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Abstract

Designing analog circuits from performance specifications is a complex, multi-1

stage process encompassing topology selection, parameter inference, and layout2

feasibility. We introduce FALCON, a unified machine learning framework that3

enables fully automated, specification-driven analog circuit synthesis through topol-4

ogy selection and layout-constrained optimization. Given a target performance,5

FALCON first selects an appropriate circuit topology using a performance-driven6

classifier guided by human design heuristics. Next, it employs a custom, edge-7

centric graph neural network trained to map circuit topology and parameters to8

performance, enabling gradient-based parameter inference through the learned9

forward model. This inference is guided by a differentiable layout cost, derived10

from analytical equations capturing parasitic and frequency-dependent effects, and11

constrained by design rules. We train and evaluate FALCON on a large-scale12

custom dataset of 1M analog mm-wave circuits, generated and simulated using13

Cadence Spectre across 20 expert-designed topologies. Through this evaluation,14

FALCON demonstrates >99% accuracy in topology inference, <10% relative error15

in performance prediction, and efficient layout-aware design that completes in un-16

der 1 second per instance. Together, these results position FALCON as a practical17

and extensible foundation model for end-to-end analog circuit design automation.18

1 Introduction19

Analog radio frequency (RF) and millimeter-wave (mm-wave) circuits are central to modern electron-20

ics, powering applications in signal processing [1], wireless communication [2], sensing [3], radar [4],21

and wireless power transfer [5]. Yet their design remains largely manual and heuristic-driven [6–8],22

hindered by a vast continuous design space, tightly coupled trade-offs among gain, noise, bandwidth,23

and power, and strong layout-dependent interactions. As demand for high-performance custom24

blocks grows, this slow, expert-dependent cycle has become a bottleneck. While ML has transformed25

digital design automation, analog efforts remain fragmented: most focus on isolated tasks such as26

topology generation or device sizing [9, 10], often assuming fixed topologies [11–14], relying on27

non-scalable black-box optimization [15], or predicting performance without supporting inverse28

design [16]. Layout is usually treated as post-processing [17], and benchmarks often rely on sym-29

bolic or synthetic data [18], limiting realism. Consequently, no current ML pipeline achieves fully30

generalizable, layout-aware, end-to-end analog circuit design.31

We propose FALCON (Fully Automated Layout-Constrained analOg circuit desigN), a scalable ML32

framework for end-to-end analog and RF design. Trained on over one million Cadence-simulated33

circuits, FALCON integrates three stages (Figure 1): (1) a multilayer perceptron (MLP) selects the34

topology from target specifications; (2) a graph neural network (GNN) maps topology and parameters35

to performance on native netlist graphs; and (3) gradient-based optimization over the GNN recovers36
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Figure 1: Our AI-based circuit design pipeline. Given a target performance specification, FALCON
first selects a suitable topology, then generates design parameters through layout-aware gradient-based
reasoning with GNN model. Then, the synthesized circuit is validated using Cadence simulations.

parameters that satisfy targets under a differentiable layout-aware loss. The GNN generalizes to37

unseen topologies with optional fine-tuning, enabling inverse design across circuit families. By38

embedding layout constraints directly in optimization, FALCON unifies schematic and physical39

considerations within a single differentiable framework.140

Our main contributions are as follows:41

• We construct a large-scale analog/RF circuit dataset comprising over one million Cadence-42

simulated datapoints across 20 expert-designed topologies and five circuit types.43

• We introduce a native netlist-to-graph representation that preserves both structural and44

parametric fidelity, enabling accurate learning over physical circuit topologies.45

• We develop a modular ML framework for end-to-end inverse design, incorporating46

performance-driven topology selection and layout-aware gradient-based optimization, with47

a differentiable loss that enforces area constraints, design-rule compliance, and frequency-48

dependent modeling of passive components.49

• We design a generalizable GNN capable of accurate performance prediction and parameter50

inference across both seen and unseen topologies, with optional fine-tuning.51

2 Related Work52

While recent ML-based approaches have advanced analog and RF circuit design, they typically target53

isolated stages of the design flow—such as topology generation, parameter sizing, or schematic-level54

performance prediction—without supporting unified, end-to-end synthesis. FALCON bridges this55

gap by jointly addressing aforementioned stages within a single framework.56

Topology generation methods aim to select or synthesize candidate circuit structures [9, 19, 20],57

often using discrete optimization or generative models to explore the circuit graph space. However,58

these approaches typically target low-frequency or simplified designs [9] and may produce physically59

invalid or non-manufacturable topologies. In contrast, FALCON leverages a curated set of netlists,60

ensuring manufacturable validity and eliminating the need to rediscover fundamental circuit structures.61

Parameter sizing and performance prediction have been explored through various learning62

paradigms. Reinforcement learning [10, 21] and Bayesian optimization [15, 22] optimize parameters63

via trial-and-error, often requiring large simulation budgets. Supervised learning methods [23, 24, 11]64

regress parameter values from performance targets under fixed topologies. Graph-based models [16]65

incorporate topology-aware representations to predict performance metrics from netlists. However,66

these approaches focus on forward prediction or black-box sizing and do not support inverse design67

across varied topologies. In contrast, FALCON unifies forward modeling and parameter inference in68

a single differentiable architecture that generalizes to unseen netlists.69

Layout-aware sizing and parasitic modeling have been explored to mitigate schematic-to-layout70

mismatch. Parasitic-aware methods [25] integrate pre-trained parasitic estimators into Bayesian71

optimization loops for fixed schematics. While effective for estimation, these approaches rely on72

time-consuming black-box search and lack inverse design capabilities. Other methods, such as73

ALIGN [26] and LayoutCopilot [27], generate layouts from fully sized netlists using ML-based74

constraint extraction or scripted interactions, but assume fixed parameters and do not support co-75

optimization or differentiable inverse design. In contrast, FALCON embeds layout objectives76

