edge message-passing protocol analogously:215

Definition 2 (Edge message-passing protocol). Let T,B ∈ N and let G = (V,E) be a graph. An216

edge message-passing protocol P on graph G with T rounds and B bits of memory is a collection217

of functions (ft,e)t∈[T],e∈E where ft,e : XMG(e)
B × Φ→ XB for all t, e, together with a collection218

of functions (f̃v)v∈[V] where f̃v : XMG(v)
B → {0, 1}. For an input I ∈ ΦE , the computation219

of P at a timestep t ∈ [T] is the map Pt(·; I) : E → XB defined inductively by: Pt(e; I) :=220

ft,e((Pt−1(e
′; I))e′∈MG(e), I(e)) where P0 ≡ 0. We say that P computes a function g : ΦE →221

{0, 1}V on inputs I ⊆ ΦE if f̃v((PT (e; I))e∈MG(v)) = g(I)v for all v ∈ V and all I ∈ I.222

Remark 3 (Relation to distributed computation literature). These models are very related to clas-223

sical models in distributed computation like LOCAL (Linial, 1992) and CONGEST (Peleg, 2000).224

However, the latter models ignore memory constraints, so we cannot usefully port lower and upper225

bounds from this literature.226

Remark 4 (Computational efficiency). In the definitions above, we allow the update rules ft,v, ft,e227

to be arbitrary functions. In particular, a priori they may not be efficiently computable. However, our228

results showing a function can be implemented by an edge message-passing protocol (Theorem 1,229

Part 2 and Theorem 4, Part 2) in fact use simple functions (computable in linear time in the size230

5

of the neighborhood), implying the protocol can be implemented in parallel (with one processor231

per node/edge respectively) with parallel time complexity O(TB · maxv |MG(v)|). On the other232

hand, for the results showing a function cannot be implemented by a node message-passing protocol233

(Theorem 1, Part 1 and Theorem 4, Part 1), we prove an impossibility result for a stronger model234

(one in which the computational complexity of ft,v is unrestricted) — which makes our results only235

stronger.236

Symmetry-constrained protocols. Typically, GNNs are architecturally constrained to respect the237

symmetries of the underlying graph. Below we formalize the most natural notion of symmetry in our238

models of computation. Note, our abstraction of a round in the message-passing protocol generalizes239

the notion of a layer in a graph neural network—and the abstraction defined below correspondingly240

generalizes the standard definition of permutation equivariance (Xu et al., 2018). We use the notation241

{{}} to denote a multiset.242

Definition 5 (Symmetric node message-passing protocol). A node message-passing protocol P =243

(ft,v)t∈[T],v∈V on graph G = (V,E) is symmetric if there are functions (f sym
t)t∈[T] so that for every244

t ∈ [T] and v ∈ V , the function ft,v can be written as:245

ft,v((c(v
′))v′∈NG(v), (I(e))e∈MG(v)) = f sym

t (c(v), {{(c(v′), I({v, v′})) : v′ ∈ NG(v)}}).
Definition 6 (Symmetric edge message-passing protocol). An edge message-passing protocol P =246

((ft,e)t∈[T],e∈E , (f̃v)v∈V) on graph G = (V,E) is symmetric if there are functions (f sym
t)t∈[T] and247

f̃ sym so that for every t ∈ [T] and e = {u, v} ∈ E, the function ft,e can be written as:248

ft,e((c(e
′))e′∈MG(e), I(e)) = f sym

t (I(e), c(e), {{{{c({u, v′}) : v′ ∈ NG(u)}}, {{c({u′, v}) : u′ ∈ NG(v)}}}}),

and for every v ∈ V , f̃v can be written as f̃v((c(e))e∈MG(v)) = f̃ sym({{c(e) : e ∈MG(v)}}).249

5 Depth separation between edge and node message passing protocols under250

memory constraints251

We will consider a common task in probabilistic inference on a pairwise graphical model: calculating252

the MAP (maximum a-posterior) configuration.253

Definition 7 (Pairwise graphical model). For any graph G = (V,E), the pairwise graphical model254

on G with potential functions ϕ{a,b} : {0, 1}2 → R is the distribution pϕ ∈ ∆({0, 1}V) defined as255

pϕ(x) ∝ exp
(
−
∑

{a,b}∈E ϕ{a,b}(xa, xb)
)
.256

Definition 8 (MAP evaluation). Let Φ ⊆ {ϕ : {0, 1}2 → R} be a finite set of potential functions.257

A MAP (maximum a-posteriori) evaluator for G (with potential function class Φ) is any function258

g : ΦE → {0, 1}V that satisfies g(ϕ) ∈ argmaxx∈{0,1}V pϕ(x) for all ϕ ∈ ΦE .259

With this setup in mind, we will show that there exists a pairwise graphical model, and a local function260

class Φ, such that an edge message passing protocol can implement MAP evaluation with a constant261

number of rounds and a constant amount of memory, while any node message protocol with T rounds262

and B bits of memory requires TB = Ω(
√
|V |). Precisely, we show:263

Theorem 1 (Main, separation between node and edge message-passing protocols). Fix n ∈ N. There264

is a graph G with O(n) vertices and O(n) edges, and a function class Φ of size O(1), so that:265

1. Let g be any MAP evaluator for G with potential function class Φ. Any node message-passing266

protocol on G with T rounds and B bits of memory that computes g requires TB ≥
√
n− 1.267

2. There is an edge message-passing protocol (ft,e)t,e on G with O(1) rounds and O(1) bits of268

memory that computes a MAP evaluator for G with potential function class Φ. Additionally, for269

all t, e, the update rule ft,e can be evaluated in O(|MG(e)|) time.270

We provide a proof sketch of the main techniques here, and relegate the full proofs to Appendix A.271

The graph G that exhibits the claimed separation is a disjoint union of
√
n path graphs, with an272

additional “hub vertex” that is connected to all other vertices in the graph (Fig. 1). The intuition for273

the separation is that MAP estimation requires information to disseminate from one end of each path274

to the other, and the hub node is a bottleneck for node message-passing but not edge message-passing.275

We expand upon both aspects of this intuition below.276

6

Lower bound for node message-passing protocols: Our main technical lemma for the first half277

of the theorem is Lemma 2. It gives a generic framework for lower bounding the complexity of any278

node message-passing protocol that computes some function g, by exhibiting a set of nodes S ⊂ V279

where computing g requires large “information flow” from distant nodes. More precisely, for any280

fixed set of “bottleneck nodes” K, consider the radius-T neighborhood of S when K is removed281

from the graph. In any T -round protocol, input data from outside this neighborhood can only reach282

S by passing through K. But the total number of bits of information computed by K throughout283

the protocol is only TB|K|. This gives a bound on the number of values achievable by g on S. We284

formalize this argument below (proof in Appendix A):285

Lemma 2. Let G = (V,E) be a graph. Let P be a node message-passing protocol on G with T286

rounds and B bits of memory, which computes a function g : ΦE → {0, 1}V . Pick any disjoint sets287

K,S ⊆ V . Define H := G[K̄], F := MG(N
T−1
H (S)).288

Then: TB ≥ 1
|K| logmaxIF∈ΦF

∣∣∣{gS (IF , IF) : IF ∈ ΦF
}∣∣∣ .289

Remark 9. The proof technique is inspired by and related to classic techniques (specifically, Grig-290

oriev’s method) for proving time-space tradeoffs for restricted models of computation like branching291

programs ((Grigor’ev, 1976), see Chapter 10 in Savage (1998) for a survey). There, one defines292

the “flow” of a function, which quantifies the existence of subsets of coordinates, such that setting293

them to some value, and varying the remaining variables results in many possible outputs. In our294

case, the choice of subsets is inherently tied to the topology of the graph G. Our technique is also295

inspired by and closely related to the “light cone” technique for proving round lower bounds in the296

