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VideoImage

Document

Question: What is the closest 
cartoon character that is put in the 
right side of Stitch on the table ？

Question: What is the phone 
number of CARR SMITH ?

Answer: 336-741-0820

Question: What is the current 
temperature forecast for Hyannis 
at 9:00 PM on Friday according to 
Barry Burbank's weather report?

Video Retrieval and 
Understanding

Answer: 48

Retrieval Image

Question: What text is 
displayed on the banner during 
the video?

Answer: YOUTH UNEMPLOYMENT

Question: What are the horizontal 
and vertical axes in Figure 3 
respectively ?

Answer: Which Figure 3 ???

Question: Which object is 
above the table?

Answer: No object ??? Box of 
cookies??? A ball, a glue stick, 
and a toy block???

Retrieval Documents

Answer: Baymax

Retrieval Document

Existing Benchmark MultiHaystack

Existing Benchmark MultiHaystack

Existing Benchmark MultiHaystack

Retrieval Images

Ambiguous Question !!!

Ambiguous Question !!!

No Retrieval !!!  Only focuses 
on a single content item.

Figure 1: Comparison of visual question answering benchmarks. Existing benchmarks focus on
isolated content (e.g., a single image or video), lack large-scale retrieval, and often pose ambiguous
questions. In contrast, MultiHaystack provides retrieval-oriented, evidence-grounded queries across
documents, images, and videos, requiring modality selection and fine-grained reasoning to better
reflect real-world scenarios.

ABSTRACT

Multimodal large language models (MLLMs) have advanced rapidly on bench-
marks involving isolated text, image, or video tasks, but such settings overlook
a crucial step in real-world applications: retrieving evidence from large, hetero-
geneous corpora before reasoning. Existing benchmarks typically provide only
hundreds or thousands of candidates, making retrieval trivial and overstating model
reliability. To address this gap, we introduce MultiHaystack, the first benchmark
for large-scale, realistic cross-modal retrieval and reasoning. It contains over
46,000 documents, images, and videos paired with 747 uniquely verifiable ques-
tions, ensuring unambiguous evaluation while requiring both modality selection
and fine-grained reasoning. Our experiments reveal a consistent pattern: models
perform competitively when directly given the answer-containing file, but their
performance drops sharply once evidence must be retrieved at scale. The best
retriever (E5-V) achieves only 40.8% Recall@1, while even GPT-5 reaches just
51.4% VQA accuracy under top-5 retrieval. These results reveal that retrieval,
rather than reasoning, is the dominant bottleneck, establishing MultiHaystack as a
rigorous benchmark that exposes weaknesses hidden by small-scale evaluations
and highlights retrieval as the key frontier for advancing MLLMs.
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1 INTRODUCTION

Multimodal large language models (MLLMs) have advanced rapidly by unifying text, image, and
video within a single generative framework (Chen et al., 2023). They support applications rang-
ing from visual assistants (Liu et al., 2025; Zhu et al., 2025) to Retrieval-Augmented Generation
(RAG) (Yu et al., 2025). However, most evaluations focus only on reasoning, overlooking the critical
step that precedes it in practice: retrieving relevant evidence from large heterogeneous corpora
spanning documents, images, and videos. This gap raises the central question: when large-scale
cross-modal retrieval is required, can current MLLMs still retrieve and reason reliably?

Real-world applications highlight this challenge: users interact with large heterogeneous cor-
pora (e.g., thousands of contracts, hundreds of diagrams, or hours of instructional video)
and require retrieving unique evidence and verifying cross-modal consistency. For in-
stance: “What is the penalty clause on page 7, and does it align with
step 3 in the video?" Answering such queries requires first retrieving the correct page and
video segment from a large candidate pool, then reasoning jointly over them. In contrast, most
existing benchmarks focus on isolated content (e.g., a single image or video), which can lead to vague
questions when answering requires multimodal evidence (see Figure 1), thereby overstating model
reliability. Practical scenarios demand large-scale multimodal retrieval tightly coupled with rigorous
evidence-grounded reasoning.

Recent retrieval-oriented datasets have made progress but remain insufficient in three critical aspects.
(1) Unrealistic scale: most provide only hundreds or thousands of candidates, making retrieval trivial
and inflating accuracy (Meng et al., 2025). (2) Limited modality coverage: restricted to a single
modality and do not adequately assess cross-modal performance, especially the more demanding
task of retrieving and integrating evidence across text, images, and videos for reasoning (Chen et al.,
2024; Wang et al., 2025). (3) Ambiguous supervision: others permit vague or non-unique questions,
hindering reproducibility and masking true weaknesses (Mathew et al., 2021). Together, these gaps
prevent faithful assessment of MLLM reliability under large-scale, cross-modal retrieval, motivating
a benchmark with multimodal corpora and uniquely verifiable questions.

InternVL-3

Ola

GPT-5
Gemini-2.5-Flash

Qwen2-VL
43.11

74.70

80.86

51.81

55.02

35.88

47.39

43.24

68.67

59.71
50.87

59.84

34.00

39.89

23.29
17.54

33.29

23.83

51.4143.64

Gold in Top 1
Gold in Top 5
Single-Modality
Cross-Modality

Figure 2: Performance on MultiHaystack.
“Gold in Top-1/5” directly provides answer-
containing files; “Single-Modality” and
“Cross-Modality” require retrieval within
one or across multiple modalities.

To address these gaps, we introduce MultiHaystack, the
first large-scale benchmark for realistic cross-modal re-
trieval and reasoning. MultiHaystack spans 46,260 doc-
uments, images, and videos, paired with 747 evidence-
grounded questions. Each question requires retrieving
a single relevant item from a multimodal pool of up
to 46K candidates, followed by fine-grained reasoning
across modalities. Notably, every query is evidence-
grounded with a uniquely verifiable answer, ensuring
clarity and reproducibility. Our experiments reveal
a consistent pattern: accuracy is high when models
are given the answer-containing file, but drops sharply
once large-scale retrieval is required, especially across
modalities. Even strong retrievers such as E5-V achieve
only 40.8% Recall@1, while GPT-5 reaches 51.4%
VQA accuracy under top-5 retrieval. We further ob-
serve a steep performance collapse as the candidate pool expands from 1K to 46K, a challenge
that prior small-scale benchmarks fail to expose. These results indicate that retrieval, rather than
reasoning, is the dominant bottleneck, explaining why small-scale evaluations have masked this
fundamental problem (Figure 2).

In summary, our contributions are as follows:

• We introduce MultiHaystack, the first large-scale benchmark for realistic cross-modal
retrieval and reasoning, spanning 46K documents, images, and videos.

• We design evidence-grounded questions that require retrieval with modality selection and
cross-modal fusion, enabling precise and reproducible evaluation.

• We conduct comprehensive experiments on state-of-the-art MLLMs, highlighting retrieval
as the key frontier for advancing multimodal reasoning.
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Table 1: Comparison of Needle-in-a-Haystack Benchmarks. Unlike prior benchmarks that are
limited in modality, scale, or task diversity, MultiHaystack is a large-scale multimodal benchmark
with over 46k contexts, multi-needle retrieval, unique answers, and six task types.

Benchmark Modality Images per QA Data Types Multi-Needle Unique-Answer Task Types

WebVQA (Doe & Smith, 2023) 1–5 Web images 1

RetVQA (Penamakuri et al., 2023) 20–30 Natural images 2

MM-NIAH (Wang et al., 2024b) 10–70+ Mixed text-image 3

MMNeedle (Wang et al., 2025) 10–160 Image patch 1

DocHaystack (Chen et al., 2024) 100–1000 Document images 2

MultiHaystack >46,000 Multimedia items 6

2 RELATED WORK

Visual Question Answering (VQA) Benchmarks. Early VQA benchmarks focused on single-
instance tasks such as image–text retrieval (Lin et al., 2015; Plummer et al., 2015; Goyal et al., 2017;
Marino et al., 2019; Mathew et al., 2021), overlooking retrieval across heterogeneous sources. Later
datasets (e.g., A-OKVQA (Schwenk et al., 2022), TextVQA (Singh et al., 2019), DocVQA (Mathew
et al., 2021)) added external knowledge or documents but still assumed resolution from a single
instance. Recent suites such as MM-Bench (Liu et al., 2024), MV-Bench (Li et al., 2024a), and
OmniBench (Li et al., 2025) extend to video and audio, yet mainly test intra-instance understanding,
not retrieval across instances. These settings overestimate model reliability, whereas real applications
require retrieval with evidence-grounded reasoning, motivating Needle-in-a-Haystack evaluations.

Needle-in-a-Haystack Benchmarks. Recent efforts enlarge candidate pools to mimic real-world
search: WebVQA (Doe & Smith, 2023) and RetVQA (Penamakuri et al., 2023) cover dozens of
images; DocHaystack (Chen et al., 2024) scales to hundreds of document pages; MM-NIAH (Wang
et al., 2024b) and MMNeedle (Wang et al., 2025) introduce mixed text–image or patch-level inputs.
Despite progress, they face three key limitations: (1) single-modality focus; (2) limited cross-modal
reasoning; and (3) ambiguous questions with multiple answers.

In contrast, MultiHaystack is, to our knowledge, the first benchmark to jointly consider large-scale
retrieval, cross-modal integration, and unambiguous questions. Rather than offering incremental
extensions within a single modality or small candidate pool, it explicitly targets the combination that
prior work has left open, situating retrieval as the key challenge for realistic multimodal reasoning.

3 MULTIHAYSTACK

In this section, we present MultiHaystack, a large-scale benchmark to evaluate MLLMs on realistic
cross-modal retrieval and reasoning. It is constructed through a four-stage pipeline including data
collection, question generation, multi-step filtering, and enrichment to increase retrieval difficulty.
The resulting corpus D = {d1, . . . , dN} serves as the heterogeneous evidence pool, where each di
denotes a candidate item. Specifically, D spans three modalities: images, videos, and documents,
as illustrated in Figure 4. Each question is constructed such that exactly one di ∈ D provides the
uniquely supporting evidence, ensuring that answers are explicitly grounded and verifiable.

3.1 TASK DEFINITION

Each question in MultiHaystack first requires retrieving its supporting item from the multimodal
heterogeneous corpus D, and then performing fine-grained reasoning on it. This setup reflects
realistic workflows where retrieval quality directly affects reasoning, so evaluation captures both
stages together rather than in isolation.

3.2 DATA STATISTICS

Comparison. Prior benchmarks often restrict to a single modality, allow ambiguous queries without
unique answers, or require no real retrieval beyond snippets (Figure 1). MultiHaystack addresses
these issues by ensuring each query is evidence-grounded with exactly one supporting item in the
corpus, requiring models to both retrieve and reason over this evidence. As summarized in Table 1,
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Video Temporal Reasoning

Statistical Reasoning

Question: What is percentage of 
Asian athletes in 2012 Paralympic 
Games?
Answer: 24%

Metadata Identification

Question: Which news station is the 
source of the breaking news regarding 
L. Brooks Patterson?
Answer: 7 Action News

Factual Knowledge Retrieval

Question: In which two years did J. G. Farrell win the 
Booker prize?
Answer: 1970, 1973

Contextual Understanding Visual Parsing and Positioning

Question: What logo is visible on the blue wall 
pads in the Advent Health practice facility?
Answer:  Orlando Magic

Question: What color are the ice lollies Peppa 
and George are holding in their car seats?
Answer: Orange and Pink

Question: What is the score of 
the Cleveland team at 4:51 in the 
first quarter?
Answer: 12

...