1Code, trained models, and dataset will be released upon publication.
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directly into the learning loss, enabling joint optimization of sizing and layout without relying on77

external parasitic models. For mm-wave circuits, our layout-aware loss captures frequency-sensitive78

constraints via simplified models that implicitly reflect DRC rules, EM coupling, and performance-79

critical factors such as quality factor and self-resonance frequency.80

Datasets for analog design are often limited to symbolic SPICE simulations or small-scale testbeds81

that do not reflect real-world design flows. AnalogGym [18] and AutoCkt [13] rely on synthetic82

circuits and symbolic simulators, lacking the process fidelity, noise characteristics, and layout-83

dependent behavior of foundry-calibrated flows. In contrast, FALCON is trained on a large-scale84

dataset constructed from over one million Cadence-simulated circuits across 20 topologies and five85

circuit categories, offering a substantially more realistic foundation for ML-driven analog design.86

To the best of our knowledge, FALCON is the first framework to unify topology selection, parameter87

inference, and layout-aware optimization in a single end-to-end pipeline, validated at scale using88

industrial-grade Cadence simulations for mm-wave analog circuits. A qualitative comparison with89

representative prior work is provided in Appendix A.90

3 A Large-Scale Dataset and Inverse Design Problem Formulation91

3.1 Dataset Overview92

We construct a large-scale dataset of analog and RF circuits simulated using industry-grade Cadence93

tools [28] with a 45nm CMOS process design kit (PDK). The dataset spans five widely used mm-wave94

circuit types for wireless applications [29, 30]: low-noise amplifiers (LNAs) [31–34], mixers [35–38],95

power amplifiers (PAs) [39–43], voltage amplifiers (VAs) [44–48], and voltage-controlled oscillators96

(VCOs) [49–53]. Each circuit type is instantiated in four distinct topologies, resulting in a total of 2097

expert-designed architectures.98

For each topology, expert-designed schematics were implemented in Cadence Virtuoso, and key99

design parameters were manually identified based on their functional relevance. Parameter ranges100

were specified by domain experts and systematically swept using Cadence ADE XL, enabling101

parallelized Spectre simulations across the design space. For each configuration, performance102

metrics—such as gain, bandwidth, and oscillation frequency—were extracted and recorded. Each103

datapoint therefore includes the full parameter vector, the corresponding Cadence netlist, and the104

simulated performance metrics. The resulting dataset comprises over one million datapoints, capturing105

a wide range of circuit behaviors and design trade-offs across diverse topologies. This large-scale,106

high-fidelity dataset forms the foundation for training and evaluating our inverse design pipeline.107

Detailed metric definitions and per-topology parameter ranges appear in Appendix B.108

3.2 Graph-Based Circuit Representation109

To enable flexible and topology-agnostic learning, we represent each analog circuit as a graph110

extracted from its corresponding Cadence netlist. Nodes correspond to voltage nets (i.e., electrical111

connection points), and edges represent circuit elements such as transistors, resistors, capacitors, or112

sources. Multi-terminal devices—such as transistors and baluns—are decomposed into multiple edges,113

and multiple components may connect the same node pair, resulting in heterogeneous, multi-edged114

graphs that preserve structural and functional diversity.115

Recent works such as DICE [54] have explored transistor-level circuit-to-graph conversions for116

self-supervised learning, highlighting the challenges of faithfully capturing device structure and117

connectivity. In contrast, our approach maintains a native representation aligned with foundry-118

compatible netlists. Rather than flattening or reinterpreting device abstractions, we preserve symbolic119

parameters, multi-edge connections, and device-specific edge decomposition directly from the120

schematic source, enabling scalable learning across diverse analog circuit families.121

To support learning over such structured graphs, each edge is annotated with a rich set of attributes:122

(i) a categorical device type, specifying the component and connected terminal pair (e.g., NMOS123

drain–gate, resistor); (ii) numeric attributes, such as channel length or port resistance, fixed by124

the schematic; (iii) parametric attributes, defined symbolically in the netlist (e.g., W1, R3) and125

resolved numerically during preprocessing; (iv) one-hot categorical features, such as source type126

(DC, AC, or none); and (v) computational attributes, such as diffusion areas (Ad, As) derived from127
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sizing. This rule-based graph construction generalizes across circuit families without task-specific128

customization. Graphs in the FALCON dataset range from 4–40 nodes and 7–70 edges, reflecting129

the variability of practical analog designs. Further details on the graph representation and attribute130

encoding are provided in Appendix C.131

3.3 Inverse Design Problem Definition132

In analog and RF circuit design, the traditional modeling process involves selecting a topology T and133

parameter vector x, then evaluating circuit behavior via simulation to obtain performance metrics134

y = f(T, x). This forward workflow depends heavily on designer intuition, manual tuning, and135

exhaustive parameter sweeps. Engineers typically simulate many candidate (T, x) pairs and select136

the one that best satisfies the target specification—a slow, costly, and unguided process.137

In contrast, our goal is to perform inverse design: given a target performance specification ytarget,138

we aim to directly infer a topology and parameter configuration (T, x) such that f(T, x) ≈ ytarget,139

without enumerating the full design space. This inverse problem is ill-posed and the search space is140

constrained by both device-level rules and layout-aware objectives.141

Formally, the task is to find the optimal topology T ∗ ∈ T and the optimal parameters x∗ ∈ Rp142

such that f(T ∗, x∗) ≈ ytarget where f : T × Rp → Rd the true performance function implemented143

by expensive Cadence simulations. In practice, f is nonlinear and non-invertible, making direct144

inversion intractable. FALCON addresses this challenge through a modular, three-stage pipeline:145

Stage 1: Topology Selection. We frame topology selection as a classification problem over a curated146

set of K candidate topologies {T1, . . . , TK}. Given a target specification ytarget, a lightweight MLP147

selects the topology T ∗ ∈ T most likely to satisfy it, reducing the need for exhaustive search.148

