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ABSTRACT

Lattice proteins are models resembling real proteins. They comprise an energy
function and a set of conditions specifying the interaction between elements oc-
cupying adjacent lattice sites. In this paper we present an approach examining the
behavior of chains of a large number of molecules. We investigate this by solv-
ing a restricted random walk problem on a cubic lattice and square lattice. More
specifically, we apply the hydrophobic-polar model to examine the spatial char-
acteristics of protein folds using the Monte Carlo method. This technique is the
so-called Rosenbluth sampling method for solving restricted random walk prob-
lems. Specifically, by solving such walks we obtain plausible folds. In addition,
this method can be extended to solve the hydrophobic-polar model. In this paper,
we describe this method as an algorithm that calculates the energy spectrum for
the hydrophobic-polar model, and the related formula for estimating the number
of folds. Moreover, we estimate the number of folds for each sequence using
hydrophobic-polar model energy estimation. On test sequences the predicted pro-
tein folds were obtained with a mismatch of one unit according to the energy. We
also observe that the estimated number of folds depends only on the length and
not on the type of sequence. This promising strategy can be extended to quantify
other proteins in nature.

1 INTRODUCTION

The search for a more efficient algorithm of protein folding in the hydrophobic-polar (HP) model is
an important aspiration in many disciplines (Sali et al. (1994), Pande (2010)). Knowing how proteins
fold can help elucidate their three-dimensional structure-function relationship, which is crucial to the
understanding of enzymes and to the treatment of misfolded-protein diseases such as Alzheimer’s,
Huntington’s, and Parkinson’s disease. The numerical simulation focused on those proteins is par-
ticularly useful for drug design, as it allows to test different physical characteristics using models
of various complexities. Indeed, if high-resolution chemical structure is used, leading to precise
molecule representations, dynamical simulation showing atomic interactions can be reached. This
might ultimately provide more effective and personalized drugs.

It has been shown that the HP protein folding model is NP-Hard (Berger & Leighton (1998)), which
means it is difficult to solve efficiently for longer protein sequences. In order to overcome this
obstacle, many heuristic algorithms have been proposed (Jiang et al. (2003), Yanev et al. (2017)).
Besides heuristics mostly based on optimization, other approaches are based on the idea that co-
operativity of folding occurs, as local conformational choices which constraints the optimization
space in which solutions are searched. Those assumption-based methods include hydrophobic zipper
method Dill et al. (1993), which assumes that once a hydrophobic contact is created it cannot be
broken. And the core-directed chain growth method Beutler & Dill (1996) which constrains the
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optmization search within the space of solutions having a hydrophobic core with a square (in 2D) or
a cube (in 3D).

In this context, there is theoretical and experimental evidence of the advantage of solving a restricted
random walk problem (RRW) on cubic and square lattices. One of the earliest proposed numerical
algorithms which apply the RRW paradigm is the one designed by M. Rosenbluth and A. Rosen-
bluth (Rosenbluth & Rosenbluth (1955)). In this report, we present a benchmark implementation
of Rosenbluth methods for the HP model with an additional extension to estimate the number of
possible sequence configurations.

1.1 HYDROPHOBIC-POLAR MODEL

In the hydrophobic-polar model, the set of twenty standard amino acids is reduced to two: H (hy-
drophobic amino acid) and P (hydrophilic amino acid). More formally, the model relies on embed-
ding a given finite polypeptide sequence s = (s1, . . . , si, . . . , sk) where si ∈ {H,S}, into a given
infinite graph G. In this article, the graph G will primarily be the three-dimensional cubic lattice
G = Z3 and square cubic lattice G = Z2 over integer numbers Z. A fold of length k for s in G is
an injective mapping f : [1, . . . , k] 7→ G such that adjacent integers map to adjacent points of G.
The set of all folds of length k is denoted as Zk. In addition, each point f(i) is assigned one letter
from the polypeptide sequence si. Such neighboring points form a bond. Each point of Z3 has six
neighbors (x± 1, y ± 1, z ± 1). The energy of the fold of s is expressed as

E(s, f) =
∑

1≤i<j≤k

Esi,sj∆(f(i), f(j)) and (1)

∆(p, q) =

{
1 if p and q are adjacent but do not connect amino acids,
0 otherwise

(2)

with energy equation:

E(si,sj) =

{
−1 si = H and sj = H

0 otherwise.
(3)

The above equation for calculating the energy of fold s in G can also be expressed as negation of the
number of H − H bonds in the fold, where a bond is a pair of symbols corresponding to adjacent
points, except for those H’s which are adjacent to pairs of sequences s. The goal of the HP model
is to minimize the energy

min
f∈Zk

E(s, f). (4)

1.2 ROSENBLUTH SAMPLING METHOD

Note that for a given number of adjacent points k in the fold, any configuration consisting of k ad-
jacent points laid out joined in succession on a cubic lattice Z3 is considered. The method proposed
by Rosenbluth & Rosenbluth (1955) involves drawing successive steps of a random walk only from
among acceptable points, which are points previously not visited. In this section, we describe the
random procedure in more detail. We will focus on the 3D case, i.e G = Z3, but the method is easily
transferable to the 2D case.

