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Abstract

Many real-world applications based on online learning produce streaming data that is hap-
hazard in nature, i.e., contains missing features, features becoming obsolete in time, the
appearance of new features at later points in time and a lack of clarity on the total num-
ber of input features. These challenges make it hard to build a learnable system for such
applications, and almost no work exists in deep learning that addresses this issue. In this
paper, we present Aux-Drop, an auxiliary dropout regularization strategy for online learn-
ing that handles the haphazard input features in an effective manner. Aux-Drop adapts the
conventional dropout regularization scheme for the haphazard input feature space ensuring
that the final output is minimally impacted by the chaotic appearance of such features. It
helps to prevent the co-adaptation of especially the auxiliary and base features, as well as
reduces the strong dependence of the output on any of the auxiliary inputs of the model.
This helps in better learning for scenarios where certain features disappear in time or when
new features are to be modeled. The efficacy of Aux-Drop has been demonstrated through
extensive numerical experiments on SOTA benchmarking datasets that include Italy Power
Demand, HIGGS, SUSY and multiple UCI datasets.

1 Introduction

Real-life applications deal with modeling dynamic systems such as the behavior of biological organelles,
dynamics of smart cities, the environment around self-driving cars, etc. Given the criticality of such systems,
it is important that the modeling process is accurate. For e.g., in biological systems, mitochondria and other
organelles can inform the behavior of a cell, which in turn can facilitate the discovery of new drugs (Paul
et al., 2021). Accurately modeling the health of engineering systems like aircraft from real-time sensor data
before it takes off can help to mitigate the risks associated with technical flaws and save the life of numerous
onboard passengers (Jigajinni, 2021). Similarly, one can envision that the perfect self-driving cars would
require an end-to-end pipeline that can correctly process all the data from the car sensors which describe
the state of the car as well as the environment in which it operates.

These applications work in an online learning setting where a large amount of data is continuously streamed.
For accurate modeling of such systems, it is important that this inflow of data is properly managed. However,
the data received are haphazard in nature and accompanied by several challenges. Formally, we define
haphazard inputs as the data whose dimension varies at every time instance and there is no prior information
about data received in the future. The haphazard inputs are characterized as streaming data where data
arrives sequentially and is modeled using online learning techniques (Hoi et al., 2021). It has missing
data (Emmanuel et al., 2021) where the values of some features are not available in some time instances,
missing features without prior information, obsolete features which cease to exist, sudden features without
the knowledge of its existence and an unknown number of the total input features. More information about
the characteristics of haphazard inputs can be found in Appendix A.

When dealing with streaming data, current deep learning methods make the strong assumption that the
incoming input has a time-invariant fixed size and the models are trained accordingly. However, as motivated
earlier, this is not always true and the dimension of input can vary over time. The outlined issues can be
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Table 1: Comparison of different online deep learning models with respect to the characteristics of the haphazard
inputs (C1-C6). We showcase the inability of online deep learning methods in handling haphazard inputs even when
other techniques like imputation, extrapolation, priori information and gaussian noise are employed.

Characteristics Aux-Drop Online Deep ODL ODL ODL ODL
Learning + + + +
Methods Online Extrapolation prior gaussian

like Data information noise
ODL Imputation

Streaming data (C1) ✓ ✓ ✓ ✓ ✓ ✓
Missing data (C2) ✓ × ✓ × ✓ ✓
Missing features (C3) ✓ × × × × ✓
Obsolete features (C4) ✓ × × ✓ × ✓
Sudden features (C5) ✓ × × × × ×
Unknown no. of features (C6) ✓ × × × × ×

partly tackled with some existing approaches such as feature imputation, extrapolation of information and
regularization with Gaussian noise, among others. Although coupling such approaches with an online deep
learning framework might be helpful, not all challenges can be handled by any single framework. This is
better explained in Table 1 where we list the prominent challenges of online learning with streaming data
as well as point out the limitations of the existing approaches. Since the data is streaming, it becomes
imperative to apply online learning methods like ODL (Sahoo et al., 2017), however, it can handle only the
streaming aspect of the haphazard input. The online imputation model can be used to impute missing data
(C2) and can thus be applied in conjunction with any other online learning method but still, it can’t address
the other characteristics. Extrapolation can be used to address the case of obsolete features (C4). Prior
information on the features can be used to project the missing data (C2). Lastly, there can be a naive way
of employing the Gaussian noise wherever the data is not available. This can address missing data (C2),
missing features (C3) and obsolete features (C4), however, it can still not cater to the appearance of new
features (C5) as well as handle the issue of missing information on the total number of features (C6).

Recently, Agarwal et al. (2020) presented Aux-Net, a deep learning architecture capable of handling the
issues outlined above. However, Aux-Net employs a dedicated layer for each auxiliary feature, which results
in a very heavy overall network, and this leads to a significant increase in training time for each additional
auxiliary feature being modeled. Here, auxiliary features refer to those features which are not available
consistently in time, rather these are subjected to atleast one of the characteristics (C2-C6) as outlined in
Table 1. Overall, the high time and space complexity of Aux-Net makes it inefficient and not scalable for
larger problems.

In this paper, we present Aux-Drop, an auxiliary dropout regularization strategy for an online learning
regime that handles the haphazard input features in an accurate as well as efficient manner. Aux-Drop
adapts the conventional dropout regularization scheme (Hinton et al., 2012) for the haphazard input feature
space ensuring that the final output is minimally impacted by the chaotic appearance of such features. It
helps to prevent the co-adaptation of especially the auxiliary and base features, as well as reduces the strong
dependence of the output on any of the auxiliary inputs of the model. This helps in better learning for
scenarios where certain features disappear in time or when new features are to be modeled. Aux-Drop is
simple and lightweight, as well as scalable to even a very large number of auxiliary features. We show the
working of our model on the Italy Power Demand dataset (Dau et al., 2019), the widely used benchmarking
datasets for online learning such as HIGGS (Baldi et al., 2014) and SUSY (Baldi et al., 2014) and 4 different
UCI datasets (Dua & Graff, 2017).

