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ABSTRACT

Wildfire has become an unavoidable natural disaster that continues to threaten
fire-prone communities and the frequency is expected to increase due to climate
change. Therefore, predicting a wildfire spread profile is an essential tool for fire-
fighters when planning an evacuation strategy. The current traditional, physics,
and empirically based fire spread models require extensive inputs, which are often
difficult to obtain. Thus, we propose a 3D Convolutional Neural Network (CNN),
named WildfireNet, that can predict the profile of wildfire of the next day when
given historical wildfire profiles and accessible remote-sensing data. WildfireNet
utilizes 3-dimensional spaces to extract features from both the temporal and spa-
tial dimensions to better understand the relationship between historical fires and
upcoming fires. The motivation behind WildfireNet is to locate fires in a precise
manner and be able to accurately predict fire profiles. Pixels that were labeled
as fire but not on the previous days were extracted to calculate Intersection over
Union (IoU) and recall. WildfireNet outperformed 2D CNN and logistic regres-
sion model in both IoU and recall.

1 INTRODUCTION

In recent years, the magnitude and intensity of wildfire have become challenging for the fire-prone
community to withstand. Even worse, global warming and consequent fuel drying will increase
the frequency of devastating wildfires (Halofsky et al., [2020). If such trend continues, upcoming
wildfires will be more destructive than any fires in the past. The consequences of massive wildfires
are brutal. For instance, in 2003, wildfires that occurred in San Diego County, California, burned
over 376,000 acres and 3,241 households, which was estimated to be $2.45 billion in terms of total
economic costs (Diazl 2012). Traditional, physics, and empirically based wildfire spread models
have been continuously studied to mitigate losses resulting from wildfire. However, these models
often require extensive inputs, which are often difficult to obtain or even impossible to get.

Convolutional Neural Networks (CNN) have been widely used with remote sensing data for various
applications and showed promising results. Therefore, we implemented one of the commonly used
CNN architecture, U-Net, to create WildfireNet. U-Net was developed for biomedical image seg-
mentation that extracts global and local features to learn patterns to output a segmented image. The
method has a relatively modest need for data collection and is capable of predicting a wildfire pro-
file within a second. Thus, we present a novel deep learning method to determine dynamic wildfire
profiles with the basic input data: wildfire perimeters, land cover, topography, and weather data.

2 RELATED WORKS

Modeling wildfire has been an active research topic. Works have been done towards predicting the
occurrence of wildfires with spatial susceptibility (Ghorbanzadeh et al.| 2019} Sayad et al., [2019).
FARSITE is a two-dimensional model that utilizes a vector propagation approach to depict fire
perimeter growth. The model is sophisticated to adjust different fire types and behaviors, such as
surface fire, crown fire, spotting, and point source fire acceleration (Finney, (1998). The model
shows a promising result in basic conditions as the prediction matches very well to the actual fire
boundary. However, it is computationally expensive and requires an extensive number of inputs.
Also, the model accuracy varies widely across wildfires in different regions.
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In recent years, artificial intelligence has been used to solve the problem. Subramanian and Crowley
presented a novel approach for utilizing Reinforcement Learning for learning forest wildfire spread
dynamics directly from readily available satellite images (Subramanian & Crowley, 2018)). FireCast
combined Artificial Intelligence and data collection from GIS to predict which areas are at high risk
in the future. It utilizes 2D CNN and is trained to predict areas that are expected to burn during
the next 24 hours when given an initial fire perimeter (Radke et all 2019) . From the studies,
utilizing Al to solve the complex nature of wildfire is a promising way to predict wildfire spread and
avoid complicated physical computation that many traditional methods hold. Thus, we propose a
WildfireNet that can predict the profile of wildfire of the next day. To our knowledge, WildfireNet is
the first 3D CNN to be used in the application of the fire spreading model.