Stage 2: Performance Prediction. Given a topology T and parameter vector x, we train a GNN fθ149

to predict the corresponding performance ŷ = fθ(T, x). This model emulates the forward behavior150

of the simulator f , learning a continuous approximation of circuit performance across both seen and151

unseen topologies. By capturing the topology-conditioned mapping from parameters to performance,152

fθ serves as a differentiable surrogate that enables gradient-based inference in the next stage.153

Stage 3: Layout-Aware Gradient Reasoning. Given ytarget and a selected topology T ∗, we infer a154

parameter vector x∗ by minimizing a loss over the learned forward model fθ. Specifically, we solve:155

x∗ = argmin
x

Lperf(fθ(T
∗, x), ytarget) + λLlayout(x), (1)

where Lperf measures prediction error, and Llayout encodes differentiable layout-related constraints156

such as estimated area and soft design-rule penalties. Optimization is performed via gradient descent,157

allowing layout constraints to guide the search through a physically realistic parameter space.158

4 Stage 1: Performance-Driven Topology Selection159

Task Setup. We formulate topology selection as a supervised classification task over a fixed library160

of 20 expert-designed circuit topologies T = {T1, T2, . . . , T20}. Rather than generating netlists161

from scratch—which often leads to invalid or impractical circuits—we select from a vetted set of162

designer-verified topologies. This ensures that all candidates are functionally correct, layout-feasible,163

and manufacturable. While expanding the topology set requires retraining, our lightweight MLP164

classifier enables rapid updates, making the approach scalable. This formulation also aligns with165

practical design workflows, where quickly identifying a viable initial topology is critical.166

Each datapoint is represented by a 16-dimensional performance vector of key analog/RF metrics.2 We167

normalize features using z-scores computed from the training set. Missing metrics (e.g., oscillation168

frequency for amplifiers) are imputed with zeros, yielding zero-centered, fixed-length vectors that169

retain task-relevant variation. Dataset splits are stratified to preserve class balance across training,170

validation, and test sets. We assume each target vector is realizable by at least one topology in T ,171

though the library can be extended with new designs.172

Model Architecture and Training. We train a 5-layer MLP with hidden size 256 and ReLU173

activations for this problem. The model takes the normalized performance vector ytarget ∈ R16 as174

2See Appendix B for the complete definitions of performance metrics.
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Figure 2: In Stage 1, an MLP classifier selects the most
suitable circuit topology from a library of human-designed
netlists, conditioned on the target performance specification.

Table 1: Classification
performance on topology selection.

Metric Score (%)
Accuracy 99.57
Balanced Accuracy 99.33
Macro Precision 99.27
Macro Recall 99.33
Macro F1 99.30
Micro F1 99.57

input and outputs a probability distribution over 20 candidate topologies. The predicted topology is175

selected as T ∗ = argmaxTk∈T MLP(ytarget)k. We train the model using a cross-entropy loss and176

the Adam optimizer [55], with a batch size of 256. An overview of this process is shown in Figure 2.177

Evaluation. We assess classification performance using accuracy, balanced accuracy, macro precision,178

macro recall, macro F1, and micro F1 scores on the test set. As summarized in Table 1, the179

classifier achieves an overall accuracy of 99.57%, with macro F1 of 99.30% and balanced accuracy180

of 99.33%, demonstrating strong generalization across all 20 circuit topologies. Micro F1 (identical181

to accuracy in the multiclass setting) reaches 99.57%, while macro metrics—averaged equally across182

classes—highlight robustness to class imbalance. Additional visualizations and detailed analysis183

are presented in Appendix D. Seed-averaged results with 95% confidence intervals are provided in184

Appendix E.185

5 Stage 2: Generalizable Forward Modeling for Performance Prediction186

Task Setup. The goal of Stage 2 is to learn a differentiable approximation of the circuit simulator that187

maps a topology T and parameter vector x to a performance prediction ŷ = fθ(T, x), where ŷ ∈ R16.188

Unlike black-box simulators, this learned forward model enables efficient performance estimation189

and supports gradient-based parameter inference in Stage 3. The model is trained to generalize across190

circuit families and can be reused on unseen topologies with minimal fine-tuning.191

Each datapoint consists of a graph-structured Cadence netlist annotated with resolved parameter192

values and the corresponding performance metrics. We frame the learning task as a supervised193

regression problem. Since not all performance metrics apply to every topology (e.g., oscillation194

frequency is undefined for amplifiers), we train the model using a masked mean squared error loss:195

Lmasked =
1∑
i mi

d∑
i=1

mi · (ŷi − yi)
2, (2)

where mi = 1 if the i-th metric is defined for the current sample, and 0 otherwise.196

Model Architecture and Training. Each cir-
cuit is represented as an undirected multi-
edge graph with voltage nets as nodes and cir-
cuit components as edges. All circuit parame-
ters—both fixed and sweepable—are assigned
to edges, along with categorical device types
and one-hot encoded indicators. For each edge
(u, v), these attributes are concatenated to form
a unified feature vector xuv. The feature set is
consistent within each component type but varies
across types (e.g., NMOS vs. inductor), reflect-
ing the structure defined in Section 3.2.

Figure 3: In Stage 2, a custom edge-centric GNN
maps an undirected multi-edge graph constructed
from the circuit netlist to a performance vector.