LOCAL computation model (Linial, 1992). However, our technique takes advantage of bottlenecks297

in the graph to prove stronger lower bounds (which would be impossible in the LOCAL model where298

memory constraints are ignored).299

The proof of Part 1 of Theorem 1 now follows from an application of Lemma 2 with a particular300

choice of K and S. Specifically, we choose K to be the “hub” node (i.e. K = {0}) and S to be the301

set of left endpoints of each path. To show that any MAP evaluator has large information flow to302

S (in the quantitative sense of Lemma 2), it suffices to observe that in a pairwise graphical model303

on G where a different external field is applied to the right endpoint of each path, and all pairwise304

interactions along paths are positive, the MAP estimate on each vertex in S must match the external305

field on the corresponding right endpoint.306

Upper bound for edge message-passing protocols: The key observation for constructing a307

constant-round edge message-passing protocol for MAP estimation on G is that all of the input data308

can be collected on the edges adjacent to the hub vertex. At this point, every such edge has access to309

all of the input data, and hence can evaluate the function. If G were an arbitrary graph, this final step310

would potentially be NP-hard. However, since the induced subgraph after removing the hub vertex311

is a disjoint union of paths, in fact there is a linear-time dynamic programming algorithm for MAP312

estimation on G (Lemma 6). This completes the proof overview for Theorem 1.313

The separation discussed above crucially relies on the existence of a high-degree vertex in G. When314

the maximum degree of G is bounded by some parameter ∆, it turns out that any edge message-315

passing protocol can be simulated by a node message-passing protocol with roughly the same number316

of rounds and only a ∆ factor more memory per processor. The idea is for each node to simulate the317

computation that would have been performed (in the edge message-passing protocol) on the adjacent318

edges. The following proposition formalizes this idea (proof in Appendix A):319

Proposition 3. Let T,B ≥ 1. Let G = (V,E) be a graph with maximum degree ∆. Let P be an320

edge message-passing protocol on G with T rounds and B bits of memory. Then there is a node321

message-passing protocol P ′ on G that computes P with T + 1 rounds and O(∆B) bits of memory.322

6 Depth separation under memory and symmetry constraints323

One drawback of the separation in the previous section is that the constructed edge protocol was324

highly non-symmetric, whereas in practice GNN protocols are typically architecturally constrained to325

respect the symmetries of the underlying graph. In this section we prove that there is a separation326

between the memory/round trade-offs for node and edge message-passing protocols even under327

additional symmetry constraints.328

7

Theorem 4. Let n ∈ N. There is a graph G = (V,E) with O(n) vertices and O(n) edges, and a329

function g : {0, 1}E → {0, 1}V , so that:330

1. Any node message-passing protocol on G with T rounds and B bits of memory that computes g331

requires TB ≥ Ω(
√
n).332

2. There is a symmetric edge message-passing protocol on G with O(1) rounds and O(log n) bits of333

memory that computes g.334

For intuition, we sketch the proof of a relaxed version of the theorem where the input alphabet is [n].335

It is conceptually straightforward to adapt the construction to binary alphabet (essentially, by adding336

new vertices and using a unary encoding). We defer the full proof to Appendix B.337

Let G = (V,E) be a star graph with root node 0 and leaves {1, . . . , n}. We define a function338

g : [n]E → {0, 1}V by g(I)v = 1 if and only if there is some edge e ̸= {0, v} such that I(e) =339

I({0, v}), i.e. the input on edge {0, v} equals the input on some other edge. Since g is defined to340

be equivariant to relabelling the edges, and all edges are incident to each other, it is straightforward341

to see that there is a symmetric one-round edge message-passing protocol that computes g with342

O(log n) memory (in contrast, the edge message-passing protocol constructed in Section 5 was not343

symmetric, as it required that the edges incident to the high-degree vertex were labelled by which path344

they belonged to). However, there is no low-memory, low-round node message-passing algorithm.345

Informally, this is because vertex 0 is an information bottleneck, and Ω(n) bits of information need346

to pass through it. Similar to in Section 5, this intuition can be made formal using Lemma 2.347

7 Symmetry alone provides no separation348

In the previous sections we saw that examining memory constraints yields a separation between349

different GNN architectures (whether or not we take symmetry into consideration). In this section,350

we consider what happens if we solely consider symmetry constraints (that is, constraints imposed by351

requiring that the computation in a round of the protocol is invariant to permutations of the order of352

the neighbors). This viewpoint was initiated by Xu et al. (2018), who showed that when the initial353

node features are uninformative (that is, the same for each node), a standard GNN necessarily outputs354

the same answer for two graphs that are 1-Weisfeiler-Lehman equivalent (that is, graphs that cannot355

be distinguished by the Weisfeiler-Lehman test, even though they may not be isomorphic).356

To be precise, we revisit the representational power of symmetric GNN architectures in the setting357

where the input features may be distinct and informative. We show that if we remove the memory358

constraints from Section 5, but impose permutation invariance for the computation in each round,359

any function that is computable by a T -layer edge message-passing protocol can be computed360

by a (T + 1)-layer node message-passing protocol. Note that this statement is incomparable to361

Proposition 3 because we impose constraints on symmetry, but remove constraints on memory.362

Theorem 5 (No separation under symmetry constraints). Let T ≥ 1. Let P be a symmetric edge363

message-passing protocol (Definition 6) on graph G = (V,E) with T rounds. Then there is a364

(T + 1)-round symmetric node message-passing protocol (Definition 5) P ′ on G that computes the365

same function as P .366

Remark 10. Theorem 5 and its proof are closely related to the fact that the 1-Weisfeiler-Lehman367

test is equivalent to the 2-Weisfeiler-Lehman test, which was reintroduced in the context of higher-368

order GNNs (Huang & Villar, 2021). However, the k-Weisfeiler-Lehman test only characterizes the369

representational power of k-GNNs with uninformative input features (i.e. that are identical for all370

nodes). Theorem 5 shows that even with arbitrary input features on the edges, the computation of371

a GNN with edge embeddings and symmetric updates can be simulated by a GNN with only node372

embeddings, without losing symmetry.373

To prove Theorem 5, note that it suffices to simulate the protocol P for which the update rules374

f sym, f̃ sym in Definition 6 are identity functions on the appropriate domains. In order to simulate375

P , we construct a symmetric node message-passing protocol P ′ for which the computation at time376

t+ 1 and node v on input I is the multiset of features computed by P at time t at edges adjacent to v:377

Qt(v; I) := {{Pt(e; I) : e ∈MG(v)}}. This is possible since the computation of P at time t and edge378

e = (u, v) is Pt(e; I) = (I(e), Pt−1(e; I), {{Qt−1(u; I), Qt−1(v; I)}}). The node message-passing379

8

protocol is tracking Qt−1(·; I); moreover, it can recursively compute Pt−1(e; I) using the same380

formula. See Appendix C for the formal proof.381

8 Empirical benefits of edge-based architectures382

In this section we demonstrate that the representational advantages the theory suggests are borne out383

by experimental evaluations, both on real-life benchmarks and two natural synthetic tasks we provide.384

Note that all the experiments were done on a machine with 8 Nvidia A6000 GPUs.385

8.1 Performance on common benchmarks386

First we compare the performance of the most basic GNN architecture (Graph Convolutional Network,387

