
Under review as a conference paper at ICLR 2023

TOWARDS SEMI-SUPERVISED LEARNING WITH NON-
RANDOM MISSING LABELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Semi-supervised learning (SSL) tackles the label missing problem by enabling
the effective usage of unlabeled data. While existing SSL methods focus on the
traditional setting, a practical and challenging scenario called label Missing Not
At Random (MNAR) is usually ignored. In MNAR, the labeled and unlabeled
data fall into different class distributions resulting in biased label imputation,
which deteriorates the performance of SSL models. In this work, class transition
tracking based Pseudo-Rectifying Guidance (PRG) is devised for MNAR. We
explore the class-level guidance information obtained by the Markov random walk,
which is modeled on a dynamically created graph built over the class tracking
matrix. PRG unifies the history information of each class transition caused by
the pseudo-rectifying procedure to activate the model’s enthusiasm for neglected
classes, so as the quality of pseudo-labels on both popular classes and rare classes
in MNAR could be improved. We show the superior performance of PRG across
a variety of the MNAR scenarios, outperforming the latest SSL solutions by a
large margin. Checkpoints and evaluation code are available at the anonymous
link https://anonymous.4open.science/r/PRG4SSL-MNAR-8DE2
while the source code will be available upon paper acceptance.

1 INTRODUCTION
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Figure 1: An example of the
MNAR scenarios on CIFAR-10
(see Sec. 4 for details). The class
distribution of total data is bal-
anced whereas labeled data is un-
evenly distributed across classes.
For better illustration, the y-axis
has different scaling for labeled
(blue) and unlabeled data (green).

Semi-supervised learning (SSL), which is in the ascendant,
yields promising results in solving the shortage of large-scale
labeled data (Chapelle et al., 2009; Zhou, 2021; Van Engelen
& Hoos, 2020). Current prevailing SSL methods (Lee et al.,
2013; Berthelot et al., 2020; Sohn et al., 2020; Tai et al., 2021;
Zhang et al., 2021) utilize the model trained on the labeled data
to impute pseudo-labels for the unlabeled data, thereby boosting
the model performance. Although these methods have made ex-
citing advances in SSL, they only work well in the conventional
setting, i.e., the labeled and unlabeled data fall into the same (bal-
anced) class distribution. Once this setting is not guaranteed, the
gap between the class distributions of the labeled and unlabeled
data will lead to a significant accuracy drop of the pseudo-labels,
resulting in strong confirmation bias (Arazo et al., 2019) which
ultimately corrupts the performance of SSL models. The work in
Hu et al. (2022) originally terms the scenario of the labeled and
unlabeled data belonging to mismatched class distributions as
label Missing Not At Random (MNAR) and proposes an unified
doubly robust framework to train an unbiased SSL model in MNAR. It can be easily found that in
MNAR, either the labeled or the unlabeled data has an imbalanced class distribution, otherwise, it
degrades to the conventional SSL setting. A typical MNAR scenario is shown in Fig. 1, in which the
popular classes of labeled data cause the model to ignore the rare classes, increasingly magnifying
the bias in label imputation on the unlabeled data. It is worth noting that although some recent SSL
methods (Kim et al., 2020; Wei et al., 2021) are proposed to deal with the class imbalance, they are
still built upon the assumption of the matched class distributions between the labeled and unlabeled
data, and their performance inevitably declines in MNAR.
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Figure 2: Results of FixMatch (Sohn et al., 2020) in MNAR and the conventional setting. The
models are trained on CIFAR-10 with WRN-28-2 backbone (Zagoruyko & Komodakis, 2016). (a)
and (b): Class-wise pseudo-label error rate. (c): Confusion matrix of pseudo-labels. In (b) and (c),
experiments are conducted with the setting of Fig. 1, whereas in (a) with the conventional setting (i.e.,
balanced labeled and unlabeled data). The label amount used in (a) is the same as that in (b) and (c).

MNAR is a more realistic scenario than the conventional SSL setting. In the practical labeling process,
labeling all classes uniformly is usually not affordable because some classes are more difficult to
recognize (Rosset et al., 2005; Misra et al., 2016; Colléony et al., 2017). Meanwhile, most automatic
data collection methods also have difficulty in ensuring that the collected labeled data is balanced
(Mahajan et al., 2018; Hu et al., 2022). In a nutshell, MNAR is almost inevitable in SSL. In MNAR,
the tricky troublemaker is the mismatched class distributions between the labeled and unlabeled
data. Training under MNAR, the model increasingly favors some classes, seriously affecting the
pseudo-rectifying procedure. Pseudo-rectifying is defined as the change of the label assignment
decision made by the SSL model for the same sample according to the knowledge learned at each
new epoch. This process may cause class transition, i.e., given a sample, its class prediction at the
current epoch is different from that at the last epoch. In the self-training process of the SSL model
driven by the labeled data, the model is expected to gradually rectify the pseudo-labels mispredicted
for the unlabeled data in last epoches. With pseudo-rectifying, the model trapped in the learning of
extremely noisy pseudo-labels will be rescued due to its ability to correct these labels.

Unfortunately, the pseudo-rectifying ability of the SSL model could be severely perturbed in MNAR.
Take the setting in Fig. 1 for example. The model’s “confidence” in predicting the pseudo-labels
into the labeled rare classes is attenuated by over-learning the samples of the labeled popular classes.
Thus, the model fails to rectify those pseudo-labels mispredicted as the popular classes to the correct
rare classes (even if the class distribution is balanced in unlabeled data). As shown in Fig. 2b,
compared with FixMatch (Sohn et al., 2020) trained in the conventional setting (Fig. 2a), FixMatch
trained in MNAR (Fig. 1) significantly deteriorates its pseudo-rectifying ability. Even after many
iterations, the error rates of the pseudo-labels predicted for labeled rare classes remain high. This
phenomenon hints the necessity to provide additional guidance to the rectifying procedure to address
MNAR. Meanwhile, as observed in Fig. 2c, we notice that the mispredicted pseudo-labels for each
class are often concentrated in a few classes, rather than scattered across all other classes. Intuitively,
a class can easily be confused with the classes similar to it. For example, as shown in Fig. 2c, the
“automobile” samples are massively mispredicted as the most similar class: “truck”. Inspired by this,
we argue that it is feasible to guide pseudo-rectifying from the class-level, i.e., pointing out the latent
direction of class transition based on its current class prediction only. For instance, given a sample
classified as “truck”, the model could be given a chance to classify it as “automobile” sometimes,
and vice versa. Notably, our approach does not require predefined semantically similar classes. We
believe that two classes are conceptually similar only if they are frequently misclassified to each other
by the classifier. In this sense, we develop a novel definition of the similarity of two classes, which is
directly determined by model’s output. Even if there are no semantically similar classes, as long as
the model makes incorrect prediction during the training, this still leads to class transitions which has
seldom been investigated before. Our intuition could be regarded as perturbations on some confident
class predictions to preserve the pseudo-rectifying ability of the model. Such a strategy does not rely
on the matched class distributions assumption and therefore is amenable to MNAR.