To summarize, the contributions of this paper can be listed as follows.

• We propose a dropout-inspired concept called Aux-Drop to handle the haphazard streaming inputs
during online learning. It employs selective dropout to drop auxiliary nodes accommodating the
haphazard auxiliary features and random dropout to drop other nodes. Together they handle the
auxiliary features while preventing co-adaptations of auxiliary and base features.
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• The simplicity of Aux-Drop allows us to couple it with existing deep neural networks with minimal
modifications and we demonstrate it through ODL.

• Aux-Drop can handle complex situations like a large fraction (99%) of data is haphazard as demon-
strated in the HIGGS and SUSY dataset (section 4.4.1).

• Aux-Drop is stable and robust with respect to previously unseen input features and this is demon-
strated through the obsolete and sudden unknown features experiments on the large datasets (section
4.4.2).

2 Related Work

Online learning is approached via multiple concepts in the machine learning domain (Gama, 2012; Nguyen
et al., 2015). Among the various approaches that exist, some popular methods are k-nearest neighbors
(Aggarwal et al., 2006), decision trees (Domingos & Hulten, 2000), support vector machines (Tsang et al.,
2007), fuzzy logic (Das et al., 2016; Iyer et al., 2018), bayesian theory (Seidl et al., 2009) and neural networks
(Leite et al., 2013). Recently, deep learning approaches with different learning mechanisms (Hoi et al., 2021)
are introduced resulting in architectures like online deep learning (ODL) (Sahoo et al., 2017) and ActiSiamese
(Malialis et al., 2022) networks. The ODL and ActiSiamese have shown tremendous improvement in the
learning capability for streaming classification tasks. But all these methods are limited by the assumption
of fixed input features.

Zhou (2022) presents open-environment machine learning which extends beyond the traditional online learn-
ing problem and includes the challenges of streaming data from real-life applications. This includes emerging
new classes (Parmar et al., 2021), incremental/decremental features (Hou et al., 2021), changing data dis-
tribution (Sehwag et al., 2019) and varied learning objectives (Ding & Zhou, 2018). We propose to solve the
full-scale haphazard input problem which has an overlap with Open-Environment as both include incremen-
tal/decremental features though it is just a subpart of the haphazard problem.

Incremental learning approaches like ensemble methods (Polikar, 2012) are able to incorporate the new
data whenever seen by the model. Learn++ algorithms (Polikar et al., 2001; Mohammed et al., 2006)
incorporate the data with novel instances unseen by the current ensemble and balances the stability-plasticity
dilemma. The missing feature (MF) problem is addressed in Learn++.MF (Polikar et al., 2010), where the
random number of classifiers are trained on different subsets of a fixed number of features. But this model
cannot predict all the instances. Another class of ensemble methods deals with concept drift arising due to
insufficient, unknown, or unobserved features in a dataset. Learn++.NSE (Elwell & Polikar, 2011) learns
concept drift by creating a new classifier for each batch of data and combining all the classifier’s predictions
using a dynamically weighted majority voting. The ensemble methods described above can handle the
haphazard input problems only partially. Furthermore, such approaches are too expensive in terms of
training and storage requirements.

Ashfahani & Pratama (2019) proposed autonomous deep learning (ADL) to address catastrophic forgetting
via the self-constructing network structure utilizing hidden nodes growing and pruning. MUSE-RNN (Das
et al., 2019b) goes one step beyond ADL and adjusts the model capacity by pruning and growing hidden
nodes as well as layers. FERNN (Das et al., 2019a) uses a hyperplane activation in the hidden layer of RNN
to handle vanishing/exploding gradient issues in streaming data and reduce the network parameters. These
models provide mechanisms to change the model size depending on the data received on the fly which is a
requirement for haphazard data. However, it doesn’t deal with the haphazard inputs.

Online learning with streaming features (OLSF) algorithm (Zhang et al., 2016) handles the trapezoidal data
streams where both data volume and feature space increase over time. Hou et al. (2017) introduced the
problem of feature evolvable streams where the set of features changes after a regular time period. They
proposed feature evolvable streaming learning (FESL) that utilizes the overlap of vanishing features and
new features to learn a mapping from new features to old features. The above problem is further explored
by Hou & Zhou (2017), where the features are considered to be vanished, survived and augmented. They
propose a one-pass incremental and decremental learning approach (OPID) to compress the information
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Figure 1: The Aux-Drop architecture. The purple-
colored box represents any online learning-based deep
learning approach. The trapezoid denotes zero or more
fully connected layers. Both the brown boxes are the
same (represented by double-headed arrows) and are
known as AuxLayer. The AuxInputLayer is the con-
catenation of the hidden features from the layer previ-
ous to the AuxLayer and the auxiliary features. The
AuxInputLayer and the AuxLayer are fully connected
but depending on the unavailability of auxiliary fea-
tures, the corresponding nodes are dropped (termed
Auxiliary Nodes). The unlocked lock denotes an in-
herent one-to-one connection between the auxiliary fea-
tures and the auxiliary nodes.

from the vanished features into the survived features and expand it to include the augmented features.
Zhang et al. (2020) proposed evolving discrepancy minimization (EDM) for data with evolving feature
space and data distribution. Prediction with unpredictable feature evolution (PUFE) (Hou et al., 2021)
tries to circumvent the assumption of an overlapping period between old and new features by introducing an
incomplete overlapping period. Nonetheless, it introduces a structure in the data in a batch. Evolving metric
learning (EML) (Dong et al., 2021) is proposed to handle incremental and decremental features improving
over OPID by incorporating a smoothed Wasserstein metric distance. However, this class of methods makes
use of batch training and hence can utilize the overlapping features to train its model.