Kipf & Welling (2016)) with node vs. edge embeddings. In the notation of (1)–(2), the AGGREGATE388

and COMBINE operations are integrated as a transformation that looks like (3) or (4):2389

h(l+1)
v = h(l)

v + σ
(
W (l)MEAN

(
h(l)
w : w ∈ NG(v) \ {v}

))
(3)

h(l+1)
e = h(l)

e + σ
(
W (l)MEAN

(
h
(l)
f : f ∈MG(e) \ {e}

))
(4)

for trained matrices W (l) and a choice of non-linearity σ. The only difference between these390

architectures is that in the latter case, the message passing happens over the line graph of the original391

graph (i.e. the neighborhood of an edge is given by the other edges that share a vertex with it) —392

thus, this can be viewed as an ablation experiment in which the only salient difference is the type of393

embeddings being maintained. To also equalize the information in the input embeddings, we only394

use the node embeddings in the benchmarks we consider: for the edge-based architecture (2), we395

initialize the edge embeddings by the concatenation of the node embeddings of the endpoints.396

In Table 1, we show that this single change (without any other architectural modifications) uniformly397

results in the edge-based architecture at least matching the performance of the node-based architecture,398

sometimes improving upon it. Note, the purpose of this table is not to advocate a new GNN399

architecture3— but to confirm that the increased representational power of the edge-based architecture400

indicated by the theory also translates to improved performance when the model is trained. For each401

benchmark, we follow the best performing training configuration as in (Dwivedi et al., 2023).402

Model
ZINC MNIST CIFAR-10 Peptides-Func Peptides-Struct

MAE (↓) ACCURACY (↑) ACCURACY (↑) AP (↑) MAE (↓)
GCN 0.3430± 0.034 95.29± 0.163 55.71± 0.381 0.6816± 0.007 0.2453± 0.0001

Edge-GCN (Ours) 0.3297± 0.011 94.37± 0.065 57.44± 0.387 0.6867± 0.004 0.2437± 0.0005

Table 1: Comparison of node-based (3) and edge-based (4) GCN architectures across various graph
benchmarks. The performance of the edge-based architecture robustly matches or improves the
node-based architecture.

8.2 A synthetic task for topologies with node bottlenecks403

The topologies of the graphs in Theorem 1 and Theorem 4 both involve a “hub” node, which is404

connected to all other nodes in the graph. Intuitively, in node-embedding architectures, such nodes405

have to mediate messages between many pairs of other nodes, which is difficult when the node is406

constrained by memory. To empirically stress test this intuition, we produce a synthetic dataset407

and train a GNN to solve a regression task on a graph with a fixed star-graph topology—a simpler408

topology than the constructions in Theorem 1 and Theorem 4—but capturing the core aspect of409

both. A star graph is a graph with a center node v0, a set of n leaf nodes {vi}i∈[n], and edge set410

{{v0, vi}i∈[n]}. A training point in the dataset is a list (xi, yi)
n
i=1 where xi is the input feature and411

yi is the label for leaf node vi.412

The input features are in R10, and sampled from a standard Gaussian. The labels yi are produced413

as outputs of a planted edge-based architecture. Namely, for a standard edge-based GCN as in (4),414

we randomly choose values for the matrices {Wi}i∈[k] for some number of layers k, and set the415

labels to be the output of this edge-based GCN, when the initial edge features to the GCN are set416

as h
(0)
{v0,vi} := xi, i.e. the input feature xi at the corresponding leaf i. In Table 2, we show the417

2This is the “residual” parametrization, which we use in experiments unless otherwise stated.
3In particular, the edge-based architecture is often much more computationally costly to evaluate.

9

performance of edge-based and node-based architectures on this dataset, varying the number of leaves418

n in the star graph and the depth k of the planted edge-based model. In each case, the numbers419

indicate RMSE of the best-performing edge-based and node-based architecture, sweeping over depths420

up to 10 (2× the planted model), widths ∈ {16, 32, 64}, and a range of learning rates.421

Since the planted edge-based model satisfies both invariance constraints (by design of the GCN422

architecture) and memory constraints (since the planted model maintains 10-dimensional embeddings),423

we view these results as empirical corroboration of Theorem 4—and even for simpler topologies than424

the proof construction.425

Depth of Planted Model (RMSE)

Number of
Leaves

5 3 1

Edge Node Edge Node Edge Node

64 0.004 0.3790 0.011 0.3596 0.008 0.3752
32 0.003 0.3664 0.005 0.3626 0.003 0.3614
16 0.007 0.3336 0.002 0.2100 0.002 0.2847

Table 2: Performance (in RMSE ↓) of edge-based and node-based architectures on a star-graph
topology. The first number is the performance of the best edge-based model, and the second is
the best node-based model, across a range of depths up to 10 (2× the planted model), widths
∈ {16, 32, 64}, and a range of learning rates.

8.3 A synthetic task for inference in Ising models426

Finally, motivated by the probabilistic inference setting in Theorem 1, we consider a synthetic427

sandbox of using GNNs to predict the values of marginals in an Ising model (Ising, 1924; Onsager,428

1944) – a natural type of pairwise graphical model where each node takes a value in {±1}, and429

each edge potential is a weighted product of the edge endpoint values. Concretely, the probability430

distribution of an Ising model over graph G = (V,E) has the form: ∀x ∈ {±1}n : pJ,h(x) ∝431

exp
(∑

{i,j}∈E J{i,j}xixj +
∑

i∈V hixi

)
.432

Similar to in Section 8.2, we construct a training set where the graph G and and edge potentials433

stay fixed (precisely, Ji,j = 1 for all {i, j} ∈ E). A training data-point consists of a vector of node434

potentials {hi}i∈[n], and labels {E[xi]}i∈[n] consisting of the marginals from the resulting Ising435

model pJ,h. The node potentials are sampled from a standard Gaussian distribution.436

There is a natural connection between GNNs and calculating marginals: a classical way to calculate437

{E[xi]} when G is a tree is to iterate a message passing algorithm called belief propagation (5),438

in which for each edge {i, j} and direction i → j, a message ν
(t+1)
i→j is calculated that depends on439

messages {ν(t)k→i}{k,i}∈E . The belief-propagation updates (5) naturally fit the general edge-message440

passing paradigm from (2). In fact, they fit even more closely a “directed” version of the paradigm, in441

which each edge {i, j} maintains two embeddings hi→j , hj→i, such that the embedding for direction442

hi→j depends on the embeddings {hk→i}{k,i}∈E — and it is possible to derive a similar “directed”443

node-based architecture (See Appendix E.2). For both the undirected and directed version of the444

architecture, we see that maintaining edge embeddings gives robust benefits over maintaining node445

embeddings—for a variety of tree topologies including complete binary trees, path graphs, and446

uniformly randomly sampled trees of a fixed size. More details are included in Appendix E.447

9 Conclusions and future work448

Graph neural networks are the best-performing machine learning method for many tasks over graphs.449

There is a wide variety of GNN architectures, which frequently make opaque design choices and450

whose causal influence on the final performance is difficult to understand and estimate. In this paper,451

we focused on understanding the impact of maintaining edge embeddings on the representational452

power, as well as the subtleties of considering constraints like memory and invariance. One significant453

downside of maintaining edge embeddings is the computational overhead on dense graphs. Hence, a454

fruitful direction for future research would be to explore more computationally efficient variants of455

edge-based architectures that preserve their representational power and performance.456

10

References457

Karl Abrahamson. Time-space tradeoffs for algebraic problems on general sequential machines.458

Journal of Computer and System Sciences, 43(2):269–289, 1991.459

Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, et al. Interaction networks460

for learning about objects, relations and physics. Advances in neural information processing461

systems, 29, 2016.462

Mitchell Black, Zhengchao Wan, Amir Nayyeri, and Yusu Wang. Understanding oversquashing in463

gnns through the lens of effective resistance. In International Conference on Machine Learning,464

pp. 2528–2547. PMLR, 2023.465

Lei Cai, Jundong Li, Jie Wang, and Shuiwang Ji. Line graph neural networks for link prediction.466

IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(9):5103–5113, 2021.467

Zhengdao Chen, Xiang Li, and Joan Bruna. Supervised community detection with line graph neural468

networks. arXiv preprint arXiv:1705.08415, 2017.469

Kamal Choudhary and Brian DeCost. Atomistic line graph neural network for improved materials470

property predictions. npj Computational Materials, 7(1):185, 2021.471

Vijay Prakash Dwivedi, Chaitanya K Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and472

Xavier Bresson. Benchmarking graph neural networks. Journal of Machine Learning Research, 24473

(43):1–48, 2023.474

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural475

message passing for quantum chemistry. In International conference on machine learning, pp.476

1263–1272. PMLR, 2017.477

Dmitrii Yur’evich Grigor’ev. Application of separability and independence notions for proving lower478

bounds of circuit complexity. Zapiski Nauchnykh Seminarov POMI, 60:38–48, 1976.479

Johan Håstad and Avi Wigderson. The randomized communication complexity of set disjointness.480

Theory of Computing, 3(1):211–219, 2007.481

Ningyuan Teresa Huang and Soledad Villar. A short tutorial on the weisfeiler-lehman test and its482

variants. In ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal483

Processing (ICASSP), pp. 8533–8537. IEEE, 2021.484

Ernst Ising. Beitrag zur theorie des ferro-und paramagnetismus. PhD thesis, Grefe & Tiedemann485

Hamburg, Germany, 1924.486

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.487

arXiv preprint arXiv:1609.02907, 2016.488

AA Leman and Boris Weisfeiler. A reduction of a graph to a canonical form and an algebra arising489

during this reduction. Nauchno-Technicheskaya Informatsiya, 2(9):12–16, 1968.490

Jinbi Liang and Cunlai Pu. Line graph neural networks for link weight prediction. arXiv preprint491

arXiv:2309.15728, 2023.492

Nathan Linial. Locality in distributed graph algorithms. SIAM Journal on computing, 21(1):193–201,493

1992.494

Andreas Loukas. What graph neural networks cannot learn: depth vs width. arXiv preprint495

arXiv:1907.03199, 2019.496

Andreas Loukas. How hard is to distinguish graphs with graph neural networks? Advances in neural497

information processing systems, 33:3465–3476, 2020.498

Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful graph499

networks. Advances in neural information processing systems, 32, 2019.500

Marc Mezard and Andrea Montanari. Information, physics, and computation. Oxford University501

Press, 2009.502

11

Lars Onsager. Crystal statistics. i. a two-dimensional model with an order-disorder transition. Physical503

Review, 65(3-4):117, 1944.504

Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for node505

classification. arXiv preprint arXiv:1905.10947, 2019.506

David Peleg. Distributed computing: a locality-sensitive approach. SIAM, 2000.507

Clayton Sanford, Daniel Hsu, and Matus Telgarsky. Transformers, parallel computation, and logarith-508

mic depth. arXiv preprint arXiv:2402.09268, 2024a.509

Clayton Sanford, Daniel J Hsu, and Matus Telgarsky. Representational strengths and limitations of510

transformers. Advances in Neural Information Processing Systems, 36, 2024b.511

John E Savage. Models of computation, volume 136. Addison-Wesley Reading, 1998.512

Matus Telgarsky. Benefits of depth in neural networks. In Conference on learning theory, pp.513

1517–1539. PMLR, 2016.514

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural515

networks? arXiv preprint arXiv:1810.00826, 2018.516

Tuo Xu and Lei Zou. Rethinking and extending the probabilistic inference capacity of gnns. In The517

Twelfth International Conference on Learning Representations, 2023.518

Lingxiao Zhao, Wei Jin, Leman Akoglu, and Neil Shah. From stars to subgraphs: Uplifting any gnn519

with local structure awareness. arXiv preprint arXiv:2110.03753, 2021.520

12

Figure 1: The graph G for which Theorem 1 exhibits a separation between edge message-passing
and node message-passing. The graph consists of

√
n paths of length

√
n, as well as a single “hub

vertex” connected to all other vertices.

Appendix521

A Omitted Proofs from Section 5522

In this section we give the omitted proofs from Section 5. In particular we give the formal proof of523

Theorem 1, which states that there is a depth separation between edge message-passing protocols and524

node message-passing protocols for a natural MAP estimation problem on the underlying graph G.525

We also remark that a quantitatively stronger (and in fact tight) separation is possible if one considers526

general tasks rather than MAP estimation tasks – see Appendix D.527

Proof of Lemma 2. First, we argue by induction that for each t ∈ [T] and v ∈ V \ K, Pt(v; I)528

is determined by IMG(Nt−1
H (v)) and (Pℓ(k; I))ℓ∈[t],k∈K . Indeed, by definition, P1(v; I) is deter-529

mined by IM1
G(v) for any v ∈ V \ K. For any t > 1 and v ∈ V \ K, Pt(v; I) is determined530

by (Pt−1(v
′; I))v′∈NG(v) and (I(e))e∈MG(v). Note that NG(v) ⊆ NH(v) ∪ K. Thus, using the531

induction hypothesis for each v′ ∈ NH(v), we get that (Pt−1(v
′; I))v′∈NG(v) is determined by532 ⋃

v′∈NH(v) IMG(Nt−2
H (v′)) and (Pℓ(k; I))ℓ∈[t],k∈K . So Pt(v; I) is determined by IMG(Nt−1

H (v)) and533

(Pℓ(k; I))ℓ∈[t],k∈K , completing the induction.534

Since P computes g and S ⊆ V \K, we get that gS(I) is determined by IMG(NT−1
H (S)) = IF and535

(Pℓ(k; I))ℓ∈[T],k∈K . Thus, for any fixed IF ∈ ΦF , we have536 ∣∣∣{gS (IF , IF) : IF ∈ ΦF
}∣∣∣ ≤ ∣∣∣{(Pℓ(k; (IF , IF)))ℓ∈[T],k∈K) : IF ∈ ΦF

}∣∣∣ ≤ |XB |T |K| = 2TB|K|.

The lemma follows.537

Proof of Theorem 1. Let G be the graph on vertex set V := {0}∪ [
√
n]× [

√
n] with edge set defined538

below (see also Fig. 1):539

E := {{0, (i, j)} : i, j ∈ [
√
n]} ∪ {{(i, j), (i+ 1, j)} : 2 ≤ i ≤

√
n, 1 ≤ j ≤

√
n}.

Define540

Φ := {(xa, xb) 7→ 1[xa ̸= xb], (xa, xb) 7→ 1[xa ̸= 1∨xb ̸= 1], (xa, xb) 7→ 1[xa ̸= 0∨xb ̸= 0], (xa, xb) 7→ 0}.

First, let g : ΦE → {0, 1}V be any MAP evaluator for G with potential function class Φ, and consider541

any node message-passing protocol on G with T rounds and B bits of memory that computes g. Let542

K = {0} and S = {(1, j) : j ∈ [
√
n]}. Suppose that T ≤

√
n− 2. Let F := MG(N

T−1
H (S)) and543

note that {(
√
n− 1, j), (

√
n, j)} ̸∈ F for all j ∈ [

√
n]. Let IF : F → Φ be the mapping that assigns544

the function (xa, xb) 7→ 0 to each edge {0, (i, j)} ∈ F and (xa, xb) 7→ 1[xa ̸= xb] to each edge545

{(i, j), (i+ 1, j)} ∈ F . We claim that546 ∣∣∣{gS(IF , IF) : IF ∈ ΦF
}∣∣∣ ≥ 2

√
n.

