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Abstract
Are Large Pre-Trained Language Models Leak-
ing Your Personal Information? In this paper, we
analyze whether Pre-Trained Language Models
(PLMs) are prone to leaking personal information.
Specifically, we query PLMs for email addresses
with contexts of the email address or prompts con-
taining the owner’s name. We find that PLMs do
leak personal information due to memorization.
However, since the models are weak at associ-
ation, the risk of specific personal information
being extracted by attackers is low. We hope this
work could help the community to better under-
stand the privacy risk of PLMs and bring new
insights to make PLMs safe.1

1. Introduction
Pre-trained Language Models (PLMs) (Devlin et al., 2019;
Brown et al., 2020; Qiu et al., 2020) have taken a signifi-
cant leap in a wide range of NLP tasks, attributing to the
explosive growth of parameters and training data. However,
recent studies also suggest that these large models pose
some privacy risks. For instance, an adversary is able to
recover training examples containing an individual person’s
name, email address, and phone number by querying the
model (Carlini et al., 2021). This may lead to privacy leak-
age if the model is trained on a private corpus, in which case
we want to improve the performance with the data (Huang
et al., 2019). Even if the data is public, PLMs may change
the intended use, e.g., for information that we share but do
not expect to be disseminated.

Carlini et al. (2021; 2022) demonstrate that PLMs mem-
orize a lot of training data, so they are prone to leaking
privacy. However, if the memorized information cannot be
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Figure 1. Results of asking GPT-3 (text-davinci-2) “Are Large Pre-
Trained Language Models Leaking Your Personal Information?”

effectively extracted, the attacker is still difficult to carry out
effective attacks. For instance, Lehman et al. (2021) attempt
to recover specific patient names and conditions with which
they are associated from a BERT model that is pre-trained
over clinical notes. However, they find that with their meth-
ods, the model cannot meaningfully associate names with
conditions, which suggests that PLMs may not be prone to
leaking personal information.

Based on existing research, we are not sure whether PLMs
are safe enough in terms of preserving personal privacy.
Therefore, we are interested in: Are Large Pre-Trained
Language Models Prone to Leaking Personal Information?

To answer the above question, we first identify two capac-
ities that may cause privacy leakage: memorization, i.e.,
PLMs memorize the personal information, thus the infor-
mation can be recovered with a specific prefix, e.g., tokens
before the information in the training data; and association,
i.e., PLMs can associate the personal information with its
owner, thus attackers can query the information with the
owner’s name, e.g., the email address of Tom is . If
a model can only memorize but not associate, though the
sensitive information may be leaked in some randomly gen-
erated text as shown in (Carlini et al., 2021), attackers cannot
effectively extract specific personal information since it is
difficult to find the prefix to extract the information. As far
as we know, this paper is the first to make this important
distinction.

We focus on studying a specific kind of personal informa-
tion – email address. Emails are an indispensable medium
for personal/business communication. However, there are
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abiding problems of email fraud and spam, and the source
of these problems is the leakage of personal information
including email addresses.

From our experiments, we find that PLMs do leak personal
information in some situations since they memorize a lot of
personal information. However, the risk of a specific per-
son’s information being extracted by an interesting attacker
is low since PLMs are weak at associating personal infor-
mation with the information owner. We also find that some
conditions, e.g., longer text patterns associated with email
addresses, more knowledge about the owner, and larger
scale of the model, may increase the attack success rate.
Our conclusion is that PLMs like GPT-Neo (Black et al.,
2021) are relatively safe in terms of preserving personal
information, but we still cannot ignore the potential privacy
risks of PLMs.

2. Related Work
Knowledge Retrieval from Language Models. Previous
works have shown that large PLMs contain a significant
amount of knowledge, which can be recovered by query-
ing PLMs with appropriate prompts (Petroni et al., 2019;
Bouraoui et al., 2020; Jiang et al., 2020a;b; Wang et al.,
2020). In this work, we attempt to extract personal infor-
mation from PLMs, which can be treated as a special kind
of knowledge. But unlike previous work that wants PLMs
to contains as much knowledge as possible, we prefer the
model to include as little personal information as possible
to avoid privacy leakage.