Online learning with capricious data streams (OCDS) (He et al., 2019) trains a learner based on a uni-
versal feature space that includes the features appearing at each iteration. It reconstructs the unobserved
instances from observable instances by capturing the relatedness using a graph. Thus, OCDS is based on
the dependency between features. Online learning from varying features (OLVF) (Beyazit et al., 2019) tries
to handle the varying features by projecting the instance and classifier at any time t into a shared feature
subspace. It learns to classify the feature spaces and the instances from feature spaces simultaneously. The
transformation in different feature spaces leads to a loss of information resulting in poorer performance.

3 Method

3.1 Aux-Drop

The core of Aux-Drop lies in utilizing the concept of dropout to accommodate the ever-changing charac-
teristics of haphazard inputs. Dropout drops the nodes randomly from a hidden layer whereas we employ
selective dropout along with the random dropout. The proposed Aux-Drop concept handles the base fea-
tures and auxiliary features synchronously. The Aux-Drop concept can be applied in any deep learning-based
model capable of handling streaming data. A conventional online deep learning model has one input layer
which is connected to the first hidden layer and all the input features are passed via this input layer. But
in the Aux-Drop setup, we created a division in the passing of input features to the model such that it can
utilize all the information from the base features and increment the model learning from the haphazardly
available auxiliary features. The base features are directly passed to the deep learning model (the purple
color box in Figure 1). A hidden layer of this model is designated as an AuxLayer and is represented by the
dashed brown rectangular box in Figure 1. The hidden features from the layer previous to the AuxLayer are
concatenated with the incoming auxiliary features and are known as the AuxInputLayer. The input to the
AuxLayer is the AuxInputLayer and is fully connected. Based on the number of different auxiliary features
received, a pool of auxiliary nodes is chosen from the AuxLayer such that there is a correspondence between
an auxiliary feature and a specific auxiliary node. Whenever an auxiliary feature is not available, the cor-
responding auxiliary node is dropped from the AuxLayer. This creates an inherent one-to-one connection
between the auxiliary features and the auxiliary nodes. The rest of the nodes in the AuxLayer are termed
the Non-Auxiliary nodes. The diagram of the Aux-Drop concept is presented in Figure 1.
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Dropout is applied only in the AuxLayer. The nodes to be dropped include all those nodes from the pool
of auxiliary nodes whose corresponding auxiliary features are unavailable, forming the group of selective
dropout nodes. The rest of the dropout nodes are chosen randomly from the remaining nodes of AuxLayer.
Dropout (Hinton et al., 2012) was proposed to prevent complex co-adaptations on the training data. We
exploit this property of dropout in handling haphazard inputs. Instead of randomly dropping the nodes, we
define some auxiliary nodes that certainly need to be dropped. Aux-Drop makes auxiliary features contribute
to the deep learning model even when some of the other features are not available making it independent.
This prevented complex co-adaptations in which an auxiliary feature is only helpful in the context of several
other auxiliary features.

3.2 Mathematical Formulation

Problem Statement The problem statement is defined as finding a mapping f : X → Y , where X, Y is
streaming data, such that X, Y = {(X1, Y1), ..., (XT , YT )}. The capital letter variables in italics denote a
vector here. The input X consists of base features (XB) and auxiliary features (XA) and can be represented
as X = {XB , XA}. We define nB as the number of base features and nt

A as the number of auxiliary features
received at time t. For convenience, we define nmax

A as the maximum number of auxiliary features. Note
that, we do not need the information about nmax

A at any point in time in the model. The input feature
at time instance t is given by Xt = {XB

t , XA
t } where XB

t and XA
t are the base features and the auxiliary

features at time t, respectively. Let us denote an input feature by x, then the base features at any time t is
given by XB

t = {xB
j,t}∀j∈B, where B is the set of indices of base features such that B = {1, ..., b, ..., nB} and b

is the index of bth base feature. Similarly, the auxiliary features at any time t is given by XA
t = {xA

j,t}∀j∈At
,

where At is the set of indices of auxiliary features at time t such that At ⊆ A = {1, ..., a, ..., nmax
A } and a

is the index of ath auxiliary feature. The output Y ∈ Rc, where c is the total number of classes. Since the
problem is based on online learning, at any time t, we have access to only the input features Xt and once
the model is trained on Xt and a prediction is made, we get the output labels Yt.

AuxLayer AuxLayer handles the haphazard auxiliary inputs by employing the dropout. Any ith layer
of the model is mathematically given by Li = {Wi; Si;Mi}, where Wi, Si and Mi denotes the weights
connection between the nodes of (i − 1)th and ith hidden layer, the bias of the ith layer nodes, and the set
of nodes in the ith layer. If the layer is the 1st layer or the AuxLayer then for Wi, the (i − 1)th layer would
be the base features or the AuxLayerInput, respectively (see Figure 1). Thus, if zth hidden layer is chosen
as the AuxLayer, then AuxLayer can be mathematically given by Lz = {Wz; Sz;Mz}, where Mz consists of
auxiliary nodes (MA

z ) and non-auxiliary nodes (MĀ
z ). For each auxiliary feature, there is an auxiliary node,

i.e., |MA
z | = |A|, where | · | represents the cardinality of a set. The set of auxiliary nodes depends upon the

number of new auxiliary features received at any time t. Thus, whenever a new auxiliary feature arrives,
we introduce a new node with a full connection with AuxInputLayer and an inherent one-to-one connection
with the auxiliary feature (represented by the unlocked lock in Figure 1) in the AuxLayer and include it in
the set of auxiliary nodes. For simplification, from here on, we will consider nmax

A as the maximum number
of auxiliary features, and thus |MA

z | = nmax
A . Thus, the number of nodes in the set of non-auxiliary nodes is

given by |MĀ
z | = |Mz| − nmax

A . The AuxInputLayer is the input to the AuxLayer and at time t, it is given by

IA
t = {XA

t , Hz−1,t} (1)

where Hz−1,t is the output of the (z − 1)th layer at time t.