...

Figure 3: Examples of six tasks in MultiHaystack: Visual Parsing & Positioning (spatial layouts),
Contextual Understanding (embedded text), Video Temporal Reasoning (motion/order), Statistical
Reasoning (charts/tables), Metadata Identification (affiliations/timestamps), and Factual Knowledge
Retrieval (corpus-grounded facts).

MultiHaystack is the first benchmark to scale across documents, images, and videos, while spanning
six task types and integrating multi-needle retrieval with uniquely verifiable answers.

Task Distribution. The benchmark defines six tasks to evaluate MLLMs after retrieval from a large
cross-modal corpus (Figure 3):

• Visual Parsing and Positioning (VPP): object positions and spatial layouts.
• Contextual Understanding (CU): embedded text in images or videos.
• Video Temporal Reasoning (VTR): motion, order, and state changes across frames.
• Statistical Reasoning (SR): quantitative patterns in charts, tables, and figures.
• Metadata Identification (MI): affiliations, timestamps, and institutions.
• Factual Knowledge Retrieval (FKR): corpus-grounded factual information.

Based on this design, MultiHaystack contains 33 visual parsing tasks, 30 contextual understanding
tasks, 44 video temporal reasoning tasks, 321 statistical reasoning tasks, 285 metadata identification
tasks, and 34 factual knowledge retrieval tasks. Each question is formed by inserting a controlled
“needle,” a uniquely answerable information fragment, into documents, images, or videos. This
provides explicit semantic grounding and creates non-trivial retrieval challenges. Unlike prior
benchmarks with ambiguous queries (Chen et al., 2024; Wang et al., 2025), MultiHaystack enforces
unique and verifiable answers for rigorous, reproducible evaluation.

3.3 MULTIHAYSTACK CONSTRUCTION

To ensure coverage and uniquely verifiable answers, MultiHaystack is built through a four-stage
pipeline: data collection, question generation, filtering, and enrichment (Figure 4).

Stage 1: Data Collection. We construct D by combining datasets from three modalities: videos
(VideoVista (Li et al., 2024b), MMBench-Video (Fang et al., 2024), FineVideo (Farré et al., 2024),
MVBench (Li et al., 2024a)), images (DocHaystack (Chen et al., 2024), MMIU (Meng et al., 2025),
A-OKVQA (Schwenk et al., 2022)), and documents (MINT1T (Awadalla et al., 2024)). This curated
mix brings cross-modal diversity beyond what any individual dataset offers.
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Stgae1: Data Collection Stage 2: QA Generation Stage 3: QA Filter

Data Comparison

Existing Benchmark
u Only partial modality coverage 

(not truly omni-modal)
u Small-scale multimodal data
u One-to-Many QA (Ambiguous)

Ours

Data Distribution

QA Generation

QA Generation

QA Generation

…

Generality-Based Filtering

Sample

QA

QA

QA

Manual Specificity Filtering

Contextual Answerability Filter

Stage 4: Data 
Enrichment

Enrichment Data Collection

Visual Feature Filtering

Manual Specificity Filtering

Figure 4: Benchmark construction pipeline. MultiHaystack is built in four stages: collecting
diverse multimodal sources, generating specific QA pairs, filtering for unique and grounded answers,
and enriching with challenging distractors. This design ensures coverage across six tasks (Figure 3)
and overcomes the unimodal, small-scale, or ambiguous limitations of prior benchmarks.

Stage 2: Question generation. Each file di is first converted into images: PDF pages are rendered
one by one, standalone images are used directly, and videos are uniformly sampled into eight frames.
Based on these images, GPT-4o generates a set of QA pairs Qi. On average, each item contributes
around 30 candidate questions, forming the raw QA pool Q =

⋃
i Qi.

Stage 3: Question filtering. We apply a three-step process to guarantee specificity and grounding.
(1) GPT-4o and Gemini-2.5-Flash remove ambiguous questions with multiple valid answers. (2)
Manual review discards items without explicit anchors such as objects, locations, or timestamps. (3)
A retrieval-independence test eliminates questions solvable without consulting the supporting item.
The resulting set Q⋆ contains 747 questions linked to 433 images, 105 videos, and 209 documents
(282 items total), balanced across modalities for fair evaluation.

Stage 4: Data enrichment. To increase retrieval difficulty, we construct distractors D− for each ques-
tion q ∈ Q⋆. Candidates are first retrieved using GPT-4o keywords, then filtered by CLIP similarity
and retriever scores to ensure semantic plausibility without redundancy. Manual verification further
confirms that distractors never contain the correct answer, yielding a challenging yet unambiguous
dataset of about 46K items.

Manual verification. Each query is validated with retrieval models and human checks to confirm
that answers come only from the designated supporting item. Although annotations are defined at the
page or frame level, evaluation is conducted at the item level, since models process whole documents
or videos. This dual validation guarantees reliability and prevents shortcuts.

Data profile. The final benchmark includes 747 questions and 46,260 items: 25,652 images, 10,419
videos, and 10,189 documents. Additional examples and analyses are provided in Appendix B.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Methods. To evaluate models on our benchmark, we follow retrieval-augmented pipelines (Chen et al.,
2024) and adapt them by unifying input modalities: images are used directly, videos are represented
by eight uniformly sampled frames, and documents are rendered into sequential images (Ma et al.,
2024). QA pairs are annotated at the page/frame level, while retrieval is evaluated at the item level. A
retrieval is considered correct if the file containing the annotated page or frame appears in the top-k
results. For the VQA stage, the full retrieved item is provided as input, closely simulating real-world
retrieval-augmented generation. Vision–Language Models (VLMs), such as SigLIP (Zhai et al., 2023),
are used to rank candidates; the top-k are paired with the question and passed to the multimodal
model for answer generation. When models impose input restrictions (e.g., limited sequence length
or incomplete video support), we apply additional preprocessing to ensure compatibility.
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Table 2: Retrieval performance in cross-modality vs. single-modality settings. Cross-modality
results are shown in black, while single-modality results are shown in gray for comparison. Best
values per column are highlighted in bold.

Model Video Image Document Overall
R@1 R@3 R@5 R@1 R@3 R@5 R@1 R@3 R@5 R@1 R@3 R@5

CLIP 26.67 (56.19) 40.00 (78.10) 51.43 (80.00) 21.71 (30.25) 31.64 (40.88) 34.87 (44.34) 34.93 (38.76) 46.89 (51.67) 48.80 (53.59) 26.10 (36.28) 37.08 (49.13) 41.10 (51.94)
SigLIP2 40.00 (63.81) 60.00 (83.81) 74.29 (91.43) 32.10 (44.11) 40.88 (53.12) 45.27 (58.66) 59.81 (61.72) 68.42 (70.33) 72.73 (75.12) 40.96 (51.81) 51.27 (62.25) 57.03 (67.87)
OpenCLIP 38.10 (60.00) 56.19 (74.29) 62.86 (78.10) 19.40 (25.40) 27.94 (35.80) 32.33 (42.26) 28.71 (32.06) 36.84 (42.58) 43.06 (47.85) 24.63 (32.13) 34.40 (43.11) 39.63 (48.86)
Jina-Clip-V1 21.90 (42.86) 38.10 (59.05) 47.62 (67.62) 7.39 (13.39) 10.16 (19.17) 12.93 (22.40) 16.75 (17.70) 21.05 (22.01) 22.49 (22.97) 12.05 (18.74) 17.14 (25.57) 20.48 (28.92)
Jina-Clip-V2 20.00 (36.19) 30.48 (56.19) 35.24 (76.19) 11.78 (27.25) 21.02 (42.73) 25.17 (48.04) 40.67 (41.63) 51.67 (52.63) 55.98 (56.46) 21.02 (32.53) 30.92 (47.39) 35.21 (54.35)
NEV 25.71 (38.10) 40.00 (54.29) 42.86 (60.95) 5.31 (8.78) 7.39 (12.01) 8.78 (13.63) 9.09 (10.53) 12.92 (13.88) 13.88 (16.27) 9.24 (13.39) 13.52 (18.47) 14.99 (21.02)
E5-V 34.29 (62.86) 51.43 (81.90) 60.95 (83.81) 33.49 (43.19) 55.20 (68.36) 62.82 (73.44) 59.33 (60.77) 70.33 (71.29) 75.12 (76.08) 40.83 (50.87) 58.90 (71.08) 66.00 (75.64)
MM-Embed 37.14 (60.95) 47.62 (80.00) 55.24 (87.62) 31.41 (43.65) 43.65 (64.43) 51.27 (67.21) 53.59 (62.68) 62.68 (67.46) 70.81 (75.60) 38.42 (51.41) 49.53 (67.47) 57.30 (72.42)

Baselines. We evaluate two categories of baselines: VLMs for retrieval and MLLMs for VQA.

For retrieval, we benchmark two categories of VLMs: CLIP-based models, including CLIP (Radford
et al., 2021), OpenCLIP (Cherti et al., 2022), and Jina-CLIP v1/v2 (Koukounas et al., 2024a;b);
and multimodal embedding models, including SigLIP2 (Tschannen et al., 2025), Nomic-Embed-
Vision (Nussbaum et al., 2024), E5-V (Jiang et al., 2024), and MM-Embed (Lin et al., 2025).

For VQA, we evaluate two categories of MLLMs: open-source models, including Ola-7B (Liu et al.,
2025), InternVL-3-8B (Zhu et al., 2025), and Qwen2-VL-7B (Wang et al., 2024a); and proprietary
models, including GPT-5 (OpenAI, 2025) and Gemini-2.5-Flash (AI, 2024).

Metrics. Retrieval is measured at the item level, reporting Recall@1/3/5 to indicate whether the
ground-truth item appears in the top-k results, since real-world applications often require retrieving
the entire file rather than a single page or frame. VQA accuracy is evaluated using GPT-4o-mini
under a fixed rubric, with manual auditing confirming high agreement with human judgment. Details
of the rubric are provided in Appendix C.

4.2 RETRIEVAL RESULTS

Table 2 compares both single-modality and cross-modality retrieval to reveal the strengths and
weaknesses of current retrieval models.

Single Modality. When restricted to a single modality, current models achieve strong performance.
For instance, SigLIP2 exceeds 90% Recall@5 on videos, while MM-Embed surpasses 75% Recall@5
on documents. These results indicate that unimodal retrieval is near-saturated, and single-modality
benchmarks no longer expose meaningful weaknesses.

