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Abstract

The current era of Natural Language Pro-
cessing (NLP) is dominated by Trans-
former models. However, novel architec-
tures relying on recurrent mechanisms,
such as xLSTM and Mamba, have been
proposed as alternatives to attention-based
models. Although computation is done
differently than with the attention mech-
anism!, these recurrent models yield
good results and sometimes even outper-
form state-of-the-art attention-based mod-
els. In this work, we propose Distil-xLSTM,
an xLSTM-based Small Language Model
(SLM) trained by distilling knowledge
from a Large Language Model (LLM) that
shows promising results while being com-
pute and scale efficient. Our Distil-xLSTM
focuses on approximating a transformer-
based model attention parametrization us-
ing its recurrent sequence mixing compo-
nents and shows good results with minimal
training.

1 Introduction

Large Language Models (LLMs) have be-
come central to modern NLP research, with
state-of-the-art models such as Mistral (Jiang
etal., 2023) and LLaMA (Touvron et al., 2023)
demonstrating impressive capabilities across a
wide range of tasks. While recent trends show
growing interest in training these models at a
smaller scale evident in efforts like Phi (Abdin
et al., 2024) transformer-based architectures
still suffer from a core limitation: the quadratic
complexity of their self-attention mechanism
(Vaswani et al., 2017). This constraint hinders
scalability and deployment in resource-limited
settings, despite their success in domains such
as code generation (Hui et al., 2024) and mul-
timodal tasks (Wang et al., 2024).

In this paper, attention refers to self-attention
(Vaswani et al., 2017)

To address these limitations, alternative ar-
chitectures based on recurrent mechanisms
have emerged. Notably, Mamba (Dao and
Gu, 2024) and xLSTM (Beck et al., 2024) of-
fer linear time complexity and improved mem-
ory efficiency. These models show strong per-
formance across vision, language, and multi-
modal tasks (Alkin et al., 2024; Anthony et al.,
2024; Ren et al., 2024), prompting renewed
interest in non-attention-based models. Fur-
thermore, work by (Katharopoulos et al., 2020)
showed that causal transformers can be refor-
mulated as recurrent networks, further blur-
ring the lines between attention and recur-
rence.

In this paper, we explore whether the ex-
pressive power of attention-based models can
be transferred to a compact recurrent model.
Specifically, we introduce Distil-xLSTM, a
small language model (SLM) built on the
xLSTM architecture and trained via knowl-
edge distillation (Hinton et al., 2015) from a
transformer-based LLM. xXLSTM’s enhanced
memory mixing and parallel processing capa-
bilities allow it to approximate attention-like
behavior without relying on quadratic opera-
tions.

Unlike conventional distillation pipelines
that transfer knowledge within the same ar-
chitectural family, our work investigates cross-
architecture distillation from transformer to re-
current raising the question: can attention dy-
namics be learned by a recurrent model with
a fraction of the complexity?

Our contributions are threefold:

e We propose Distil-xLSTM, the first
xLSTM-based SLM distilled from a
transformer LLM.

e Weintroduce a dual-annealing distillation
loss that adapts over time, helping the stu-



dent bridge the architectural and capacity
&ap-

e We demonstrate that recurrent models
can emulate attention behavior efficiently,
achieving competitive results with mini-
mal compute.

The remainder of this paper is structured as
follows. Section 2 reviews key concepts. Sec-
tion 4 details our approach, followed by exper-
iments in Section 5. We discuss related work
in Section 3 and conclude in Section 6.

2 Background

Transformer-based models rely on self-
attention mechanisms (Vaswani et al., 2017),
which allow each token to contextualize itself
based on all others in the sequence. While
highly effective, the quadratic complexity with
respect to sequence length makes this ap-
proach computationally expensive, particu-
larly for long-context scenarios.

Recurrent models such as LSTMs (Hochre-
iter and Schmidhuber, 1997) offer an alter-
native with constant memory and time per
step, but struggle with long-term dependen-
cies. The Extended LSTM (xLSTM) architec-
ture (Beck et al., 2024) addresses these limita-
tions by introducing two key innovations. The
sLSTM variant introduces scalar memory with
a novel memory mixing approach and stabi-
lization mechanisms to improve gradient flow.
The mLSTM variant generalizes memory to a
matrix form, enabling parallel content-based
memory access using learned key, value, and
query projections. Together, these enhance-
ments allow XLSTM to scale effectively while
retaining recurrent advantages.