Auxiliary Dropout Let the dropout value be d, then the number of nodes to be dropped is given by
|Mz| · d, and the set of dropout nodes is represented by MD

z . We always choose the value of d sufficiently
large such that the number of dropout nodes is always greater than the number of auxiliary nodes. The
auxiliary dropout component consists of selective dropout based on the unavailable auxiliary features and
random dropout on the leftover nodes from the AuxLayer. The selective dropout and random dropouts are
represented by MDs

z and MDr
z , respectively. The selective dropout includes all those nodes from the auxiliary

nodes whose corresponding auxiliary features are unavailable and is given by

MDs
z = MA

z − MAt
z (2)
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Algorithm 1 Aux-Drop algorithm
Require: A deep learning-based online learning model OL, dropout d, z as the AuxLayer

Create haphazard input model (HIM) from OL as done in Figure 1
while time t do

Receive XA
t , XB

t

Pass XB
t to HIM and get the hidden features Hz−1,t

Get IA
t by eq. 1

Get MD
z,t by eq. 4

Get Wz,t, Sz,t by freezing weights, bias affected by unavailable auxiliary features, and dropped nodes
Create Lz,t by eq. 5
Get the prediction Ŷt of the model HIM
Receive the actual label Yt

Compute the loss from Yt and Ŷt

Update the weights and biases of HIM based on the computed loss
end while

where MAt
z represents the set of auxiliary nodes whose corresponding auxiliary features are available. Now

based on the leftover nodes of AuxLayer (Mz −MDs
z ), we choose the required number of nodes to be dropped

randomly. The number of nodes to choose for dropping is |Mz| · d − |MDs
z |. Random nodes are chosen by

MDr
z = random(Mz − MDs

z , |Mz| · d − |MDs
z |) (3)

where random(F, g) represents a function that randomly selects g number of elements from the set F. Thus,
the set of nodes dropped from the AuxLayer is given by

MD
z = MDs

z + MDr
z (4)

Algorithm Here, we explain the working of the Aux-Drop. We choose a deep learning-based model capable
of handling streaming data and name it OL. A dropout value d is set and a layer z is chosen as the AuxLayer.
We modify OL as done in Figure 1 and term it the haphazard input model (HIM). At the time t, we receive
the base features XB

t and the auxiliary features XA
t . The base features are passed to HIM . We compute

the hidden features of all the hidden layers before the AuxLayer. Based on Hz−1,t, the AuxInputLayer (IA
t )

is constructed using eq. 1. Now, we have to create the AuxLayer (Lz,t) based on the auxiliary features (XA
t )

received at time t. MD
z,t nodes are determined using eq. 4 and are dropped from the AuxLayer. All the

weight connections and bias are frozen which are affected by the unavailable auxiliary features and dropped
nodes. Thus, the weights and the bias to the AuxLayer at time t are given by Wz,t and Sz,t, respectively.
The AuxLayer is given by

Lz,t = {Wz,t; Sz,t;Mz − MD
z,t} (5)

The AuxInputLayer is passed to the AuxLayer and the successive hidden layers computation is done giving
a final prediction Ŷt. Finally, the ground truth Yt is revealed and the loss is computed between Yt and Ŷt.
The weights and biases of the HIM are then updated based on this loss. The algorithm of the Aux-Drop is
presented in Algorithm 1.

3.3 Discussion

Independent of the Maximum Number of Auxiliary Features For simplification of the Aux-Drop
explanation, we set a value nmax

A as the maximum number of auxiliary features available to the model. But,
it is not required. The model can accommodate any number of unknown features. Whenever a new auxiliary
feature is received the model will introduce a new node in the set of auxiliary nodes in the AuxLayer and
create an inherent one-to-one connection between the new auxiliary feature and the auxiliary node. This
node will be fully connected with the AuxInputLayer and the layer followed by the AuxLayer and will be
initialized randomly. Moreover, a full connection from the new auxiliary feature to the AuxLayer will be
established. Thus, any new auxiliary feature without any prior information can be easily handled by the
Aux-Drop. This is further demonstrated in Appendix B.
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Table 2: The number of instances and features of all the datasets.

Dataset # Instances # Features
german 1000 24
Italy Power Demand 1096 24
svmguide3 1243 21
magic04 19020 10
a8a 32561 123
SUSY 1M 8
HIGGS 1M 21

Invariant to the Architecture Aux-Drop can be applied to any deep-learning architecture capable of
handling streaming data. The architecture can be based on a convolutional neural network, recurrent neural
network, or multi-layer perceptron. We demonstrate Aux-Drop on the ODL framework.

4 Experiments

Datasets We consider the Italy Power Demand, HIGGS, and SUSY datasets to test the performance of
Aux-Drop. We also select german, svmguide3, magic04, and a8a as the 4 UCI datasets to apply Aux-Drop.
The number of instances and the features of each dataset are listed in Table 2.
Choice of Deep Learning Model We use the Online Deep Learning (ODL) model proposed by Sahoo
et al. (2017) for a few reasons: (a) ODL has shown better performance in the online learning domain and
can handle big datasets very efficiently, (b) The only deep learning method available for haphazard inputs
(Aux-Net) also use ODL as their base model, hence it gives a fair comparison.
Comparison Models We evaluate the performance of Aux-Drop empirically in multiple scenarios. We
compare Aux-Drop with Aux-Net since it is a deep-learning method capable of handling haphazard inputs.
We also report our performance on 4 UCI datasets and compare it with OLVF (Beyazit et al., 2019). Since
most of the datasets used by previous methods were small, we also consider two big datasets to test the
effective application and feasibility of our model and compare it with ODL. In all the scenarios, the instances
are provided one by one to the model, and the training and testing are performed in a single pass. For each
specific case, the dataset is designed suitably.

4.1 Comparison with Aux-Net

The current literature has only one deep learning model, Aux-Net (Agarwal et al., 2020) that can handle the
situation we present. It is only applied to the Italy Power Demand dataset which is a very small dataset.
Nevertheless, we compare our model with Aux-Net and prepare the data similar to the Aux-Net paper.
We considered the first 12 features of the Italy Power Demand dataset as the base features and the last
12 features as the auxiliary features. We varied the availability of each auxiliary input independently by a
uniform distribution of probability p. In comparison with Aux-Drop, Aux-Net is a very heavy model. Let
the number of parameters from the base deep learning architecture be PB . Then the number of parameters
for Aux-Drop and Aux-Net is given by PD (eq. 6) and PN (eq. 7), respectively.