To account for component heterogeneity, we apply type-specific MLP encoders ϕ(t)
enc to each edge197

feature vector, producing initial embeddings e(0)uv = ϕ
(t)
enc(xuv), where t is the component type. These198

embeddings are updated via a 4-layer edge-centric message-passing GNN with shared weights. At199
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each layer ℓ, for each node u, we first compute the node hidden state using the edge embeddings of200

all neighbors of the node u, N (u). Then, for each edge (u, v) in the circuit graph, we compute the201

edge embedding at the next layer ℓ+ 1 is using the edge embedding e
(ℓ)
uv and the hidden node states202

forming the edge (u, v) at the current layer ℓ as follows:203

h(ℓ)
u =

∑
w∈N (u)

ϕMSG(e
(ℓ)
wu), e(ℓ+1)

uv = ϕUPD(e
(ℓ)
uv , h

(ℓ)
u , h(ℓ)

v ),

where ϕMSG, ϕUPD are the message and update parameters of message-passing GNN and h
(ℓ)
u , h

(ℓ)
v are204

the hidden states for the nodes forming the edge (u, v) respectively. After message passing [56], final205

edge embeddings e(L)
uv are aggregated to form a graph-level representation zgraph =

∑
(u,v) e

(L)
uv , which206

is decoded by a fully connected MLP (hidden size 256) to predict the 16-dimensional performance207

vector ŷ ∈ R16. An overview of this GNN-based forward prediction pipeline is shown in Figure 3.208

To stabilize training, physical parameters are rescaled by their expected units (e.g. resistance by209

103), and performance targets are normalized to z-scores using training statistics. We train the model210

using the Adam optimizer (learning rate 10−3, batch size 256) and a ReduceLROnPlateau scheduler.211

Xavier uniform initialization is used for all layers, and early stopping is based on validation loss. We212

adopt the same splits as in Section 4 for consistency in evaluation.213

Evaluation. We evaluate the accuracy of the GNN
forward model fθ on a test set drawn from 19 of the
20 topologies. One topology—RVCO—is entirely
excluded from training, validation, and test splits
to assess generalization to unseen architectures.
Additional generalization results are included in
Appendix F. Prediction quality is measured using
standard regression metrics: coefficient of deter-
mination (R2), root mean squared error (RMSE),
and mean absolute error (MAE), computed inde-
pendently for each of the 16 performance metrics.
We also report the mean relative error per metric,
computed as the average across all test samples
where each metric is defined. As summarized in
Table 2, the model achieves high accuracy across
all dimensions, with an average R2 of 0.972.
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Figure 4: Distribution of relative error (%) across
the test set for the GNN forward model. Plot is
trimmed at the 95th percentile.

To evaluate end-to-end prediction accuracy at the sample level, we compute the mean relative error214

per instance, defined as the average relative error across all valid (non-masked) performance metrics215

for each test sample. Figure 4 shows the distribution of this quantity across the test set (trimmed216

at the 95th percentile to reduce the impact of outliers). The distribution is sharply concentrated,217

indicating that most predictions closely match their corresponding target vectors. Without percentile218

trimming, the overall mean relative error across the full test set is 9.09%. Seed-averaged results with219

95% confidence intervals are provided in Appendix E.220

Table 2: Prediction accuracy of the forward GNN on all 16 circuit performance metrics.

Metric DCP VGain PGain CGain S11 S22 NF BW OscF TR OutP PSAT DE PAE PN VSwg
Unit mW dB dB dB dB dB dB GHz GHz GHz dBm dBm % % dBc/Hz mV

R² 1.0 1.0 0.99 1.0 0.93 1.0 0.99 0.98 0.97 0.83 0.97 1.0 1.0 1.0 0.89 1.0
RMSE 0.27 0.101 0.536 0.833 1.515 0.21 0.534 0.972 0.723 0.293 0.91 0.095 0.226 0.143 2.536 0.071
MAE 0.198 0.072 0.208 0.188 0.554 0.12 0.2 0.376 0.184 0.097 0.238 0.066 0.163 0.105 1.159 0.046
Rel. Err. 11.2% 2.6% 19.0% 6.1% 11.4% 1.9% 4.5% 6.5% 0.6% 6.5% 4.6% 4.4% 4.6% 11.0% 1.3% 1.4%

221

6 Stage 3: Layout-Aware Parameter Inference via Gradient Reasoning222

Task Setup. Given a target performance vector ytarget and a selected topology T ∗, the goal of Stage223

3 is to recover a parameter vector x∗ that minimizes a total loss combining performance error and224

layout-aware penalties, using the learned forward model fθ from Stage 2. This formulation enables225

instance-wise inverse design without requiring circuit-level simulation.226
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Figure 5: In Stage 3, gradient reasoning iteratively updates parameters to minimize a loss combining
performance error and layout cost, computed via a differentiable analytical model.

To initialize optimization, we perturb domain-specific scale factors (e.g., 10−12 for capacitors) to227

sample a plausible starting point x0. Parameters are iteratively updated via gradient descent, guided228

by both functional and physical objectives. Topology-specific constants are held fixed, and parameter229

values are clipped to remain within valid domain bounds throughout the process.230

Loss Function. The total loss follows the structure defined in Eqn 1, jointly minimizing performance231

mismatch and layout cost:232

Ltotal = Lperf + λarea · Llayout · g(Lperf), (3)

where Lperf is the masked mean squared error (see Eqn 2) between predicted and target performance233

vectors, and Llayout is a normalized area penalty derived from analytical layout equations. To prioritize234

functionality, layout loss is softly gated by:235

g(Lperf) = 1− σ (γ(Lperf − τ)) ,

which attenuates layout penalties when performance error exceeds a threshold τ , encouraging the236

model to first achieve functionality before optimizing for layout compactness.237

We set τ = 0.05, γ = 50, and normalize layout area by 1mm2 to stabilize gradients. The layout238

weight λarea = 0.02 is chosen empirically to balance performance accuracy and physical realism239

without dominating the loss. This gated formulation supports manufacturable parameter recovery and240

reflects the broader paradigm of physics-informed learning [57]. Further discussion on user-defined241

objectives is provided in Appendix G.242

Differentiable Layout Modeling. In mm-wave analog design, layout is not a downstream concern243

but a critical determinant of circuit performance—particularly for passive components. Substrate244

coupling, proximity effects, and DRC-imposed geometries directly affect key metrics such as reso-245

nance frequency, quality factor, and impedance matching. To incorporate these effects, we introduce246

a differentiable layout model that computes total physical area analytically from circuit parameters.247

