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Abstract001

The current era of Natural Language Pro-002
cessing (NLP) is dominated by Trans-003
former models. However, novel architec-004
tures relying on recurrent mechanisms,005
such as xLSTM and Mamba, have been006
proposed as alternatives to attention-based007
models. Although computation is done008
differently than with the attention mech-009
anism1, these recurrent models yield010
good results and sometimes even outper-011
form state-of-the-art attention-based mod-012
els. In this work, we propose Distil-xLSTM,013
an xLSTM-based Small Language Model014
(SLM) trained by distilling knowledge015
from a Large Language Model (LLM) that016
shows promising results while being com-017
pute and scale efficient. Our Distil-xLSTM018
focuses on approximating a transformer-019
based model attention parametrization us-020
ing its recurrent sequence mixing compo-021
nents and shows good resultswithminimal022
training.023

1 Introduction024

Large Language Models (LLMs) have be-025

come central to modern NLP research, with026

state-of-the-art models such as Mistral (Jiang027

et al., 2023) and LLaMA (Touvron et al., 2023)028

demonstrating impressive capabilities across a029

wide range of tasks. While recent trends show030

growing interest in training these models at a031

smaller scale evident in efforts like Phi (Abdin032

et al., 2024) transformer-based architectures033

still suffer from a core limitation: the quadratic034

complexity of their self-attention mechanism035

(Vaswani et al., 2017). This constraint hinders036

scalability and deployment in resource-limited037

settings, despite their success in domains such038

as code generation (Hui et al., 2024) and mul-039

timodal tasks (Wang et al., 2024).040

1In this paper, attention refers to self-attention
(Vaswani et al., 2017)

To address these limitations, alternative ar- 041

chitectures based on recurrent mechanisms 042

have emerged. Notably, Mamba (Dao and 043

Gu, 2024) and xLSTM (Beck et al., 2024) of- 044

fer linear time complexity and improved mem- 045

ory efficiency. These models show strong per- 046

formance across vision, language, and multi- 047

modal tasks (Alkin et al., 2024; Anthony et al., 048

2024; Ren et al., 2024), prompting renewed 049

interest in non-attention-based models. Fur- 050

thermore, work by (Katharopoulos et al., 2020) 051

showed that causal transformers can be refor- 052

mulated as recurrent networks, further blur- 053

ring the lines between attention and recur- 054

rence. 055

In this paper, we explore whether the ex- 056

pressive power of attention-based models can 057

be transferred to a compact recurrent model. 058

Specifically, we introduce Distil-xLSTM, a 059

small language model (SLM) built on the 060

xLSTM architecture and trained via knowl- 061

edge distillation (Hinton et al., 2015) from a 062

transformer-based LLM. xLSTM’s enhanced 063

memory mixing and parallel processing capa- 064

bilities allow it to approximate attention-like 065

behavior without relying on quadratic opera- 066

tions. 067

Unlike conventional distillation pipelines 068

that transfer knowledge within the same ar- 069

chitectural family, our work investigates cross- 070

architecture distillation from transformer to re- 071

current raising the question: can attention dy- 072

namics be learned by a recurrent model with 073

a fraction of the complexity? 074

Our contributions are threefold: 075

• We propose Distil-xLSTM, the first 076

xLSTM-based SLM distilled from a 077

transformer LLM. 078

• We introduce a dual-annealing distillation 079

loss that adapts over time, helping the stu- 080
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dent bridge the architectural and capacity081