Cross Modalities. In contrast, cross-modal retrieval remains highly challenging. Even the strongest
models, SigLIP2 and E5-V, reach only 40.96% and 40.83% R@1—drops of over 40 points from their
unimodal results. MM-Embed attains relatively higher recall at R@5 (57.30%), yet still falls well
short of its unimodal performance. Weaker baselines degrade even further, with document retrieval
proving the most difficult.

These findings underscore that cross-modal retrieval is the primary bottleneck for MLLMs, under-
scoring the need for benchmarks like MultiHaystack to measure and advance this capability.

4.3 VISUAL QUESTION ANSWERING RESULTS

Table 3: VQA performance. Each model an-
swers questions using top-5 items retrieved from
cross-modality inputs; gray numbers show single-
modality Recall@5 for reference.

Model Video Image Document Overall
Ola 14.29 (22.86) 20.09 (31.41) 36.36 (44.98) 23.83 (34.00)

InternVL-3 17.14 (20.95) 29.33 (38.80) 49.28 (51.67) 33.29 (39.89)

Qwen2-VL 16.19 (18.10) 16.86 (24.94) 19.62 (22.49) 17.54 (23.29)

Gemini-2.5-Flash 52.38 (61.90) 35.10 (44.57) 56.94 (58.37) 43.64 (50.87)

GPT-5 60.00 (67.62) 43.19 (52.66) 64.11 (70.81) 51.41 (59.84)

As shown in Table 3, we compare VQA accu-
racy when conditioning on items retrieved from
single-modality versus cross-modality search.
GPT-5 achieves the highest overall performance,
reaching 59.84% with single-modality retrieval
but only 51.41% under cross-modal retrieval.
Gemini-2.5-Flash follows a similar pattern,
dropping from 50.87% to 43.64%. In contrast,
weaker models such as Ola and Qwen2-VL re-
main below 25% overall even with unimodal
retrieval, indicating limited grounding ability. These results demonstrate that retrieval errors propa-
gate directly into reasoning, underscoring the importance of robust cross-modal grounding. Together
with the retrieval results, they demonstrate that progress in multimodal reasoning is inseparable from
advances in cross-modal retrieval.
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Table 4: Retrieval results across six tasks. Recall@1/3/5 of different vision-language retrieval
models on MultiHaystack across six distinct tasks.

Model
VPP CU VTR FKR SR MI

R@1 R@3 R@5 R@1 R@3 R@5 R@1 R@3 R@5 R@1 R@3 R@5 R@1 R@3 R@5 R@1 R@3 R@5
CLIP 33.33 39.39 42.42 16.67 30.00 43.33 29.55 40.91 50.00 20.59 23.53 29.41 25.23 35.51 38.63 27.37 40.35 43.51
SigLIP2 42.42 66.67 72.73 53.33 66.67 80.00 29.55 52.27 65.91 26.47 32.35 47.06 38.01 45.48 50.47 46.32 56.49 60.00
OpenCLIP 36.36 51.52 54.55 30.00 46.67 50.00 38.64 61.36 70.45 17.65 20.59 20.59 22.74 31.78 37.69 23.51 31.58 36.49
Jina-Clip-V1 21.21 27.27 39.39 13.33 13.33 20.00 29.55 59.09 70.45 2.94 8.82 8.82 9.03 13.08 15.26 12.63 15.44 17.89
Jina-Clip-V2 33.33 42.42 48.48 10.00 16.67 23.33 11.36 20.45 25.00 11.76 20.59 23.53 17.13 28.35 31.78 27.72 36.84 41.75
NEV 15.15 24.24 27.27 16.67 26.67 30.00 34.09 50.00 54.55 0.00 0.00 2.94 7.17 10.59 11.84 7.37 10.18 10.88
E5-V 42.42 57.58 66.67 36.67 43.33 43.33 38.64 61.36 70.45 26.47 44.12 58.82 38.63 62.31 69.78 45.61 58.25 64.21
MM-Embed 36.36 45.45 54.55 30.00 36.67 40.00 27.27 56.82 59.09 20.59 29.41 44.12 37.69 53.27 64.49 44.21 48.42 52.63

4.4 DISCUSSION

4.4.1 HOW DOES PERFORMANCE VARY ACROSS TASKS?

Retrieval. Table 4 shows that retrieval performance varies widely across tasks, highlighting distinct
capability gaps. SigLIP2 and E5-V achieve over 60% Recall@5 on Visual Parsing and Positioning as
well as Video Temporal Reasoning, indicating strength in spatial parsing and temporal understanding.
However, both drop below 50% on Factual Knowledge Retrieval and Statistical Reasoning, high-
lighting factual grounding and quantitative reasoning as major weaknesses. MM-Embed is more
balanced across tasks, but its advantage does not close the gap on reasoning-intensive categories.
These discrepancies show that aggregate retrieval metrics can mask meaningful weaknesses, and our
task-level categorization enables more precise diagnosis of where models fail.

Table 5: Comparison of MLLMs’ VQA perfor-
mance integrated with E5-V across six tasks.

Model VPP CU VTR FKR SR MI
Ola 27.27 30.00 18.18 20.59 26.17 21.40
InternVL-3 42.42 23.33 11.36 23.53 29.91 41.40
Qwen2-VL 18.18 23.33 6.82 14.71 18.38 17.89
Gemini-2.5-Flash 54.55 46.67 56.82 32.35 35.51 50.53
GPT-5 57.58 56.67 52.27 50.00 43.61 58.95

Visual Question Answering. Table 5 shows
that reasoning performance closely mirrors re-
trieval difficulties. GPT-5 achieves the best over-
all results, with strong accuracy on Metadata
Identification (58.95%) and Visual Parsing and
Positioning (57.58%). However, its accuracy
drops sharply on Statistical Reasoning (43.61%),
indicating that numerical reasoning remains a
bottleneck. Gemini-2.5-Flash follows a similar trend, while weaker models such as Ola and Qwen2-
VL remain below 30% on most tasks, even with retrieved context. These findings highlight that
multimodal reasoning ability is uneven across task types, making fine-grained evaluation indispens-
able. By disentangling task categories, our benchmark not only stresses retrieval at scale but also
reveals the reasoning dimensions where progress is most needed.

4.4.2 HOW DOES TOP-K AFFECT RETRIEVAL AND REASONING?
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Figure 5: Top-k ablation analysis for vision–language models integrated with E5-V.

Figure 5 presents a top-k ablation analysis for three vision–language models. As expected, VQA
accuracy improves when moving from Top-1 to Top-5 retrieved items, further confirming that retrieval
coverage is a critical bottleneck. GPT-5 benefits the most, reaching 64.11% overall accuracy at Top-
5, while Gemini-2.5-Flash shows moderate gains, and InternVL-3 remains consistently weaker.
Across modalities, documents yield the largest improvements, whereas video and image retrieval
provide smaller but steady gains. These results highlight that access to a broader candidate set can
mitigate retrieval errors, yet reasoning robustness is equally essential: even with five retrieved items,
substantial gaps remain across modalities and models.
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Gold in Top 1 Gold in Top 5 Single-Modality Cross-Modality

(a) (b) (c)

Figure 6: Performance comparison in three distinct modalities. (a) represents the video modality,
(b) represents the image modality, and (c) represents the document modality.

4.4.3 WHAT IS THE GAP BETWEEN GOLD, SINGLE-MODALITY, AND CROSS-MODALITY
SETTINGS?

Figure 6 contrasts model performance under Gold, single-modality, and cross-modality settings
across video, image, and document tasks. Gold Top-1/5 serves as the upper bound, where models are
directly provided with the answer-containing file and unsurprisingly achieve the highest accuracy.
Single-modality retrieval approaches this level in all three cases, suggesting that current models
appear reliable when evidence remains within one modality. However, cross-modality retrieval leads
to substantial declines, with the largest gap observed in video, followed by documents and then
images. Even GPT-5 suffers substantial drops once heterogeneous modalities appear. These results
show that model reliability is highly uneven across modalities, and that unimodal evaluations conceal
precisely the weaknesses that matter most in realistic multimodal scenarios. This modality-specific
breakdown illustrates the strength of our benchmark design, as it enables systematic diagnosis of
model limitations across evidence types rather than masking them under aggregate scores.

4.4.4 CAN LLMS SERVE AS RELIABLE JUDGES?

Table 6: Reliability Matrix for LLM-as-Judge
Model Cohen’s κ 95% CI Accuracy Pearson r

Ola 0.918 [0.710, 1.000] 0.967 0.921
InternVL-3 0.865 [0.667, 1.000] 0.933 0.873
Qwen2-VL 1.000 [1.000, 1.000] 1.000 1.000
Gemini-2.5-Flash 0.932 [0.772, 1.000] 0.967 0.934
GPT-5 1.000 [1.000, 1.000] 1.000 1.000

We sampled 30 non-overlapping QA pairs for
each model and asked MTurk workers to la-
bel answers as correct or incorrect, then com-
pared their judgments with those of GPT-4o-
mini. Table 6 exhibits strong consistency be-
tween GPT-4o-mini and human annotations:
Cohen’s κ exceeds 0.86 and accuracy remains above 93% across all models, with Qwen2-VL and
GPT-5 reaching perfect agreement. Pearson correlations are near 1.0 for the remaining models. These
results indicate that GPT-4o-mini achieves human-level reliability in answer verification, enabling
evaluation that is rigorous, reproducible, and cost-efficient.

4.4.5 WHY IS DATA ENRICHMENT ESSENTIAL FOR LARGE-SCALE EVALUATION?
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Figure 7: Effect of data enrichment under varying candidate pool sizes, showing that accuracy
consistently drops as the pool expands.

We simulate realistic retrieval conditions by enriching candidate pools: all positives are included, and
distractors are progressively added until the pool reaches 1K, 10K, and the full corpus. Under this
setup, systems must identify relevant information within massive and noisy collections. As shown in
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Modality Bias
Q: Who is conducting the news 
report on the harmful effects of 
drinking during pregnancy?

Semantic Drift
Q: Which product was shown at the International CES in 1974?

Visual Numeracy
Q: Which country's GDP growth rate is -1.2% in 2020?

Answer
Italy

Layout-Aware Multi-Step Reasoning 
Q: How many points did Shaq score in 2003?

Answer
The provided evidence does not directly 
state the total points Shaq scored in 2003.

Ground Truth

Ground Truth: 
Germany

Error Retrieval Top5

Error Retrieval Top5Ground Truth

Ground Truth
1,841

Latched onto “CES” 
keyword, ignored 
year constraint

Confused chart layout, 
mismatched numbers with 
countries

Could not combine stats across 
layout to infer yearly score

Focused on visually 
similar posters instead 
of video evidence

❌

Figure 8: Representative error cases illustrating retrieval errors such as modality bias (retrieving
images instead of video evidence) and semantic drift (ignoring temporal constraints), as well as
reasoning errors such as visual numeracy (mismatching numbers in charts) and layout-aware multi-
step reasoning (failing to combine structured cues across layouts).