Memorization and Privacy Risks of Language Models. Re-
cent works have demonstrated that PLMs memorize large
portions of the training data (Carlini et al., 2021; 2022;
Thakkar et al., 2021). This may cause some privacy issues
since sensitive information may be memorized in the pa-
rameters of PLMs and be leaked in some situations. Pan
et al. (2020) find the text embeddings from language models
capture sensitive information from the plain text. Lehman
et al. (2021); Vakili & Dalianis (2021) study the privacy
risk of sharing parameters of BERT pre-trained on clinical
notes. To mitigate privacy leakage, there is a growing inter-
est in making PLMs privacy-preserving (Anil et al., 2021;
Li et al., 2022; Yu et al., 2021; Shi et al., 2021; Hoory et al.,
2021; Brown et al., 2022) by training PLMs with differential
privacy guarantees (Dwork et al., 2006; Dwork, 2008) or
removing sensitive information from the training corpus.

3. Problem Statement
Our task is to measure the risk of PLMs in terms of leak-
ing personal information. We identify two capacities of
PLMs that may cause privacy leakage: memorization and
association, defined as

Definition 1. (Memorization) Personal information x is
memorized by a model f if there exists a sequence p in the
training data for f , that can prompt f to produce x using
greedy decoding.2

Definition 2. (Association) Personal information x can be
associated by a model f if there exists a prompt p (usually
containing the information owner’s name) designed by the
attacker (who does not have access to the training data) that
can prompt f to produce x using greedy decoding.

To quantify memorization, an effective approach is to query
the model with the context of the target sequence (Carlini
et al., 2022). To measure association, we try to imperson-
ate attackers to attack the model by querying with various
prompts.

We focus on testing the models on email addresses. An
email address consists of two major parts, local part and
domain, forming local-part@domain, e.g., abcf@xyz.com.
We define attack tasks based on memorization and associ-
ation: 1) given the context of an email address, examine
whether the model can recover the email address; 2) given
the owner’s name, query PLMs for the associated email
address with an appropriate prompt.

4. Data and Pre-Trained Model
We test on the GPT-Neo model family (Black et al., 2021)
(125 million, 1.3 billion, and 2.7 billion parameters), which
are causal language models pre-trained on the Pile (Gao
et al., 2020), a large public corpus that contains text col-
lected from 22 diverse high-quality datasets, including the
Enron Corpus.

The Enron Corpus3 (Klimt & Yang, 2004) is a dataset con-
taining over 600,000 emails generated by employees of the
Enron Corporation. We process the corpus to collect (name,
email) pairs. Following Gao et al. (2020), we firstly parse
all the email contents to get the body parts. In these email
bodies, all the email addresses are extracted. Then referring
to the UC Berkeley Enron Database4, we map the email
addresses to their owners’ names to get (name, email) pairs.

The Enron Company email addresses have an obvious pat-
tern of first name.last name@enron.com. Language models
can easily follow this pattern to predict an email address
given the owner’s name, which makes the analysis meaning-
less. Therefore, in the experiments, we only focus on the
non-Enron domain addresses. To build the few-shot settings
(explained in section 5), we filtered out email addresses
whose domain appears less than 3 times in the corpus. We

2We modify the definition in (Carlini et al., 2022) to adapt to
personal information.

3http://www.cs.cmu.edu/∼enron/
4https://bailando.berkeley.edu/enron email.html
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also filtered out pairs whose name has more than 3 tokens,
in which case can be considered invalid. After all the pre-
processing, there are 3238 (name, email) pairs collected for
the following experiments.

5. Method
We design different prompts and feed them into GPT-Neo.
The first email address appearing in the output texts is ex-
tracted as the predicted email address. There are cases
where no email address appears in the output texts. Assum-
ing ({name0}, {email0}) is the target pair, the experiments
are designed as follows.

5.1. Context Setting

Carlini et al. (2022) quantify memorization by examining
whether PLMs can recover the rest of a sequence given the
prefix of the sequence. We adopt a similar approach to mea-
suring memorization of personal information. Specifically,
we use the 50, 100, or 200 tokens preceding the target email
address in the training corpus as the input of PLMs to elicit
the target email address.