gap.082

• We demonstrate that recurrent models083

can emulate attention behavior efficiently,084

achieving competitive results with mini-085

mal compute.086

The remainder of this paper is structured as087

follows. Section 2 reviews key concepts. Sec-088

tion 4 details our approach, followed by exper-089

iments in Section 5. We discuss related work090

in Section 3 and conclude in Section 6.091

2 Background092

Transformer-based models rely on self-093

attention mechanisms (Vaswani et al., 2017),094

which allow each token to contextualize itself095

based on all others in the sequence. While096

highly effective, the quadratic complexity with097

respect to sequence length makes this ap-098

proach computationally expensive, particu-099

larly for long-context scenarios.100

Recurrent models such as LSTMs (Hochre-101

iter and Schmidhuber, 1997) offer an alter-102

native with constant memory and time per103

step, but struggle with long-term dependen-104

cies. The Extended LSTM (xLSTM) architec-105

ture (Beck et al., 2024) addresses these limita-106

tions by introducing two key innovations. The107

sLSTM variant introduces scalar memory with108

a novel memory mixing approach and stabi-109

lization mechanisms to improve gradient flow.110

The mLSTM variant generalizes memory to a111

matrix form, enabling parallel content-based112

memory access using learned key, value, and113

query projections. Together, these enhance-114

ments allow xLSTM to scale effectively while115

retaining recurrent advantages.116

To further improve scalability, we consider117

knowledge distillation (Hinton et al., 2015),118

a training strategy where a compact student119

model learns to mimic a larger teacher model.120

By aligning the student’s output distribution121

with softened teacher outputs often using122

Kullback-Leibler divergence in combination123

with standard cross-entropy the student inher-124

its performance traits with reduced computa-125

tional cost.126

3 Related Work 127

Knowledge distillation. The Born-Again 128

Multi-task (BAM) framework (Clark et al., 129

2019) introduced teacher annealing for multi- 130

task learning, where a student model transi- 131

tions from soft targets to hard labels as training 132

progresses. Annealing-KD (Jafari et al., 2021) 133

extended this idea by reducing temperature 134

over epochs to better align the teacher’s signal 135

with the student’s limited capacity. 136

Our proposed δ-distillation builds on these 137

insights by annealing both the soft target 138

weight (α) and temperature (T) over time. 139

This dual-annealingmechanism allows the stu- 140

dent to gradually internalize the teacher’s dark 141

knowledge, achieving both performance gains 142

and effective compression. 143

Distillation for architecture simplification. 144

Bick et al. (Bick et al., 2025) proposed MO- 145

HAWK, a method for distilling transformers 146

into Mamba-based hybrids through staged pa- 147

rameter reuse and alignment. While their fo- 148

cus is on hybrid architectures, our work targets 149

purely recurrent models specifically xLSTMs. 150

In contrast toMOHAWK, δ-distillation trans- 151

fers only the embedding and classification 152

layers, preserving architectural independence 153

while benefiting from teacher guidance. This 154

choice supports deployment in low-resource 155

or transformer-incompatible environments. 156

Table 1 summarizes key differences. 157

4 δ-Distillation Process 158

Contemporary state-of-the-art language 159

models can be conceptualized as comprising 160

three principal components: an embedding 161

layer, attention blocks (facilitating sequence 162

mixing), and the classification head (func- 163

tioning as the channel mixer) (Bick et al., 164

2025). The attention blocks constitute the crit- 165

ical architecture underlying these models’ ef- 166

ficacy, wherein intricate token relationships 167

are learned, effectively capturing dependen- 168

cies within the input sequence. 169

Informed by this framework of sequence and 170

channel mixers, we hypothesize that a recur- 171

rent model architecture, specifically one pred- 172

icated on xLSTM, can approximate the inter- 173

nal representations generated by the attention 174

layers of a transformer. This hypothesis ex- 175
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Table 1: Comparison of δ-distillation with related works.