Given the motivations above, we propose class transition tracking based Pseudo-Rectifying Guidance
(PRG) to address SSL in MNAR, which is shown in Fig. 3. Our main idea can be presented as
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dynamically tracking the class transitions caused by pseudo-rectifying procedures at previous epoch
to provide the class-level guidance for pseudo-rectifying at next epoch. We argue that every class
transition of each pseudo-label could become the cure for the deterioration of the pseudo-rectifying
ability of the traditional SSL methods in MNAR. A graph is first built on the class tracking matrix
recording each pseudo-label’s class transitions occurring in pseudo-rectifying procedure. Then we
propose to model the class transition by the Markov random walk, which brings information about the
difference in the propensity to rectify pseudo-labels of one class into various other classes. Specifically,
we guide the class transitions of each pseudo-label during the rectifying process according to the
transition probability corresponding to the current class prediction. The probability is obtained by
the transition matrix of Markov random walk, which has been rescaled at both the class-level and
the batch-level. Moreover, the class prediction at the last epoch can also be introduced to guide
the pseudo-rectifying process at the current epoch. PRG recalls classes that are easily overlooked
but appear in class transition history. They are deemed as similar to the ground-truth, and have
more chance to be assigned rather than simply letting the model assign the classes it favors without
hesitation. By this, PRG could help improve the quality of pseudo-labels suffered from biased
imputation potentially caused by the mismatched distributions in MNAR. Because pseudo-rectifying
is a spontaneous behavior of the model, moderately activating class transition will not hinder the
learning of the model in the traditional setting. PRG is evaluated on several widely-used SSL
classification benchmarks, demonstrating its effectiveness in coping with SSL in MNAR.

To help understand our paper, we summarize it with the following questions and answers.

• What is the novelty and contribution? Towards addressing SSL in MNAR, we propose transition
tracking based Pseudo-Rectifying Guidance (PRG) to mitigate the adverse effects of mismatched
distributions via combining information from the class transition history. We propose that the
pseudo-rectifying guidance can be carried out from the class-level, by modeling the class transition
of the pseudo-label as a Markov random walk on the graph.

• Why does our method work for MNAR? In MNAR, being aware of rare class plays a key role,
PRG enhances the model to preserve a certain probability to generate class transition to rare classes
when assigning pseudo-labels. This form of probability based on class transition history produces
effective results, because we do not spare any attempt of the model to identify the rare class by
class transition tracking (such attempts would be slowly buried due to overlearning of the popular
classes). Thereby, PRG helps the model to still try to identify rare classes with a certain probability.
This corresponds to our soft pseudo-label strategy, where we adjust the probability distribution of
soft labels so that the model can assign pseudo-labels to rare classes with a clear purpose.

• How about the performance improvement? Our solution is computation and memory friendly
without introducing additional network components. PRG achieves superior performance in the
MNAR scenarios under various protocols, e.g., it outperforms CADR (Hu et al., 2022), a newly-
proposed method for addressing MNAR, by up to 15.11% in accuracy on CIFAR-10. Besides, we
show the performance of PRG is also competitive in the traditional SSL setting.

2 RELATED WORK

Semi-supervised learning (SSL) is a promising paradigm to address the problem by effectively
utilizing both labeled and unlabeled data. Given an input x (labeled or unlabeled data), our objective
in SSL can be described as the learning of a predictor for generating label y for it. In conventional SSL
settings (Berthelot et al., 2020; Sohn et al., 2020; Li et al., 2021; Zhang et al., 2021) and imbalanced
SSL (Wei et al., 2021), underlying most of them is the assumption: labeled and unlabeled data
are matched and balanced. Some more practical scenarios for SSL are now extensively discussed.
Recently, some work has focused on addressing the class-imbalanced issue in SSL. Kim et al. (2020)
refines the pseudo-labels softly by formulating a convex optimization. Wei et al. (2021) proposes
class-rebalancing self-training combining distribution alignment. However, these existing methods
still underestimate the complexity of practical scenarios of SSL, e.g., Wei et al. (2021) works based
on strong assumptions: the labeled data and unlabeled data fall in the same distribution (i.e., their
distributions match). Further, a novel and realistic setting called label missing not at random is
proposed in Hu et al. (2022), which pops up in various fields such as social analysis, medical
sciences and so on (Enders, 2010; Heckman, 1977). To address the mismatched distributions of
labeled and unlabeled data in MNAR, Hu et al. (2022) proposes a class-aware doubly robust (CADR)
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Figure 3: Overview of PRG. Class tracking matrix C is obtained by tracking the class transitions of
pseudo-labels (e.g., px1

for sample x1) between epoch e and epoch e+1 caused by pseudo-rectifying
procedure (Eq. (5)). The Markov random walk defined by transition matrix H (each row Hi represents
the transition probability vector corresponding to class i) is modeled on the graph constructed over
C. Generally, given a pseudo-label, e.g., px2

for sample x2, class- and batch-rescaled H (i.e., H′) is
utilized to provide the class-level pseudo-rectifying guidance for px2 according to its class prediction
p̂ = argmax(px2) (Eqs. (6)∼(7)). Finally, the rescaled pseudo-label p̃x2 is used for the training.

estimator combining class-aware propensity and class-aware imputation to remove the bias on label
imputation. Differently, our method alleviates the bias from another perspective, that is to guide the
pseudo-rectifying direction based on the historical information of class transitions.

3 METHOD

Formally, we denote the input space as X and the label space as Y = {1, ..., k} over k classes.
Following Hu et al. (2022), SSL can be reviewed as a label missing problem. The label missing
indicator set is defined as M with m ∈ {0, 1}, where m = 1 indicates label is missing and m = 0 is
the otherwise. Given the training dataset in SSL, we obtain a set of labeled data: DL ⊆ X ×Y ×M
and a set of unlabeled data: DU ⊆ X × Ŷ ×M. Since the ground-truth yU ∈ Ŷ of unlabeled data
xU is inaccessible in SSL, prevailing self-training based SSL methods impute yU with pseudo-label
p. p = f(xU ; θ) is predicted by the model which is parametrized by θ and trained on the labeled data.
Let (x(i)

L , y
(i)
L ,m

(i)
L ) ∈ DL, i ∈ {1, ..., nL} be the labeled data pairs consisting of the sample with

corresponding ground-truth label (i.e., m(i) = 0), and (x
(i)
U , y

(i)
U ,m

(i)
U ) ∈ DU , i ∈ {nL + 1, ..., nT }

be the unlabeled data missing labels (i.e., m(i) = 1), where nL and nT refer to the number of labeled
data and total training data respectively. Hereafter, the SSL dataset can be defined as D = DL ∪DU .
In brief, we can review the conventional SSL as a optimization task for loss L:

min
θ

∑
(x,y,m)∈D

L(x, y; θ), (1)

where D is a dataset with independent Y and M. In this sense, the model trained on DL can easily
impute unbiased pseudo-labels for unlabeled data xU (Hu et al., 2022). Conversely, the scenario
where M is dependent with Y , namely label Missing Not At Random (MNAR), will make the model
produce strong bias on label imputation, which causes the ability of pseudo-rectifying suffer greatly.
Take the current most popular SSL method FixMatch (Sohn et al., 2020) as an example. In FixMatch,
the term L(x, y; θ) in Eq. (1) can be decomposed into two loss terms LL and LU with a pre-defined
confidence threshold τ (implying max(p) is used as a measure of the model’s confidence):