3  WILDFIRENET ALGORITHM

3.1 TRAINING METHOD

There are two categories, fire or no fire, to classify for each pixel. Binary cross-entropy loss (BCE)
is an appropriate loss function to train the model .

N
-1 Z _ =
BCE = N — Yi - log(:) + (1 — yi) - log(1 — %) M

As shown in the equation above, binary cross-entropy (BCE) loss is informative to our model be-
cause it tries to minimize the distance between the predicted and the ground truth probability dis-
tributions, which is the ultimate goal of our problem. For instance, if the model predicts a pixel
to contain fire where it doesn’t, BCE will output a high loss, penalizing the model with a large
cost. From this train and error approach, the model will find the local minimum point of the loss
function as its goal is to achieve a smaller loss at every training step. Thus, with BCE, the model
will be optimized to maximize the likelihood of outputting the correct shape of the wildfire profile.
Furthermore, Adam optimization was used and a learning rate of 1e-4 was applied to train the model.

3.2 MODEL AND IMPLEMENTATION

U-Net was first introduced solely for the purpose of image segmentation on biomedical images. The
output of U-Net is different than the typical use of CNN, which is on classification tasks that outputs
a single class label to an input image. The output of U-Net is different. Instead of assigning a single
label per input image, the model localizes the label for each pixel of the input image (Ronneberger,
et al.| [2015). The model has two major paths. It first begins with contraction, which consists of
convolutions and maxpool to extract features. Next, the model undergoes expansion where the
size of the image resizes back to the original input to enable precise localization. The sequence of
contraction and expansion yields a u-shaped architecture. The unique aspect of this model is the
outputs from contraction are concatenated to the expansion output. This approach helps the model
to maintain precise localization of high-resolution features at the output (Ronneberger et al., [2015).

We decided to implement the U-Net model because 1) the model has a capacity to intake a raw
image and output a segmented image, 2) it works well with a small dataset, 3) and it is capable of
predicting a wildfire profile within a second.

The U-Net model is adjusted so that it becomes more applicable to our study. Similar to the U-Net,
WildfireNet is composed of the two major paths: contraction and expansion. The full architecture
of the model is shown in Figure 1. In contrast to the U-Net, WildfireNet consists of fully connected
layers at the bottom of the architecture. After the last downsampling, the 3D image is flattened
into 1D array, and weather data is concatenated. The model is further trained with dense layers to
learn the effect of weather variables in its prediction. Furthermore, past wildfire profiles can play a
dominant role in the future shape of the wildfire. Therefore, 3D CNN was used instead of 2D. In 3D
CNN, the model further extracts features from both the temporal and spatial dimensions, whereas,
in 2D CNN, the model only focuses on spatial features (Tran et al., 2015)). In this study, 3 previous
days of wildfire profiles are combined to convert input images from 2D to 3D. This allows the model
to have a better sense on how historical fires are correlated to the fire on the next day.
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Figure 1: Architecture of WildfireNet

3.3 INPUT DATA

Topography, weather, and available fuels are major contributor to fire growth 2017).
Thus, along with three days of historical fire profiles, we decided to add land cover, topography, and

weather data to the model.

3.3.1 DYNAMIC WILDFIRE PERIMETERS

A total of 302 daily fire perimeters were retrieved. The size of the data is limited compared to other
deep learning studies. However, WildfireNet, derived from U-Net, is proven to perform well with
small dataset (Ronneberger et all, 2015). Wildfire perimeters were obtained from National Inter
agency Fire Center FTP Server|'| Perimeters are in the format of .kmz, which contains an array of
coordinates of boundaries. In this paper, only the fires that occurred in California from 2013 to 2019
were observed.