Method Teacher
Architecture

Student
Architecture Goal

Teacher Annealing
(Clark et al., 2019) Transformer Transformer Student performance

improvement
Annealing-KD

(Jafari et al., 2021) Transformer Transformer Teacher knowledge
compression

MOHAWK
(Bick et al., 2025) Transformer Mamba/Hybrid Block-wise matrix alignment

δ-distillation Transformer xLSTM

Student performance
improvement
and teacher hidden
parametrization approx-
imation

Input Sequence

Embeddings �

xLSTM blocks \

LM Head �

Student logits

Embeddings �

Attention blocks �

LM Head �

Teacher logits

Lalign

Student Teacher

Sequence Mixer

Channel Mixer

LCE

Hard labels

+
(1− αk)

α
k

Ldistill

αk = α f inal + αinitial−α f inal
1+log(k+1)

� Frozen parameters \ Trainable parameters

Figure 1: Proposed distillation framework

tends the foundational work of Katharopoulos176

et al. (Katharopoulos et al., 2020), who demon-177

strated that transformer layers with causal178

masking can be reformulated as linear recur-179

rent neural networks, with recurrence con-180

sidered temporally. Their analysis reframes181

self-attention operations into row-wise com-182

putations, establishing a theoretical basis for183

modeling attentionmechanisms through recur- 184

rent architectures. Through the linearization 185

of attention via kernel-based methodologies, 186

they established a framework for approximat- 187

ing attention mechanisms without incurring 188

quadratic computational complexity. 189

Building upon this theoretical foundation, 190

our distillation framework (illustrated in Fig- 191
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ure 1) adopts a novel methodological ap-192

proach: utilizing the teacher model’s embed-193

ding layer and classification head weights to194

initialize the corresponding components in195

the student model. This initialization strat-196

egy presupposes that the teacher’s parame-197

ters for these components have achieved op-198

timal or near-optimal configurations. Conse-199

quently, our primary investigative focus shifts200

to approximating the teacher’s sequence mixer,201

specifically its attention blocks exclusively202

through xLSTM blocks. This architectural de-203

sign simplifies the distillation process while204

ensuring that the student model maintains the205

capacity to replicate the teacher’s rich inter-206

nal representations. Through this recurrent207

formulation, our framework bridges the gap208

between transformer-based and recurrent ar-209

chitectures, while simultaneously demonstrat-210

ing the feasibility of achieving transformer-211

comparable performance with computation-212

ally more efficient recurrent models.213

To address the inherent challenges of knowl-214

edge transfer from a transformer to an xL-215

STM model, we introduce a novel frame-216

work termed δ-distillation. This methodol-217

ogy reconceptualizes the traditional knowl-218

edge distillation paradigm by implementing a219

time-varying loss function, wherein the scaling220

parameter α undergoes progressive reduction221

throughout the training process. This gradual222

modulation encourages the student model to223

initially leverage the teacher’s dark knowledge224

and subsequently transition its learning focus225

toward the hard labels provided by the dataset.226

Furthermore, rather than instructing the stu-227

dent to emulate the teacher’s output distribu-228

tion, our objective is to enable the student to229

learn an approximation of the teacher’s hidden230

parametrization.231

The fundamental principles of δ-Distillation232

are articulated as follows:233

Progressive Annealing. The parameter α is234

subjected to annealing within each epoch fol-235

lowing a logarithmic schedule, ensuring a236

smooth decay that facilitates stable gradient237

propagation. Across successive epochs, α is238

further reduced by a constant factor δ, thereby239

diminishing the student’s dependence on the240

teacher over the course of training.241

Logarithmic Schedule. The parameter αk at a242

given global training step k is computed utiliz-243

ing the following schedule: 244

αk = αfinal +
αinitial − αfinal
1 + log (k + 1)

(1) 245

Epoch-Wise Decay. After each epoch, α under- 246

goes reduction by a constant factor δ (Equa- 247

tion (2)), ensuring systematic diminution over 248

the entire training period: 249

α← max(α− δα, αfinal) (2) 250

Convergence Analysis. The limit of the sched- 251

ule function as k→ +∞ is derived as follows: 252

lim
k→+∞

αk = lim
k→+∞

(
αfinal +

αinitial − αfinal
1 + log (k + 1)