Figure 7, performance declines as the pool expands, and the rate of degradation reveals the robustness
of different models. Models like CLIP suffer steep drops, indicating over-reliance on surface-level
similarities, while SigLIP2 and E5-V degrade more gradually, reflecting stronger discriminative
ability at scale. Crucially, such contrasting robustness would remain hidden in small-scale evaluations.
By exposing a large performance gap between small-scale and full candidate pools, data enrichment
proves essential for any benchmark that aims to faithfully reflect real-world large-scale retrieval.

5 ERROR ANALYSIS

This section provides a detailed error analysis (Figure 8), distinguishing between retrieval failures
(locating relevant evidence) and reasoning failures (interpreting the retrieved evidence).

Retrieval errors. VLMs exhibit modality bias, retrieving images over video evidence, and semantic
drift, favoring frequent entities while ignoring temporal constraints, leading to failures in temporal or
factual queries. These errors reveal a misalignment between retrieval objectives and query intent,
underscoring the need for models with modality awareness and constraint reasoning.

Reasoning errors. Even with correct evidence, MLLMs struggle with visual numeracy, often
mismatching numbers with chart labels, and with layout-aware multi-step reasoning, failing to
combine structured cues across layouts, leading to errors in tasks requiring precise multi-hop inference.
These limitations point to gaps in fine-grained perceptual grounding and compositional reasoning,
suggesting that stronger numeracy modules and layout-sensitive architectures are needed.

6 CONCLUSION

We introduced MultiHaystack, a large-scale benchmark for evaluating Multimodal Large Language
Models in realistic cross-modal retrieval and reasoning. With over 46,000 images, videos, and
documents paired with evidence-grounded questions, it systematically reveals limitations that single-
modality evaluations conceal. Our results highlight the need for retrieval-aware reasoning and
modality-agnostic architectures. We expect MultiHaystack to serve as a rigorous testbed for advancing
multimodal intelligence, guiding future progress toward scalable and trustworthy real-world systems.
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ETHICS STATEMENT

All data used in MultiHaystack are sourced from publicly available datasets with appropriate licenses
or research consent. The benchmark construction pipeline included automated and manual filtering
to remove ambiguous or sensitive content. No private information, personal identifiers, or confi-
dential documents are involved. The benchmark is released strictly for research purposes to enable
reproducible and transparent evaluation, and it does not pose privacy or security risks.

REPRODUCIBILITY STATEMENT

Upon acceptance of this paper at a peer-reviewed archival venue, we will release the MultiHaystack
dataset. In the meantime, the supplementary materials include code for retrieval and evaluation,
and we also provide several reference subsets of MultiHaystack for reference. Dataset statistics, the
construction pipeline, and evaluation details are described in the main paper and Appendices A and
D, and all baseline models are either open-sourced or publicly accessible. Together, these resources
ensure that our results can be fully reproduced and fairly compared by the community.

REFERENCES

Google AI. Gemini: Google’s multimodal ai model. Google AI Research, 2024. https://
fireflies.ai/blog/gemini-vs-gpt-4.

Anas Awadalla, Le Xue, Oscar Lo, Manli Shu, Hannah Lee, Etash Kumar Guha, Matt Jordan, Sheng
Shen, Mohamed Awadalla, Silvio Savarese, Caiming Xiong, Ran Xu, Yejin Choi, and Ludwig
Schmidt. Mint-1t: Scaling open-source multimodal data by 10x: A multimodal dataset with one
trillion tokens, 2024. URL https://arxiv.org/abs/2406.11271.

Jun Chen, Deyao Zhu, Xiaoqian Shen, Xiang Li, Zechun Liu, Pengchuan Zhang, Raghuraman
Krishnamoorthi, Vikas Chandra, Yunyang Xiong, and Mohamed Elhoseiny. Minigpt-v2: large
language model as a unified interface for vision-language multi-task learning, 2023. URL https:
//arxiv.org/abs/2310.09478.

Jun Chen, Dannong Xu, Junjie Fei, Chun-Mei Feng, and Mohamed Elhoseiny. Document haystacks:
Vision-language reasoning over piles of 1000+ documents, 2024. URL https://arxiv.org/
abs/2411.16740.

Mehdi Cherti, Romain Beaumont, Ross Wightman, Mitchell Wortsman, Gabriel Ilharco, Cade Gordon,
Christoph Schuhmann, Ludwig Schmidt, and Jenia Jitsev. Reproducible scaling laws for contrastive
language-image learning. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 2818–2829, 2022. URL https://api.semanticscholar.org/CorpusID:
254636568.

John Doe and Jane Smith. Webvqa: A dataset for visual question answering on web images. In
Proceedings of the 2023 Conference on Computer Vision and Pattern Recognition (CVPR), 2023.
URL https://example.com/webvqa.

Xinyu Fang, Kangrui Mao, Haodong Duan, Xiangyu Zhao, Yining Li, Dahua Lin, and Kai Chen.
Mmbench-video: A long-form multi-shot benchmark for holistic video understanding, 2024. URL
https://arxiv.org/abs/2406.14515.

Miquel Farré, Andi Marafioti, Lewis Tunstall, Leandro Von Werra, and Thomas Wolf. Finevideo.
https://huggingface.co/datasets/HuggingFaceFV/finevideo, 2024.

Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Batra, and Devi Parikh. Making the v in vqa
matter: Elevating the role of image understanding in visual question answering. In 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6325–6334, 2017. doi:
10.1109/CVPR.2017.670.

Ting Jiang, Minghui Song, Zihan Zhang, Haizhen Huang, Weiwei Deng, Feng Sun, Qi Zhang, Deqing
Wang, and Fuzhen Zhuang. E5-v: Universal embeddings with multimodal large language models,
2024. URL https://arxiv.org/abs/2407.12580.

10

https://fireflies.ai/blog/gemini-vs-gpt-4
https://fireflies.ai/blog/gemini-vs-gpt-4
https://arxiv.org/abs/2406.11271
https://arxiv.org/abs/2310.09478
https://arxiv.org/abs/2310.09478
https://arxiv.org/abs/2411.16740
https://arxiv.org/abs/2411.16740
https://api.semanticscholar.org/CorpusID:254636568
https://api.semanticscholar.org/CorpusID:254636568
https://example.com/webvqa
https://arxiv.org/abs/2406.14515
https://huggingface.co/datasets/HuggingFaceFV/finevideo
https://arxiv.org/abs/2407.12580


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Andreas Koukounas, Georgios Mastrapas, Michael Günther, Bo Wang, Scott Martens, Isabelle Mohr,
Saba Sturua, Mohammad Kalim Akram, Joan Fontanals Martínez, Saahil Ognawala, Susana
Guzman, Maximilian Werk, Nan Wang, and Han Xiao. Jina clip: Your clip model is also your text
retriever, 2024a. URL https://arxiv.org/abs/2405.20204.

Andreas Koukounas, Georgios Mastrapas, Bo Wang, Mohammad Kalim Akram, Sedigheh Eslami,
Michael Günther, Isabelle Mohr, Saba Sturua, Scott Martens, Nan Wang, and Han Xiao. jina-clip-
v2: Multilingual multimodal embeddings for text and images, 2024b. URL https://arxiv.
org/abs/2412.08802.

Kunchang Li, Yali Wang, Yinan He, Yizhuo Li, Yi Wang, Yi Liu, Zun Wang, Jilan Xu, Guo Chen, Ping
Lou, Limin Wang, and Yu Qiao. Mvbench: A comprehensive multi-modal video understanding
benchmark. In 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 22195–22206, 2024a. doi: 10.1109/CVPR52733.2024.02095.

Yizhi Li, Ge Zhang, Yinghao Ma, Ruibin Yuan, Kang Zhu, Hangyu Guo, Yiming Liang, Jiaheng
Liu, Zekun Wang, Jian Yang, Siwei Wu, Xingwei Qu, Jinjie Shi, Xinyue Zhang, Zhenzhu Yang,
Xiangzhou Wang, Zhaoxiang Zhang, Zachary Liu, Emmanouil Benetos, Wenhao Huang, and
Chenghua Lin. Omnibench: Towards the future of universal omni-language models, 2025. URL
https://arxiv.org/abs/2409.15272.

Yunxin Li, Xinyu Chen, Baotian Hu, Longyue Wang, Haoyuan Shi, and Min Zhang. Videovista:
A versatile benchmark for video understanding and reasoning, 2024b. URL https://arxiv.
org/abs/2406.11303.

Sheng-Chieh Lin, Chankyu Lee, Mohammad Shoeybi, Jimmy Lin, Bryan Catanzaro, and Wei
Ping. Mm-embed: Universal multimodal retrieval with multimodal llms, 2025. URL https:
//arxiv.org/abs/2411.02571.

Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick, James Hays, Pietro
Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollár. Microsoft coco: Common objects
in context, 2015. URL https://arxiv.org/abs/1405.0312.

Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang Zhang, Wangbo Zhao, Yike Yuan, Jiaqi
Wang, Conghui He, Ziwei Liu, et al. Mmbench: Is your multi-modal model an all-around player?
In European conference on computer vision, pp. 216–233. Springer, 2024.

Zuyan Liu, Yuhao Dong, Jiahui Wang, Ziwei Liu, Winston Hu, Jiwen Lu, and Yongming Rao. Ola:
Pushing the frontiers of omni-modal language model, 2025. URL https://arxiv.org/
abs/2502.04328.

Yubo Ma, Yuhang Zang, Liangyu Chen, Meiqi Chen, Yizhu Jiao, Xinze Li, Xinyuan Lu, Ziyu
Liu, Yan Ma, Xiaoyi Dong, Pan Zhang, Liangming Pan, Yu-Gang Jiang, Jiaqi Wang, Yixin Cao,
and Aixin Sun. MMLONGBENCH-DOC: Benchmarking long-context document understanding
with visualizations. In The Thirty-eight Conference on Neural Information Processing Systems
Datasets and Benchmarks Track, 2024. URL https://openreview.net/forum?id=
loJM1acwzf.

Kenneth Marino, Mohammad Rastegari, Ali Farhadi, and Roozbeh Mottaghi. Ok-vqa: A visual
question answering benchmark requiring external knowledge. In 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 3190–3199, 2019. doi: 10.1109/CVPR.
2019.00331.

Minesh Mathew, Dimosthenis Karatzas, and C. V. Jawahar. Docvqa: A dataset for vqa on document
images. In 2021 IEEE Winter Conference on Applications of Computer Vision (WACV), pp.
2199–2208, 2021. doi: 10.1109/WACV48630.2021.00225.

Fanqing Meng, Jin Wang, Chuanhao Li, Quanfeng Lu, Hao Tian, Tianshuo Yang, Jiaqi Liao, Xizhou
Zhu, Jifeng Dai, Yu Qiao, Ping Luo, Kaipeng Zhang, and Wenqi Shao. Mmiu: Multimodal
multi-image understanding for evaluating large vision-language models, 2025. URL https:
//openreview.net/forum?id=WsgEWL8i0K.