Indeed, for any string y ∈ {0, 1}
√
n, consider the mapping IF : F → Φ that assigns the function547

(xa, xb) 7→ 1[xa ̸= yj ∨ xb ̸= yj] to each edge {(
√
n− 1, j), (

√
n, j)} ∈ F , assigns (xa, xb) 7→ 0548

13

to each edge {0, (i, j)} ∈ E \F , and assigns (xa, xb) 7→ 1[xa ̸= xb] to all remaining edges in E \F .549

Then every minimizer of550

min
x∈{0,1}V

∑
{a,b}∈E

I{a,b}(xa, xb)

satisfies x(1,j) = · · · = x(
√
n,j) = yj for all j ∈ [

√
n]. Hence, gS(IF , IF) = y. Since y was chosen551

arbitrarily, this proves the claim. But now Lemma 2 implies that TB ≥
√
n.552

We now construct an edge message-passing protocol P on G with T = 3 and B = 4. We (arbitrarily)553

identify Φ with {0, 1}2. For all i, j ∈
√
n, define554

f1,{(i,j),(i+1,j)}(x, y) := y if i <
√
n

f2,{0,(i,j)}(x, y) := (x{(i,j),(i+1,j)}, x{0,(i,j)}) if i <
√
n

f3,{0,(i,j)}(x, y) := (g0(J(x)), g(i,j)(J(x)))

where the second line is well-defined since edge {0, (i, j)} is adjacent to both itself and edge555

{(i, j), (i+1, j)}; and in the third line the function is computing g0 and g(i,j) on the input J(x) ∈ ΦE556

defined as557

J(x)e :=

{
(x{0,(k,ℓ)})1:2 if e = {(k, ℓ), (k + 1, ℓ)}
(x{0,(k,ℓ)})3:4 if e = {0, (k, ℓ)} ,

where we use the notation va:b for a vector v and indices a, b ∈ N to denote (va, va+1, . . . , vb). Note558

that J(x) is a well-defined function of x for every edge {0, (i, j)}, because {0, (i, j)} ∼ {0, (k, ℓ)}559

for all i, j, k, ℓ ∈ [n]. Finally, define all other functions ft,e to compute the all-zero function, and560

define561

f̃v(x) :=

{
(x{0,(1,1)})1:2 if v = 0

(x{0,v})3:4 otherwise
.

This function is well-defined since v = 0 is adjacent to edge {0, (1, 1)} and any vertex v ∈ V \ {0}562

is adjacent to edge {0, v}.563

Fix any I ∈ ΦE . From the definition, it’s clear that P2({0, (i, j)}; I) = (I{(i,j),(i+1,j)}, I{0,(i,j)})564

for all I and (i, j) ∈ [
√
n − 1] × [

√
n]. Hence J((P2(e

′; I))e′∈MG(e))e = I for all edges e of the565

form (0, {i, j}), and so P3({0, (i, j)}; I) = (g0(I), g(i,j)(I)) for all (i, j) ∈ [
√
n] × [

√
n]. This566

means that f̃v((P3(e; I))e∈MG(v)) = g(I)v for all v ∈ V , so the protocol indeed computes g.567

It remains to argue about the computational complexity of the updates ft,e. It’s clear that for all568

e ∈ E and t ∈ {1, 2}, the function ft,e can be evaluated in input-linear time. The only case that569

requires proof is when t = 3 and e = {0, (i, j)} for some i, j ∈
√
n. In this case |MG(e)| = Θ(n),570

so it suffices to give an algorithm for evaluating the function g : ΦE → {0, 1}V on an explicit input571

J in O(n) time. This can be accomplished via dynamic programming (Lemma 6).572

Lemma 6. Fix n ∈ N. Let G, Φ be as defined in Theorem 1. Then there is an O(n)-time algorithm573

that computes a MAP evaluator for G with potential function class Φ.574

Proof. Fix any J ∈ ΦE . As preliminary notation, for each c, c0 ∈ {0, 1} and i, j ∈
√
n, let575

V (i, j) := {0} ∪ {(k, j) : 1 ≤ k ≤ i}, and let E(i, j) be the edge set of the induced subgraph576

G[V (i, j)]. Let577

x̂i,j(c, c0; J) := argmin
x∈{0,1}V (i,j):

x0=c0 ∧ x(i,j)=c

∑
(a,b)∈E(i,j)

J{a,b}(xa, xb),

Ĉi,j(c, c0; J) := min
x∈{0,1}V (i,j):

x0=c0 ∧ x(i,j)=c

∑
(a,b)∈E(i,j)

J{a,b}(xa, xb).

For each j ∈ [
√
n], let578

x̂j(c0; J) := x̂√
n,j

((
argmin
c∈{0,1}

Ĉ√
n,j(c, c0; J)

)
, c0; J

)
.

14

Finally, let x̂(c0; J) ∈ {0, 1}V be the vector which takes value c0 on vertex 0, and value x̂j(c0; J)i579

on vertex (i, j) for all i, j ∈
√
n. Let580

x̂(J) := argmax
c0∈{0,1}

pJ(x̂(c0; J)).

We claim that x̂(J) is a maximizer of pJ(x). Indeed, for any fixed c0 ∈ {0, 1}, x̂(c0; J) is a581

maximizer of pJ(x) subject to x0 = c0, because under this constraint the maximization problem582

decomposes into
√
n independent maximization problems, one for each path in G, which by definition583

are solved by x̂1(c0; J), . . . , x̂√
n(c0; J).584

Moreover, it’s straightforward to see that for any fixed j, Ĉj(c0; J) can be computed in O(
√
n)585

time by dynamic programming. Indeed for any i, j, Ĉi,j(c, c0; J) can be computed in O(1) time586

from Ĉi−1,j(0, c0; J) and Ĉi−1,j(1, c0; J) as well as J{0,(i,j)} and J{(i−1,j),(i,j)}. Once the values587

Ĉi,j(c, c0; J) have been computed for all i ∈ [
√
n] and c ∈ {0, 1}, the vector x̂j(c0; J) can be588

computed in O(
√
n) time via a reverse scan over i =

√
n, . . . , 1. It follows that x̂(J) can be589

computed in O(n) time.590

Proof of Proposition 3. We claim that there is a node message-passing protocol P ′ on G with T + 1591

rounds that at each time t ∈ [T + 1] has computed592

P ′
t (v; I) = (Pt−1(e; I))e∈MG(v).

We argue inductively. Since P0 ≡ 0, it’s clear that this can be achieved for t = 1. Fix any t > 1593

and suppose that P ′
t−1(u; I) = (Pt−2(e; I))e∈MG(u) for all u ∈ V and inputs I . For each v ∈ V , we594

define a function f ′
t,v by595

f ′
t,v((c(v

′))v′∈NG(v), (I(e))e∈MG(v))e⋆ := ft−1,e⋆((c(v)e)e∈MG(v), (c(v
⋆)e)e∈MG(v⋆), I(e

⋆))

for each e⋆ = (v, v⋆) ∈MG(v). Then by definition and the inductive hypothesis, we have596

P ′
t (v; I)e⋆ = f ′

t,v((P
′
t−1(v

′; I))v′∈NG(v), (I(e))e∈MG(v))e⋆

= ft−1,e⋆((P
′
t−1(v; I)e)e∈MG(v), (P

′
t−1(v

⋆; I)e)e∈MG(v⋆), I(e
⋆))

= ft−1,e⋆((Pt−2(e; I))e∈MG(v), (Pt−2(e; I)e)e∈MG(v⋆), I(e
⋆))

= Pt−1(e
⋆; I)

for any edge e⋆ = (v, v⋆) ∈ E, since MG(e) = MG(v) ∪MG(v
⋆). This completes the induction597

and shows that P ′
T+1(v; I) = (PT (e; I))e∈MG(v) for all v, I . Replacing f ′

T+1,v by f̃T,v ◦ f ′
T+1,v598

completes the proof.599

B Omitted Proofs from Section 6600

In this section we provide a formal proof of Theorem 4. For notational convenience, define m = ⌊
√
n⌋.601

We define a graph G = (V,E) that is a perfect n-ary tree of depth two. Formally, the graph G has602

vertex set V = {0} ∪ [m] ∪ ([m]× [m]). Vertex 0 is adjacent to each i ∈ [m], and each i ∈ [m] is603

additionally adjacent to (i, j) for all j ∈ [m]. We define a function g : {0, 1}E → {0, 1}V as follows.604

On input I ∈ {0, 1}E , for each edge e ∈ E, define the input summation at e to be605

C(I)e :=
∑

e′∈MG(e)

I(e′).