Regarded as a random walk problem, for any walk consisting of m adjacent points and ending
at position (x, y, z)m, all six positions are a priori equally likely at iteration m. The excluded
volume effect is simulated by the requirement that a fold is not allowed to cross itself or back up
on itself at any iteration. Consequently, at any iteration, there are at most five possible positions
to move to. For simplicity, we assume that the first link originates from (0, 0, 0). Any satisfactory
set of m adjacent points start from the origin (x, y, z)m is associated with a weighting function
wm of possible positions calculated at each step according to the procedure described below. At
any iteration m where the most recent link terminates at (x, y, z)m and 5 potential positions (x ±
1, y± 1, z ± 1)m must be considered, while position (x, y, z)m−1 is ruled out immediately. All five
remaining potential positions at m+1 may be associated with values (x, y, z)i for i = m−p where
p is an odd number greater than 1. If the comparison reveals this to be the case, a modification of
the weight Wm must be made, obtaining Wm+1.

Below we present all possible cases at iteration m:
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1. All six new position (x ± 1, y ± 1, z ± 1)m are occupied. The process is then terminated
with weight Wm = 0.

2. Only wm new positions are unoccupied, with 0 < wm ≤ 5. Then

Wm = Wm−1 · wm (5)

During this process, an embedding is generated. If the embedding is equal to the length of the
sequence, we can calculate energy according to the presented formula.

ESTIMATION OF FOLD NUMBERS

In this section, we present a mathematical justification for the estimation of folds.

Let us assume in general terms that when constructing fold fi of length k with partial weights
0 < wi ≤ 5:

w1 = 6, w2, . . . , wm. (6)
It is not excluded that at a certain step we may have no further possibilities for continuation, i.e.,
wm+1 = 0. We then say that a non-extendable fold of length m has been formed.
Let Y denote the set of all folds of length m = k and non-extendable folds of length m < k. Recall
that set of all folds of length m = k is denoted as Zk. Clearly, Zk ⊂ Y.

The probability of picking a random fold fi ∈ Y of length m is equal to:

P (fi) =
1

w1
· 1

w2
· . . . · 1

wm
=

1

Wm
(7)

with a weight function for the specific fold fi. Let fi ∈ Y, so

W (fi) =

{
w1 · w2 · . . . · wk if fi ∈ Zk( so m = k)

0 if fi /∈ Zk ( so l < k i wm+1 = 0) .
(8)

One can interpret W (fi) as the weight of fold fi. Let us now repeat the draw using the growth
method n times. There are n random folds f1, f2, . . . , fn from set Y .

Let ns denote the number of drawn elements fi for which W (fi) = s and the set of these elements
Ws = {f ∈ Y : W (f) = s}. Then, based on the large numbers law:

ns

n
≈ P (Ws). (9)

Therefore, the above expression can be written as the average weight of the drawn folds. We note
that:

1

n

n∑
i=1

W (fi) =
∑
s

s
ns

n
≈

∑
s

sP (Ws) =
∑
s

s
∑

f∈Ws

P (f) =
∑
f

P (f)W (f). (10)

Finally, the expression for W̄ can be written as:

W̄ =
1

n

n∑
i=1

W (fi) ≈
∑
f

P (f)W (f) =
∑
f∈Zk

1 = |Zk|. (11)

We introduce the following notation for fold estimators of length k:

Ẑk = W̄ ≈ |Zk|. (12)

To validate this fold estimator we test sequences of different length and type and the results are
reported in the following section.
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ESTIMATION STANDARD ERROR FOR Ẑk

For estimation of standard error for Ẑk, we used the batch means method. We will briefly describe
how this method was applied in this setup.
Let us divide the sequence of weights:

W (f1), . . . ,W (fn) (13)

of length n into j ”blocks” of length l each (so n = jl):

W (f1), . . . ,W (fl)︸ ︷︷ ︸
1st block

, . . . ,W (f(b−1)l+1), . . . ,W (fbl)︸ ︷︷ ︸
bth block

, . . . ,W (f(j−1)l+1), . . . ,W (fjl)︸ ︷︷ ︸
jth block

(14)

Let us denote by µ̄b the mean calculated from the block

µ̄b =
1

l

bl∑
i=(b−1)l+1

W (fi) (15)

The estimator for the variance is defined as:

σ̂2
as =

1

j

j∑
b=1

(
µ̄b − W̄

)2
. (16)

Then the standard error is the root of the estimator for the variance:

σ =
√
σ̂2
as. (17)

This method significantly speeds up the variance calculation by the standard method of generating
estimators and calculating the standard deviation.