This enables layout constraints to directly guide parameter optimization during inverse design. By248

minimizing the layout area in distributed mm-wave circuits [58], unwanted signal loss [59] is reduced,249

the self-resonance frequency of passives can increase [60], and phase and amplitude mismatches250

across signal paths [61] can be reduced.251

The layout model is deterministic and non-learned. It estimates area contributions from passive252

components—capacitors, inductors, and resistors—as these dominate total area and exhibit layout-253

sensitive behavior. Active devices (e.g., MOSFETs) are excluded since their geometries are fixed by254

the PDK and are negligible [62]. For a given parameter vector x, the total layout loss is computed as:255

Llayout(x) =
∑

e∈Epassive

Ae(x),

where Epassive is the set of passive elements, and Ae(x) is the area of the created layout for the passive256

component based on analytical physics-based equations. The area of element e is estimated based on257

its 2D dimensions (e.g., A = W · L for resistors and capacitors). This area is normalized and used as258

a differentiable penalty in the optimization objective (see Eqn 3). Further implementation details are259

provided in Appendix H.260

Gradient Reasoning Procedure. Starting from the initialized parameter vector x, we iteratively261

update parameters via gradient reasoning. At each step, the frozen forward model fθ predicts the262
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(a) Designed DohPA schematic (b) Layout of designed DohPA

Figure 6: Stage 3 results for a synthesized DohPA. The schematic (a) reflects optimized parameters
to meet the target specification. The layout (b) is DRC-compliant and physically realizable. The final
design achieves a mean relative error of 5.4% compared to the target performance.

performance ŷ = fθ(T, x), and the total loss Ltotal is evaluated. Gradients are backpropagated with263

respect to x, and updates are applied using the Adam optimizer. Optimization proceeds for a fixed264

number of steps, with early stopping triggered if the loss fails to improve over a predefined window.265

To handle varying circuit difficulty and initialization quality, we employ an adaptive learning rate266

strategy. Each instance begins with a moderate learning rate (10−6), refined during optimization via267

a ReduceLROnPlateau scheduler. If the solution fails to meet thresholds on performance error or268

layout area, optimization restarts with a more exploratory learning rate. This adjustment balances269

exploration and fine-tuning, enabling rapid convergence to physically valid solutions, typically within270

milliseconds to under one second per instance. An overview is shown in Figure 5.271

Evaluation. We evaluate Stage 3 on 9,500 test instances (500 per topology) using our gradient-based272

optimization pipeline. A design is considered converged if it meets both: (i) a predicted mean relative273

error below 10%, and (ii) a layout area under a topology-specific bound—1 mm2 for most circuits and274

1.5 mm2 for DLNA, DohPA, and ClassBPA. The 10% error threshold reflects the forward model’s275

∼ 9% average prediction error (Section 5). A design is deemed successful if its final Cadence-276

simulated performance deviates from the target by less than 20%, confirming real-world viability.277

Our method achieves a success rate of 78.5% and a mean relative error of 17.7% across converged278

designs, with average inference time under 1 second on a MacBook CPU. Notably, success rate is279

coupled with convergence threshold: tighter error bounds yield higher accuracy with more iterations.280

To illustrate the effectiveness of our pipeline, Figure 6 shows a representative result for the DohPA281

topology: the synthesized schematic is shown on the left, and the corresponding layout is on the right.282

These results confirm that the recovered parameters are both functionally accurate and physically283

realizable. Together, they demonstrate that FALCON enables layout-aware inverse design within a284

single differentiable pipeline—a capability not supported by existing analog design frameworks.285

7 Conclusion and Future Work286

We presented FALCON, a modular framework for end-to-end analog and RF circuit design that287

unifies topology selection, performance prediction, and layout-aware parameter optimization. Trained288

on over one million Cadence-simulated mm-wave circuits, FALCON combines a lightweight MLP, a289

generalizable GNN, and differentiable gradient reasoning to synthesize circuits from specification290

to layout-constrained parameters. FALCON achieves >99% topology selection accuracy, <10%291

prediction error, and efficient inverse design—all within sub-second inference. In addition, the GNN292

forward model generalizes to unseen topologies with minimal fine-tuning, supporting broad practical293

deployment. Further discussion of efficiency and limitations are provided in Appendix I.294

In future work, we aim to expand the topology library and support hierarchical macroblocks for295

scalable design beyond the cell level. We also plan to extend the dataset to cover multiple operating296

frequencies, enabling validation across diverse bands, and to enhance the layout-aware optimization297

with learned parasitic models, EM-informed constraints, and electromigration considerations for298

more accurate post-layout estimation. Finally, integrating models for generative topology synthesis299

represents a promising step toward general-purpose analog design automation.300
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A Qualitative Comparison with Prior Work457

To contextualize FALCON within the broader landscape of analog circuit design automation, we458

provide a qualitative comparison against representative prior works in Table 3. This comparison459

spans key capabilities including topology selection, parameter inference, performance prediction,460

layout awareness, and simulator fidelity. We additionally assess reproducibility via dataset and code461

availability, and introduce a new axis—RF/mm-wave support—to highlight methods evaluated on462

high-frequency circuit blocks such as LNAs, mixers, and VCOs. Compared to existing approaches,463

FALCON is the only framework that unifies all these dimensions while maintaining foundry-grade464

fidelity and open-source accessibility. Definitions for each comparison axis are provided in Table 4.465

Table 3: Qualitative comparison of FALCON with prior works across key capabilities in analog
circuit design automation.