L(x, y; θ) = LL(xL, yL; θ) + λU1(max(p) ≥ τ)LU (xU , argmax(p); θ), (2)

where λL is the unlabeled loss weight and 1(·) is the indicator function. Training with MNAR setting
in Fig. 1, FixMatch is gradually seduced by samples predicted to be the labeled popular classes with
confidence above τ (even though most of them are wrong), while samples predicted to be the rare
class with confidence below τ do not participate into training, resulting in biased propensity on label
imputation. In this work, we propose class transition tracking based Pseudo-Rectifying Guidance
(PRG) to help model better self-correct pseudo-labels with additional guidance information.
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3.1 PSEUDO-RECTIFYING GUIDANCE

Firstly, we formally describe the pseudo-rectifying process in SSL. In this paper, label assignment is
considered as a procedure for generating soft labels. We denote the i-th component of vector x as xi.
Let p ∈ Rk

+ be the soft label vector assigned to unlabeled data xU , where R+ is the set of nonnegative
real numbers and

∑k
i=1 pi = 1. Denoting x at epoch e as xe, the pseudo-rectifying process can be

described as the change on p by the next epoch: pe+1 = gθ(p
e), where gθ(p

e) is a mapping from
pe to pe+1 determined by the knowledge learned from the model parametrized by θ at epoch e+ 1.
In MNAR, take imbalanced DL and balanced DU as an example, as the training progresses, the
model’s confidence is gradually slashed and unexpectedly grows on the rare and popular classes in
DL respectively. To address this issue, it is necessary to provide more guidance to assist the model in
pseudo-rectifying. In general, the Pseudo-Rectifying Guidance (PRG) can be described as

p̃e+1 = Normalize(η ◦ gθ(pe)), (3)

where ◦ is Hadamard product, scaling weight vector η ∈ Rk
+ and Normalize(x)i = xi/

∑k
j=1 xj .

We can review the technical contributions of some popular self-training works as obtaining more
effective η for pseudo-rectifying. For example, pseudo-labeling based methods (Lee et al., 2013;
Sohn et al., 2020; Li et al., 2021; Xu et al., 2021; Zhang et al., 2021) set ηi = 1/pe+1

i , i ∈{
i | i = argmax(pe+1) ∧ pe+1

i ≥ τ
}

and ηj = 0, j ∈ {j | j ∈ (1, · · · , k) ∧ j ̸= i} and, i.e., using
a confidence threshold to filter low-confidence samples. However, it is difficult to set an apposite η at
the sample-level (e.g., for simplicity, Sohn et al. (2020) fixes τ to determine η for all samples and the
value of τ is usually set based on experience) to guide pseudo-rectifying, especially in the MNAR
settings. In addition, some variants of class-balancing algorithms (Berthelot et al., 2020; Li et al.,
2021; Gong et al., 2021) can be integrated into pseudo-rectifying framework. These methods utilize
distribution alignment to make the class distribution of predictions close to the prior distribution
(e.g., the distribution of labeled data). This process can be summarized as dataset-level pseudo-
rectifying guidance by setting η as the ratio of the current class distribution of predictions to the
prior distribution, i.e., the fixed η are used for all samples. Performing pseudo-rectifying guidance in
this way strongly relies on an ideal assumptions: the labeled data and unlabeled data share the same
class distribution, i.e., in D, Y is independent with M. Thus, these approaches fail miserably in the
MNAR scenarios, which can be demonstrated in Appendix D.1. As we discussed in Sec. 1, it is also
feasible to guide pseudo-rectifying at the class-level. Hence, we define rectifying weight matrix as
A ∈ Rk×k

+ , where each row Ai is representing the rectifying weight vector corresponding to class i.
Denoting the class prediction as p̂ = argmax(p), the class-level pseudo-rectifying guidance can be
conducted by plugging Ap̂e+1 into η in Eq. (3):

p̃e+1 = Normalize(Ap̂e+1 ◦ gθ(pe)). (4)

Next, we will introduce a simple and feasible way to obtain an effective A for PRG to improve the
pseudo-labels predicted by SSL models in the MNAR scenarios.

3.2 CLASS TRANSITION TRACKING

Firstly, we consider building a fully connected graph G in class space Y . This graph is constructed by
adjacency matrix C ∈ Rk×k

+ (dubbed as class tracking matrix), where each element Cij represents
the frequency of class transitions that occur from class i to class j (i.e., an edge directed from vertex
i to vertex j on G). Cij is parametrized by the following class transition tracking averaged on last
NB batches with unlabeled data batch size BU , i.e., Cij =

∑NB

n=1 C
(n)
ij /NB , where

C
(n)
ij =

∣∣∣{p̂(b) | p̂(b),e = i, p̂(b),e+1 = j, i ̸= j, b ∈ {1, ..., BU}
}∣∣∣ , n ∈ {1, ..., NB} , C(n)

ii = 0.

(5)
Hereafter, we define the Markov random walk along the nodes of G, which is characterized by its
transition matrix H ∈ Rk×k

+ . Each element Hij represents the transition probability for the class
prediction p̂ transits from class i at epoch e to class j at epoch e+ 1. In specific, H is computed by
conducting row-wise normalization on C. The above designs are desirable for the following reasons.

(1) In the self-training process of the model, the historical information of pseudo-rectifying contains
the relationship between classes, which is often ignored in previous methods and can be utilized
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Figure 4: Visualization of class tracking matrix C obtained in training process of FixMatch (Sohn
et al., 2020) on CIFAR-10 with the same setting as in Figs. 2c and 2b. The darker the color, the
more frequent the class transitions. Overall, the number of class transitions decreases as the training
progresses. Class transitions occur intensively between the popular classes, and class transitions
between the rare classes gradually disappear (e.g., between “ship” and “truck”).

to help the model assign labels at a new epoch. We can record the class transition trend in pseudo-
rectifying by Eq. (5), which corresponds to the transition probability represented by Hij , i.e., for a
sample x, when its class prediction p̂ is in the state of class i, if a rectifying procedure resulting in a
class transition occurs, what probability will it transit to class j. Intuitively, given p with p̂ = i, the
model prefers to rectify it to another class similar to class i in one class transition, i.e., the preference
of class transitions can also be regarded as the similarity between classes and the more similar two
classes are, the more likely they are to be misclassified as each other’s classes. The label is more
likely to oscillate between the two classes, resulting in more swinging class transitions. As shown in
Fig. 4, in the “dog” class predictions, the predictions transitioning to the “cat” class are significantly
more than to other classes, and vice versa in the “cat” labels. We can observe that C behaves like a
symmetric matrix, reflecting the symmetric nature of class similarity. Consequently, this similarity
between classes can be utilized to provide information for our class-level pseudo-rectifying guidance.