5.2. Zero-Shot Setting

We mainly measure association in the zero-shot setting. We
create two prompts manually to extract the target email ad-
dress (A and B). We notice that many email addresses appear
in a form like “-----Original Message-----\nFrom:
{name0} [mailto: {email0}]”.5 This motivates us to
create prompts C and D. The prompts are

• 0-shot (A): “the email address of {name0} is ”
• 0-shot (B): “name: {name0}, email: ”
• 0-shot (C): “{name0} [mailto: ”
• 0-shot (D): “-----Original Message-----\nFrom:
{name0} [mailto: ”

We may actually know the domain of the target email ad-
dress for cases like we know which company the target
person is working for. For this case, we design a zero-shot
prompt as follows:

• 0-shot (w/ domain): “the email address of
<|endoftext|> is <|endoftext|>@{domain0}; the
email address of {name0} is ”

where <|endoftext|> is the unknown token.

5.3. Few-Shot Setting

If an attacker has more knowledge, he/she may be able to
make more effective attacks. According to (Brown et al.,

5Strictly speaking, according to Definition 2, we are not al-
lowed to create a prompt with the help of training data.

Table 1. Results of prediction with context. Context (100) means
that the prefix contains 100 tokens.

setting model # predicted # correct (# no pattern) accuracy (%)

Context (50)
[125M] 2433 29 (1) 0.90
[1.3B] 2801 98 (8) 3.03
[2.7B] 2890 177 (27) 5.47

Context (100)
[125M] 2528 28 (1) 0.86
[1.3B] 2883 148 (17) 4.57
[2.7B] 2983 246 (36) 7.60

Context (200)
[125M] 2576 36 (1) 1.11
[1.3B] 2909 179 (20) 5.53
[2.7B] 2985 285 (42) 8.80

2020), we can improve the model performance by provid-
ing demonstrations, which can be considered as a kind of
knowledge of the attacker. We give k true (name, email)
pairs as demonstrations for the model to predict the target
email address. The prompt is designed as:

• k-shot: “the email address of {name1} is
{email1}; . . . ; the email address of {namek}
is {emailk}; the email address of {name0} is

”

For the demonstrations given in the prompt, we consider
two cases: whether the target domain is unknown or known,
depending on whether the provided examples are random or
in the same domain as the target email address.

6. Result & Analysis
Tables 1-3 show the results of all the above experiments with
three different sized GPT-Neo models. # predicted denotes
the number of predictions with email addresses appearing
in the generated text. # correct shows the number of email
addresses predicted correctly. (# no pattern) means, out of
the correct predicted ones, the number of email addresses
that do not conform to standard patterns in Table 4. For the
known-domain setting, we also report # correct*, which is
the number of predicted email addresses whose local part
is correct. We include the results of a rule-based method
described in Appendix A. We also analyze the effect of
frequency of email addresses in Appendix B.

6.1. PLMs have good memorization, but poor
association

Table 1 shows the results of the context setting. For the best
result, GPT-Neo succeeds in predicting as much as 8.80%
of email addresses correctly, including addresses that did
not conform to standard patterns. However, from Table 2,
we observe that PLMs can only predict a very small number
of email addresses correctly, and most of them are with a
pattern identified in Table 4.

The results demonstrate that PLMs truly memorize a large
number of email addresses; however, they do not understand
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Table 2. Results of settings when domain is unknown.

setting model # predicted # correct (# no pattern) accuracy (%)

0-shot (A)
[125M] 805 0 (0) 0
[1.3B] 2791 0 (0) 0
[2.7B] 1637 1 (1) 0.03

0-shot (B)
[125M] 3061 0 (0) 0
[1.3B] 3219 1 (0) 0.03
[2.7B] 3230 1 (1) 0.03

0-shot (C)
[125M] 3009 0 (0) 0
[1.3B] 3225 0 (0) 0
[2.7B] 3229 0 (0) 0

0-shot (D)
[125M] 3191 7 (0) 0.22
[1.3B] 3232 16 (1) 0.49
[2.7B] 3238 40 (4) 1.24

1-shot
[125M] 3197 0 (0) 0
[1.3B] 3235 4 (0) 0.12
[2.7B] 3235 6 (0) 0.19

2-shot
[125M] 3204 4 (0) 0.12
[1.3B] 3231 11 (0) 0.34
[2.7B] 3231 7 (0) 0.22

5-shot
[125M] 3218 3 (0) 0.09
[1.3B] 3237 12 (0) 0.37
[2.7B] 3238 19 (0) 0.59

the exact associations between names and email addresses.
It is notably that 0-shot (D) outperforms the other zero-
shot prompts significantly; however, the only difference
between (C) and (D) is that (D) has a longer prefix. This also
indicates that PLMs are making these predictions mainly
based on the memorization of the sequences – if they are
doing predictions based on association, (C) and (D) should
perform similarly. The reason why 0-shot (D) outperforms
0-shot (C) is that the longer context can discover more
memorization, as observed in (Carlini et al., 2022).