2 RESULTS

The experiments were run on Google’s Colab platform on Intel(R) Xeon(R) CPU @ 2.20GHz with
13GB RAM. We investigated 2 different datasets one 2D and one 3D. The algorithm code, written
in Python, can be found at the following website: Wie (2022). The method was run for n = 105 of
suitable configurations folds with a specific sequence s of length k. We used j = 103 blocks in the
batch means method for estimation standard error.

2.1 BENCHMARK FOR 2D

Using the method proposed above, we calculate Ẑk with a statistical error. The algorithm was
initially tested for several sequences in dimension 2 (for Z2 from site LABORATORY (2011).

This first experiment lasted 5 minutes. Symbols Hi and P i in the table correspond to i repetitions
of sequence characters. The results related to this dataset are reported in Table 1, with 4 examples
of resulting predicted folding depicted in Figure 1.
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(a) Embedding of sequence
s = HH(P )5HH(P )3H(P )3HP with the min-
imum energy ˆEmin(s, f) = −3

(b) Embedding of sequence
s = HPHPHHH(P )3H4PPHH with the
minimum energy ˆEmin(s, f) = −7.

(c) Embedding of sequence
s = (PHP )2(H)3(PHH)2H3 with the mini-
mum energy ˆEmin(s, f) = −8.

(d) Embedding of sequence
s = (HP )2PHH(PHP )2HHP (PH)2 with
the minimum energy ˆEmin(s, f) = −7.

Figure 1: In each figure we embed a given finite polypeptide sequence in the square lattice G = Z2.
The energy in the presented diagrams can be easily deduced. Each red line indicates a bond. The
number of these edges corresponds to energy ˆEmin.

k Ẑk std. err. ˆEmin(s, f) Ebench tested sequence s
18 1.25e+8 3.5e+6 -3 -4 HH(P )5HH(P )3H(P )3HP
18 1.24e+8 4.3e+6 -7 -8 HPHPHHH(P )3H4PPHH
18 1.24e+8 3.3e+6 -8 -9 (PHP )2(H)3(PHH)2H3

20 8.9e+8 2.9e+7 -7 -9 (HP )2PHH(PHP )2HHP (PH)2

20 8.9e+10 3.3e+7 -8 -10 HHHP (PH)3PP (HP )3PH
24 4.6e+10 1.87e+9 -6 -7 HHPP (HPP )5HH
25 1.2e+11 5.5e+9 -7 -8 PP (HHP )4(PPP )3HH
36 6.0e+15 4.13e+14 -10 -14 (P )3((HP )2)2(P )2(H)7(P )2(H)2(P )4H2PPHP 2

Table 1: In this table we compare how our method performs against the model from LABORATORY
(2011). We can conclude that our energy is minimally different. Having computed an estimation for
all folds Z2 for each sequence, we can conclude that the number of folds Ẑk does not depend on the
tested sequence s. We can observe that the estimated number of folds depends only on length k and
not on the form of s.

2.2 ESTIMATION FOR 3D

The experiments were performed using n = 105 and j = 103 blocks in batch means method. The
code can be found in Wie (2022). Estimated energy is equal to 0 for all k. This is because it is
difficult to fold for Z3 so that the number of H − H bonds is minimised. The second experiment
lasted 4 minutes. Results for this dataset are reported on Table 2, with 2 examples of resulting
predicted folding depicted in Figure 2.
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k estimation Ẑk std. err. tested sequence s
1 6 0 H
2 30 0 HP
3 150 0 HPH
4 726.0 1.6 HPHP
5 3532.1 11.14 HPPHP
6 16934.8 69.62 HPPHPH
10 8.8e+6 6.88e+4 HH(P )4(H)3P
18 2.23e+12 3.5+e10 (H)2(P )5(H)2(P )3H(P )3HP
20 4.96e+13 8.3e+11 (HP )2PH(HP )2(PH)2HP (PH)2

24 2.47e+16 5.2e+14 P (PH)3(PP )2(HH(PP )2)2H
25 1.16e+17 2.25e+15 P (PH)3(PP )2(HH(PP )2)2HH

Table 2: In the accompanying table we count the fold estimation values for dimension 3 for Z3.
Referring to experiment 1 we see that there is a significant increase in the number Ẑk of these folds
for each sequence. For values of k = 24, 25 we observe particularly large differences.