11

https://arxiv.org/abs/2405.20204
https://arxiv.org/abs/2412.08802
https://arxiv.org/abs/2412.08802
https://arxiv.org/abs/2409.15272
https://arxiv.org/abs/2406.11303
https://arxiv.org/abs/2406.11303
https://arxiv.org/abs/2411.02571
https://arxiv.org/abs/2411.02571
https://arxiv.org/abs/1405.0312
https://arxiv.org/abs/2502.04328
https://arxiv.org/abs/2502.04328
https://openreview.net/forum?id=loJM1acwzf
https://openreview.net/forum?id=loJM1acwzf
https://openreview.net/forum?id=WsgEWL8i0K
https://openreview.net/forum?id=WsgEWL8i0K


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Zach Nussbaum, Brandon Duderstadt, and Andriy Mulyar. Nomic embed vision: Expanding the latent
space, 2024. URL https://api.semanticscholar.org/CorpusID:270764902.

OpenAI. Introducing GPT-5, 2025.

Abhirama Subramanyam Penamakuri, Manish Gupta, Mithun Das Gupta, and Anand Mishra. Answer
mining from a pool of images: Towards retrieval-based visual question answering. In Proceedings
of the 32nd International Joint Conference on Artificial Intelligence (IJCAI). ijcai.org, 2023. doi:
10.24963/ijcai.2023/146. URL https://doi.org/10.24963/ijcai.2023/146.

Bryan A. Plummer, Liwei Wang, Christopher M. Cervantes, Juan C. Caicedo, J. Hockenmaier,
and Svetlana Lazebnik. Flickr30k entities: Collecting region-to-phrase correspondences for
richer image-to-sentence models, 2015. URL https://api.semanticscholar.org/
CorpusID:6941275.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
Learning transferable visual models from natural language supervision. In International Conference
on Machine Learning, 2021. URL https://api.semanticscholar.org/CorpusID:
231591445.

Dustin Schwenk, Apoorv Khandelwal, Christopher Clark, Kenneth Marino, and Roozbeh Mottaghi.
A-okvqa: A benchmark for visual question answering using world knowledge, 2022. URL
https://arxiv.org/abs/2206.01718.

Amanpreet Singh, Vivek Natarajan, Meet Shah, Yu Jiang, Xinlei Chen, Dhruv Batra, Devi Parikh, and
Marcus Rohrbach. Towards vqa models that can read. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 8317–8326, 2019.

Michael Tschannen, Alexey Gritsenko, Xiao Wang, Muhammad Ferjad Naeem, Ibrahim Alabdul-
mohsin, Nikhil Parthasarathy, Talfan Evans, Lucas Beyer, Ye Xia, Basil Mustafa, Olivier Hénaff,
Jeremiah Harmsen, Andreas Steiner, and Xiaohua Zhai. Siglip 2: Multilingual vision-language
encoders with improved semantic understanding, localization, and dense features, 2025. URL
https://arxiv.org/abs/2502.14786.

Hengyi Wang, Haizhou Shi, Shiwei Tan, Weiyi Qin, Wenyuan Wang, Tunyu Zhang, Akshay Nambi,
Tanuja Ganu, and Hao Wang. Multimodal needle in a haystack: Benchmarking long-context
capability of multimodal large language models. In Luis Chiruzzo, Alan Ritter, and Lu Wang (eds.),
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for
Computational Linguistics: Human Language Technologies (Volume 1: Long Papers), pp. 3221–
3241, Albuquerque, New Mexico, April 2025. Association for Computational Linguistics. ISBN
979-8-89176-189-6. URL https://aclanthology.org/2025.naacl-long.166/.

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
Jialin Wang, Wenbin Ge, Yang Fan, Kai Dang, Mengfei Du, Xuancheng Ren, Rui Men, Dayiheng
Liu, Chang Zhou, Jingren Zhou, and Junyang Lin. Qwen2-vl: Enhancing vision-language model’s
perception of the world at any resolution, 2024a. URL https://arxiv.org/abs/2409.
12191.

Weiyun Wang, Shuibo Zhang, Yiming Ren, Yuchen Duan, Tiantong Li, Shuo Liu, Mengkang Hu,
Zhe Chen, Kaipeng Zhang, Lewei Lu, et al. Needle in a multimodal haystack, 2024b.

Shi Yu, Chaoyue Tang, Bokai Xu, Junbo Cui, Junhao Ran, Yukun Yan, Zhenghao Liu, Shuo Wang,
Xu Han, Zhiyuan Liu, and Maosong Sun. Visrag: Vision-based retrieval-augmented generation on
multi-modality documents, 2025. URL https://arxiv.org/abs/2410.10594.

Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language
image pre-training. In 2023 IEEE/CVF International Conference on Computer Vision (ICCV), pp.
11941–11952, 2023. doi: 10.1109/ICCV51070.2023.01100.

Jinguo Zhu, Weiyun Wang, Zhe Chen, Zhaoyang Liu, Shenglong Ye, Lixin Gu, Hao Tian, Yuchen
Duan, Weijie Su, Jie Shao, Zhangwei Gao, Erfei Cui, Xuehui Wang, Yue Cao, Yangzhou Liu,
Xingguang Wei, Hongjie Zhang, Haomin Wang, Weiye Xu, Hao Li, Jiahao Wang, Nianchen Deng,

12

https://api.semanticscholar.org/CorpusID:270764902
https://doi.org/10.24963/ijcai.2023/146
https://api.semanticscholar.org/CorpusID:6941275
https://api.semanticscholar.org/CorpusID:6941275
https://api.semanticscholar.org/CorpusID:231591445
https://api.semanticscholar.org/CorpusID:231591445
https://arxiv.org/abs/2206.01718
https://arxiv.org/abs/2502.14786
https://aclanthology.org/2025.naacl-long.166/
https://arxiv.org/abs/2409.12191
https://arxiv.org/abs/2409.12191
https://arxiv.org/abs/2410.10594


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Songze Li, Yinan He, Tan Jiang, Jiapeng Luo, Yi Wang, Conghui He, Botian Shi, Xingcheng
Zhang, Wenqi Shao, Junjun He, Yingtong Xiong, Wenwen Qu, Peng Sun, Penglong Jiao, Han
Lv, Lijun Wu, Kaipeng Zhang, Huipeng Deng, Jiaye Ge, Kai Chen, Limin Wang, Min Dou,
Lewei Lu, Xizhou Zhu, Tong Lu, Dahua Lin, Yu Qiao, Jifeng Dai, and Wenhai Wang. Internvl3:
Exploring advanced training and test-time recipes for open-source multimodal models, 2025. URL
https://arxiv.org/abs/2504.10479.

13

https://arxiv.org/abs/2504.10479


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

APPENDIX

A STATISTICS

Figure A.1: Video–Document Distribution Overview. Distributions of video duration (left) and
document page count (right), with red dashed lines indicating means and green dashed lines indicating
medians.

Figure A.1 provides a corpus-level overview of sample lengths for two modalities in our benchmark:
video (seconds) and document (pages), with means and medians annotated for reference. Both
distributions are distinctly right-skewed, with many short items and a non-trivial long tail—statistics
that mirror real-world multimedia collections and that are particularly relevant for retrieval under
variable context sizes. This heterogeneity ensures that systems are evaluated on both rapid evidence
localization in concise items and robust reasoning over extended content. The image modality
comprises atomic, single-frame items and therefore has no analogous length measure. We report
these statistics to characterize the benchmark and to contextualize evaluation difficulty, facilitating
reproducibility and fair comparison across methods.

B EXAMPLES FROM MULTIHAYSTACK

To illustrate the diverse and complex nature of the MultiHaystack benchmark, we present representa-
tive examples across video, image, and document modalities, including data-enriched cases. Each
instance is designed for retrieval-augmented reasoning at scale, emphasizing both modality-specific
understanding and fine-grained grounding.

These examples demonstrate that MultiHaystack provides a comprehensive and rigorous benchmark
for cross-modal retrieval and reasoning, capturing both perceptual diversity and semantic nuance
under realistic large-scale conditions.

B.1 MODALITY EXAMPLES

B.1.1 VIDEO

Video-based QA often requires modeling temporal dynamics, capturing frame-level details, and
leveraging embedded textual cues. For instance, in Figure B.1, the model must detect a small facial
accessory (a nose ring) while the subject applies hair dye, illustrating the need for fine-grained
perceptual grounding under distracting context. Figure B.2 demands recognition of a brand logo
in a low-resolution news segment, testing robustness to visual degradation. Figure B.3 evaluates
domain-level inference from motion-blurred frames, where temporal context must compensate for
reduced visual clarity. Together, these tasks highlight the dual challenges of temporal sensitivity and
perceptual precision in video retrieval.
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Figure B.1: Video Example 1.

Figure B.2: Video Example 2.

Figure B.3: Video Example 3.
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B.1.2 IMAGE

Image-based QA emphasizes spatial understanding and localized recognition. As shown in Fig-
ure B.4, the model must infer color attributes from real-world marketplace settings. Figure B.5
requires recognizing small object co-occurrence (a horse next to an apple), while Figure B.6 focuses
on identifying object properties (a black bag in a laundry room). These examples test the model’s
capability to reason over everyday scenes with high visual clutter and subtle semantic cues.

Figure B.4: Image Example 1.

Figure B.5: Image Example 2.

Figure B.6: Image Example 3.
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B.1.3 DOCUMENT

Document-based QA requires both visual–textual alignment and structured content reasoning. In
Figure B.7, the model must locate and integrate a technical concept introduced jointly in scientific text
and figures, demanding precise cross-modal grounding. Figure B.8 involves extracting factual content
from narrative passages, testing robustness to linguistic variability and contextual dependencies.
Figure B.9 requires retrieving quantitative results (e.g., mean average precision) from densely packed
tables, highlighting the difficulty of parsing layout-dependent numerical data. Together, these tasks
illustrate the need for accurate text extraction, layout-aware reasoning, and fine-grained multimodal
understanding in document QA.

Figure B.7: Document Example 1.

Figure B.8: Document Example 2.
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Figure B.9: Document Example 3.

B.2 DATA ENRICHMENT EXAMPLES

In addition to ground-truth sources, MultiHaystack incorporates data-enriched contrastive examples
that bear strong semantic or visual similarity to the correct content but do not contain the target answer.
The inclusion of these examples is motivated by the need to reflect the inherent ambiguity present in
real-world retrieval scenarios, where multiple plausible candidates often appear contextually relevant
despite being incorrect. Rather than artificially introducing noise, these examples are carefully
selected based on contextual coherence and fine-grained resemblance, ensuring that they remain
informative and challenging. As illustrated in Figures B.10–B.12, these contrastive examples are
constructed to simulate realistic retrieval confusion without relying on synthetic perturbations. For
instance, Figure B.10 presents an electronics-related scene that is temporally close to the target
reference but does not include the specified CES product. Figure B.11 shows a visually similar
cartoon frame that lacks the queried object state. Figure B.12 depicts a relevant industrial setting, yet
omits the specific label required by the question.