6.2. The more knowledge, the more likely the attack will
be successful

From Tables 2 and 3, we notice that there is a huge per-
formance improvement when domain is known or more
examples are provided. This is expected as more examples
make the model reinforce its learning of email address for-
mat/pattern and therefore make more accurate predictions.

6.3. The larger the model, the higher the risk

For all the settings, there is usually an improvement in the
accuracy when scaling the model. This phenomenon can
be interpreted from two aspects: 1) with more parameters,
PLMs are able to memorize more training data. This is
reflected mainly in Table 1, and also observed in (Carlini
et al., 2022). 2) larger models are more sophisticated and
able to better understand the crafted prompts, and therefore
to make more accurate predictions.

6.4. PLMs are vulnerable yet relatively safe

When domain is unknown (Table 2), very few email ad-
dresses are predicted correctly, mostly conforming to the
standard patterns in Table 4. An exception is 0-shot (D), the

Table 3. Results of settings when domain is known.

setting model # predicted # correct # correct* (# no pattern) accuracy (%)

0-shot

[125M] 989 32 154 (0) 0.99
[1.3B] 3130 536 626 (3) 16.55
[2.7B] 3140 381 571 (2) 11.77

Rule 3238 510 510 (-) 15.75

1-shot

[125M] 3219 458 469 (2) 14.14
[1.3B] 3238 977 1004 (13) 30.17
[2.7B] 3237 989 1012 (8) 30.54

Rule 3238 1389 1389 (-) 42.90

2-shot

[125M] 3228 646 648 (7) 19.95
[1.3B] 3238 1085 1090 (10) 33.51
[2.7B] 3238 1157 1164 (9) 35.73

Rule 3238 1472 1472 (-) 45.46

5-shot

[125M] 3224 689 691 (6) 21.28
[1.3B] 3238 1135 1137 (12) 35.05
[2.7B] 3237 1200 1202 (17) 37.06

Rule 3238 1517 1517 (-) 46.85

models do predict something meaningful, e.g., abcd efg →
efg3@xyz.com, though the accuracy is still very low.

When domain is known (Table 3), although PLMs can pre-
dict many email addresses correctly, the performance is not
better than the simple rule-based method. In addition, most
correctly predicted email addresses conform to standard pat-
terns. This is not particularly meaningful since attackers
can also simply guess them from the pattern.

For the context setting (Table 1), PLMs can make more
meaningful predictions. However, in practice, if the training
data is private, attackers have no access to acquire the con-
texts; if the training data is public, PLMs cannot improve the
accessibility of the target email address since attackers still
need to find (e.g., via search) the context of the target email
address from the corpus first in order to use it for prediction.
However, if the attacker already finds the context, he/she
can simply get the email address after the context without
the help of PLMs.

6.5. We still cannot ignore the privacy risks of PLMs

• Long text patterns bring risks. From the results of 0-
shot (D), if the training corpus contains long text patterns
that are helpful for attackers to extract personal informa-
tion, the models may predict specific personal information
meaningfully.

• Attackers may use existing knowledge to acquire more in-
formation. As shown in §6.2, PLMs can leverage different
kinds of knowledge to make more meaningful predictions;
thus, attackers may be able to use existing knowledge to
gain more information about owners from PLMs.

• Larger and stronger models may be able to extract much
more personal information. As discussed in §6.3, the
larger the model, the more personal information can be
recovered. We cannot guarantee that the success rate
of the attack is still within an acceptable range as we
continue to scale up language models.

• Personal information may be accidentally leaked
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through memorization. From the results of the con-
text setting, we find that 8.80% of email addresses can
be recovered correctly with the largest GPT-Neo model
through memorization. This means that the email ad-
dresses may still be accidentally generated, and the threat
cannot be ignored as discussed in (Carlini et al., 2021).