PD = PB + NAmax
Mlaux

(6)

PN = PB + NAmax
NH + NAmax

NHMlaux
(7)

where NH is the number of nodes in the hidden layer. Therefore, the number of parameters in Aux-Net
is NAmax

∗ NH ∗ Mlaux
more than the number of parameters in Aux-Drop since Aux-Net dedicates a layer

for each auxiliary feature whereas Aux-Drop can handle that feature seamlessly using only one node. In
numbers, if we assume 200 auxiliary features, 200 hidden nodes and 800 nodes in the AuxLayer then Aux-Net
has about 32M more parameters than Aux-Drop.
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Probability Aux-Net Aux-Drop
.50 .6975 .6118
.60 .6831 .5722
.70 .6788 .6099
.80 .6130 .5613
.90 .5456 .5355
.95 .5168 .4971
.99 .5165 .5001

Table 3: The table contains the average loss on the Italy
Power Demand dataset. The first 12 features are base fea-
tures and the last 12 features are auxiliary features. The
availability of each auxiliary feature is varied by a uni-
form distribution of probability p. The value of p ranges
from .50 to .99. The average loss of Aux-Net for each p is
reported from the Aux-Net paper (Agarwal et al., 2020).
Aux-Drop is run 5 fives times and the mean of the average
loss is reported here.

Aux-Drop settings The settings of the Aux-Drop is kept similar to the Aux-Net for a fair comparison.
Aux-Drop is trained with 11 hidden layers, considering the third hidden layer as AuxLayer. Each hidden
layer has 50 nodes and the AuxLayer has 100 nodes. The smoothing rate is set as 0.2, the discount rate is
fixed at 0.99 and the dropout is chosen as 0.3. We use the cross-entropy loss. The learning rate is 0.3. Since
the number of instances is less, the higher learning rate helps the model converge faster.

Result We report the average loss by taking the mean of the total loss of each instance over the whole
dataset. Aux-Drop is run 5 times for all the different values of p and the average loss is calculated. The
result is shown in Table 3. Aux-Drop outperforms Aux-Net in all seven different probability scenarios. In
the situation, where p = 0.9, 0.95, 0.99, the difference in performance between Aux-Drop and Aux-Net is
very less. It is because of the less haphazardness in the data, the efficiency of the auxiliary dropout was
not used to its fullest. Whereas, when the haphazard inputs are very high and frequent (p = 0.8, 0.7, 0.6,
0.5), the difference between Aux-Net and Aux-Drop is high. Here, dropout makes the features independent
of each other and hence when the features are not available frequently, it doesn’t affect the performance of
the model. Whereas, Aux-Net has dedicated layers for each auxiliary feature, requiring time to converge
whenever the data is infrequent. The change in performance in the case of p = 0.5 is 12.29% whereas for p =
0.8 is 8.44%. The amount of haphazardness is highest when p = 0.5, implying the effectiveness of Aux-Drop.

4.2 Comparison with state-of-the-art OLVF

We consider datasets with enough instances (≥ 1000) and variability from the OLVF paper to apply our
model. We chose 4 different UCI datasets, namely, german, svmguide3, magic04 and a8a to simulate the
scenarios of haphazard inputs. We compare our model with OLVF for the p = 0.25 scenarios. We consider
the first 2 features as base features and the remaining features as auxiliary features in all the datasets. For a
fair comparison, we simulate the same amount of haphazardness as OLVF. For e.g., in the magic04 dataset
with 10 features, p = 0.25 in OLVF experiments accounts for p = 0.32 for 8 auxiliary features in Aux-Drop.
Hence, we calculate the value of p for each dataset and round it to two decimal places. The p value in the
Aux-Drop for each dataset is shown in Table 4.

Aux-Drop Settings Since the number of instances is less, we design Aux-Drop with only 6 hidden layers.
The third layer is set as the AuxLayer. Each hidden layer has 50 nodes but the number of nodes in AuxLayer
is different for each dataset considering the number of features and dropout value. The dropout value is
set as 0.3. The number of nodes in AuxLayer is 100 except for a8a which has 400 nodes in AuxLayer. The
number of auxiliary features in a8a is 121 and the dropout value is 0.3, so we need about (121/0.3 ∼ 403)
nodes. The smoothing rate is 0.2 and the discount rate is 0.99. The cross-entropy loss is employed to train
the model. The learning rate is 0.1 for the smaller datasets, i.e., german and svmguide3, whereas, for the
larger datasets, i.e., magic04 and a8a, it is set as 0.01.

Result We consider the metric reported by OLVF and calculate the number of errors for each dataset.
Aux-Drop is run 20 times randomly with respect to data shuffling, creating haphazard inputs and initializing
the model as done in the OLVF manuscript. The mean and the standard deviation of these 20 experiments are
reported in Table 4. Aux-Drop outperforms OLVF for all the datasets. The performance of Aux-Drop is much
better when the dataset is big as evident from the performance in the a8a dataset. The worst-performing
experiment out of the 20 experiments of Aux-Drop is better than the best-performing experiment of OLVF
in the case of german, svmguide3 and a8a datasets.
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Table 4: Comparison with OLVF on various
datasets. Here all the errors reported for OLVF are
on 25% of the data. Thus, we adjust the probabil-
ity value (p) for haphazard features for Aux-Drop
accordingly to match the amount of missingness of
OLVF. The error is reported as the mean ± standard
deviation of the 20 experiments performed randomly.

Dataset OLVF Aux-Drop p
german 333.4±9.7 317.4±1.9 .27
svmguide3 346.4±11.6 296.9±1.5 .28
magic04 6152.4±54.7 6039.1±190.4 .32
a8a 8993.8±40.3 7855.5±16.8 .25

Table 5: Experiments on the Trapezoidal data
streams. The dataset for each row is similar to
dataset of Table 4. Aux-Drop is compared with
OLSF and OLVF (metrics reported from their origi-
nal paper) in terms of the average number of errors.
All the experiments are performed 20 times and the
mean ± standard deviation is reported.