)
(3) 253

= αfinal + lim
k→+∞

αinitial − αfinal
1 + log (k + 1)︸ ︷︷ ︸

=0

(4) 254

= αfinal (5) 255

This mathematical formulation ensures that 256

αk asymptotically converges to its final value, 257

enabling the student to continue receivingmin- 258

imal guidance while predominantly learning 259

from hard labels. 260

Time-Varying Loss Function. A central com- 261

ponent of δ-distillation is its time-varying loss 262

function that evolves dynamically within and 263

across epochs. Our distillation loss comprises 264

a weighted sum of two distinct components: 265

Alignment Loss (Lalign): The primary focus 266

of δ-distillation involves hidden representa- 267

tion approximation; consequently, we employ 268

the mean of layer-wise Frobenius norms be- 269

tween the teacher’s and student’s hidden states 270

(Equation 7). We subsequently scale Lalign by 271

a factor of 1/
√
||hS|| to mitigate the high mag- 272

nitude of the Frobenius norm, where ||hS|| de- 273

notes the number of elements in tensor hS, rep- 274

resenting the hidden states produced by the 275

student model. 276

Task Loss (LCE): Given that we train Distil- 277

xLSTM for next token prediction, our task loss 278

corresponds to the cross-entropy loss function. 279

The combined loss function is formally de- 280

fined as: 281

Ldistill = (1− αk) · LCE + αk ·
Lalign√
||hS||

(6) 282
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Lalign =
1
L

L

∑
l=1
||h(l)