(2) In the MNAR settings, the tricky problem is that the mismatched distributions lead to biased label
imputation for unlabeled data. The feedback loop of self-reinforcing errors is not achieved overnight.
Empirically, as the training progresses, the model becomes more and more confident in the popular
classes (in labeled or unlabeled data), which leads to misclassify the samples that it initially thought
might be the rare classes to the popular classes later. As shown in Fig. 4, the lower left corner and
upper right corner of the heatmap (i.e., the class transitions between the popular classes and rare
classes) is getting lighter and always lighter than the upper left corner (i.e., the class transitions among
the popular classes), which means the model is increasingly reluctant to transfer the class prediction
to the rare classes during the pseudo-rectifying process. If we only focus on what the model has
learned at present, the model’s past efforts to recognize the rare classes will be buried. The latent
relational information between classes is hidden in the pseudo-rectifying process producing class
transitions. The history of class transitions can point the way for bias removal on label imputation
with an abnormal propensity on different classes caused by mismatched distributions in MNAR.

With obtained H, some preparations are done for plugging it into Eq. (4) to replace A. We’re only
modeling the pseudo-rectifying process resulting in class transition (i.e., Cii = 0), which means
Hii = 0, i.e., ηp̂e+1 is set to 0 in Eq. (3). This will encourage the class prediction to transition to other
classes during each pseudo-rectifying process, which is unreasonable for training a robust classifier.
Hence, we control the probability that does not transition class by setting Hii =

α
k−1 , where 1

k−1 is
the average of the transition probabilities in each row of H and α is a pre-defined hyper-parameter.
In addition, to avoid training instability, we scale each element in H by

H ′
ij =

∑k
d=1 Ld∑k

d=1

∑k
d′=1 Cdd′

×
∑k

d=1 Cid

Lj
×Hij , (6)

where L ∈ Rk
+ and Li records the number of class predictions belonging to class i averaged on last

NB batches. The first term on the right-hand side of Eq. (6) rescales Hij at the batch-level while
the second term rescales Hij at the class-level, controlling the intensity of class transition together.
For specific, the excessive class transitions in the self-training loop could yield confused supervision
information that is not conducive to learning. Hereafter, to simply integrate our method into the above
framework of pseudo-rectifying guidance, we plug H′ into A in Eq. (4):

p̃e+1 = Normalize(H ′
p̂e+1 ◦ gθ(pe)), (7)
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Figure 5: Results on CIFAR-10 under CADR’s protocol. (a) and (b): Class-wise pseudo-label error
rate with γ = 50. (c): Learning curve of PRG. We mark the final results of FixMatch as dash lines.

Table 1: Mean accuracy (%) in MNAR under CADR’s protocol. The results of baseline methods are
derived from CADR (Hu et al., 2022). The larger γ, the more imbalanced the labeled data. In the
format Mean↑↓Diff.±Std. , our accuracies are averaged on 3 runs while the standard deviations (±Std.) and
the performance difference (↑↓Diff.) compared to FixMatch (Sohn et al., 2020) are reported.

Method
CIFAR-10 CIFAR-100 mini-ImageNet

γ = 20 50 100 50 100 200 50 100

Π Model 21.59 27.54 30.39 24.95 29.93 33.91 11.77 15.30
MixMatch 26.63 31.28 28.02 37.82 41.32 42.92 13.12 18.30
ReMixMatch 41.84 38.44 38.20 42.45 39.71 39.22 22.64 23.50

FixMatch 56.26 65.61 72.28 50.51 48.82 50.62 23.56 26.57
+ Crest 51.10↓5.16 55.40↓10.21 63.60↓8.68 40.30↓10.21 46.30↓2.52 49.60↓1.02 – –
+ DARP 63.14↑6.88 70.44↑4.83 74.74↑2.46 38.87↓11.64 40.49↓8.33 44.15↓6.47 – –
+ CADR 79.63↑23.37 93.79↑23.37 93.97↑21.69 59.53↑9.02 60.88↑12.06 63.30↑12.68 29.07↑5.51 32.78↑6.21

+ PRG (Ours) 94.04↑37.78±0.18 94.09↑28.48±0.18 94.28↑22.00±0.22 59.11↑8.60±0.54 61.84↑13.02±0.45 63.41↑12.79±4.08 44.28↑20.72±0.54 44.99↑18.42±1.25

+ PRGLast (Ours) 93.81↑37.55±0.98 93.44↑27.83±1.05 93.48↑21.20±0.79 59.54↑9.03±0.99 62.36↑13.54±0.23 60.56↑9.94±1.86 40.73↑17.17±1.27 43.89↑17.32±0.14

where H ′
p̂e+1 can be regarded as the class prediction for one sample randomly walks along the nodes

of C at the current epoch, i.e., drive a possible class transition in the pseudo-rectifying for bias
removal on label imputation propensity due to MNAR (more discussions can be found in Appendix
B). We note that it is also feasible to use the class transition driven by p̂e to revise pe+1 (what is the
class prediction after a class transition from last epoch to the present), i.e., replace H ′

p̂e+1 in Eq. (7)
with H ′

p̂e , which is dubbed as PRGLast. The whole algorithms are presented in Appendix A.

4 EXPERIMENT

Dataset and Baselines. We evaluate PRG on three widely used benchmarks in SSL, including
CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009) and mini-ImageNet (Vinyals et al., 2016) (a subset
of ImageNet (Deng et al., 2009) composed of 100 classes). Following Hu et al. (2022), we mainly
report the mean accuracy of PRG in both conventional SSL settings and various MNAR scenarios.
Multiple baseline methods are compared, including representative conventional SSL algorithms: Π
Model (Rasmus et al., 2015), MixMatch (Berthelot et al., 2019), ReMixMatch (Berthelot et al., 2020),
and FixMatch (Sohn et al., 2020). More importantly, we provide fair comparisons with the recent
label bias removal methods for imbalanced SSL: DARP (Kim et al., 2020), Crest (Wei et al., 2021),
and the latest approaches designed for addressing SSL in MNAR: CADR (Hu et al., 2022).

MNAR Settings. Following Hu et al. (2022), the MNAR scenarios are mimicked by constructing
the class-imbalanced subset of the original dataset for either the labeled data or the unlabeled data.
Let γ denote the imbalanced ratio, Ni and Mi respectively refer to the number of the labeled and the
unlabeled data in class i from k classes. Three MNAR protocols are used for the evaluations on PRG:
(1) CADR’s protocol (Hu et al., 2022). Ni = γ

k−i
k−1 , in which N1 = γ is the maximum number of

labeled data in all classes, and the larger the value of γ, the more imbalanced the class distribution of
the labeled data. For example, Fig. 1 shows CIFAR-10 with γ = 20. (2) Our protocol. Because the
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Table 2: Mean accuracy (%) in MNAR under our protocol with the varying labeled data sizes nL and
imbalanced ratios N1. Baseline methods are based on our reimplementation.