For each wildfire perimeters, as shown in Figure 2, an array of coordinates was used to fill inside the
perimeter to create a binary map to reflect the overall shape of the wildfire. In other words, if a given
pixel is within the perimeter, the pixel is labeled as 1 to indicate fire, otherwise, if the pixel is outside
the boundary, the pixel is assigned to O to reflect no fire. An Important assumption was made when
creating a binary map. For instance, there were spots of the region within the boundary that was not
on fire, but these spots were considered as a risk zone and were filled in as well. binary map consists
of 256x256 pixels, covering 0.5 degrees in both latitude and longitude. It is important to maintain
the same spatial scale to distinguish fires with respect to their true sizes. Overall, a preprocessed
binary map is used as an input to represent the wildfire profile.

3.3.2 LAND COVER AND VEGETATION

Normalized Difference Vegetation Index (NDVI) is a remote sensing data that combines measure-
ment of wavelengths and intensity of visible and near-infrared light to calculate the concentrations
of green leaf vegetation (Zaitunahl et al.,2018)). NDVI is useful to fire spreading models because it
indicates the water content of the crop and it is more likely for fire to spread on dry vegetation than
on wet crops.

"Wildfire perimeter source: https:/ftp.nifc.gov/
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(a) (b)

Figure 2: An example of preprocessing wildfire perimeter. (a) A fire perimeter is plotted. (b) Fire
perimeter is shaded in to create a binary map.

Advanced Very High Resolution Radiometer (AVHRR) NDVI was collected from National Oceanic
and Atmospheric Administration||(NOAA). The data are projected on a 0.05-degree x 0.05-degree
global grid. The mean NDVI was used as an input.

3.3.3 TOPOGRAPHY

Topography has a direct effect on fire behavior (Rothermel, [1972). For example, the rate of fire
spread rapidly increases on steeper slopes. Studies have shown that there is a strong correlation
between topography and fire severity (Estes et al.| 2017).

1/3 arc-second digital elevation model (DEM) was retrieved from the USGS national mapto reflect
topography on locations of fires. DEM contains elevation for each pixel. This allows the model to
learn fire behavior that is directly responded to topography, such as slope change. For each wildfire,
four corner coordinates of the binary map were used to crop DEM to match spatial location.

3.3.4 WEATHER

Weather is an important factor that can significantly contribute to the spread of wildfires. Simplified
daily weather data, including mean wind speed, mean temperature, mean relative humidity were
used to represent atmospheric conditions. Weather data were retrieved from the Climatology Lab ﬂ
The resolution of the data is 1/24 degree x 1/24 degree.

3.4 OUTPUT

After three days of historical fire profiles and remote-sensing data are processed into WildfireNet,
it outputs a probabilistic distribution of fire of the next day. A sigmoid activation is used at the last
layer to ensure the values of each pixel is within the range of [0, 1], representing a probability of
fire occurrence. The output is further processed to create a predicted binary map, which is evaluated
with the ground truth in the loss function to train the model. To create a binary map, an optimal
threshold is picked and the state of the pixel is classified as fire (1) or not (0) with the following rule:

1, ifp > threshold

0, ifp < threshold 2)

State of Pixel = {

Various thresholds were evaluated and selected threshold yielded the highest metric scores.

2NDVI source: https://www.ncdc.noaa.gov/cdr/terrestrial/normalized-difference-vegetation-index

3Elevation data source: https://www.usgs.gov/core-science-systems/national- geospatial-program/national-
map

*Weather data source: http://www.climatologylab.org/gridmet.html
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4 BASELINE MODEL

We decided to use the U-Net and logistic regression model as baseline models to compare and
evaluate the performance of WildfireNet. Similar to WildfireNet, U-Net extracts features through
downsampling and upsampling pathways, however, it does not consider historical fires since the
dimension is limited to 2. U-Net will work as a baseline model to assess the temporal aspects of the
WildfireNet in predicting the wildfire shape.

The logistic regression model is a commonly used baseline model due to its simplicity. However, it
lacks convolution to extract features. Thus, it will provide a suitable starting point to understand the
task and validate the usage of CNN in predicting wildfire spread profiles. The input for the logistic
regression model includes historical binary maps, elevation data, wind speed, wind direction, and
the state of the surrounding pixels. The state of the surrounding pixels is an essential aspect since the
pixel has a higher probability of setting on fire if one of the neighboring pixels is on fire. Moreover,
there are a total of 8 neighboring pixels that contribute to the state of the pixel, as shown in Figure
2. Baseline models were trained and tested with the same data as WildfireNet.