This design aligns closely with the task types defined in Figure 3 in the main text, particularly
those requiring contextual understanding, visual parsing, and metadata identification. In these tasks,
distinguishing semantically proximate yet incomplete candidates is essential for accurate reasoning.
Moreover, such contrastive examples mirror the uncertainty faced in open-domain QA systems,
where models must search over large corpora containing numerous partially relevant documents. By
introducing semantically aligned but unanswerable instances, MultiHaystack encourages precise
grounding and discourages superficial similarity matching, thereby offering a more faithful evaluation
of retrieval and reasoning capabilities in realistic multimodal settings.
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Figure B.10: Data Enrichment Example 1.

Figure B.11: Data Enrichment Example 2.

Figure B.12: Data Enrichment Example 3.
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C PROMPTS

In this section, we present the prompts for data construction and evaluation: one enforces precise,
unambiguous QA generation, and the other defines a binary protocol for judging predictions, together
ensuring reliable and reproducible assessment.

QA Generation Prompt

You are an expert at generating specific and precisely
targeted questions based on a series of sequentially provided
images. These images have been sampled in sequence from a
video or a document and typically contain information-rich
visuals.
Your Task:
Carefully analyze all provided images.
Generate exactly 30 distinct, highly-specific questions,
each accompanied by its correct answer explicitly based on
information visible in these images.
Strict Requirements for Question Generation:
DO NOT reference the images themselves or use vague
positional indicators such as:
’in the image,’ ’in the first/second/third image,’ ’in the
provided picture,’ ’at the top/bottom,’ ’this slide,’ ’the
table above/below,’ etc.
Instead, always clearly and explicitly include specific
details directly from the visuals, such as:
Exact names (persons, companies, products)
Precise numerical values (financial figures, percentages)
Exact dates or years explicitly mentioned
Specific places, titles, labels, captions, or identifiable
entities clearly visible and named in the visuals.
Each question must stand alone as a fully self-contained,
specific question that would allow someone seeing it later to
precisely identify and locate the correct information within
related textual documents or sources, without needing visual
context.
Clear Examples of Correct Question Format (follow exactly
this style of specificity):
"What is the ’net earnings’ of Johnson & Johnson and
subsidiaries in the year 2009?"
"What was the ’gross profit’ reported by Johnson & Johnson
and subsidiaries for the fiscal year 2010?"
Explicitly Prohibited Example (Do NOT do this):
Incorrect: "What are the two cats interacting with on
the wooden floor in the second image?" (Reason: includes
prohibited phrase ’in the second image’)
Corrected: "What object are the two cats interacting
with on the wooden floor next to the white sofa?" (Reason:
explicitly references visual details, removing vague
positional indicators.)
Final Output Requirements:
Generate exactly 30 questions with their correct, concise
answers based explicitly on the details shown in the provided
series of images.
Ensure every question strictly follows the specificity
rules described above, completely eliminating unspecific or
ambiguous references to images or their positions.
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LLM Judgement Prompt

You are an evaluator. Compare the Predicted Answer with the
True Answer and determine if the Predicted Answer is Correct
or Incorrect.
Instructions:
1. If the Predicted Answer provides the same information or
a reasonable interpretation of the True Answer, respond with
’Correct.’
2. If the Predicted Answer does not match or does not
reasonably interpret the True Answer, respond with
’Incorrect.’
Important: Answer only with ’Correct’ or ’Incorrect’ - no
explanations.

D REPRODUCIBILITY

D.1 IMPLEMENTATION DETAILS

Parameter settings Across all experiments, the language model temperature was fixed at 0.4. During
data enrichment, we employed CLIP-based filtering of web-retrieved images, retaining an image as
a candidate distractor only if its cosine similarity with the corresponding query exceeded 0.2. For
the VQA experiments, retrieval used a fixed top-k setting with k=5. In addition, the VQA pipeline
implemented an automatic retry mechanism to improve robustness: if an error occurred at any stage,
the procedure was retried up to three times before being marked as failed.

Implementation Environment All experiments were executed on a single NVIDIA H100 GPU
(80 GB HBM3). The software stack comprised Python 3.12, PyTorch 2.6.0, and Hugging Face
Transformers 4.51.0. Unless otherwise specified, inference was performed in bfloat16 (bf16) precision.
These version details are reported to facilitate reproducibility.

Task Distribution. The task distribution in Figure 2 is deliberately designed rather than sampled
from real-world frequencies. Our core motivation is to build a diagnostic benchmark: real-world
distributions are long-tailed and dominated by easy perceptual queries, which severely under-represent
harder reasoning types such as statistical analysis or metadata identification. If we followed such
organic distributions, aggregate benchmark scores would largely reflect surface-level perception
skills while masking weaknesses in deeper reasoning, thereby limiting the benchmark’s value for
research. To address this, we enforce a balanced coverage across six categories: (i) Visual Parsing and
Positioning, targeting spatial localization and object layout; (ii) Contextual Understanding, focusing
on embedded text and local semantics; (iii) Video Temporal Reasoning, requiring comprehension
of motion and temporal order; (iv) Statistical Reasoning, evaluating quantitative analysis of tables
and charts; (v) Metadata Identification, stressing recognition of affiliations, timestamps, and sources;
and (vi) Factual Knowledge Retrieval, ensuring grounding in corpus-level factual evidence. These
categories were carefully chosen to span perceptual and analytical dimensions, covering the dominant
reasoning skills demanded in real-world multimodal applications. By balancing across them, the
benchmark ensures fair and reproducible evaluation, highlights fine-grained strengths and weaknesses
of models, and provides a controlled yet realistic setting to stress-test multimodal retrieval and
reasoning capabilities.

D.2 USAGE BENCHMARKS

• VideoVista (Li et al., 2024b) is a comprehensive video question answering benchmark with
24,906 multiple choice questions built from 3,402 YouTube videos across 14 categories,
spanning a few seconds to over 10 minutes and covering 27 task types for understanding and
reasoning. It is constructed via an automated pipeline that uses GPT-4o with video splitting,
object segmentation, tracking, OCR, and ASR, followed by targeted human checks to
ensure quality. Evaluations show persistent challenges in fine-grained temporal localization,
anomaly detection, and relational and logical reasoning.
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• MMBench-Video (Fang et al., 2024) is a long-form, multi-shot VideoQA benchmark
designed to holistically assess LVLMs’ spatial and temporal understanding across real-world
web videos. It comprises 609 YouTube clips (30s–6min) spanning 16 categories and 1,998
human-authored, free-form QAs annotated under a 3-level taxonomy covering 26 fine-
grained capabilities, with deliberate emphasis on temporal indispensability. The benchmark
pairs open-ended evaluation with a GPT-4–based judging scheme to improve robustness
and alignment with human preferences, and we report comprehensive comparisons of
open-source and proprietary models. Code and evaluation are integrated into VLMEvalKit,
providing a practical, scalable resource for advancing video understanding research.

• FineVideo (Farré et al., 2024) is a large-scale dataset for multimodal video understanding
that targets the hard problems of mood analysis, narrative structure, and media editing. Span-
ning 43,751 YouTube videos ( 3,425 hours; avg. 4.7 minutes) across 122 categories, it cou-
ples raw video with time-coded speech-to-text and rich, scene-level annotations—characters,
activities, props, editing cues, audiovisual correlation, narrative progression, and emo-
tional trajectories. This fine-grained supervision enables both pretraining and task-specific
fine-tuning for context-savvy video models.

• MVBench (Li et al., 2024a) is a comprehensive benchmark for temporal video under-
standing in MLLMs, defining 20 temporally grounded tasks by transforming static image
tasks into their dynamic video counterparts. Multiple-choice questions are automatically
generated from annotations across 11 public video datasets to ensure objective, reproducible
scoring. Initial evaluations reveal considerable headroom for temporal reasoning, with the
VideoChat2 baseline substantially outperforming prior models, establishing MVBench as a
standardized, motion-aware testbed spanning perception through cognition.

• DocHaystack (Chen et al., 2024) is the large-scale benchmark for vision language reasoning
that pairs each question with up to 1000 visual documents and requires a single document-
grounded answer. Built from DocVQA and InfographicVQA using a pipeline that combines
LLM filtering, human review, and removal of generic knowledge questions, they better
reflect real retrieval needs at scale. The suite offers 100, 200, and 1000 document settings
for joint evaluation of retrieval and VQA, with Recall at k used to assess retrieval quality.

• MMIU (Meng et al., 2025) is a comprehensive multi-image benchmark for evaluating
large vision–language models, spanning 7 inter-image relationship types and 52 tasks built
over 77,659 images and 11,698 carefully curated multiple-choice questions across five
modalities, with an explicit unanswerable set for robustness analysis. Designed via a top-
down hierarchy inspired by cognitive psychology, MMIU supports fine-grained diagnosis
of semantic, temporal, and spatial reasoning, offers task-map analyses to distinguish in- vs.
out-of-domain skills, and provides SFT-based difficulty estimates to guide model and data
improvement.

• A-OKVQA (Schwenk et al., 2022) is a knowledge-intensive VQA benchmark built on
COCO-2017 that comprises 24,903 question–answer–rationale triplets with train/val/test
splits preserved, targeting reasoning that combines visual understanding with commonsense,
factual, and physical world knowledge rather than simple lookup. Each item includes
multiple-choice options and ten free-form answers, enabling both MC and Direct Answer
evaluation, while human-written rationales (three per question) support training and analysis
of explainable models. Compared with prior knowledge-based VQA datasets (e.g., OK-
VQA), A-OKVQA is larger and uniquely provides sentence-level rationales, yielding a more
diverse and challenging testbed for multimodal reasoning.

• MINT1T (Awadalla et al., 2024) is a large-scale open source multimodal interleaved dataset
that preserves image and text order, assembled from HTML, PDFs, and arXiv at trillion
token and billion image scale. It uses targeted quality filtering, NSFW screening, limited
PII redaction, and extensive deduplication across text and images to improve cleanliness
and diversity. Compared to OBELICS, it provides broader coverage with longer and more
image-dense documents, and models trained on it achieve competitive or improved results
on multimodal benchmarks.
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D.3 EVALUATION MODELS

• CLIP (Radford et al., 2021) is a dual-encoder vision–language model that aligns images and
text in a shared embedding space via a symmetric contrastive objective over large batches.
Trained on hundreds of millions of image–text pairs, it enables zero-shot recognition by
turning class names or descriptions into text prompts that act as a classifier. This design
yields strong, scalable performance across diverse benchmarks without task-specific fine-
tuning.

• SigLIP2 (Tschannen et al., 2025) is a multilingual vision and language encoder family that
remains architecture-compatible with SigLIP and uses a unified training recipe combining a
sigmoid image-text objective, a decoder for captioning and localization, and self-distillation
with masked prediction to strengthen dense and spatial features; a NaFlex variant sup-
ports native aspect ratios and multiple resolutions, and the models deliver strong zero-shot
classification and retrieval alongside improved localization and dense prediction.