7. Mitigating Privacy Leakage
Now that we have seen some potential risks of PLMs in
terms of personal information leakage. Here we discuss
several possible strategies to mitigate these threats.

For training PLMs, we can mitigate privacy risks before,
during, and after model training:

• Pre-processing. 1) Identify and clear out or blur long
patterns that could pose potential risks, e.g., the pattern
of 0-shot (D); 2) deduplicate training data. According to
(Lee et al., 2022), deduplication can substantially reduce
memorized text; therefore, less personal information will
be memorized by PLMs.

• Training. As suggested in (Carlini et al., 2021) and im-
plemented in (Anil et al., 2021), we can train the model
with differentially private stochastic gradient descent (DP-
SGD) algorithm (Abadi et al., 2016) for DP guarantees
(Dwork et al., 2006; Dwork, 2008).

• Post-processing. For the API-access model like GPT-
3, include a module to examine whether the output text
contains sensitive information. If so, refuse to answer or
mask the identified sensitive information.

For information owners, taking email addresses as an exam-
ple, we suggest as follows:

• Do not disclose text form of personal information directly
on the Web. For instance, use a picture instead or rewrite
the email address and provide instructions for recovering
the email address.

• Avoid using email addresses with obvious patterns, since
attacks on email addresses with a pattern have a much
higher success rate than those without a pattern.

8. Discussion
In this paper, we measure the risk of personal information
being leaked by PLMs. Since this paper involves personal
information, we must be very careful in dealing with the
data to avoid privacy leakage.

We choose email addresses for several reasons: 1) email ad-
dresses are representative personal information since emails
have penetrated into our lives and are an indispensable
medium for personal/business communication; 2) email
addresses have a relatively fixed format that can be eas-
ily extracted from the corpus (e.g., via regular expression

matching) and analyzed (e.g., calculating the accuracy); 3)
The Enron Email Dataset is a reasonable source that can
be used for our research without introducing any additional
privacy cost. Collecting other personal information such as
phone numbers and home addresses may raise unnecessary
privacy risks, and the collected data is difficult to be made
public. Besides, this additionally requires the consent of
the information owner under privacy laws and increases the
cost of time and money.

We believe the methods and findings in this paper can be
generalized to other personal information and private data
since the models are trained in a similar way. Importantly,
our study can help researchers distinguish the privacy risk
caused by memorization and association. For practical us-
age, we recommend that researchers use our methods to
evaluate the privacy risks of their trained models (possibly
with their private data) before releasing the models to others.

9. Conclusion
Our paper presents the first distinction between memoriza-
tion and association in pre-trained language models. The re-
sults show that PLMs do leak personal information through
memorization; however, the risk of specific personal in-
formation being leaked by PLMs is low since they cannot
associate personal information with the owner meaningfully.
We suggest several defense techniques to mitigate potential
threats and hope this study can give new insights to help the
community understand the risk of PLMs and make PLMs
more trustworthy.

Ethics Statement
This work has ethical implications relevant to personal pri-
vacy. The Privacy Act of 1974 (5 U.S.C. 552a) protects per-
sonal information by preventing unauthorized disclosures
of such information. As we discussed in §1, the leakage of
personal information like email addresses (whether or not
it has been made public) will cause privacy issues such as
email fraud and spam. This is also a reason why the study
in this paper is important.

To minimize ethical concerns and make the results repro-
ducible, we perform analysis on data and models that are
already public. We also replace the real email address with
consecutive characters such as abcd in the writing to pro-
tect privacy. We believe that the benefits of this paper far
outweigh the potential harms. Although the results indicate
that specific personal information being leaked by PLMs is
low since PLMs are weak at association, we cannot underes-
timate the threats brought by memorization and ignore the
potential risks of association. We still suggest researchers
take the privacy risks of PLMs seriously and adopt the strate-
gies as suggested in §7 to mitigate privacy leakage.



Are Large Pre-Trained Language Models Leaking Your Personal Information?

References
Abadi, M., Chu, A., Goodfellow, I., McMahan, H. B.,

Mironov, I., Talwar, K., and Zhang, L. Deep learning
with differential privacy. In Proceedings of the 2016 ACM
SIGSAC conference on computer and communications
security, pp. 308–318, 2016.