Figure 3: State of the pixel. Green pixel indicates current pixel and red pixels indicate surround-
ing/neighboring pixels that contribute to the state of the current pixel

5 RESULTS

As shown in Figure 4(a,c), the output of WildfireNet shows a probabilistic distribution of fires oc-
curring at each pixel. If the model is confident that there is a fire in a certain pixel, it will assign
a low score on the pixel. The model also projects how fire will spread in the future. For example,
in the Mad River Complex fire, there are two major fire bodies. WildfireNet predicts the fire will
expand at the bottom of the left body and no change will occur on the right body. In fact, in the
comparison between the current day to the next day, it shows that the actual fire of the next day did
not expand elsewhere except at the bottom of the left body. Moreover, in the Rey fire, the model
predicts the fire will enlarge on the right side of the boundary, whereas, not so much on the left side.
In the comparison between the current day to the next day, it shows that the actual fire did expand to
its right. These examples validate the model’s capacity of predicting the growth pattern of wildfires.

5.1 EVALUATION

Intersection over Union (IoU) was calculated to evaluate the model’s performance in predicting
the profile of the wildfire. IoU is commonly used metric to evaluate the performance of object
segmentation. IoU is defined as

_Area of Overlap

IoU = 3)

Area of Union

The metric is straightforward once a predicted image and a ground truth image are defined. In this
study, both images are binary maps where each pixel is either 0 or 1. Then, the area of overlap is
simply the number of pixels that have the same value in both images and union is the area encom-
passed by both images. Therefore, a predicted image that matches perfectly to the ground truth will
score 1. As shown in Table 1, WildfireNet achieved an IoU score of 0.997 in the test set, while
U-Net and logistic regression model scored 0.995 and 0.913, respectively. The result indicates that
WildfireNet is excellent in precisely labeling each pixel with the presence of fire or not and performs
better than the baseline models.

However, in the test set, only 5 percent of labels in the binary map is labeled as fire, which shows a
sign of class imbalance in the data set. Therefore, IoU is not the best metric to evaluate a model’s
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Figure 4: WildfireNet output and comparison of real data of the current day to the next day: (a,c)
WildfireNet outputs a fire probabilistic distribution of the next day, (b,d) comparison between the
current day (solid black) and the next day (light gray).

performance in predicting new fires because the model can obtain a high IoU score by simply pre-
dicting every pixel to be 0. Therefore, models are evaluated on only the pixels that were labeled fire
on the next day but not on the current day. We defined such pixels as changed pixels. Considering
only the changed pixels will truly measure the model’s performance in predicting the changes in
wildfire profile. Thus, we defined expanded IoU as the area of intersection between the predicted
and the truth of the changed pixels over the area of union between the predicted and the truth of the
changed pixels.

Area of Overlap of Changed Pixels

E ded IoU =
xpanded Io Area of Union of Changed Pixels

“4)

Moreover, expanded recall was formulated as true positives of the changed pixels over the total
positive of changed pixels.

Expanded Recall = True Posi.ti.ve of Changed Pi.xels 5)
Total Positive of Changed Pixels

On the test set, WildfireNet performed better than the baseline models in both expanded IoU and
recall. All models scored the lowest in expanded IoU because the metric further penalizes when
predicted fires are not present in the actual fire. WildfireNet achieved 0.541 on recall while the U-
Net and baseline model scored 0.458 and 0.154, respectively. This implies that WildfireNet predicts
correctly more than half of the time on how fires are growing in the actual fire expansion, while the
logistic regression model is only correct about 15% of the time. From this result, WildfireNet is
superior to baseline models.
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Table 1: Statistical analysis of models performance. Metrics used to evaluate the performance of the
models. ToU, expanded IoU, and expanded recall were used.