Method
CIFAR-10 (nL = 40) CIFAR-10 (nL = 250) CIFAR-100 (nL = 2500) mini-ImageNet (nL = 1000)

N1 = 10 20 100 200 100 200 40 80

FixMatch 85.72±0.93 76.53±3.03 69.76±5.57 46.53±8.12 61.31±3.67 41.38±2.84 36.20±0.36 28.33±0.41

+ CADR 85.54↓0.18±2.07 75.11↑1.42±3.41 92.25↑22.49±1.61 63.92↑17.39±5.47 61.62↑0.31±0.93 46.16↑4.78±1.45 36.08↓0.12±0.84 30.52↑2.19±0.99

+ PRG (Ours) 91.87↑6.15±1.05 77.44↑0.91±15.96 93.93↑24.17±0.16 67.86↑21.33±16.98 61.49↑0.18±3.93 49.84↑8.46±1.37 39.99↑3.79±0.76 35.39↑7.06±0.47

+ PRGLast (Ours) 85.66↓0.06±5.93 77.85↑1.32±1.86 92.80↑23.04±1.44 64.00↑17.47±5.02 60.41↓0.90±1.01 43.80↑2.42±1.71 39.84↑3.64±0.05 33.17↑4.84±0.52

total number of labeled data nL in the CADR’s protocol varies with γ, which violates the principle
of controlling variables, nL is fixed by users in our protocol. N1 is altered for different scales of
imbalance, i.e., Ni = N1×γ− i−1

k−1 while γ is calculated by the constraint
∑k

i=1 Ni = nL. We further

consider the MNAR settings where the unlabeled data is also imbalanced, i.e., Mi = M1 × γ
− k−i

k−1
u

(implying inversely imbalanced distribution compared with the labeled data), where M1 = 5000 in

CIFAR-10. (3) DARP’sprotocol (Kim et al., 2020): Ni = N1 × γ
− i−1

k−1

l , Mi = M1 × γ
− i−1

k−1
u , where

N1 = 1500 and M1 = 3000 in CIFAR-10, where γl and γu are varied for labeled and unlabeled data
respectively, i.e., the distributions of the labeled and unlabeled data are mismatched and imbalanced.

Implementation Details. In this section, PRG is implemented as a plugin to FixMatch (Sohn et al.,
2020) (see Appendix D.2 for other SSL learners). Thus, we keep the same training hyper-parameters
as FixMatch (e.g., unlabeled data batch size BU = 448), whereas the class invariance coefficient
α = 1 and the tracked batch number NB = 128 are set for PRG in all experiments. The complete
list of hyper-parameters can be found in Appendix C. Following Sohn et al. (2020), our models are
trained for 220 iterations, using the backbone of WideResNet-28-2 (WRN) (Zagoruyko & Komodakis,
2016) for CIFAR-10, WRN-28-8 for CIFAR-100 and ResNet-18 (He et al., 2016) for mini-Imagenet.

4.1 RESULTS IN MNAR

Table 3: Geometric mean scores (GM) on
CIFAR-10 under CADR’s protocol.

Method γ = 20 γ = 50 γ = 100

FixMatch 41.90±8.55 53.61±2.29 60.35±1.84

+ CADR 75.25↑33.35±1.55 92.98↑39.37±0.43 93.15↑32.8±0.36

+ PRG 93.53↑51.63±0.39 93.70↑40.19±0.20 93.94↑33.69±0.35

+ PRGLast 93.35↑51.45±1.10 92.99↑39.38±1.17 93.25↑32.90±0.97

Main Results. The experimental results under
CADR’s and our protocol with various levels of im-
balance are summarized in Tabs. 1 and 2. PRG consis-
tently achieves higher accuracy than baseline methods
across most of the settings, benefiting from the informa-
tion offered by class transition tracking. As shown in
Figs. 5a and 5b, the pseudo-rectifying ability of PRG
is significantly improved compared with the original
FixMatch, i.e., as the training progresses, the error rates
of both the popular classes and the rare classes of the labeled data are greatly reduced, eventually
yielding improvements in test accuracy shown in Fig. 5c. Meanwhile, in Tab. 3 we further provide
geometric mean scores (GM, a metric often used for imbalanced dataset (Kubat et al., 1997; Kim
et al., 2020)), which is defined by the geometric mean over class-wise sensitivity for evaluate the
classification performance of models trained in MNAR. More metrics for evaluation (e.g., precision
and recall) and the results of PRG built on other SSL learner can be found in Appendix D.2.

Our main competitors can be divided into three categories. (1) State-of-The-Art (SOTA) SSL methods
such as ReMixMatch (Berthelot et al., 2020) and FixMatch (Sohn et al., 2020). As shown in Tabs.
1 and 2, these methods show poor performance under MNAR. Especially, our backbone FixMatch
can’t cope with MNAR at all, whereas with our method, the performance is significantly improved by
more than 10% in most cases. (2) Imbalanced SSL methods: DARP (Kim et al., 2020) and Crest
(Wei et al., 2021). These two SOTA methods addressing long-tailed distribution in SSL emphasize
the bias removal in matched distribution (i.e., the unlabeled data is equally imbalanced as the labeled
data), showing very limited capacity in handling MNAR. (3) SSL solutions devised for the MNAR
scenarios: CADR (Hu et al., 2022). Our method outperforms CADR under its proposed protocol
across the board, demonstrating PRG is more effective for bias removal on label imputation than it.
With extremely few labels, the class-aware propensity estimation in CADR is not reliable whereas
our method still works well, yielding a performance gap of up to 14.41%.
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Figure 6: Results on CIFAR-10 under two protocols. The imbalanced distributions of labeled and
unlabeled data are in reverse order of each other in (a) and the case of γu marked with “R” in (b).

More MNAR Settings. More MNAR scenarios are considered for evaluation. In our protocol,
we alter N1 and γu to mimic the case where the distributions of the labeled and unlabeled data are
imbalanced and mismatched, i.e., the two distributions are different. Likewise, DARP’s protocol
produces similar mismatched distributions. As shown in Fig. 6, PRG achieves promising results
in all the comparisons with the baseline methods. Our method boosts the accuracy of the original
FixMatch by up to 35.51% and 24.33% in our and DARP’s protocols respectively. The activated
class transitions make the model less prone to over-learning unexpected classes so that the negative
effect of MNAR can be mitigated. Moreover, the results of balanced labeled data with imbalanced
unlabeled data and more application scenarios (e.g., tabular data) can be found in Appendix D.2.

4.2 CONVENTIONAL SSL SETTINGS AND ABLATION STUDIES ON HYPER-PARAMETERS
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Figure 7: Ablation studies with α and NB on
CIFAR-10 under CADR’s protocol with γ = 20.

As shown in Tab. 4, our method still works well
on balanced datasets. The class-level guidance
offered by our method is also valid in the conven-
tional setting while maintaining the vitality of class
transition, even though there is not too much need
to remove bias on label imputation. Hereafter, we
investigate the effect of the class invariance coeffi-
cient α and the tracked batch number NB on PRG,
which is shown in Fig. 7. Choosing an appropri-
ate α to control the degree of class invariance in
pseudo-rectifying is important for PRG, which ensures stability of supervision information and train-
ing. Meanwhile, we note that too small NB is not sufficient to estimate the underlying distribution of
class transitions, where NB = 128 is a sensible choice for both memory overhead and performance.