To further improve scalability, we consider
knowledge distillation (Hinton et al., 2015),
a training strategy where a compact student
model learns to mimic a larger teacher model.
By aligning the student’s output distribution
with softened teacher outputs often using
Kullback-Leibler divergence in combination
with standard cross-entropy the student inher-
its performance traits with reduced computa-
tional cost.

3 Related Work

Knowledge distillation. The Born-Again
Multi-task (BAM) framework (Clark et al.,
2019) introduced teacher annealing for multi-
task learning, where a student model transi-
tions from soft targets to hard labels as training
progresses. Annealing-KD (Jafari et al., 2021)
extended this idea by reducing temperature
over epochs to better align the teacher’s signal
with the student’s limited capacity.

Our proposed J-distillation builds on these
insights by annealing both the soft target
weight (#) and temperature (T) over time.
This dual-annealing mechanism allows the stu-
dent to gradually internalize the teacher’s dark
knowledge, achieving both performance gains
and effective compression.

Distillation for architecture simplification.
Bick et al. (Bick et al., 2025) proposed MO-
HAWK, a method for distilling transformers
into Mamba-based hybrids through staged pa-
rameter reuse and alignment. While their fo-
cus is on hybrid architectures, our work targets
purely recurrent models specifically xLSTMs.

In contrast to MOHAWK, é-distillation trans-
fers only the embedding and classification
layers, preserving architectural independence
while benefiting from teacher guidance. This
choice supports deployment in low-resource
or transformer-incompatible environments.

Table 1 summarizes key differences.

4 5-Distillation Process

Contemporary state-of-the-art language
models can be conceptualized as comprising
three principal components: an embedding
layer, attention blocks (facilitating sequence
mixing), and the classification head (func-
tioning as the channel mixer) (Bick et al.,
2025). The attention blocks constitute the crit-
ical architecture underlying these models’ ef-
ficacy, wherein intricate token relationships
are learned, effectively capturing dependen-
cies within the input sequence.

Informed by this framework of sequence and
channel mixers, we hypothesize that a recur-
rent model architecture, specifically one pred-
icated on XLSTM, can approximate the inter-
nal representations generated by the attention
layers of a transformer. This hypothesis ex-



Table 1: Comparison of J-distillation with related works.
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Figure 1: Proposed distillation framework

tends the foundational work of Katharopoulos
etal. (Katharopoulos et al., 2020), who demon-
strated that transformer layers with causal
masking can be reformulated as linear recur-
rent neural networks, with recurrence con-
sidered temporally. Their analysis reframes
self-attention operations into row-wise com-
putations, establishing a theoretical basis for

modeling attention mechanisms through recur-
rent architectures. Through the linearization
of attention via kernel-based methodologies,
they established a framework for approximat-
ing attention mechanisms without incurring
quadratic computational complexity.

Building upon this theoretical foundation,
our distillation framework (illustrated in Fig-



ure 1) adopts a novel methodological ap-
proach: utilizing the teacher model’s embed-
ding layer and classification head weights to
initialize the corresponding components in
the student model. This initialization strat-
egy presupposes that the teacher’s parame-
ters for these components have achieved op-
timal or near-optimal configurations. Conse-
quently, our primary investigative focus shifts
to approximating the teacher’s sequence mixer,
specifically its attention blocks exclusively
through xLSTM blocks. This architectural de-
sign simplifies the distillation process while
ensuring that the student model maintains the
capacity to replicate the teacher’s rich inter-
nal representations. Through this recurrent
formulation, our framework bridges the gap
between transformer-based and recurrent ar-
chitectures, while simultaneously demonstrat-
ing the feasibility of achieving transformer-
comparable performance with computation-
ally more efficient recurrent models.