Method Topology
Selection

Parameter
Inference

Performance
Prediction

Layout
Awareness

Foundry
Grade

RF/
mm-Wave

Public
Dataset

Public
Code

CktGNN [9] ✔ ✔ ✘ ✘ ✘ (SPICE) ✘ ✔ ✔

LaMAGIC [19] ✔ ✘ ✘ ✘ ✘ (SPICE) ✘ ✘ ✘

AnalogCoder [20] ✔ ✘ ✘ ✘ ✘ (SPICE) ✘ ✔ ✔

GCN-RL [10] ✘ ✔ ✘ ✘ ✔ (SPICE/Cadence) ✘ ✘ ✘ (incomplete)
Cao et al. [21] ✘ ✔ ✘ ✘ ✔ (ADS/Cadence) ✘ ✘ ✘

BO-SPGP [15] ✘ ✔ ✔ ✘ ✔ (Cadence) ✘ ✘ ✘

ESSAB [22] ✘ ✔ ✔ ✘ ✔ (Cadence) ✘ ✘ ✘

AICircuit [23, 24] ✘ ✔ ✘ ✘ ✔ (Cadence) ✔ ✔ ✔

Krylov et al. [11] ✘ ✔ ✘ ✘ ✘ (SPICE) ✘ ✔ ✔

Deep-GEN [16] ✘ ✘ ✔ ✘ ✘ (SPICE) ✘ ✔ ✔

Liu et al. [25] ✘ ✘ ✘ ✔ ✘ (SPICE + Parasitic Model) ✔ ✘ ✘

ALIGN [26] ✘ ✘ ✘ ✔ ✔ (Cadence) ✔ ✔ ✔

LayoutCopilot [27] ✘ ✘ ✘ ✔ ✔ (Cadence) ✘ ✘ ✘

AnalogGym [18] ✘ ✔ ✘ ✘ ✘ (SPICE) ✘ ✔ ✔

AutoCkt [13] ✘ ✔ ✘ ✘ ✔ (Cadence) ✘ ✘ ✘ (incomplete)
L2DC [12] ✘ ✔ ✘ ✘ ✘ (SPICE) ✘ ✘ ✘

CAN-RL [14] ✘ ✔ ✘ ✔ ✔ (Cadence) ✘ ✘ ✘

AnGeL. [17] ✔ ✔ ✔ ✘ ✘ (SPICE) ✘ ✘ ✘

FALCON (This work) ✔ ✔ ✔ ✔ ✔ (Cadence) ✔ ✔ ✔

466

Table 4: Definitions of each comparison axis in Table 3.

Column Definition

Topology Selection Does the method automatically select or predict circuit topology given a target specification?
Parameter Inference Does the method infer element-level parameters (e.g., transistor sizes, component values) as part of design generation?
Performance Prediction Can the method predict circuit performance metrics (e.g., gain, bandwidth, noise) from topology and parameters?
Layout Awareness Is layout considered during optimization or training (e.g., via area constraints, parasitics, or layout-informed loss)?
Dataset Fidelity Does the dataset reflect realistic circuit behavior (e.g., SPICE/Cadence simulations, PDK models)?
RF/mm-Wave Is the method evaluated on at least one RF or mm-wave circuit type that reflects high-frequency design challenges?
Public Dataset Is the dataset used in the work publicly released for reproducibility and benchmarking?
Public Code Is the implementation code publicly available and documented for reproducibility?

467

B Dataset Details and Performance Metric Definitions468

During dataset generation, each simulated circuit instance is annotated with a set of performance469

metrics that capture its functional characteristics. All simulations are performed at a fixed frequency470

of 30 GHz, ensuring consistency across circuit types and relevance to mm-wave design. A total of 16471

metrics are defined across all circuits—spanning gain, efficiency, impedance matching, noise, and472

frequency-domain behavior—though the specific metrics used vary by topology. For example, phase473

noise is only applicable to oscillators. An overview of all performance metrics is provided in Table 5.474

B.1 Low-Noise Amplifiers (LNAs)475

Low-noise amplifiers (LNAs) are critical components in receiver front-ends, responsible for amplify-476

ing weak antenna signals while introducing minimal additional noise. Their performance directly477

influences downstream blocks such as mixers and analog-to-digital converters (ADCs), ultimately de-478

termining system-level fidelity [31]. To capture the architectural diversity of practical radio-frequency479

(RF) designs, we include four widely used LNA topologies in this study—common-source LNA480

(CSLNA), common-gate LNA (CGLNA), cascode LNA (CLNA), and differential LNA (DLNA)—as481

shown in Figure 7.482
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Table 5: Overview of 16 performance metrics used during dataset generation.

Performance Name Description

DC Power Consumption (DCP) Total power drawn from the DC supply indicating energy consumption of the circuit
Voltage Gain (VGain) Ratio of output voltage amplitude to input voltage amplitude
Power Gain (PGain) Ratio of output power to input power
Conversion Gain (CGain) Ratio of output power at the desired frequency to input power at the original frequency
S11 Input reflection coefficient indicating impedance matching at the input terminal
S22 Output reflection coefficient indicating impedance matching at the output terminal
Noise Figure (NF) Ratio of input signal-to-noise ratio to output signal-to-noise ratio
Bandwidth (BW) Frequency span over which the circuit maintains specified performance characteristics
Oscillation Frequency (OscF) Steady-state frequency at which the oscillator generates a periodic signal
Tuning Range (TR) Range of achievable oscillation frequencies through variation of control voltages
Output Power (OutP) Power delivered to the load
PSAT Maximum output power level beyond which gain compression begins to occur
Drain Efficiency (DE) Ratio of RF output power to DC power consumption.
Power-Added Efficiency (PAE) Ratio of the difference between output power and input power to DC power consumption
Phase Noise (PN) Measure of oscillator stability represented in the frequency domain at a specified offset
Voltage Swing (VSwg) Maximum peak voltage level achievable at the output node

483

The CSLNA is valued for its simplicity and favorable gain–noise trade-off, especially when paired484

with inductive source degeneration [30]. The CGLNA, often used in ultra-wideband systems, enables485

broadband input matching but typically suffers from a higher noise figure [32]. The CLNA improves486

gain–bandwidth product and reverse isolation, making it ideal for high-frequency, high-linearity487

applications [33]. The DLNA exploits circuit symmetry to enhance linearity and reject common-mode488

noise, and is commonly found in high-performance RF front-end designs [34]. The design parameters489

and performance metrics associated with these topologies are summarized in Table 6.490

(a) CSLNA
(b) CGLNA (c) CLNA (d) DLNA

Figure 7: Schematic diagrams of the four LNA topologies.