Intuitively, one may think of C(I)e as simulating the input on e in the “large alphabet” construction606

described in Section 6. Next, define607

g(I)(u,j) := 0.

g(I)u := 1[#|e ∈MG({0, u}) : C(I)e = C(I){0,u}| > m+ 1].

g(I)0 := 1[∃u ∈ [m] : g(I)u = 1].

In words, g(I)u is the indicator for the event that, among the 2m + 1 edges adjacent to {0, u}608

(which include {0, u} itself), more than m + 1 edges have the same input summation as {0, u}.609

15

At a high level, this definition of g was designed to satisfy three criteria. First, g(I)u depends on610

the input values on other branches of the tree: in particular, if I{0,v} = 0 for all v ∈ [n], then611

C(I)e = C(I){0,u} for all edges e in the subtree of u, so g(I)u exactly measures the event that there612

is at least one edge e outside the subtree of u for which C(I)e = C(I){0,u}. Second, there is no613

concise “summary” of I such that g(I)u can be determined from this summary in conjunction with614

the inputs on the subtree of u. Third, g(I) is equivariant to re-labelings of the tree.615

The first two criteria, together with the fact that the root vertex 0 is an “information bottleneck” for616

G, can be used to show that any node message-passing algorithm that computes g on G requires617

either large memory or many rounds. The third criterion enables construction of a symmetric edge618

message-passing protocol for g. The arguments are formalized in the claims below.619

Claim 7. For graph G and function g as defined above, any node message-passing protocol on G620

that computes g with T rounds and B bits of memory requires TB ≥ Ω(m).621

Proof. Consider any input I ∈ {0, 1}E with I({0, u}) = 0 for all u ∈ [m]. Then for any u, j ∈ [m],622

we have623

C(I){u,(u,j)} = C(I){0,u} =

m∑
i=1

I({u, (u, i)}).

Thus g(I)u = 1 if and only if there exists some v ∈ [m] \ {u} with C(I){0,u} = C(I){0,v}, or624

equivalently
∑m

i=1 I({u, (u, i)}) =
∑m

i=1 I({v, (v, i)}).625

Fix T,B and suppose that P is a node message-passing protocol on G that computes g with T rounds626

and B bits of memory. Define sets of vertices K := {0} and S := {1, . . . ,m/2}. Let H := G[K]627

and F := MG(N
T−1
H (S)). Then for any T , we have that628

F = {{0, u} : 1 ≤ u ≤ m/2} ∪ {{u, (u, j)} : 1 ≤ u ≤ m/2, 1 ≤ j ≤ m}.
Define a vector IF ∈ ΦF by629

I{0,u} = 0 for 1 ≤ u ≤ m/2

I{u,(u,j)} = 1[j ≤ u] for 1 ≤ u ≤ m/2, 1 ≤ j ≤ m.

Now fix any x ∈ {0, 1}S . We claim that there is some IF ∈ ΦF such that gS(IF , IF) = x. Indeed,630

let us define IF by:631

I{0,v} = 0 for m/2 < v ≤ m

I{v,(v,j)} = xv−m/21[j ≤ v −m/2] for m/2 < v ≤ m, 1 ≤ j ≤ m.

Then C(I){0,u} = u for all 1 ≤ u ≤ m/2, and C(I){0,v} = (v−m/2)xv−m/2 for all m/2 < v ≤ m.632

It follows that for any 1 ≤ u ≤ n/2, xu = 1 if and only if there exists some v ∈ [m] \ u with633

C(I){0,u} = C(I){0,v}, and hence xu = g(I)u. We conclude that634 ∣∣∣{gS(IF , IF) : IF ∈ ΦF
}∣∣∣ ≥ 2m/2.

Applying Lemma 2 we conclude that TB ≥ Ω(m) as claimed.635

Claim 8. For graph G and function g as defined above, there is a symmetric edge message-passing636

protocol on G that computes g with O(1) rounds and O(logm) bits of memory.637

Proof. In the first round, each edge processor reads its input value. In the second round, each edge638

processor sums the values computed by all neighboring edges (including itself). In the third round,639

each edge processor computes the indicator for the event that strictly more than m+ 1 neighboring640

edges (including itself) have the same value as itself. In the final aggregation round, the output of a641

vertex is the indicator for the event that any neighbor has value 1.642

By construction, the value computed by any edge e after the second round is exactly C(I)e. Thus,643

after the third round, the value computed by any edge {0, u} is exactly g(I)u. Moreover, the value644

computed by any edge {u, (u, j)} is 0 after the third round, since such edges only have m + 1645

neighbors. It follows by construction of the final aggregation step that the protocol computes g.646

Proof of Theorem 4. Immediate from Claims 7 and 8.647

16

C Omitted Proofs from Section 7648

Proof of Theorem 5. Without loss of generality, we may assume that the functions (f sym
t)t∈[T] and649

f̃ sym are all the identity function (on the appropriate domains). The reason is that any symmetric650

edge message-passing protocol P̃ on T rounds may be simulated by running P and then applying a651

universal function (depending only on P̃) to each node’s output value – see Lemma 9.652

We argue by induction that for each t ∈ [T], there is a (t+1)-round symmetric node message-passing653

protocol that, on any input I , computes the function Qt(u; I) := {{Pt(e; I) : e ∈MG(u)}} for every654

node u ∈ V . Consider t = 1. For any e = (u, v) ∈ E, we have by symmetry and the initial655

assumption that656

P1(e; I) = (I(e), 0, {{{{0 : v′ ∈ NG(u)}}, {{0 : u′ ∈ NG(v)}}}}).
We define a two-round node message-passing protocol on G where the first update at node u computes657

P ′
1(u; I) = {{I({u, v}) : v ∈ NG(u)}}

and the second update at node u computes658

(P ′
1(u; I), {{(P ′

1(v; I), I({u, v})) : v ∈ NG(u)}}) 7→ {{(I({u, v}), 0, |NG(u)|, |P ′
1(v; I)|) : v ∈ NG(u)}}

7→ {{(I({u, v}), 0, {{|NG(u)|, |P ′
1(v; I)|}}) : v ∈ NG(u)}}

= {{P1({u, v}; I) : v ∈ NG(u)}} =: P ′
2(u; I)

since |P ′
1(v; I)| = |NG(v)|. By construction, this protocol is symmetric, which proves the induction659

for step t = 1.660

Now pick any t > 1. For any e = {u, v} ∈ E, we have661

Pt(e; I) = (I(e), Pt−1(e; I), {{Qt−1(u; I), Qt−1(v; I)}})
By the induction hypothesis, there is a t-round symmetric node message-passing protocol P ′ that, at662

node v on input I , computes663

P ′
t (v; I) = {{Pt−1({v, v′}; I) : v′ ∈ NG(v)}} = Qt−1(v; I).