OLSF OLVF Aux-Drop
385.5±10.2 329.2±9.8 312.2±8.0
361.7±29.7 351.6±25.9 296.9±1.0
6147.4±65.3 5784.0±52.7 6361.25±319.6
9420.4±549.9 8649.8±526.7 7855.4±16.8

4.3 Experiments on trapezoidal data streams

We experiment on the trapezoidal data streams and compare them with the OLVF and OLSF (best per-
forming) algorithms Zhang et al. (2016). The trapezoidal streams are simulated by splitting the data into
10 chunks. The number of features in each successive chunk increases with the data stream. The first chunk
has the first 10% of the total features, the second chunk has the first 20% features and so on. The Aux-Drop
setting and the dataset used are similar to the section 4.2 and is run 20 times.

Result Table 5 shows the performance of Aux-Drop as compared to others. The Aux-Drop outperforms
OLVF and OLSF in all the datasets except magic04. The mean error is low for Aux-Drop compared to OLVF
and OLSF. The amount of error in Aux-Drop is 16.6% and 9.2% less in the a8a dataset, suggesting that as
the amount of data increases, the performance of Aux-Drop massively increases as compared to OLSF and
OLVF. Furthermore, the standard deviation of Aux-Drop is low from OLVF and OLSF showing that the
Aux-Drop has performed well consistently in all 20 experiments.

4.4 Evaluation on big datasets

HIGGS and SUSY dataset is used by ODL to report its metrics. Hence, we found them suitable to test the
performance of Aux-Drop. Moreover, HIGGS and SUSY are big datasets that resemble the real-life situation
of streaming data. HIGGS has 28 features out of which the first 21 features are low-level features and the
last 7 are the function of the first 21 features called high-level features. Similarly, the first 8 features in SUSY
are low-level. In our experiment, we use the low-level features only because it is proved experimentally in the
paper (Baldi et al., 2014), that the high-level features don’t contribute to the performance of the model. We
run our experiment for the first 1M instances. We design two experiments on this dataset: (1) Experiment
on variable probability as done in section 4.1, and (2) Experiment on obsolete and sudden unknown features.
All the experiments are run 5 times and the average is reported. For comparison, we chose ODL as the base
model trained with only base features and refer it as ODL(B). For HIGGS and SUSY, we consider the first
5 and 2 features as base features and the next 16 and 6 features as auxiliary features, respectively.

AuxDrop Settings In both the cases of HIGGS and SUSY, we train the Aux-Drop with 11 hidden layers.
The 3rd layer is set as the AuxLayer. The number of neurons in each hidden layer is 50 and in the AuxLayer
is 100. The dropout value is 0.3 and the learning rate value is set at 0.05. The discount rate is fixed at 0.99
and the smoothing rate is 0.2. For a fair comparison, we design ODL with 11 hidden layers, 50 nodes in
each hidden layer and the same value of learning rate, discount rate and smoothing rate.

4.4.1 Experiment on variable probability

We vary the availability of each auxiliary feature by a uniform distribution of probability p. Each auxiliary
feature is varied by the same value of p, but they are independent of each other. We consider all the situations
such as when very little auxiliary data is present (p = 0.01), the haphazardness in the data is maximum (p
= 0.5), almost all the auxiliary data is available all the time (p = 0.99), etc.
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Table 6: Error in HIGGS and SUSY for various probability p. The
metric is reported as the mean ± standard deviation of the number of
errors in 5 runs. The error of ODL(B) trained on only base features
for HIGGS and SUSY dataset is 441483.2±184.3 and 286198.6±189.4,
respectively. The ∆Avg value reported in the table is calculated by
subtracting the average number of errors of ODL(B) with the average
number of errors of Aux-Drop, respectively.

p
HIGGS SUSY

Avg±Std ∆ Avg Avg±std ∆ Avg
.01 440033.4±129.9 1449.8 285088.0±69.3 1110.6
.05 440045.4±250.5 1437.8 283463.0±305.5 2735.6
.10 439752.0±198.5 1731.2 280752.4±396.2 5446.2
.20 438775.2±361.7 2708.0 274907.0±575.7 11291.6
.30 435286.0±675.5 6197.2 269269.8±549.6 16928.8
.40 432190.8±381.3 9292.4 262713.4±632.3 23485.2
.50 427844.8±616.1 13638.4 256719.4±618.3 29479.2
.60 423002.8±604.5 18480.4 250108.0±829.5 36090.6
.70 418927.4±495.2 22555.8 243954.2±813.7 42244.4
.80 412601.6±254.0 28881.6 237211.6±654.5 48987.0
.90 405834.6±350.3 35648.6 230216.2±698.5 55982.4
.95 399234.8±613.7 42248.4 226631.8±354.4 59566.8
.99 391787.8±641.8 49695.4 222151.6±181.4 64047.0

Figure 2: The average error and standard
deviation of ODL on the whole features (Base
+ Auxiliary features) for 5 runs for HIGGS
and SUSY are 391334.8 and 218622.2, respec-
tively. Thus the performance improvement
(∆AI) of ODL(B) because of the addition of
the whole auxiliary features are 50148.4 and
67576.4 for HIGGS and SUSY, respectively.
The fraction improvement in the Aux-Drop is
calculated by the ratio of ∆Avg (in Table 6)
and ∆AI. The value of p (in Table 6) denotes
the amount of auxiliary information available.