To address the inherent challenges of knowl-
edge transfer from a transformer to an xL-
STM model, we introduce a novel frame-
work termed J-distillation. This methodol-
ogy reconceptualizes the traditional knowl-
edge distillation paradigm by implementing a
time-varying loss function, wherein the scaling
parameter & undergoes progressive reduction
throughout the training process. This gradual
modulation encourages the student model to
initially leverage the teacher’s dark knowledge
and subsequently transition its learning focus
toward the hard labels provided by the dataset.
Furthermore, rather than instructing the stu-
dent to emulate the teacher’s output distribu-
tion, our objective is to enable the student to
learn an approximation of the teacher’s hidden
parametrization.

The fundamental principles of é-Distillation
are articulated as follows:

Progressive Annealing. The parameter « is
subjected to annealing within each epoch fol-
lowing a logarithmic schedule, ensuring a
smooth decay that facilitates stable gradient
propagation. Across successive epochs, « is
further reduced by a constant factor §, thereby
diminishing the student’s dependence on the
teacher over the course of training.

Logarithmic Schedule. The parameter a; at a
given global training step k is computed utiliz-

ing the following schedule:

Xinitial — Xfinal (1)

M= Minal ¥ 7 og (k+ 1)

Epoch-Wise Decay. After each epoch, « under-
goes reduction by a constant factor § (Equa-
tion (2)), ensuring systematic diminution over
the entire training period:

h = max(oc — da, “ﬁnal) (2>

Convergence Analysis. The limit of the sched-
ule function as k — +co is derived as follows:

Ninitial — Xfi
li - i ! initial final 3
P e <“fmal "1 +log (k+1) (3)
Ninitial — X

- 1 initial final
Mnal * MM e vy Y

=0
= Kfinal (5 )

This mathematical formulation ensures that
ax asymptotically converges to its final value,
enabling the student to continue receiving min-
imal guidance while predominantly learning
from hard labels.

Time-Varying Loss Function. A central com-
ponent of /-distillation is its time-varying loss
function that evolves dynamically within and
across epochs. Our distillation loss comprises
a weighted sum of two distinct components:
Alignment Loss (Lalign): The primary focus
of é-distillation involves hidden representa-
tion approximation; consequently, we employ
the mean of layer-wise Frobenius norms be-
tween the teacher’s and student’s hidden states
(Equation 7). We subsequently scale L,jig, by
a factor of 1/+/||hs|| to mitigate the high mag-
nitude of the Frobenius norm, where ||hs|| de-
notes the number of elements in tensor kg, rep-
resenting the hidden states produced by the
student model.

Task Loss (Lcp): Given that we train Distil-
xLSTM for next token prediction, our task loss
corresponds to the cross-entropy loss function.

The combined loss function is formally de-
fined as:

L1
Ldistill = (1 — ay) - Lop + o - 208



. 1& !
Lalign = 7 Y[l —hS)|lr (7)
=1
Where:

o oy € [0, 1]: Determines the relative weight
attributed to the teacher’s guidance.

e 1//||hs||: Functions as a normalization
term for the alignment loss.

e L: Represents the number of hidden layers
comprising both the teacher and student
models.

The distillation process is formally specified
in Algorithm 1. To enhance stability during the
distillation process, we initialize the student
model’s sequence mixer using the following
methodological approach:

1. Number of Sequence Mixing Layers: Let
Lt denote the number of attention layers
in the teacher’s sequence mixer. The stu-
dent’s sequence mixer is initialized with
Ls = Lt xLSTM blocks, ensuring that the
student model possesses comparable ex-
pressive capacity to that of the teacher
model.

2. Number of Heads: Let Hr denote the
number of attention heads within each
attention layer of the teacher. Each xL-
STM block in the student model is initial-
ized with Hs = roundup(Hr,4), where
roundup(x, k) rounds x up to the near-
est multiple of k. This parameterization
ensures that the number of heads in the
student’s xLSTM blocks achieves both ex-
pressive capacity and computational effi-
ciency.