Table 4: Mean accuracy (%) in the conventional setting with various nL. Results of baselines are
reported in CADR (Hu et al., 2022) while results of ∗ are based on our reimplementation.

Method
CIFAR-10 CIFAR-100 mini-ImageNet

nL = 40 250 4000 400 2500 10000 1000

FixMatch 88.61±3.35 94.93±0.33 95.69±0.15 50.05±3.01 71.36±0.24 76.82±0.11 39.03±0.66
∗

+ CADR 94.41↑5.80 94.35↓0.58 95.59↓0.10 52.90↑2.85 70.61↓0.75 76.93↑0.11 -
+ PRG (Ours) 94.44↑5.83±0.16 94.42↓0.51±0.06 95.38↓0.31±0.10 52.45↑2.40±3.75 70.12↓1.24±0.21 76.49↓0.33±0.42 47.34↑8.31±1.60

+ PRGLast (Ours) 93.00↑4.39±0.79 94.43↓0.50±0.33 95.75↑0.06±0.11 48.81↓1.24±0.15 70.01↓1.35±0.02 77.12↑0.30±0.13 48.23 (+9.20)

5 CONCLUSION

This paper can be concluded as proposing a effective SSL framework called class transition based
Pseudo-Rectifying Guidance (PRG) to address SSL in the MNAR scenarios. Firstly, we argue that the
history of class transition caused by pseudo-rectifying can be utilized to offer informative guidance
for future label assignment. Thus, we model the class transition as a Markov random walk along the
nodes of the graph constructed on the class tracking matrix. Finally, we propose to utilize the class
prediction information at current epoch (an alternative strategy is to combine the class prediction at
the last epoch) to guide the class transition for pseudo-rectifying so that the bias of label imputation
can be alleviated. Given that our method achieves considerable performance gains in various MNAR
settings, we believe PRG can be used for robust semi-supervised learning in broader scenarios.
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Reproducibility Statement. For reproducibility, please refer to the method described in Sec. 3 and
the algorithmic presentation shown in Sec. A. The implementation details (including backbone, hyper-
parameters, traning details, etc) can be found in Sec. 4 and Sec. C. Moreover, the checkpoints and
evaluation code are available at the anonymous link https://anonymous.4open.science/
r/PRG4SSL-MNAR-8DE2. We promise to release the all source code if the paper is accepted.
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APPENDIX

A ALGORITHM

Pseudo-code of PRG is presented in Algorithm 1 while that of PRGLast is presented in Algorithm 2.

Algorithm 1: PRG: Pseudo-Rectifying Guidance

Input: class tracking matrices C = {C(i); i ∈ (1, ..., NB)}, labeled training dataset DL, unlabeled
training dataset DU , model θ, label bank {l(i); i ∈ (1, ..., nT − nL)}

1 for n = 1 to MaxIteration do
2 From DL, draw a mini-batch BL = {(x(b)

L , y
(b)
L ); b ∈ (1, ..., B)}

3 From DU , draw a mini-batch BU = {(x(b)
U ); b ∈ (1, ..., BU )}

4 H = RowWiseNormalize(Average(C)) // Construct transition matrix

5 H ′
ij =

∑k
d=1 Ld∑k

d=1

∑k
d′=1

Cdd′
×

∑k
d=1 Cid

Lj
×Hij // Rescale H at class/batch-level

6 for b = 1 to BU do
7 p(b) = fθ(x

(b)
U ) // Compute model prediction

8 idx = Index(x
(b)
U ) // Obtain the index of x

(b)
U in DU

9 p̂(b) = argmax(p(b)) // Compute class prediction

10 if l(idx) ̸= p̂(b) then
11 C

(n)

l(idx)p̂(b)
= C

(n)

l(idx)p̂(b)
+ 1 // Perform class transition tracking

12 l(idx) = p̂(b)

13 end
14 p̃(b) = Normalize(H ′

p̂(b)
◦ p(b)) // Perform pseudo-rectifying guidance

15 end
16 LL,LU = FixMatch

(
BL,BU , {p̃(b); b ∈ (1, ..., BU )}

)
// Run FixMatch

17 θ = SGD(LL + LU , θ) // Update model parameters θ
18 end

Algorithm 2: PRGLast: Pseudo-Rectifying Guidance Using Class Predictions of the Last Epoch

Input: class tracking matrices C = {C(i); i ∈ (1, ..., NB)}, labeled training dataset DL, unlabeled
training dataset DU , model θ, label bank {l(i); i ∈ (1, ..., nT − nL)}

1 for n = 1 to MaxIteration do
2 From DL, draw a mini-batch BL = {(x(b)

L , y
(b)
L ); b ∈ (1, ..., B)}

3 From DU , draw a mini-batch BU = {(x(b)
U ); b ∈ (1, ..., BU )}

4 H = RowWiseNormalize(Average(C)) // Construct transition matrix

5 H ′
ij =

∑k
d=1 Ld∑k

d=1

∑k
d′=1

Cdd′
×

∑k
d=1 Cid

Lj
×Hij // Rescale H at class/batch-level

6 for b = 1 to BU do
7 p(b) = fθ(x

(b)
U ) // Compute model prediction

8 idx = Index(x
(b)
U ) // Obtain the index of x

(b)
U in DU

9 p̃(b) = Normalize(H ′
l(idx) ◦ p(b)) // Perform pseudo-rectifying guidance

10 p̂(b) = argmax(p(b)) // Compute class prediction

11 if l(idx) ̸= p̂(b) then
12 C

(n)

l(idx)p̂(b)
= C

(n)

l(idx)p̂(b)
+ 1 // Perform class transition tracking

13 l(idx) = p̂(b)

14 end
15 end
16 LL,LU = FixMatch

(
BL,BU , {p̃(b); b ∈ (1, ..., BU )}

)
// Run FixMatch

17 θ = SGD(LL + LU , θ) // Update model parameters θ
18 end
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Table 5: The ablation studies on re-weighting by
Eq. (6). We report the results (accuracy (%) / GM)
on CIFAR-10 under CADR’s protocol.

Method γ = 20 γ = 50 γ = 100

PRG wo. Eq. (6) 88.97 / 87.37 91.73 / 91.28 92.72 / 92.55
PRG 94.04 / 93.53 94.09 / 93.70 94.28 / 93.94

Table 6: The ablation studies on step k. We
report accuracy (%) and GM on CIFAR-10
under CADR’s protocol with γ = 20.

k 1 (default PRG) 2 5 10

Accuracy 94.04 91.33 87.76 82.60
GM 93.53 90.79 85.80 80.24

B DISCUSSION ON H-BASED PSEUDO-RECTIFYING GUIDANCE

In this section, we give insights into re-weighting scheme of H in Eq. (6) based on the following
theoretical justification. Overall, we give an explanation from the perspective of gradient. Our
re-weighting scheme potentially scale the gradient magnitude on the learning of the unlabeled
data to mitigate adverse effects of biased labeled data, and suppresses the gradient magnitude
when lass transition is overheated. Letting p be the naive soft label vector, by Eq. (6), we re-
weight H by H ′

ij =
∑k

d=1 Ld∑k
d=1

∑k
d′=1

Cdd′
×

∑k
d=1 Cid

Lj
×Hij and obtain the rescaled pseudo-label vector

p̃ = Normalize(H′ ◦ p). Hence, the cross-entropy between prediction p and p̃ can be formalized as