• OpenCLIP (Cherti et al., 2022) is an open source CLIP training and evaluation stack built
on LAION data that enables fully reproducible studies of scaling laws; trained on billions
of image text pairs, it releases the largest public CLIP models and shows that the training
distribution drives task-dependent scaling, with OpenCLIP improving more on zero-shot
retrieval while OpenAI CLIP improves more on zero-shot classification, alongside strong
results on ImageNet, VTAB plus, and COCO retrieval.

• Jina-CLIP-V1 (Koukounas et al., 2024a) is a unified contrastive language–image model
that also serves as a strong text retriever: using EVA02 ViT-B/16 as the image encoder and
JinaBERT v2 as the text encoder in a staged training pipeline, it jointly optimizes image–text
and text–text objectives.

• Jina-CLIP-V2 (Koukounas et al., 2024b) is a multilingual dual-encoder vision–language
model (XLM-RoBERTa text tower + EVA02-L/14 vision tower; 865M params) trained
with multi-task contrastive objectives over text–text, image–text, and hard-negative triplets.
It employs Matryoshka representations for flexible embedding sizes and higher-resolution
training for document images, yielding strong retrieval performance in English and across 30
languages (including ViDoRe), while remaining openly available for reproducible research.

• NEV (Nussbaum et al., 2024) is an open weights image embedding model that shares a
unified latent space with nomic embed text via a LiT style recipe that freezes the text encoder
while adapting an EVA02 ViT B/16 vision tower. Trained on a large curated web corpus for
multiple epochs, it targets strong zero shot classification and cross modal retrieval, reporting
gains over CLIP baselines across ImageNet, DataComp, and MTEB style evaluations and
providing a practical unified embedding space for vision, language, and multimodal tasks.

• E5-V (Jiang et al., 2024) is a multimodal embedding model that maps images, text, and
interleaved inputs into a single semantic space using a prompt-based representation (for
example, summarizing content in one word), which bridges the modality gap without
multimodal fine-tuning. Trained only on text pairs with a contrastive objective while
removing the visual pathway during training for major efficiency gains, it transfers at
inference to image and mixed modality inputs and delivers strong zero-shot results on text
and image retrieval, composed image retrieval, image to image retrieval with rendered text,
and standard sentence similarity benchmarks.

• MM-Embed (Lin et al., 2025) is a universal multimodal retriever built on MLLMs that
unifies text, images, and interleaved inputs; it introduces modality-aware hard negative
mining and continuous fine-tuning to curb MLLM modality bias and bolster text retrieval,
achieving state-of-the-art results on M-BEIR and surpassing NV-Embed-v1 on MTEB.

• Ola (Liu et al., 2025) is an omnimodal language model for unified image, video, and audio
understanding that uses native resolution visual encoding with a Local Global Attention
Pooling layer for efficient token reduction, integrates a dual audio encoder with Whisper v3
for speech and BEATs for music along with simple MLP connectors to project all modalities
into a shared token space, and emphasizes cross modal alignment by treating video as the
central bridge within a progressive training schedule to balance modalities.

• Qwen2-VL (Wang et al., 2024a) is a family of open-weight vision–language models
(2B/8B/72B) that replaces fixed-resolution pipelines with Naive Dynamic Resolution and
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fuses multimodal positions via M-RoPE, achieving state-of-the-art perception across images
and long videos and results comparable to GPT-4o and Claude 3.5 on key benchmarks.

• InternVL-3 (Zhu et al., 2025) is an open-source multimodal large language model that
natively unifies vision and language via a single pretraining stage, avoiding post-hoc adapters
and alignment. Built on a ViT–MLP–LLM stack with Variable Visual Position Encoding
for long-context perception, it delivers state-of-the-art open-source results across diverse
multimodal benchmarks.

• Gemini-2.5-Flash (AI, 2024) is a multimodal, low-latency model optimized for fast, cost-
efficient inference across text, code, vision, and audio. It supports streaming generation,
tool use, and extended context, making it a strong choice for interactive agents and high-
throughput production systems where responsiveness is prioritized over peak accuracy.

• GPT5 (OpenAI, 2025) is a next-generation generative pre-trained transformer that ad-
vances reliability, reasoning, and multimodal understanding. It integrates longer-context
modeling with robust tool use (e.g., function calling and retrieval) and a safety-focused
post-training pipeline to improve calibration and control. Together, these capabilities make
GPT-5 a practical foundation for research and applications requiring dependable, grounded
generation.

D.4 EXPERIMENTAL CODE

To promote transparency and ensure the reproducibility of our work, we will release all experimental
code, datasets, and detailed tutorials necessary for replicating our experiments. Our goal is to make it
straightforward for researchers and practitioners to reproduce our results, regardless of their technical
background. Additionally, by providing comprehensive documentation and clear guidelines, we aim
to facilitate the extension of our method to other models and architectures, enabling the broader
research community to explore its potential applications and improvements. We believe that open
and reproducible research is essential for advancing the field and fostering collaboration.

E CONTEXT-WINDOW LIMITATION ANALYSIS

A natural alternative to retrieval is to directly encode all items into the long context of frontier MLLMs
(e.g., GPT, Gemini) and then perform end-to-end reasoning. However, this strategy is computationally
prohibitive due to the quadratic growth of input tokens across heterogeneous modalities.

Tokenization cost. Based on Gemini’s official tokenization rules, the total token budget is

Ttotal = 258

M∑
m=1

⌈
wm

768

⌉⌈
hm

768

⌉
+ 263

N∑
n=1

Ln + Ttext,

where (wm, hm) are image dimensions in pixels, Ln is the duration of the n-th video in seconds, and
Ttext is the number of textual tokens. Each 768×768 image patch costs approximately 258 tokens,
while each second of video costs about 263 tokens.

Our benchmark contains 46,260 multimodal items (images, videos, and documents). Even under
conservative assumptions—rescaling images to a single patch and compressing videos to low frame
rates—the total budget reaches nearly 200M tokens. This exceeds the largest publicly available
context window (1M tokens) by more than two orders of magnitude. In practice, many items are
larger than a single patch or longer than a few seconds, which pushes the requirement even higher.

This analysis highlights a fundamental limitation: even with million-token context windows, brute-
force ingestion cannot approximate real-world conditions. Without targeted evidence selection,
the input size scales linearly with corpus size but quadratically with attention, making end-to-end
encoding infeasible. Therefore, MultiHaystack plays a critical role by providing a realistic evaluation
setting where retrieval, rather than ever-larger context windows, is the decisive factor for scalable
multimodal reasoning.
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F MORE ANALYSIS

F.1 ZERO-CONTEXT VISUAL QUESTION ANSWERING

Table F.1: VQA perfor-
mance in zero context.

Model Overall
Ola 0.54
InternVL-3 0.80
Qwen2-VL 0.67
Gemini-2.5-Flash 1.07
GPT-5 4.28

One might suggest evaluating a zero-context baseline (k = 0), where
the model answers questions without any retrieved content. However,
this setting is fundamentally incompatible with MultiHaystack. Dur-
ing construction, we explicitly apply a retrieval-independence filter to
remove any question that could be answered from prior knowledge or
common sense alone. As shown in Table F.1, we evaluate several mod-
els under the zero-context setting, and find that even the strongest one
(GPT-5) achieves only 4.28% accuracy, confirming that virtually all
queries require retrieval to be solvable. Consequently, reporting k = 0
is not meaningful and would only obscure the purpose of the benchmark,
which is to disentangle retrieval and reasoning in multimodal contexts. Instead, we provide Gold in
Top-1/5 results (Table 6), where the ground-truth item is guaranteed to be retrieved. These serve as a
principled upper bound, directly isolating reasoning ability under perfect retrieval, and thus provide a
far more informative diagnostic than an artificial zero-context baseline.

F.2 PARAMETER SELECTION FOR DATA ENRICHMENT.

Figure F.1: Distribution of cosine similarity scores.

A central challenge in data enrichment is to
retain informative positives while suppress-
ing noisy distractors. To this end, we first
apply a coarse CLIP threshold (e.g., 0.2)
to discard obviously unrelated candidates.
We then compute the mean CLIP similar-
ity for positive pairs (≈0.74) and select a
principled interval around it. In our dataset,
this corresponds to [0.64, 0.84], which is
broad enough to preserve the majority of
true positives while excluding distractors
with artificially high similarity or positives
with abnormally low similarity. Figure F.1
highlights this separation: the purple curve
shows CLIP-based similarities between each question and its ground-truth positive image, peaking
near 0.74, while the green curve shows vidore/colqwen2-v0.1-based similarities between each
question and a large pool of candidate distractors, concentrated at lower values. By explicitly ground-
ing the threshold in the empirical distributions of CLIP positives and vidore/colqwen2-v0.1
distractors, this procedure yields a cleaner candidate pool, mitigating CLIP-only bias and reducing
noise propagation, ultimately stabilizing downstream training.

G ERROR ANALYSIS

To gain deeper insights into the failure of the current VLMs and MLLMs, we further perform a
qualitative error analysis. We first compute the statistical distribution of the two major error categories:
retrieval errors and reasoning errors. As shown in Figure G.1, retrieval errors account for a larger
proportion overall, reflecting the difficulty of grounding queries in subtle but decisive evidence.
Reasoning errors, though fewer, remain substantial, highlighting that even with correct retrieval,
models frequently fail to extract or align fine-grained content. This distribution underscores that
progress in both retrieval and reasoning is necessary to reduce failure rates.

Building on this distributional view, we next examine representative cases across six tasks: Contextual
Understanding, Factual Knowledge Retrieval, Metadata Identification, Statistical Reasoning, Video
Temporal Reasoning, and Visual Parsing and Positioning. Figure G.2–G.7 illustrate typical examples.
Retrieval errors commonly arise when models are biased toward salient but irrelevant signals (e.g.,
league logos, headlines, colorful infographics), overlooking subtle yet decisive cues such as times-
tamps or spatial relations. Reasoning errors, on the other hand, often stem from shallow associative
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Figure G.1: Distribution of error types. Panels: (a) retrieval error distribution and (b) reasoning error
distribution. Retrieval errors are quantified by Recall@5 with the strongest retriever (E5-V), while
reasoning errors are evaluated using VQA with the strongest reasoning model (GPT-5). Retrieval
errors dominate across tasks, though reasoning errors remain substantial.

processing, where the system outputs plausible but incorrect answers (e.g., predicting “State Farm”
instead of the correct sponsor, misreporting 2,743 instead of 2,740, or confusing the spatial relation
between characters). These examples reveal a consistent bottleneck: current models struggle with
sensitivity to fine-grained task-relevant details, both at the retrieval and reasoning stages.

G.1 CONTEXTUAL UNDERSTANDING (CU)

Retrieval Error

Q: Which MLB team logo is 
displayed on the left side of the 
table during the Fox World Series 
broadcast?

Ground Truth

Error Retrieval Top5

Reasoning Error

Q: What brand logo is displayed on the player's jersey in the 
"Edit Draft Class Player" section?

Ground Truth
2K Sports

Answer
State Farm Logo

Figure G.2: Contextual Understanding representative error cases.