Through this initialization strategy, we ad-
dress the following critical considerations:

e Capacity Matching: By establishing Ls =
Lt, the student model attains equiva-
lent depth to the teacher. Given the xL-
STM'’s inherently lower parameter count
compared to an attention layer, this ap-
proach ensures that the student model
can acquire comparable expressive capac-
ity without incurring excessive computa-
tional costs.

o Expressive Attention Mechanisms:
Through the parameterization
Hs = roundup(H;, 4), the student’s
xLSTM blocks incorporate sufficient
computation heads to effectively emulate
the teacher’s attention mechanisms while
maintaining computational efficiency.

The salient advantages of our approach can
be summarized as follows:

e Dynamic Teacher-Student Balance:
Through the gradual transition from
teacher-guided knowledge distillation
to pseudo-autonomous learning, the
combined loss function ensures that the
student model effectively assimilates both
the teacher’s domain expertise and the
inherent structural patterns within the
dataset.

e Enhanced Generalization: The calibrated
equilibrium between L}, (attention ap-
proximation) and Lcg (hard labels) mit-
igates overfitting to either the teacher’s
dark knowledge or the dataset’s idiosyn-
crasies, thereby promoting superior gen-
eralization performance on unseen data
distributions.

e Gradient-Stable Learning Progression:
The progressive modulation of « facili-
tates a stable and controlled transition in
learning focus, circumventing abrupt al-
terations that might otherwise destabilize
the optimization trajectory.

The é-distillation framework thus achieves
an optimal balance between teacher guidance
and independent learning, enabling efficient
knowledge transfer into compact recurrent
architectures while preserving model perfor-
mance.

5 Experimental Results

5.1 Experimental Configuration

We conducted comprehensive training of
the Distil-xXLSTM model utilizing SmolLM2-
360M (Allal et al., 2025) as the teacher model.
Experimental procedures were executed on an
Nvidia T4 GPU employing FP16 mixed preci-
sion training methodology (Micikevicius et al.,
2018). The training regimen encompassed



Algorithm 1 j-Distillation Framework

1: Input: ®initial, Xfinal, 0K, Mepochss steps_per_epoch

2: for epoch =1 t0 fepochs O
3: for step = 1 to steps_per_epoch do

4: Perform forward pass and compute the distillation loss:
i
Laistn = (1 — ag) - Log +ap - — ==
[Ihs]
5: Perform backward pass and update model parameters
6: Update a; using the schedule:
& — Kfinal
— Qfinal +
M 7 Bfinal ¥ 97 log (step + 1)
7: end for
8: Update « for the next epoch: a <— max(a — da, afinar)
9: end for

processing 512M tokens extracted from the
FineWeb dataset (Lozhkov et al., 2024) over a
single epoch.

For our experimental investigations, we pri-
marily employed the mLSTM block architec-
ture within our model, selected for its su-
perior recall capacity, thereby ensuring im-
proved training dynamics. Through the reuse
of the embedding layer and classification head
weights from the teacher model, our Distil-
xLSTM architecture incorporates 32 mLSTM
blocks. The resultant model comprises 279M
parameters, of which only 184M parameters
(approximately 65.94% of the total parameter
count), corresponding to the sequence mixer’s
parameters, are actively trained during the
distillation process. This architectural config-
uration significantly reduces computational
training requirements while preserving per-
formance characteristics comparable to the
teacher model.

5.2 Training Results

Our experimental results demonstrate the
effectiveness of the /-distillation framework.
Throughout the training process spanning 10
epochs, we observed consistent convergence of
the total loss, indicating effective knowledge
transfer from the teacher model (SmolLM2-
360M) to our more efficient Distil-xLSTM ar-
chitecture. 2

2Figures illustrating the training dynamics have been
omitted due to space constraints.

The cross-entropy loss exhibited steady de-
cline over the training period, demonstrat-
ing the student model’s increasing proficiency
in learning from hard labels. Concurrently,
we monitored the alignment loss based on
the Frobenius norm, which showed initial
fluctuations before stabilizing. This behav-
ior aligns with our J-distillation methodology,
where the model progressively shifts emphasis
from teacher guidance to independent learn-
ing from training data.