T − h(l)
S ||F (7)283

Where:284

• αk ∈ [0, 1]: Determines the relativeweight285

attributed to the teacher’s guidance.286

• 1/
√
||hS||: Functions as a normalization287

term for the alignment loss.288

• L: Represents the number of hidden layers289

comprising both the teacher and student290

models.291

The distillation process is formally specified292

in Algorithm 1. To enhance stability during the293

distillation process, we initialize the student294

model’s sequence mixer using the following295

methodological approach:296

1. Number of Sequence Mixing Layers: Let297

LT denote the number of attention layers298

in the teacher’s sequence mixer. The stu-299

dent’s sequence mixer is initialized with300

LS = LT xLSTM blocks, ensuring that the301

student model possesses comparable ex-302

pressive capacity to that of the teacher303

model.304

2. Number of Heads: Let HT denote the305

number of attention heads within each306

attention layer of the teacher. Each xL-307

STM block in the student model is initial-308

ized with HS = roundup(HT , 4), where309

roundup(x, k) rounds x up to the near-310

est multiple of k. This parameterization311

ensures that the number of heads in the312

student’s xLSTM blocks achieves both ex-313

pressive capacity and computational effi-314

ciency.315

Through this initialization strategy, we ad-316

dress the following critical considerations:317

• Capacity Matching: By establishing LS =318

LT, the student model attains equiva-319

lent depth to the teacher. Given the xL-320

STM’s inherently lower parameter count321

compared to an attention layer, this ap-322

proach ensures that the student model323

can acquire comparable expressive capac-324

ity without incurring excessive computa-325

tional costs.326

• Expressive Attention Mechanisms: 327

Through the parameterization 328

Hs = roundup(Ht, 4), the student’s 329

xLSTM blocks incorporate sufficient 330

computation heads to effectively emulate 331

the teacher’s attention mechanisms while 332

maintaining computational efficiency. 333

The salient advantages of our approach can 334

be summarized as follows: 335

• Dynamic Teacher-Student Balance: 336

Through the gradual transition from 337

teacher-guided knowledge distillation 338

to pseudo-autonomous learning, the 339

combined loss function ensures that the 340

student model effectively assimilates both 341

the teacher’s domain expertise and the 342

inherent structural patterns within the 343

dataset. 344

• Enhanced Generalization: The calibrated 345

equilibrium between Lalign (attention ap- 346

proximation) and LCE (hard labels) mit- 347

igates overfitting to either the teacher’s 348

dark knowledge or the dataset’s idiosyn- 349

crasies, thereby promoting superior gen- 350

eralization performance on unseen data 351

distributions. 352

• Gradient-Stable Learning Progression: 353

The progressive modulation of α facili- 354

tates a stable and controlled transition in 355

learning focus, circumventing abrupt al- 356

terations that might otherwise destabilize 357

the optimization trajectory. 358

The δ-distillation framework thus achieves 359

an optimal balance between teacher guidance 360

and independent learning, enabling efficient 361

knowledge transfer into compact recurrent 362

architectures while preserving model perfor- 363

mance. 364

5 Experimental Results 365

5.1 Experimental Configuration 366

We conducted comprehensive training of 367

the Distil-xLSTM model utilizing SmolLM2- 368

360M (Allal et al., 2025) as the teacher model. 369

Experimental procedures were executed on an 370

Nvidia T4 GPU employing FP16 mixed preci- 371

sion training methodology (Micikevicius et al., 372

2018). The training regimen encompassed 373
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Algorithm 1 δ-Distillation Framework
1: Input: αinitial, αfinal, δα, nepochs, steps_per_epoch
2: for epoch = 1 to nepochs do
3: for step = 1 to steps_per_epoch do
4: Perform forward pass and compute the distillation loss:

Ldistill = (1− αk) · LCE + αk ·
Lalign√
||hS||

5: Perform backward pass and update model parameters
6: Update αk using the schedule:

αk ← αfinal +
α− αfinal

1 + log (step + 1)

7: end for
8: Update α for the next epoch: α← max(α− δα, αfinal)
9: end for

processing 512M tokens extracted from the374

FineWeb dataset (Lozhkov et al., 2024) over a375

single epoch.376

For our experimental investigations, we pri-377

marily employed the mLSTM block architec-378

ture within our model, selected for its su-379

perior recall capacity, thereby ensuring im-380

proved training dynamics. Through the reuse381

of the embedding layer and classification head382

weights from the teacher model, our Distil-383

xLSTM architecture incorporates 32 mLSTM384

blocks. The resultant model comprises 279M385

parameters, of which only 184M parameters386

(approximately 65.94% of the total parameter387

count), corresponding to the sequence mixer’s388

parameters, are actively trained during the389

distillation process. This architectural config-390

uration significantly reduces computational391

training requirements while preserving per-392

formance characteristics comparable to the393

teacher model.394

5.2 Training Results395

Our experimental results demonstrate the396

effectiveness of the δ-distillation framework.397

Throughout the training process spanning 10398

epochs, we observed consistent convergence of399

the total loss, indicating effective knowledge400

transfer from the teacher model (SmolLM2-401

360M) to our more efficient Distil-xLSTM ar-402

chitecture. 2403

2Figures illustrating the training dynamics have been
omitted due to space constraints.

The cross-entropy loss exhibited steady de- 404

cline over the training period, demonstrat- 405

ing the student model’s increasing proficiency 406

in learning from hard labels. Concurrently, 407

we monitored the alignment loss based on 408

the Frobenius norm, which showed initial 409

fluctuations before stabilizing. This behav- 410

ior aligns with our δ-distillation methodology, 411

where themodel progressively shifts emphasis 412

from teacher guidance to independent learn- 413

ing from training data. 414

Notably, the gradient norm measurements 415

revealed a significant reduction over the course 416

of training, decreasing from initial values 417

around 10 to stabilize below 8. This reduction 418

indicates that our incorporation of the Frobe- 419

nius norm effectively stabilized the training 420

process, requiring less aggressive parameter 421

updates while maintaining performance com- 422

parable to the teacher model. 423

The perplexity metrics, as presented in Ta- 424

ble 2, offer compelling evidence of our ap- 425

proach’s efficacy. On C4 benchmark, Distil- 426

xLSTM achieved a perplexity of 566, position- 427

ing it between the teacher model’s 373 and the 428

baseline xLSTM’s 1576. More remarkably, on 429

the LAMBADA benchmark, our Distil-xLSTM 430

substantially outperformed both the teacher 431

model and the baseline xLSTM, recording a 432

perplexity of 3375 compared to 47953 and 433

12011, respectively. 434

These results are particularly noteworthy 435

considering that only 65.94% of Distil-xLSTM’s 436
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Table 2: Perplexity comparison across language
models on C4 and LAMBADA benchmarks. Lower
perplexity indicates better performance. Best
scores are shown in bold.
Model C4 LAMBADA