Results The mean and the standard deviation on HIGSS and SUSY are shown in Table 6. The mean
and standard deviation of the number of errors of ODL(B) for HIGGS is 441483.2 and 184.3 respectively.
Whereas, for the SUSY, it is 286198.6 and 189.4, respectively. We consider this value as the base value
and also report the metrics for all the p values with respect to this in Table 6. The ∆ Avg reported in
the table shows the less amount of errors made by Aux-Drop utilizing the extra information from auxiliary
features and is calculated by subtracting the average number of errors of ODL(B) from the average number
of errors of Aux-Drop, respectively. Aux-Drop is able to incorporate even a little amount of data from
auxiliary features when p = 0.01 and gives better performance. Moreover, at each increasing p value, the
Aux-Drop performance improves. This is better represented in Figure 2 where the progression of the fraction
improvement (∆Avg/∆AI) is shown with respect to the availability of auxiliary data (p). The average error
of ODL on all available datasets (i.e., all the auxiliary features are always available too) is also reported here.
For HIGGS, ODL trained on the 21 features gives an error of 391334.8 whereas, for SUSY, it is 218622.2.
Based on this, we can say that the performance improvement (∆ AI) achieved by ODL(B) due to auxiliary
data for HIGGS and SUSY is 50148.4 and 67576.4, respectively.

4.4.2 Obsolete and Sudden Unknown features

We demonstrate the effectiveness of Aux-Drop in processing the extra information received from auxiliary
features in both the SUSY and HIGGS datasets. Here, we design the data in a such way that all of them are
sudden features, i.e., there is no information about the existence of these features when the model is defined.
The model knows about this feature suddenly at time t after the model deployment. For the SUSY dataset,
the first auxiliary feature starts arriving from 100k till 500k, the next auxiliary feature ranges from 200k till
600k, and so on to the 6th auxiliary feature coming from 600k to 1000k instances. Each feature becomes
obsolete after arriving for 400k instances. Similarly for the HIGGS dataset, the first auxiliary feature arrives
from 50k to 250k instances, the second arrives from 100k to 300k, and so on where every successive auxiliary
feature arrives at 50k instances after the previous auxiliary features start arriving and arrive till the next
200k instances. This is better depicted in the lower part of Figure 3(a) for SUSY and Figure 3(b) for HIGGS.

Results Figure 3 shows the result of obsolete and sudden unknown features for both SUSY and HIGGS.
The performance of ODL(B) and Aux-Drop is similar for the first 50k instances since both get the same
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Figure 3: Result of the obsolete and sudden features experiment on (a) SUSY and (b) HIGGS dataset. We calculate
the average number of errors in each 50k instances. Thus, the graph starts at 50k and goes till 1000k. B. F. {n} and
A. F. {n} represents the nth number base features and auxiliary feature, respectively. The green box represents the
time instances when a certain auxiliary feature was available. The x-axis denotes the number of instances (in k).

amount of data. But as Aux-Drop gets the auxiliary information, its performance improves. The maximum
amount of auxiliary information received in the SUSY dataset is from 400k to 700k and we see that the
best performance is during that period. The minimum is achieved at 600k. Moreover, in the later stages
after 900k, when the auxiliary information reduces, the Aux-Drop converges to the performance of ODL(B)
depicting the agile manner in which Aux-Drop handles the haphazard inputs. In the case of HIGGS, Aux-
Drop is better than ODL as soon as it starts getting the auxiliary information.

5 Ablation Studies

5.1 Need of AuxLayer

One of the requirements of Aux-Drop is the presence of alteast one base feature. So, we design a model
where we pass all the inputs (base and auxiliary features) directly to the first layer itself without the use of
AuxLayer. Here, we employ Random Dropout in the First layer to handle the haphazard inputs (RDIFL).
The performance of RDIFL is shown in the lower part of Table 7. It can be seen that Aux-Drop outperforms
RDIFL by 7.4% in magic004 and is marginally better in other datasets. This is because Aux-Drop utilizes the
full information from base layers and increments it with the information from haphazard auxiliary features.
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Table 7: Table shows the need for AuxLayer and the use of dropout. Notations: RDANDO - Random Dropout
in AuxLayer No Dropout in Others, RDAL - Random Dropout in All Layers, ADARDO - Auxiliary Dropout in
AuxLayer and Random Dropout in Other layers, RDIFL - Random Dropout in First Layer with all features passed
directly to the first layer.

Methods german svmguide3 magic04 a8a
RDANDO 318.0±2.8 297.6±1.9 6123.5±169.1 7853.1±16.3
RDAL 319.3±4.4 298.2±3.0 6433.1±143.7 7862±323.2
ADARDO 318.6±4.2 297.6±1.7 6700.4±33.1 7852.9±15.9
Aux-Drop 317.4±1.9 296.9±1.5 6039.1±190.4 7855.5±16.8
RDIFL 318.5±2.8 297.2±1.7 6528±136.4 7869.9±33.2

Table 8: Comparison of the position of AuxLayer. Pos here stands for the position. The experiment is conducted
on the four UCI datasets. The total number of hidden layers in the ODL is 6 for this experiment.

Pos german svmguide3 magic04 a8a
2 319.1±3.5 298.4±2.8 6054.0±213.3 7730.5±73.5
3 317.4±1.9 296.9±1.5 6039.1±190.4 7855.4±16.8
4 318.5±2.7 298.9±2.8 6110.7±146.2 7852.9±12.4
5 317.7±2.2 297.4±1.7 6428.7±105.5 7856.7±14.3

5.2 Effect of AuxLayer position in the Model

The position of AuxLayer is a hyperparameter in the Aux-Drop. In all the above methods, we fixed the 3rd
layer as the AuxLayer. Here, we demonstrate how the model performs with respect to different positions of
the AuxLayer in the 4 UCI datasets. The results are shown in Table 8. The 3rd layer seems to be the best
position except for a8a which gives the best performance for the 2nd position. The ratio of base and auxiliary
features is 1:60.5 for a8a. Thus, it requires comparatively more layers to process the auxiliary information.
Whereas for the other three datasets, the maximum ratio of base features and auxiliary features is 1:11 (for
german) and hence comparatively less number of layers are enough to capture the auxiliary features.