LU = −
k∑
c

p̃ log pc = −
k∑
c


∑k

d=1 Ld∑k
d=1

∑k
d′=1

Cdd′
×

∑k
d=1 Cp̂d

Lc
×Hp̂c × pc

Z

 log pc

= −
∑k

d=1 Cp̂d

Z
∑k

d=1

∑k
d′=1 Cdd′

k∑
c

 Hp̂c × pc

Z Lc∑k
d=1 Ld

 log pc, (8)

where Z is the normalize factor. Lc∑k
d=1 Ld

can be regarded as the ratio of pseudo-labels belonging

to class c to all labels and
∑k

d=1 Cp̂d∑k
d=1

∑k
d′=1

Cdd′
can be regarded as the ratio of class transitions derived

from class p̂ to population transitions. Denoting the logit outputted from the model as o (implying
p = Softmax(o)), with no gradient on pseudo-label p̃, we obtain ∂LU

∂oc
= −

∑k
c

p̃c

pc

∂pc

∂oc
, i.e.,

∂LU

∂oc
= −(p̃c − p̃cpc −

k∑
i ̸=c

p̃ipc) =

k∑
i

p̃ipc − p̃c =

∑k
d=1 Cp̂d

Z
∑k

d=1

∑k
d′=1 Cdd′

1− Hp̂c

Z Lc∑k
d=1 Ld

 pc.

(9)

The larger the difference between Hp̂cand Lc∑k
d=1 Ld

, the larger the gradient; and the smaller the

difference between Hp̂c and Lc∑k
d=1 Ld

, the smaller the gradient (∂LU

∂oc
= 0 when Hp̂c

Z Lc∑k
d=1

Ld

= 1). This

means that we intend to provide unbiased guidance (because this is derived from the unlabeled data)
for the learning of unlabeled samples from the class level, so as to resist the influence of biased labeled
samples. Meanwhile, if there are too many class transitions occur on the whole,

∑k
d=1 Cp̂d∑k

d=1

∑k
d′=1

Cdd′
will

decrease, which results in decreasing of LU , i.e., suppress the trend of class transition overheating.
To demonstrate the effectiveness of our re-weighting scheme on H, we conduct ablation experiments
on it. As shown in Tab. 5, the re-weighting scheme can effectively boost the performance of PRG in
MNAR because it controls the intensity of class transition together. Additionally, for the utilization
of H′ in Eq. (7), we consider taking k steps, i.e., multiply by H′k instead of H′ to uncover more
complex patterns of misclassification than simple pairwise class relations. However, as shown in Tab.
6, we can observe that the performance is inversely proportional to k. The advantage of PRG is that
H′ is updated in each iteration, which means that the value of H′ is dynamic. As the model learns
new knowledge, the past H′ may not be suitable for the pseudo-rectifying process anymore. If H′k

is used, this means that we are using the same H′ multiple times for a given sample, which wastes
the advantage of dynamic H′. H′k using a suitable k or a dynamic selection of k might yield better
performance, but it is difficult for us to determine the value of k. Therefore, the PRG is designed for
simplicity and exhibits superior the performance.
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C IMPLEMENTATION DETAILS

In this section, we show the complete hyper-parameters in Tab. 7. As mentioned in Sec. 4, our
method is implemented as a plugin to FixMatch (Sohn et al., 2020). Thus, we keep the original hyper-
parameters in FixMatch and alert additional hyper-parameters in our method. Note that FixMatch
sets different values of weight decay w for CIFAR-10 and CIFAR-100, which are 0.0005 and 0.001
respectively. For simplicity, we set w = 0.0005 for all experiments in our work. Additionally, the
models in this paper are trained on GeForce RTX 3090/2080 Ti and Tesla V100. We observe that
since no additional network components are introduced, the average running time of single iteration
hardly increased, which means our method does not introduce excessive computational overhead.

Table 7: Complete list of hyper-parameters of PRG plugged in FixMatch Sohn et al. (2020). NB and
α are additional hyper-parameters in our method whereas other hyper-parameters follow FixMatch.
Note that the unlabeled data batch size can be calculated by BU = µB.

Hyper-parameter Description CIFAR-10 CIFAR-100 mini-ImageNet

µ The ratio of unlabeled data to labeled data in a mini-batch 7
B Batch size for labeled data and class transition tracking 64
BU Batch size for unlabeled data 448
λU Unlabeled loss weight 1
τ Confidence threshold 0.95
lr Start learning rate 0.03
β Momentum 0.9
w Weight decay 0.0005
NB Tracked batch number 128
α Class invariance coefficient 1

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 USING DISTRIBUTION ALIGNMENT IN MNAR

As discussed in Sec. 3.2, distribution alignment (DA) aims to perform strong regularization on
pseudo-labels by aligning the class distribution of predictions on unlabeled data to that of labeled
data. DA boosts the performance of SSL models tangibly (Berthelot et al., 2020; Gong et al., 2021;
Li et al., 2021; Sohn et al., 2020). However, DA works on a strong assumption that the distribution
of unlabeled data matches that of labeled data. In MNAR, this assumption does not hold obviously.
Thus, these methods combining DA fail to address SSL in MNAR, eventually yielding abysmal
performance. As shown in Tab. 8, rather than improving performance, integrating DA into SSL
models is counterproductive, e.g., original FixMatch outperforms FixMatch with DA by up to 28.68%
on CIFAR-10. DA leads to a substantial deterioration of the model performance in the MNAR
scenarios due to the large gap between the labeled data utilized and the unlabeled data distribution.
Conversely, our method is not restricted by the mismatched distributions and achieves superior
performance across the board, because PRG helps the model to better handle MNAR scenarios
without any prior information (distribution prior estimated from labeled data is used in DA).

Table 8: Mean accuracy (%) in MNAR under our protocol compared with more baseline methods.
DA indicates distribution alignment technique proposed in Berthelot et al. (2020). CoMatch (Li et al.,
2021) is a recently-proposed SSL method integrating contrastive learning and graph-based methods.
Note that CoMatch also combines DA to improve the quality of pseudo-labels for better performance
in the conventional SSL setting.

Method
CIFAR-10 (nL = 40) CIFAR-10 (nL = 250) CIFAR-100 (nL = 2500) mini-ImageNet (nL = 1000)

N1 = 10 20 100 200 100 200 40 80

CoMatch 60.27 39.48 57.87 26.77 48.02 30.08 30.24 21.47

FixMatch 85.72 76.53 69.76 46.53 61.31 41.38 36.20 28.33
+ DA 71.23↓14.49 47.85↓28.68 61.8↓7.96 27.61↓18.92 50.94↓10.37 31.82↓9.56 33.87↓2.33 23.53↓4.78

+ PRG (Ours) 91.87↑6.15 77.44↑0.91 93.93↑24.17 67.86↑21.33 61.49↑0.18 49.84↑8.46 39.99↑3.79 35.39↑7.069

+ PRGLast (Ours) 85.66↓0.06 77.85↑1.32 92.8↑23.04 64.0↑17.47 60.41↓0.90 43.8↑2.42 39.84↑3.64 33.10↑4.77
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Table 9: The comparisons of Class-wise precision and recall on CIFAR-10 in the training process
under CADR’s protocol with γ = 50.