Pretrained SmolLM2 (Teacher) 373 47953
Distil-xLSTM (Student) 566 3375
xLSTM (Baseline) 1576 12011

parameters (184M out of 279M) were actively437

trained during the distillation process. This ef-438

ficiency, coupled with the model’s strong per-439

formance metrics, underscores the effective-440

ness of our δ-distillation framework in trans-441

ferring knowledge from a transformer-based442

teacher to a recurrent architecture while main-443

taining and in some cases exceeding the per-444

formance characteristics of the teacher model.445

6 Conclusion446

In this work, we introduce Distil-xLSTM,447

an xLSTM-based SLM designed to ap-448

proximate the attention mechanisms of449

transformer-based models through cross-450

architecture knowledge distillation. Our451

principal contributions are as follows:452

• Cross-Architecture Distillation: We453

demonstrate effective knowledge transfer454

from a transformer-based teacher to455

a purely recurrent student architec-456

ture (xLSTM). This methodological457

approach bridges the fundamental gap458

between attention-based and recurrent459

computational paradigms, thereby460

enabling efficient model deployment461

in resource-constrained computational462

environments.463

• Architectural Innovations: We leverage464

xLSTM’s enhanced capabilities, specifi-465

cally the mLSTM block architecture, par-466

allel computation methodologies, and sta-467

bilizer states to effectively approximate at-468

tention mechanisms. The student model469

implements a reduced yet expressively470

powerful architecture, initialized with ap-471

proximately 22% fewer parameters and472

optimized computation head configura-473

tions derived from the teacher model.474

• Alignment via Frobenius Norm: We in-475

troduce a novel hidden state alignment476

loss term to facilitate compressed and sta- 477

bilized knowledge transfer. This mathe- 478

matical formulation aligns the student’s 479

latent representations with those of the 480

teacher, thereby mitigating architectural 481

disparities and enhancing training stabil- 482

ity throughout the distillation process. 483

• Computational Efficiency: Our frame- 484

work achieves significant computational 485

efficiency through strategic weight reuse 486

(specifically the embedding layer and clas- 487

sification head from the teacher model) 488

andminimal trainable parameters (65% of 489

the total parameter count), substantially 490

reducing training computational require- 491

ments. Experimental evaluations con- 492

ducted on 512M tokens with amodel com- 493

prising 279M parameters demonstrate 494

convergence characteristics comparable to 495

transformer baselines, despite the linear 496

scaling properties inherent to recurrent 497

architectural designs. 498

WhileDistil-xLSTMestablishes a foundation 499

for cross-architecture knowledge distillation 500

from transformers to recurrent models, several 501

promising directions remain. Extending this 502

framework to other modalities particularly vi- 503

sion could test its generality, especially given 504

the dominance of attention in visual modeling. 505

Adaptive distillation strategies that tailor 506

knowledge transfer to task complexity and 507

model capacity offer another avenue for boost- 508

ing efficiency. Finally, scaling experiments 509

across a broader spectrum of model sizes both 510

smaller students and larger teachers will help 511

assess the robustness and applicability of our 512

method in diverse deployment scenarios. 513

Limitations 514

While the results are promising, they were 515

achieved on a limited scale due to resource con- 516

straints. As part of our future work, we aim to 517

scale up our experiments to larger datasets and 518

more complex tasks, which will further test 519

the robustness and generalizability of Distil- 520

xLSTM. We believe this direction holds sig- 521

nificant promise for environments requiring 522

efficient yet capable models, particularly in 523

resource-constrained settings. 524
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