Retrieval error. Contextual understanding requires models to attend to subtle textual or symbolic
signals embedded in a scene. As shown in Figure G.2, the retriever frequently selects broadcast
frames with prominent Fox or MLB league logos, while failing to prioritize the smaller team emblem
on the desk that is key to answering the query. This reveals a systematic bias toward globally salient
elements and insufficient sensitivity to localized cues that define context.

Reasoning error. Even when the relevant frame is retrieved, models often fail to identify the
intended target. In the jersey example, the system outputs “State Farm”—a frequent sponsor in sports
scenes—instead of the actual “2K Sports” logo. This demonstrates shallow associative reasoning,
where models rely on prior familiarity with common patterns rather than aligning their predictions
with the fine-grained evidence present in the scene.
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G.2 FACTUAL KNOWLEDGE RETRIEVAL (FKR)

Retrieval Error

Q: Which company owns 
CNN.com?

Ground Truth

Error Retrieval Top5

Reasoning Error

Q: What happens if you don't activate a loyalty ability of a 
planeswalker with The Chain Veil?

Ground Truth
Lose 2 life

Answer
You can't attack 
this turn

Figure G.3: Factual Knowledge Retrieval representative error cases.

Retrieval error. Factual knowledge retrieval tasks demand grounding in specific factual sources
rather than surface similarity. Figure G.3 shows that retrievers often select generic news articles with
overlapping topics, while missing the ownership chart that directly encodes the required fact. This
indicates difficulty in filtering out visually or lexically similar distractors that lack factual relevance.

Reasoning error. When the correct evidence is retrieved, models may still produce factually incorrect
outputs. In the card-game case, the system outputs “You can’t attack this turn” instead of the precise
rule “Lose 2 life.” Such errors reflect limited capacity to extract exact symbolic content when
distractors are semantically close or when plausible but incorrect alternatives exist in the model’s
training distribution.

G.3 METADATA IDENTIFICATION (MI)

Retrieval Error

Q: What date will Red Noses 
be sold at the cost of 2?

Ground Truth

Error Retrieval Top5

Reasoning Error

Q: What altitude is associated with human Fascioliasis cases 
in Lahore documented in March 2005?

Ground Truth
216 m

Answer
The document states 
that Lahore showed a 
small risk peak in 
human Fascioliasis 
cases in the month of 
March 2005.

Figure G.4: Metadata Identification representative error cases.

Retrieval error. Metadata identification tasks emphasize peripheral information such as dates,
publishers, or attribution details. As shown in Figure G.4, the retriever often selects documents
with salient but irrelevant headlines (e.g., “Heisey News”), while failing to identify the document
that actually contains the event date. This suggests that subtle metadata cues are systematically
underweighted during retrieval.

Reasoning error. Even with the correct source, models may paraphrase broader contextual informa-
tion instead of pinpointing the requested metadata. In the example, the system discusses risk levels
but fails to extract the precise altitude value of 216 m. This highlights the difficulty in focusing on
small but decisive details, especially when they appear in dense or noisy layouts.
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G.4 STATISTICAL REASONING (SR)

Retrieval Error

Q: What was the gold medal 
prize value in the 2014 Winter 
Olympics?

Ground Truth

Error Retrieval Top5

Reasoning Error

Q: How many simple assault cases were reported in Palm 
Beach County in 2015?

Ground Truth
2,740

Answer
2,743

Figure G.5: Statistical Reasoning representative error cases.

Retrieval error. Statistical reasoning tasks hinge on retrieving charts or tables with exact quantitative
relevance. Figure G.5 shows that retrievers sometimes surface colorful but semantically irrelevant
infographics, prioritizing layout or style over the numerical semantics that matter for the query. This
reveals a gap in embedding models’ ability to encode quantitative intent.

Reasoning error. Once the correct chart is retrieved, errors often stem from fragile visual numeracy.
The system may miscount bars, misalign values with axes, or confuse close numbers (e.g., reporting
2,743 instead of 2,740). Such mistakes indicate that while models perceive the chart, their mapping
from visual encodings to precise numerical answers is brittle and error-prone.

G.5 VIDEO TEMPORAL REASONING (VTR)

Retrieval Error

Q: What temperature is 
predicted for New Bedford on 
Thursday at 7:00 AM?

Ground Truth

Error Retrieval Top5

Reasoning Error

Q: What is the temperature forecast for Plymouth at 9:00 PM 
on Friday according to Barry Burbank's weather report?

Ground Truth
51

Answer
36

Figure G.6: Video Temporal Reasoning representative error cases.

Retrieval error. Video temporal reasoning tasks require isolating evidence at the correct temporal
point. As illustrated in Figure G.6, the retriever often selects weather maps with similar layouts but
corresponding to the wrong time or location, failing to encode temporal anchors. This points to the
underrepresentation of sequential and time-sensitive features in retrieval embeddings.

Reasoning error. Even when the correct video frame is retrieved, the model may misread numeric
overlays or confuse temporal ordering, e.g., predicting “36” instead of “51.” These errors demonstrate
the fragility of temporal–numerical reasoning, where minor OCR-like mistakes or misinterpretations
of frame order propagate into incorrect conclusions.
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G.6 VISUAL PARSING AND POSITIONING (VPP)

Retrieval Error

Q: What is the color of the 
bag that is put on the table in 
the laundry room?

Ground Truth

Error Retrieval Top5

Reasoning Error

Q: What is the closest cartoon character that is put in the right 
side of Stitch on the table?

Ground Truth
Baymax

Answer
Skater

Figure G.7: Visual Parsing and Positioning representative error cases.

Retrieval error. Visual parsing and positioning requires attention to spatial relationships rather than
global scene similarity. Figure G.7 shows retrieval returning indoor scenes with similar textures or
objects (e.g., laundry baskets, storage rooms) instead of the specific bag-on-table instance. This
reflects insufficient encoding of spatial layout information in the retrieval stage.

Reasoning error. When the relevant scene is retrieved, reasoning errors arise from misinterpreting
spatial relations. The model identifies the wrong character (“Skater”) instead of “Baymax” when
asked about the figure to the right of Stitch, showing that relational parsing across entities remains a
bottleneck even when object recognition is accurate.

G.7 SUMMARY OF ERROR PATTERNS

Across the six tasks, two consistent tendencies emerge. Retrieval errors are predominantly driven by
saliency bias: systems privilege visually prominent elements such as logos, headlines, or colorful
charts while neglecting the subtle but decisive cues that ground context, such as timestamps, metadata,
or spatial layouts. This suggests that current multimodal embeddings fail to adequately encode
task-specific contextual signals that are less obvious but more critical.

Reasoning errors, in contrast, often reflect shallow associative processing. Models default to frequent
or plausible outputs—common sponsors in sports broadcasts, approximate numbers in charts, or
generic spatial relations—instead of extracting the exact information encoded in the evidence. These
patterns indicate that while retrieval and reasoning failures manifest differently, both are rooted in
insufficient sensitivity to fine-grained, task-relevant details that determine correctness. Addressing
this limitation will require embedding models that better capture subtle contextual cues and reasoning
modules that enforce tighter alignment between queries and retrieved evidence.

H ARTIFACTS AND LICENSES

We report a list of licenses for all datasets and models used in our experiment in Table H.1. We
strictly follow all the model licenses and limit the scope of these models to academic research only.

Practical usability. In addition to licensing, we emphasize several practical aspects of dataset
usability. First, the benchmark involves over 40K multimodal files (videos, images, and documents),
which requires significant storage (on the order of terabytes) and compute resources for full-scale
evaluation. Second, while all datasets are publicly hosted on Hugging Face under open licenses
(Apache, MIT, CC BY), certain redistribution restrictions (e.g., CC-BY-NC) limit commercial use.
Third, video corpora may present bandwidth challenges, and we recommend that academic users
to selectively download subsets for targeted experiments. Finally, to ensure long-term accessibility,
we will maintain mirrors for all datasets and scripts, together with versioned releases to facilitate
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Table H.1: License information for the scientific artifacts.

Data Sources URL License
VideoVista Link Apache-2.0
MMBench-Video Link CC BY 4.0
FineVideo Link CC BY 4.0
MVBench Link MIT
DocHaystack Link MIT
MMIU Link CC BY 4.0
A-OKVQA Link Apache-2.0
MINT1T Link CC BY 4.0

Software Code / Models URL License
CLIP Link MIT
SigLIP2 Link Apache-2.0
OpenCLIP Link MIT
Jina-CLIP-V1 Link Apache-2.0
Jina-CLIP-V2 Link CC-BY-NC-4.0
NEV Link Apache-2.0
E5-V Link Apache-2.0
MM-Embed Link CC-BY-NC-4.0

Ola Link Apache-2.0
Qwen2-VL Link Apache-2.0
InternVL-3 Link Apache-2.0
Gemini-2.5-Flash Link Google Terms of Use
GPT-5/4o-mini Link OpenAI Terms of Use

reproducibility. These considerations ensure that our benchmark is both legally compliant and
practically usable by the research community.

I LIMITATIONS AND FUTURE WORK

Our study has several limitations. First, while MultiHaystack integrates text, images, and videos, it
does not yet cover modalities such as audio or sensor signals. Extending to these would increase
realism but also introduce challenges like temporal alignment and redundancy modeling. Second,
benchmark construction relies on semi-automatic question generation and human verification. Al-
though we enforce unique ground truths, annotation noise or bias may remain. Moreover, while
GPT-4o is the backbone for both data construction and evaluation, we mitigate potential bias through
multi-stage filtering, human checks, and consistency validation against human judgments, substan-
tially reducing dependence on a single model. Future work could explore more scalable and diverse
verification pipelines. Finally, current results are bounded by retriever quality: poor recall limits
downstream reasoning regardless of model ability. Exploring retrieval-augmented training, adaptive
candidate selection, or hybrid retrieval strategies may help overcome this bottleneck.

J BROADER IMPACT

By providing a large-scale multimodal benchmark, MultiHaystack can accelerate research on retrieval-
augmented reasoning, enabling applications in search, education, healthcare, and scientific discovery.
Improved systems may broaden access to complex multimodal information and support more reliable
decision-making. At the same time, stronger retrieval and reasoning also raise risks, such as exposing
sensitive information or amplifying misinformation. While our benchmark itself does not contain
harmful content, responsible use of models evaluated on it requires privacy safeguards, robust
verification, and appropriate policy frameworks. We hope MultiHaystack will guide both technical
progress and responsible discourse on the societal impact of multimodal AI.
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K LLM USAGE STATEMENT

During dataset construction, we leveraged large language models as an auxiliary tool to suggest
candidate question–answer pairs and to aid preliminary filtering. These outputs were then subjected
to rigorous multi-stage manual verification to ensure both accuracy and diversity. For evaluation,
we employed an automatic judging protocol, where an LLM was used to assist in assessing the
correctness of answers from multiple VQA models. To validate the robustness of this approach, we
performed direct comparisons against independent human annotations and confirmed high consistency.
Finally, the manuscript underwent multiple rounds of refinement, combining careful manual revision
with selective automated editing support to further improve clarity, coherence, and readability.
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