Notably, the gradient norm measurements
revealed a significant reduction over the course
of training, decreasing from initial values
around 10 to stabilize below 8. This reduction
indicates that our incorporation of the Frobe-
nius norm effectively stabilized the training
process, requiring less aggressive parameter
updates while maintaining performance com-
parable to the teacher model.

The perplexity metrics, as presented in Ta-
ble 2, offer compelling evidence of our ap-
proach’s efficacy. On C4 benchmark, Distil-
xLSTM achieved a perplexity of 566, position-
ing it between the teacher model’s 373 and the
baseline XLSTM'’s 1576. More remarkably, on
the LAMBADA benchmark, our Distil-xLSTM
substantially outperformed both the teacher
model and the baseline xLSTM, recording a
perplexity of 3375 compared to 47953 and
12011, respectively.

These results are particularly noteworthy
considering that only 65.94% of Distil-xLSTM’s



Table 2: Perplexity comparison across language
models on C4 and LAMBADA benchmarks. Lower

perplexity indicates better performance. Best
scores are shown in bold.
Model C4 LAMBADA
Pretrained SmolLM2 (Teacher) 373 47953
Distil-xLSTM (Student) 566 3375
xLSTM (Baseline) 1576 12011

parameters (184M out of 279M) were actively
trained during the distillation process. This ef-
ficiency, coupled with the model’s strong per-
formance metrics, underscores the effective-
ness of our é-distillation framework in trans-
ferring knowledge from a transformer-based
teacher to a recurrent architecture while main-
taining and in some cases exceeding the per-
formance characteristics of the teacher model.

6 Conclusion

In this work, we introduce Distil-xLSTM,
an xLSTM-based SLM designed to ap-
proximate the attention mechanisms of
transformer-based models through cross-

architecture knowledge distillation. = Our
principal contributions are as follows:
e Cross-Architecture Distillation: We

demonstrate effective knowledge transfer
from a transformer-based teacher to
a purely recurrent student architec-
ture (xLSTM). This methodological
approach bridges the fundamental gap
between attention-based and recurrent
computational paradigms, thereby
enabling efficient model deployment
in resource-constrained computational
environments.

o Architectural Innovations: We leverage
xLSTM’s enhanced capabilities, specifi-
cally the mLSTM block architecture, par-
allel computation methodologies, and sta-
bilizer states to effectively approximate at-
tention mechanisms. The student model
implements a reduced yet expressively
powerful architecture, initialized with ap-
proximately 22% fewer parameters and
optimized computation head configura-
tions derived from the teacher model.

e Alignment via Frobenius Norm: We in-
troduce a novel hidden state alignment

loss term to facilitate compressed and sta-
bilized knowledge transfer. This mathe-
matical formulation aligns the student’s
latent representations with those of the
teacher, thereby mitigating architectural
disparities and enhancing training stabil-
ity throughout the distillation process.

e Computational Efficiency: Our frame-
work achieves significant computational
efficiency through strategic weight reuse
(specifically the embedding layer and clas-
sification head from the teacher model)
and minimal trainable parameters (65% of
the total parameter count), substantially
reducing training computational require-
ments. Experimental evaluations con-
ducted on 512M tokens with a model com-
prising 279M parameters demonstrate
convergence characteristics comparable to
transformer baselines, despite the linear
scaling properties inherent to recurrent
architectural designs.

While Distil-xLSTM establishes a foundation
for cross-architecture knowledge distillation
from transformers to recurrent models, several
promising directions remain. Extending this
framework to other modalities particularly vi-
sion could test its generality, especially given
the dominance of attention in visual modeling.

Adaptive distillation strategies that tailor
knowledge transfer to task complexity and
model capacity offer another avenue for boost-
ing efficiency. Finally, scaling experiments
across a broader spectrum of model sizes both
smaller students and larger teachers will help
assess the robustness and applicability of our
method in diverse deployment scenarios.

Limitations

While the results are promising, they were
achieved on a limited scale due to resource con-
straints. As part of our future work, we aim to
scale up our experiments to larger datasets and
more complex tasks, which will further test
the robustness and generalizability of Distil-
xLSTM. We believe this direction holds sig-
nificant promise for environments requiring
efficient yet capable models, particularly in
resource-constrained settings.
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