The experiment itself shows how difficult it is to wrap sequences in 3 dimensions. Estimations
for sequences 24 and 25 alone show that the number of folds is on the order of 1016 and 1017, as
shown in Table 1 and 2. However, the energy of the fold is still zero. Therefore, the 3D model is
significantly more difficult than the 2D model.

(a) Embedding of sequence s =
(HP )2PH(HP )2(PH)2HP (PH)2

(b) Embedding of sequence s =
P (PH)3(PP )2HH(PP )2HH(PP )2HH

Figure 2: In the graph above, we can observe that the fold did not wrap in such a way that the two
H−Hs are next to each other. Therefore, energy is equal to 0. This is because we have significantly
more degrees of freedom in 3D space.

For the initial cases k = 1, 2, the results are obvious. If the length of the sequence is 1 (k = 1), then
we have only 6 possible points. For k = 2 we have 36 possible point assignments, 6 of which are
forbidden. We have also prepared special sequences for cases k ∈ {1, 2, 3, 4} that will always have
zero energy. It is not possible to wrap a sequence in such a way that points with H −H labels touch
each other.

3 DISCUSSION

Correctly predicting protein conformations based on the amino acid sequence is of pivotal impor-
tance for drug design and other relevant computational chemistry tasks. In this paper, we report our
computational experiments, where we use HP sequences corresponding to published benchmarks
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LABORATORY (2011) with a 2D lattice in the HP model. Our model successfully estimates the
number of folds for a particular sequence; regardless of the type of sequence but only on its length.
For small sequences, the method accurately estimates the number of folds. Our experiments show
that for sequences of size k = 24, 25 the 3D model becomes significantly more complex than the
2D model. It has been observed that adding one dimension significantly affects the solution base. In
2D, the energies are −6 and −7, respectively, while in 3D the energy is zero for both cases. There
are too many degrees of freedom to draw consecutive points. Therefore, it is difficult to find a wrap
that has non-zero energy even for shorter sequences. However, the Rosenbluth sampling method
can be successfully used to estimate the number of all folds, especially those with energy 0. This
can help design heuristic algorithms based on this hindsight. The estimation itself, according to our
mathematical justification, increases in accuracy as we increase the number of iterative executions
of the method. The described approach is effective for identifying and sampling configurations on a
lattice geometry. This kind of representation can be useful in the context of ab initio protein struc-
ture prediction Rashid et al. (2016). Expansions as implementations on quantum devices have been
proposed, but those have been limited to the 2D case so far Micheletti et al. (2021). Conversion
of the proposed tool into quadratic unconstrained binary optimization (QUBO) Kochenberger et al.
(2014) using 3D lattices on quantum devices will be investigated in future work.
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Wang. The unconstrained binary quadratic programming problem: a survey. Journal of combina-
torial optimization, 28(1):58–81, 2014.

ISTRAIL LABORATORY. HP 2D Benchmarks. https://www.brown.edu/Research/
Istrail_Lab/hp2dbenchmarks.html, 2011. [Online; accessed 02-Feb-2022].

Cristian Micheletti, Philipp Hauke, and Pietro Faccioli. Polymer physics by quantum computing.
Physical Review Letters, 127(8):080501, 2021.

Vijay S Pande. Simple theory of protein folding kinetics. Physical review letters, 105(19):198101–
198101, 2010. ISSN 0031-9007.

Mahmood A Rashid, Sumaiya Iqbal, Firas Khatib, Md Tamjidul Hoque, and Abdul Sattar. Guided
macro-mutation in a graded energy based genetic algorithm for protein structure prediction. Com-
putational biology and chemistry, 61:162–177, 2016.

7

https://github.com/marcin119a/Monte-Carlo-Calculation-of-Protein-Folding
https://github.com/marcin119a/Monte-Carlo-Calculation-of-Protein-Folding
https://www.brown.edu/Research/Istrail_Lab/hp2dbenchmarks.html
https://www.brown.edu/Research/Istrail_Lab/hp2dbenchmarks.html


Marshall N Rosenbluth and Arianna W Rosenbluth. Monte carlo calculation of the average extension
of molecular chains. The Journal of chemical physics, 23(2):356–359, 1955. ISSN 0021-9606.

Andrej Sali, Eugene Shakhnovich, and Martin Karplus. How does a protein fold? Nature (London),
369(6477):248–251, 1994.

Nicola Yanev, Metodi Traykov, Peter Milanov, and Borislav Yurukov. Protein folding prediction in
a cubic lattice in hydrophobic-polar model. Journal of Computational Biology, 24(5):412–421,
2017.

8


	Introduction
	Hydrophobic-Polar model
	Rosenbluth sampling method

	Results
	Benchmark for 2D
	Estimation for 3D

	Discussion
	Acknowledgements