5.3 Effective Use of Dropout

We apply the dropout in the AuxLayer with an emphasis on the coupling between the auxiliary feature and
auxiliary node by the manner of selectively choosing nodes to drop, based on the unavailability of auxiliary
features. But, it is to be noted that, dropout can be applied randomly in the AuxLayer too. Moreover,
dropout can also be applied to the other hidden layers as well. We present a comparison of all these ways
of applying dropout and show empirically that Aux-Drop is the best way to employ dropout. We compare
Aux-Drop with its three other variants: (a) RDANDO - Random Dropout is applied in the AuxLayer and
No Dropout is applied in Other layers, (b) RDAL - Random Dropout is applied in All Layers, and (c)
ADARDO - Auxiliary Dropout is applied in the AuxLayer and Random Dropout is applied in all the Other
layers. The results of all these methods are compared with Aux-Drop in the 4 UCI machine learning dataset
and are shown in the upper half of Table 7. Aux-Drop is better in all the cases except in a8a. The maximum
variation in the results is seen in the magic004 dataset. The second best method is RDANDO which also
applies dropout only in the AuxLayer. So, the best way is to employ auxiliary dropout only in the AuxLayer.

6 Conclusion

The challenge and application of haphazard inputs are immense and to our knowledge, there are no effective
deep learning methods available to handle it. So, we propose a generalized concept called Aux-Drop which
can be applied to any deep learning-based online architecture. We demonstrate the effectiveness of Aux-Drop
in multiple datasets and empirically assert the importance of the Aux-Drop design. The various experiments
on big datasets meticulously show the agile manner in which Aux-Drop processes the auxiliary information
and converges to the base deep learning architecture during the unavailability of auxiliary features.
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A Characteristics of Haphazard Inputs

The characteristics of haphazard inputs are as follows:

• Streaming data: It is a field of machine learning where data arrives sequentially and is modeled
using online learning techniques. The model predicts an output based on the current data instance
and then the actual output is revealed. The model gets trained based on the loss from its prediction
and the actual output, and this updated model is used for future prediction Hoi et al. (2021).

• Missing data: The input features can be missing at any time instance. It can be due to data
corruption, malfunctioning sensors, faulty equipment, human errors, etc. Emmanuel et al. (2021).

• Missing features: It is known that a certain feature will arrive but doesn’t have any other prior
information like its distribution. It is never received at time instance t = 1.

• Obsolete features: The input features are received at any point in time but it ceases to exist after
some time instances.

• Sudden features: There is no information about the existence of these features when the model is
defined. The model might know about this feature suddenly at any point of time after the model
deployment.

• Unknown number of features: At the time of model designing, there is no information about the
total number of input features and at no point in time this information is available.

B Handling Auxiliary Features

The auxiliary features are haphazard inputs with all the above six characteristics. We present a real-
life situation of Aux-Drop and the changes in the architecture with respect to different characteristics of
haphazard inputs. Consider there are two output features from the hidden layer previous to the AuxLayer.
At the time t − 1, two auxiliary features are available. We present only the upper half of the model which
handles the auxiliary features. The architecture presented in Figure 4 (a) represents the model connection
after instance t − 1. The dropout value is set as 0.7.

An auxiliary feature is missing Figure 4 (b) presents the change in the architecture when an auxiliary
feature is missing. The inherent one-to-one corresponding node is dropped and all the connections that come
with it. Also, all the connections from these auxiliary features to all the other nodes are also frozen. Since
the dropout value is 0.7, two nodes need to be dropped. One node is randomly chosen from the remaining
3 nodes and is dropped.
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(f) Legend
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Connections to random dropout nodes

Inherent one-to-one connection of random dropout node

Figure 4: (Diagram best viewed in color) We present the changes in the connection between AuxInputLayer and
AuxLayer with respect to different characteristics of haphazard inputs.
Different color meaning: Here the blue circle denotes a random dropout node, and the red circle in the AuxLayer and
AuxInputLayer denotes a selective dropout node and unavailable auxiliary feature respectively. The colored arrow
follows a hierarchical way of removing connections. First, the inherent one-to-one connection of the selective dropout
node is frozen and it is denoted by the dashed red arrow. Next, all the other connections to the selective dropout
node are frozen and it is represented by the green arrows. Then all the remaining connections from the unavailable
auxiliary features are frozen and are shown by the purple arrows. Next, all the remaining connections to the random
dropout node are frozen and are denoted by the blue solid arrows Finally, the inherent one-to-one connection to the
random dropout node is shown by the blue dashed arrow. This is more clear from the legend present in Figure 4 (f).
In Figure 4 (e): The black rectangular box depicts the arrival of a new auxiliary feature and the introduction of
an auxiliary node with all the relevant connections in the AuxLayer. Moreover, all the connections from the new
auxiliary feature to all the nodes in the AuxLayer are also introduced.

Missing data arrives The auxiliary feature missing in the above case (t) arrives at instance t + 1. Thus,
all the auxiliary features arrive. Two nodes are randomly chosen from all the nodes in the auxiliary layer
and dropped along with all its connections as shown in Figure 4 (c).
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Obsolete features At time t+2, an auxiliary feature becomes obsolete. Note that the model at any point
doesn’t know that this feature is obsolete. Thus for this situation, the change in architecture is the same as
the missing auxiliary feature. The change is shown in Figure 4 (d).

Sudden features At t + 3, a sudden auxiliary feature with no prior information arrives. To handle this,
a new auxiliary node and all the connections with it are introduced(shown in the black rectangular box in
Figure 4 (e)). The connections from this auxiliary feature to all the nodes in AuxLayer are also introduced.
The feature that became obsolete at time t = 2 will not arrive so the corresponding auxiliary node is dropped.
Two more nodes are randomly selected to drop. The architectural change is present in Figure 4 (e).

Missing feature arrives At t + 4, a missing feature arrives whose prior information is unknown. The
only attribute known about this feature is that it will arrive. To handle this, either an auxiliary node can be
created and assume that this feature is unavailable till it arrives or it can be considered as a sudden feature.
In either case, the computation overhead is almost negligible and the model performance will not change.
Hence, we can consider it as a sudden feature and the architectural change is the same as Figure 4 (e).
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