Model IoU Expanded IoU Expanded Recall
WildfireNet 0.998 0.229 0.541
U-Net 0.995 0.165 0.498
Logistic Regression 0.914  0.108 0.154

Wildfires are further categorized into three classes based on the percentage of fire growth from the
previous day. Fire is defined as rapid if the fire body expands more than 7% than the previous day,
moderate if the growth is between 3% and 7%, and subtle if the growth is under 3%.

Table 2 shows that all models having the highest score in the following order: subtle, moderate, and
rapid. It is reasonable for models to perform poorly as fire changes rapidly from one day to another.
Wildfire is affected by various dynamic factors including but not limited to the inputs that were used
to train the model. For instance, unstable weather conditions are often the major contributor to the
rapid fire growth. However, daily weather data is not detailed enough to reflect the volatile nature
of the weather. The abrupt changes in the weather, such as gust usually occurs for less than 20
seconds. Daily weather data, having a time interval of 24 hours, is not finite enough to inform the
model about the sudden changes. In addition, human-induced fire growth can be a huge factor in
contributing fire growth, but simply ignoring the effect can hinder the model’s prediction. Therefore,
it is reasonable for models to fail in keeping up with the rapid change. In figure 5, WildfireNet
outputs a reasonable prediction on the moderate fire. Prediction nearly matches the overall shape of
the truth and it predicts the most bottom of the fire body to enlarge, which is the actual case in the
real fire. However, in figure 6, WildfireNet cannot keep with a large change of the rapid fire. The
model predicts the fire to increase only at the bottom. But in the actual fire, it increases in every
direction.
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Figure 5: Moderate fire.

Table 2: Recall of different wildfire categories.

Model Subtle Moderate Rapid
WildfireNet 0.653  0.597 0.534
U-Net 0.553  0.401 0.409
Logistic Regression 0.393  0.225 0.209
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Figure 6: Rapid fire.

6 LIMITATIONS

Compared to many other deep learning applications, WildfireNet is trained with a small dataset.
The lack of variability in training data could limit the model to predict accurately when new weather
conditions, land cover, and fire profile are introduced. Furthermore, neglecting human-induced fire
spread could stall the performance of the model. Furthermore, wildfire is highly influenced by inter-
dependence on coupled climatic and human factors, but several factors were not considered, such
as human-induced fire growth. Moreover, a key assumption was made when fire perimeters were
preprocessed to create binary maps, which was to consider spots within the boundary that was not
on fire to be labeled as fire. Due to such modification, the binary map couldn’t have reflected the
actual shape of the fire. In addition, fire perimeters were recorded daily, but there is uncertainty
whether fire perimeters were obtained at the same time. If time interval varies between days, the fire
growth does not reflect changes in the 24-hour time window.

Remote sensing data had different resolutions (wind speed: 1/24 degree, elevation: 1/512 degree,
NDVI: 1/200 degree) and contained missing values. Thus, interpolations were put in place to prop-
erly complete the data, but it could lead to an error when there is a large amount of missing data.

7 CONCLUSION AND FUTURE WORK

WildfireNet is built and experimented to establish a footprint of using 3D CNN to predict wildfire
spread profile. Unlike current traditional, physics, and empirically based fire spreading models,
WildfireNet does not require extensive inputs and complex computations and with fire profiles and
accessible remote sensing data, it can output an upcoming fire profile within a second. Statistical
analysis shows WildfireNet is capable of learning patterns from historical fire spread along with land
cover, topography, and weather. The model shows a promising result by obtaining higher scores in
IoU, expanded IoU, and recall than the baseline models.

Future work includes obtaining more fire incidents and remote sensing data. Currently, WildfireNet
is trained solely on the fires that existed in California and we believe the model can be flexible to
predict any types of fire once it has been trained with various types and conditions of wildfires.
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