Note that since Pt−1(e; I) is an element of the tuple Pt(e; I), for each 1 ≤ s ≤ t− 1 there is a fixed664

function γs such that γs(Qt−1(v; I)) = Qs(v; I) for all v, I . Using this fact, we extend P ′ to t+ 1665

rounds, defining the update at round t+ 1 and node u as follows:666

(P ′
t (u; I), {{(P ′

t (v; I), I({u, v})) : v ∈ NG(u)}})
= (Qt−1(u; I), {{(Qt−1(v; I), I({u, v})) : v ∈ NG(u)}})
7→ (Q1:t−1(u; I), {{(Q1:t−1(v; I), I({u, v})) : v ∈ NG(u)}})
7→ (Q1:t−1(u; I), {{(Q1:t−1(v; I), I({u, v})) : v ∈ NG(u)}})
= {{(I({u, v}), {{Q1:t−1(u; I), Q1:t−1(v; I)}}) : v ∈ NG(u)}}
7→ {{(I({u, v}), Pt−1({u, v}; I), {{Qt−1(u; I), Qt−1(v; I)}}) : v ∈ NG(u)}} =: P ′

t+1(u; I)

where Q1:t−1(u; I) refers to the tuple (Q1(u; I), . . . , Qt−1(u; I)). The first map is well-defined due667

to the existence of the functions γ1, . . . , γt−1, and the final map is well-defined because the definition668

of Pt−1({u, v}; I) can be iteratively unpacked, and it is ultimately a function of669

(I({u, v}), {{Q1:t−1(u; I), Q1:t−1(v; I)}}).
This shows that P ′ computes Qt(v; I) at node u on input I . By construction, P ′ is symmetric. This670

completes the induction. Since QT (u; I) is precisely the output of P at node u on input I (after671

the node aggregation step), this shows that P can be simulated by a (T + 1)-round symmetric node672

message-passing protocol on G.673

Lemma 9. Let T ≥ 1, and let P = ((ft,e)t∈[T],e∈E , (f̃v)v∈V) be a symmetric edge message-passing674

protocol on G = (V,E) with T rounds. Consider the T -round edge message-passing protocol675

P ◦ = ((f◦
t,e)t∈[T],e∈E , (f̃

◦
v)v∈V) where for all t, e,676

f◦
t,e((c(e

′))e′∈MG(e), I(e)) := (I(e), c(e), {{c({u, v′}) : v′ ∈ NG(u)}}, {{c({u′, v}) : u′ ∈ NG(v)}}),
and for every v ∈ V ,677

f̃◦
v ((c(e))e∈MG(v)) := {{c(e) : e ∈MG(v)}}.

Then there is a function h such that f̃v((PT (e; I))e∈MG(v)) = h(f̃◦
v ((P

◦
T (e; I))e∈MG(v))) for all678

v, I .679

17

Proof. We prove by induction that for each t ∈ {0, . . . , T} there is a function ht such that Pt(e; I) =680

ht(P
◦
t (e; I)) for all e, I . For t = 0 this is immediate from the convention that P0 ≡ P ◦

0 ≡ 0. Fix any681

t ∈ {1, . . . , T}. Since P is symmetric, there is a function f sym
t so that for all e = (u, v) ∈ E and682

inputs I ,683

Pt(e; I) = f sym
t (I(e), Pt−1(e; I), {{Pt−1({u, v′}; I) : v′ ∼ u}}, {{Pt−1({u′, v}; I) : u′ ∼ v}})

= f sym
t (I(e), ht−1(P

◦
t−1(e; I)), {{ht−1(P

◦
t−1({u, v′}; I)) : v′ ∼ u}}, {{ht−1(P

◦
t−1({u′, v}; I)) : u′ ∼ v}})

which is indeed a well-defined function (independent of e, I) of684

P ◦
t (e; I) = (I(e), P ◦

t−1(e; I), {{P ◦
t−1({u, v′}; I) : v′ ∼ u}}, {{P ◦

t−1({u′, v}; I) : u′ ∼ v}}).

This completes the induction. Finally, since P is symmetric, there is a function f̃ sym such that685

f̃v((PT (e; I))e∈MG(v)) = f̃ sym({{PT (e; I) : e ∈MG(v)}}) for all v, I . Hence we can write686

f̃v((PT (e; I))e∈MG(v)) = f̃ sym({{PT (e; I) : e ∈MG(v)}})
= f̃ sym({{hT (P

◦
T (e; I)) : e ∈MG(v)}})

which is a well-defined function (independent of v, I) of {{P ◦
T (e; I) : e ∈MG(v)}} as needed.687

D A quantitatively tight depth/memory separation688

For each n ∈ N, let Kn := ([n], En) be the complete graph on [n]. In this section we show that there689

is a function that can be computed by an edge message-passing protocol on Kn with constant rounds690

and constant memory per processor, but for which any node message-passing protocol with T rounds691

and B bits of memory requires TB ≥ Ω(n). We remark that this separation is quantitatively tight692

due to Proposition 3, although it is possible that a larger (e.g. even super-polynomial in n) depth693

separation may be possible if the node message-passing protocol is restricted to constant memory per694

processor.695

At a technical level, the lower bound proceeds via a reduction from the set disjointness problem in696

communication complexity, similar to the lower bounds in Loukas (2019).697

Definition 11. Fix m ∈ N. The set disjointness function DISJm : {0, 1}m × {0, 1}m → {0, 1} is698

defined as699

DISJm(A,B) := 1[∀i ∈ [m] : AiBi = 0].

The following fact is well-known; see e.g. discussion in Håstad & Wigderson (2007).700

Lemma 10. In the two-party deterministic communication model, the deterministic communication701

complexity of DISJm is at least m.702

The main result of this section is the following:703

Theorem 11. Fix any even n ∈ N. Define g : {0, 1}En → {0, 1}n by704

g(I)v := 1[∃{i, j} ∈ En : i, j ≤ n/2 ∧ I({i, j}) = I({n+ 1− i, n+ 1− j}) = 1]

for all I ∈ {0, 1}En and v ∈ [n]. Then the following properties hold:705

• Any node message-passing protocol on Kn with T rounds and B bits of memory that706

computes g requires TB ≥ Ω(n)707

• There is an edge message-passing protocol on Kn with O(1) rounds and O(1) bits of708

memory that computes g.709

Proof. Let m :=
(
n/2
2

)
. Let P = (ft,v)t,v be a node message-passing protocol on Kn that computes710

g with T rounds and B bits of memory. We design a two-party communication protocol for DISJm711

as follows. Suppose that Alice holds input X ∈ {0, 1}m and Bob holds input Y ∈ {0, 1}m. Let us712

index the edges {i, j} ∈ En with i, j ≤ n/2 by [m], and similarly index the edges {i, j} ∈ En with713

i, j > n/2 by [m], in such a way that edge {i, j} has the same index as edge {n+ 1− i, n+ 1− j}.714

Let I ∈ {0, 1}En be defined by715

I({i, j}) :=

X{i,j} if i, j ≤ n/2

Y{i,j} if i, j > n/2

0 otherwise
.