Table 6: LNA topologies with parameter sweep ranges, sample sizes, and performance metrics.

Dataset Type Topology (Code) # of Samples Parameter Sweep Range Performance Metrics (Unit)

LNA

CGLNA (0) 52k

C1 [100–600] fF

DCP (W)

PGain (dB)

S11 (dB)

NF (dB)

BW (Hz)

C2 [50–300] fF
Cb [250–750] fF
Ld [80–580] pH
Ls [0.5–5.5] nH

WN [12–23] µm

CLNA (1) 62k

C1, C2 [50–250] fF
Ld [140–300] pH
Lg [0.4–2] nH
Ls [50–250] pH

WN1 [3–5] µm
WN2 [7–9] µm

CSLNA (2) 39k

C [100–300] fF
Lg [4–6] nH
Ls [100–200] pH

WN [2.5–4] µm
Vgs [0.5–0.9] V

DLNA (3) 92k

C1 [100–190] fF
C2 [130–220] fF
Ld [100–250] pH
Lg [600–900] pH
Ls [50–80] pH

WN1 [4–9.4] µm
WN2 [5–14] µm

491
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B.2 Mixers492

Mixers are fundamental nonlinear components in RF systems, responsible for frequency translation493

by combining two input signals to produce outputs at the sum and difference of their frequencies. This494

functionality is essential for transferring signals across frequency domains and is widely used in both495

transmission and reception paths [35]. To capture diverse mixer architectures, we implement four496

representative topologies in this work—double-balanced active mixer (DBAMixer), double-balanced497

passive mixer (DBPMixer), single-balanced active mixer (SBAMixer), and single-balanced passive498

mixer (SBPMixer)—as shown in Figure 8.499

The DBAMixer integrates amplification and differential switching to achieve conversion gain and500

high port-to-port isolation. Despite its elevated power consumption and design complexity, it is well501

suited for systems requiring robust performance over varying conditions [36]. The DBPMixer features502

a fully differential structure that suppresses signal leakage and improves isolation, at the cost of signal503

loss and a strong local oscillator drive requirement [37]. The SBAMixer includes an amplification504

stage preceding the switching core to enhance signal strength and reduce noise, offering a balanced505

performance trade-off with increased power consumption and limited spurious rejection [30]. The506

SBPMixer employs a minimalist switching structure to perform frequency translation without active507

gain, enabling low power operation in applications with relaxed performance demands [38]. The508

parameters and performance metrics for these mixer topologies are listed in Table 7.509

(a) DBAMixer (b) DBPMixer (c) SBAMixer (d) SBPMixer

Figure 8: Schematic diagrams of the four Mixer topologies.

Table 7: Mixer topologies with parameter sweep ranges, sample sizes, and performance metrics.

Dataset Type Topology (Code) # of Samples Parameter Sweep Range Performance Metrics (Unit)

Mixer

DBAMixer (4) 42k

C [1–10] pF

DCP (W)

CGain (dB)

NF (dB)

VSwg (V)

R [1–10] kΩ
WN1 [10–30] µm
WN2 [5–25] µm

DBPMixer (5) 42k
C [100–500] fF
R [100–600]Ω

WN [10–30] µm

SBAMixer (6) 52k

C [1–15] pF
R [0.7–2.1] kΩ

WN1 [10–30] µm
WN2 [10–20] µm
Itail [3–10] mA

SBPMixer (7) 44k
C [1–30] pF
R [1–30] kΩ

WN [5–29.5] µm

510

B.3 Power Amplifiers (PAs)511

Power amplifiers (PAs) are the most power-intensive components in radio-frequency (RF) systems and512

serve as the final interface between transceiver electronics and the antenna. Given their widespread513

use and the stringent demands of modern communication standards, PA design requires careful514

trade-offs across key performance metrics [39]. Based on the transistor operating mode, PAs are515

typically grouped into several canonical classes [40]. In this work, we implement four representative516

topologies—Class-B PA (ClassBPA), Class-E PA (ClassEPA), Doherty PA (DohPA), and differential517

PA (DPA)—as shown in Figure 9.518
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The ClassBPA employs complementary transistors to deliver high gain with moderate efficiency,519

making it suitable for linear amplification scenarios [41]. The ClassEPA uses a single transistor520

configured as a switch, paired with a matching network. By minimizing the overlap between drain521

voltage and current, this topology enables high-efficiency operation and improved robustness to522

component variation [30]. The DohPA combines main and peaking amplifiers using symmetric523

two-stack transistors, maintaining consistent gain and efficiency under varying power levels [42].524

The DPA features a two-stage cascode structure designed to maximize gain and linearity, offering a525

favorable trade-off between output power and power consumption [43]. For this topology, we replace526

the transformer with a T-equivalent network to simplify modeling and training of the graph neural527

network. Parameter sweeps and performance metrics for these PAs are listed in Table 8.528

(a) ClassBPA (b) ClassEPA (c) DohPA

(d) DPA

Figure 9: Schematic diagrams of the four PA topologies.

Table 8: PA topologies with parameter sweep ranges, sample sizes, and performance metrics.