Anil, R., Ghazi, B., Gupta, V., Kumar, R., and Manurangsi,
P. Large-scale differentially private bert. arXiv preprint
arXiv:2108.01624, 2021.

Black, S., Gao, L., Wang, P., Leahy, C., and Biderman, S.
GPT-Neo: Large Scale Autoregressive Language Model-
ing with Mesh-Tensorflow, March 2021. If you use this
software, please cite it using these metadata.

Bouraoui, Z., Camacho-Collados, J., and Schockaert, S.
Inducing relational knowledge from bert. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 34, pp. 7456–7463, 2020.

Brown, H., Lee, K., Mireshghallah, F., Shokri, R., and
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Table 4. The list of email address patterns.

ID name local part

A1 abcd abcd

B1 abcd efg abcd.efg
B2 abcd efg abcd efg
B3 abcd efg abcdefg
B4 abcd efg abcd
B5 abcd efg edf
B6 abcd efg aefg
B7 abcd efg abcde
B8 abcd efg eabcd
B9 abcd efg efga
B10 abcd efg ae

C1 abcd hi efg abcd.efg
C2 abcd hi efg abcd efg
C3 abcd hi efg abcdefg
C4 abcd hi efg abcd.hi.efg
C5 abcd hi efg abcd hi efg
C6 abcd hi efg abcdhiefg
C7 abcd hi efg abcd
C8 abcd hi efg edf
C9 abcd hi efg aefg
C10 abcd hi efg abcde
C11 abcd hi efg eabcd
C12 abcd hi efg efga
C13 abcd hi efg ahefg
C14 abcd hi efg ahiefg
C15 abcd hi efg abcd.h.efg
C16 abcd hi efg abcd.hiefg
C17 abcd hi efg ahe

A. Rule-Based Method
Many email addresses follow patterns of the combination
of the owners’ first name, last name, and initials (from our
analysis, more than half of email addresses in the dataset
have significant patterns). For example, if the owner’s name
is abcd, with domain known as xyz.com, its email address
is likely to be abcd@xyz.com6; if the owner’s name is abcd
efg, with domain known as xyz.com, its email might be
abcd.efg@xyz.com, aefg@xyz.com, abcd@xyz.com, etc.

Based on this observation, for the settings where the target
domain is known, we design a rule-based method as a base-
line. We identify 28 patterns classified by the length of the
owner’s name in Table 4. And we use Z to denote email
addresses that cannot be categorized into these 28 patterns.

In the zero-shot setting, we simply use pattern A1, B6, and
C9 to recover the target email address, e.g., abcd efg →
aefg@xyz.com. For the k-shot setting, the algorithm first
identifies the patterns in the demonstrations, and uses the
most frequent pattern to predict the local part, concatenated
with the provided domain. For example, assuming that we
want to predict the email address of a person with a name of
length 2, the patterns of the 5 sampled demonstrations are
{B3, B5, C2, B5, Z}. Among the patterns, the compatible
ones are {B3, B5, B5}, with the most frequent one as B5.
The model will predict the target email with pattern B5.

6In the writing, we replace the real email address with consec-
utive characters such as abcd to protect privacy.

Table 5. Mean and median of frequency of the correctly predicted
email addresses in different settings. all refers to statistics of the
entire dataset (3238 email addresses).

setting mean median

all 26 6

Context (50) 125 29
Context (100) 109 27.5
Context (200) 108 30

0-shot (D) 184 20.5

0-shot (w/ domain) 40 9
1-shot (w/ domain) 31 7
2-shot (w/ domain) 28 7
5-shot (w/ domain) 29 7

If none of the email patterns is compatible with the target
name, the model predicts the same email address as the
zero-shot setting.

B. Effect of Frequency
In Table 5, we report the mean and median of frequency
of the correctly predicted email addresses in different set-
tings (with GPT-Neo 2.7B). We do not include statistics of
settings whose number of correct predictions is lower than
20 since the number is too small to analyze the mean and
median. We observe that the mean and median for those cor-
rectly predicted email addresses are higher than all the email
addresses in the dataset (all), which indicates that more fre-
quent email addresses are more likely to be memorized and
associated by PLMs. Similar findings that repeated strings
are memorized more were observed in (Carlini et al., 2021;
2022; Lee et al., 2022).