18

Initially, Alice computes P̂0(v) := 0 for all v ∈ {1, . . . , n/2}, and Bob computes P̂0(v) := 0 for all716

v ∈ {n/2 + 1, . . . , n}. The communication protocol then proceeds in T rounds. At round t ∈ [T],717

Alice sends (P̂t−1(v))1≤v≤n/2 to Bob, and Bob sends (P̂t−1(v))n/2+1≤v≤n to Alice. Alice then718

computes719

P̂t(v) := ft,v((P̂t−1(v
′))v′∈[n], (I(e))e∈MKn (v))

for each 1 ≤ v ≤ n/2, and Bob computes the same for each n/2 < v ≤ n. Note that for any i ≤ n/2720

and edge e ∈ MKn
(i), Alice can compute I(e). Similarly, for any i > n/2 and edge e ∈ MKn

(i),721

Bob can compute I(e). Thus, this computation is well-defined. After round T , Alice and Bob output722

1− P̂T (1) and 1− P̂T (n) respectively.723

This defines a communication protocol. Since P̂t(v) ∈ {0, 1}B for each v ∈ [n] and t ∈ [T], the total724

number of bits communicated is at most nBT . Moreover, by induction it’s clear that Alice and Bob725

output 1− PT (1; I) and 1− PT (n; I) respectively. By assumption that P computes g and the fact726

that g(I)v = 1 − DISJm(X,Y) for all v ∈ [n], we have that 1 − PT (1; I) = 1 − PT (n; I) = 0 if727

DISJm(I) = 0, and 1− PT (1; I) = 1− PT (n; I) = 1 if DISJm(I) = 1. Thus, this communication728

protocol computes DISJm. By Lemma 10, it follows that nBT ≥ m = Ω(n2), so BT = Ω(n) as729

claimed.730

Next, we exhibit an edge message-passing protocol on Kn that computes g with six rounds and one731

bit of memory. For 1 ≤ t ≤ 6 and e ∈ En, define ft,e : {0, 1}MG(e) × {0, 1} → {0, 1} as follows:732

f1,{i,j}(x, y) := y

f2,{i,j}(x, y) := x{n+1−i,j}

f3,{i,j}(x, y) := x{i,n+1−j}

f4,{i,j}(x, y) := 1[y = x{i,j} ∧ i, j ≤ n/2]

f5,{i,j}(x, y) := 1[∃k ∈ [n] : x{i,k} = 1]

f6,{i,j}(x, y) := 1[∃k ∈ [n] : x{i,k} = 1].

Also define f̃v : {0, 1}MG(v) → {0, 1} for each v ∈ [n] by f̃v(x) := x{x,1}. It can be checked that733

the computation of P at timestep t = 6 is734

P6({i, j}; I) := 1[∃k, ℓ ∈ [n/2] : I({k, ℓ}) = I({n+ 1− k, n+ 1− ℓ})] = g(I).

From the definition of f̃ , it follows that P computes g.735

E Further details on synthetic task over Ising models736

E.1 Background on belief propagation737

A classical way to calculate the marginals {E[xi]} of an Ising model, when the associated graph is a738

tree, is to iterate the message passing algorithm:739

ν
(t+1)
i→j = tanh

hi +
∑

k∈∂i\j

tanh−1
(
tanh(Jik)ν

(t)
k→i

) (5)

When the graph is a tree, it is a classical result ((Mezard & Montanari, 2009), Theorem 14.1) that the740

above message-passing algorithm converge to values ν∗ that yield the correct marginals, namely:741

E[xi] = tanh

(
hi +

∑
k∈∂i

tanh−1 (tanh(Jik)ν
∗
k→i)

)
.

The reason the updates converge to the correct values on a tree topology is that they implicitly742

simulate a dynamic program. Namely, we can write down a recursive formula for the marginal of743

node i which depends on sums spanning each of the subtrees of the neighbors of i (i.e., for each744

neighbor j, the subgraph containing j that we would get if we removed edge {i, j}).745

If we root the tree at an arbitrary node r, we can see that after completing a round of message746

passing from the leaves to the root, and another from the root to the leaves, each subtree of i will be747

(inductively) calculated correctly.748

19

Moreover, even though the updates (5) are written over edges, the dynamic programming view makes749

it clear an equivalent message-passing scheme can be written down where states are maintained over750

the nodes in the graph. Namely, for each node v, we can maintain two values hv,down and hv,up,751

which correspond to the values that will be used when v sends a message upwards (towards the root)752

or downwards (away from the root). Then, for appropriately defined functions F,G (depending on753

the potentials J and h), one can “simulate” the updates in (5):754

h
(t+1)
v,up ← F

(
{h(t)

w,up : w ∈ v ∪ Children(v)}
)

(6)

h
(t+1)

v,down ← G

(
h
(t)

Parent(v),down,
{
h
(t)
w,up

}
w∈Children(v)

)
(7)

Intuitively, hv,up captures the effective external field induced by the subtree rooted at v on755

Parent(v). After the upward messages propagate, the root r can compute its correct marginal.756

Once hParent(v),down is the correct marginal for Parent(v) at some step, hv,down will be the correct757

marginal for v at all subsequent steps.758

E.2 GCN-based architectures to calculate marginals759

The belief-propagation updates (5) naturally fit the general edge-message passing paradigm from760

(2). In fact, they fit even more closely a “directed” version of the paradigm, in which each edge761

{i, j} maintains two embeddings hi→j , hj→i, such that the embedding for direction hi→j depends762

on the embeddings {hk→i}{k,i}∈E . With this modification to the standard edge GCN architecture763

Eq. (4), it is straightforward to implement (5) with one layer, using a particular choice of activation764

functions and weight matrices W (since, in particular, in our dataset all edge potentials Ji,j are set765

to 1). Similarly, with a directed version of the node GCN architecture Eq. (3), where each node766

maintains an “up” embedding as well as a “down” embedding, it is straightforward to implement the767

“node-based” dynamic programming solution (6)-(7).768

We call the architectures that do not maintain directionality Node-U and Edge-U (depending on769

whether they use a node-based or edge-based GCN). We call the “directed” architectures Node-D and770

Edge-D respectively. Since there are only initial node features (input as node potentials {hi}i∈), for771

the edge based architectures we initialize the edge features as a concatenation of the node features of772

the endpoints of the edge. The results we report for each architecture are the best over a sweep of773

depth ∈ {5, 10, 15, 20, 25, 30} and width ∈ {10, 32, 64}.774

E.3 Edge-based models improve over node-based models775

In Figure 2 we show the results for several tree topologies: a complete binary tree (of size 31), a776

path graph (of size 30), and uniformly randomly chosen trees of size 30 (the results in Figure 2 are777

averaged over 3 samples of tree). The architectures in the legend (Node-U, Edge-U, Node-D, Edge-D)778

are based on a standard GCN, and detailed in Section E.2779

We can see that for both the undirected and directed versions, adding edge embeddings improves780

performance. The improved performance of all directed versions compared to their undirected781

counterpart is not very surprising: the standard, undirected GCN architecture treats all neighbors782

symmetrically — hence, the directed versions can more easily simulate something akin to the belief783

propagation updates (5) as well as the node-based dynamic programming (6)-(7).784

20

Figure 2: Comparison of four architectures for calculating node marginals in an Ising model. The
architectures considered are node-embedding (3) and edge-embedding (4) versions of a GCN (corre-
spondingly labeled Node-U and Edge-U), as well as their “directed” counterparts, as described in
Section E.2, correspondingly labeled Node-D and Edge-D. The x-axis groups results according to the
topology of the graph, the y-axis is MSE (lower is better). The mean and variances are reported over
3 runs for the best choice of depth and width over the sweep described in Section E.2.

21

	Introduction
	Overview of results
	Representational benefits from maintaining edge embeddings.
	Empirical benefits of edge-based architectures.

	Related Works
	Setup
	Depth separation between edge and node message passing protocols under memory constraints
	Depth separation under memory and symmetry constraints
	Symmetry alone provides no separation
	Empirical benefits of edge-based architectures
	Performance on common benchmarks
	A synthetic task for topologies with node bottlenecks
	A synthetic task for inference in Ising models

	Conclusions and future work
	Omitted Proofs from section:map-separation
	Omitted Proofs from section:new
	Omitted Proofs from section:mapsymmetry
	A quantitatively tight depth/memory separation
	Further details on synthetic task over Ising models
	Background on belief propagation
	GCN-based architectures to calculate marginals
	Edge-based models improve over node-based models