Method Class Index 30000 Iterations 90000 Iterations 150000 Iterations

Precision Recall Precision Recall Precision Recall

FixMatch

1 45.21 95.22 46.89 96.72 47.93 97.80
2 49.12 99.01 49.59 99.27 50.27 98.72
3 38.49 88.73 39.74 88.43 70.26 89.47
4 75.02 68.13 75.63 72.19 82.04 75.93
5 86.14 88.43 86.88 90.21 88.42 94.38
6 89.45 62.93 91.03 64.4 89.31 75.98
7 86.47 90.03 90.23 8.89 91.37 94.80
8 89.09 75.94 90.48 75.21 95.32 75.37
9 99.02 0.00 97.95 1.00 97.21 2.00

10 0.00 0.00 99.60 0.33 98.60 0.67

+ PRG (Ours)

1 70.52 93.52 87.34 95.50 88.25 95.34
2 82.53 98.21 96.03 98.32 96.78 98.56
3 73.52 76.54 90.92 89.85 92.37 90.57
4 70.21 73.77 85.36 80.51 87.89 81.37
5 79.03 86.57 90.31 96.31 92.74 96.19
6 74.55 61.03 90.58 79.88 90.97 82.43
7 89.12 91.40 93.09 97.02 93.79 98.03
8 92.58 80.14 95.01 96.21 96.32 97.50
9 96.31 76.50 95.22 92.12 95.63 93.55

10 96.56 62.52 96.95 96.01 97.15 96.81

D.2 MORE EVALUATIONS ON PRG
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Figure 8: Violin plot of confidence scores on
the unlabeled data under CADR’s protocol with
γ = 100. The confidence threshold τ = 0.95
in FixMatch is marked out in red.

More Metrics. To comprehensively explore the
improvement of PRG in MNAR, we report
the difference in class-wise precision and recall
with/without PRG. The experimental results are
shown in Tab. 9. Compared to original FixMatch,
we witness FixMatch with PRG achieves higer pre-
cision/recall by and large, especially on rare classes
(i.e., class with larger index), which demonstrates
that the bias removal capability of PRG effectively
mitigates the effect of MNAR on the model. We
also observe that both PRG and FixMatch achieve
high precision as well as recall on popular classes
and high precision but low recall on rare classes
(especially FixMatch) in the early training period.
The improvement of recall by PRG is due to the
activated class transitions, which gives the model
a certain probability to assign pseudo-labels to rare classes. In addition, as shown in Fig. 8, PRG
exhibits superior bias removal for confidence of pseudo-labels in MNAR, whereas FixMatch filters
out too many labeled rare class samples with confidence lower than τ , e.g., class 8, 9 and 10, resulting
in the waste of unlabeled data.

Table 10: Accuracy (%) on CIFAR-10 with
nL = 40 and various γu. The labeled data is
balanced and the unlabeled data is imbalanced.

Method γu = 20 γu = 50 γu = 100

CoMatch 52.73 46.20 38.85

FixMatch 57.54 54.82 50.67
+ DA 54.08↓3.46 46.71↓8.11 41.37↓9.30

+ CADR 49.38↓8.16 45.27↓9.55 42.30↓8.37

+ PRG (Ours) 62.43↑4.90 62.44↑7.62 58.23↑7.56

More MNAR Scenarios We also provide more
experiments on the setting of balanced labeled data
with imbalanced unlabeled data, which is summa-
rized in Tab. 10. For specific, we set nL = 40 with
balanced distribution and set γu = 50, 100, 200
for imbalanced unlabeled data, i.e., the class-wise

number of unlabeled data Mi = M1 × γ
− k−i

k−1
u ,

where M1 = 5000 in CIFAR-10. As shown in
Tab. 10, PRG outperforms all baseline methods
by a large margin (it is worth noting that the per-
formance of CADR is even weaker than original
FixMatch), proving the robustness of PRG in this
MNAR scenario due to the unbiased guidance derived from the class transition history.
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Table 11: Accuracy (%) on tabular MNIST. γ is varied for CADR’s protocol whereas nL and N1 are
varied for our protocol. Mean± Std. are computed over 50 runs.

Method γ = 20 50 100 nL, N1 = 40, 10 40, 20 250, 100 250, 200

VIME 63.38±4.42 63.75±6.10 64.80±2.76 50.13±7.56 30.73±8.69 60.58±2.68 21.44±0.58
+ PRG (Ours) 59.41±14.45 65.92±13.9 66.60±12.58 49.28±11.09 34.08±16.05 66.14±11.88 24.51±9.56

More SSL Learners. Moreover, to further evaluate PRG’s performance, we consider building PRG
on the top of more SSL frameworks. Thus, we conduct experiments on CIFAR-10 under CADR’s
protocol with UPS (Rizve et al., 2021) combining PRG. UPS is a recently-proposed uncertainty-aware
pseudo-label selection framework for SSL, which is the SOTA method among pseudo-labeling based
methods. We keep all training settings the same as the original UPS. With γ = 20, UPS achieves an
accuracy of 30.46% whereas UPS with PRG achieves an accuracy of 32.22%. We note that UPS
performs poorly in the MNAR scenarios because it is a more pure pseudo-labeling approach that does
not introduce consistency regularization to improve model performance. Also we observe that PRG
improves UPS marginally, much less than FixMatch. This is understandable because the negative
learning that UPS prides itself on can be potentially negatively affected by the probability distribution
of pseudo-label being adjusted by PRG, e.g., uncertainty being altered.

More Data Type In order to explore a broader application scenario of PRG, we apply it to tabular
data. We conduct further experiments on tabular MNIST (interpreting MNIST as tabular data with
784 features) by plugging PRG into VIME (Yoon et al., 2020). VIME is a prevailing self- and semi-
supervised learning frameworks for tabular data with pretext task of estimating mask vectors from
corrupted tabular data. We implement PRG above the semi-supervised learning component of VIME.
PRG provide pseudo-rectifying guidance to rescale the pseudo-labels for the original unlabeled
sample in VIME. Specially, we replace the consistency loss used in VIME (i.e., mean squared error
in Eq. (9) in Yoon et al. (2020)) with standard cross-entropy loss to makes PRG applicable to VIME.
We use two protocols to show the performance advantage of PRG, including CADR’s protocol and
our protocol. As shown in Tab. 11, except for CADR’s protocol with γ = 20 and our protocol with
nL = 40, N1 = 10 (it is worth noting that our upper limits of performance greatly exceed that of
VIME), PRG outperforms original VIME by a large margin in the most of settings. The reason is that
the scheme of class-transition-based pseudo-rectifying guidance is high-level and general (not limited
to image data), which ultimately yields robust effect on the MNAR problem with tabular data.
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