Dataset Type Topology (Code) # of Samples Parameter Sweep Range Performance Metrics (Unit)

PA

ClassBPA (8) 35k

C [55–205] fF

DCP (W)

PGain (dB)

S11 (dB)

S22 (dB)

PSAT (dBm)

DE (%)

PAE (%)

L1 [1–1.4] nH
L2 [1–8.5] pH
R [1.5–4] kΩ

WN [10–20] µm
WP [3–8] µm

ClassEPA (9) 46k

C1 [100–200] fF
C2 [500–700] fF
L1 [100–300] pH
L2 [100–150] pH
WN [15–30] µm

DohPA (10) 120k

C1 [2–3] pF
C2 [200–300] fF

C3, C5 [100–200] fF
C4 [300–400] fF

L1, L5 [100–200] pH
L2 [350–450] pH
L3 [500–600] pH
L4 [150–250] pH
L6 [300–400] pH

WN1, WN2 [6–13] µm

DPA (11) 80k

Lip [100–500] pH
Lis [300–700] pH
Lop [0.8–1.2] nH
Los [400–800] pH
Lm [50–250] pH

WN1 [6–31] µm
WN2 [10–35] µm

529
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B.4 Voltage Amplifiers (VAs)530

Voltage amplifiers (VAs) are fundamental components in analog circuit design, responsible for531

increasing signal amplitude while preserving waveform integrity. Effective VA design requires532

balancing key performance metrics tailored to both RF and baseband operating conditions [44]. In533

this work, we implement four widely used VA topologies—common-source VA (CSVA), common-534

gate VA (CGVA), cascode VA (CVA), and source follower VA (SFVA)—as shown in Figure 10.535

The CSVA remains the most widely adopted configuration due to its structural simplicity and high536

voltage gain. It is frequently used as the first gain stage in various analog systems [45]. The CGVA537

is suitable for applications requiring low input impedance and wide bandwidth, such as impedance538

transformation or broadband input matching [46]. The CVA, which cascades a common-source stage539

with a common-gate transistor, improves the gain–bandwidth product and enhances stability, making540

it ideal for applications demanding wide dynamic range and robust gain control [47]. The SFVA, also541

known as a common-drain amplifier, provides near-unity voltage gain and low output impedance,542

making it well suited for interstage buffering, load driving, and impedance bridging [48]. Parameter543

ranges and performance specifications for these VA topologies are listed in Table 9.544

(a) CSVA
(b) CGVA

(c) CVA
(d) SFVA

Figure 10: Schematic diagrams of the four VA topologies.

Table 9: VA topologies with parameter sweep ranges, sample sizes, and performance metrics.

Dataset Type Topology (Code) # of Samples Parameter Sweep Range Performance Metrics (Unit)

VA

CGVA (12) 33k

C [0.1–1.5] pF

DCP (W)

VGain (dB)

BW (Hz)

R [0.1–1.5] kΩ
WN1 [5–30] µm
WN2 [5–10] µm

CSVA (13) 21k

R [0.7–1.5] kΩ
WN [3–15] µm
VDD [1–1.8] V
Vgate [0.6–0.9] V

CVA (14) 22k
R [1–3] kΩ

WN1, WN2 [1–10] µm
WN3 [10–15] µm

SFVA (15) 28k

WN1 [40–60] µm
WN2 [2–8] µm
VDD [1.1–1.8] V
Vgate [0.6–1.2] V
Vb [0.5–0.9] V

545

B.5 Voltage-Controlled Oscillators (VCOs)546

Voltage-controlled oscillators (VCOs) are essential building blocks in analog and RF systems,547

responsible for generating periodic waveforms with frequencies modulated by a control voltage.548

These circuits rely on amplification, feedback, and resonance to sustain stable oscillations. Owing to549

their wide tuning range, low power consumption, and ease of integration, VCOs are broadly used in550

systems such as phase-locked loops (PLLs), frequency synthesizers, and clock recovery circuits [49].551

In this work, we implement four representative VCO topologies—inductive-feedback VCO (IFVCO),552

cross-coupled VCO (CCVCO), Colpitts VCO (ColVCO), and ring VCO (RVCO)—as shown in553

Figure 11.554
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The IFVCO employs an NMOS differential pair with an inductor-based feedback path to sustain555

oscillations. This topology provides favorable noise performance and compact layout, making it well556

suited for low-voltage, low-power designs [50]. The CCVCO achieves negative resistance through557

cross-coupling, enabling low phase noise and high integration density, and is widely adopted in558

frequency synthesizers and PLLs [51]. The ColVCO uses an LC tank and capacitive feedback to559

achieve high frequency stability and low phase noise, making it ideal for precision RF communication560

and instrumentation [52]. The RVCO consists of cascaded delay stages forming a feedback loop,561

offering low power consumption, wide tuning range, and minimal area footprint, though at the562

cost of higher phase noise. It is commonly used in on-chip clock generation and low-power sensor563

applications [53]. Design parameters and performance metrics for these VCO topologies are presented564

in Table 10.565

(a) IFVCO (b) CCVCO (c) ColVCO (d) RVCO

Figure 11: Schematic diagrams of the four VCO topologies.

Table 10: VCO topologies with parameter sweep ranges, sample sizes, and performance metrics.

Dataset Type Topology (Code) # of Samples Parameter Sweep Range Performance Metrics (Unit)

VCO

IFVCO (16) 43k

C1 [700–900] fF

DCP (W)

OscF (Hz)

TR (Hz)

OutP (dBm)

PN (dBc/Hz)

C2 [50–250] fF
L1 [400–600] pH
L2 [500–700] pH

WN, Wvar [5–9] µm

CCVCO (17) 54k
L [200–400] pH

WN [10–35] µm
Wvar [5–30] µm

ColVCO (18) 90k

C [80–140] fF
L [250–350] pH

WN [30–50] µm
Wvar [5–15] µm
Vb [0.7–1.2] V
Itail [5–15] mA

RVCO (19) 46k

C [300–700] fF
L1 [300–500] pH
L2 [50–250] pH
WN [20–40] µm
Wvar [5–25] µm

566

C Graph-Based Circuit Representation567

To enable GNN-based modeling of analog circuits, we represent each netlist as a directed multigraph568

where nodes correspond to electrical nets and edges encode circuit components such as transistors,569

capacitors, inductors, and voltage sources. Each edge is labeled with its component type and terminal570

role (e.g., gate, source, drain), and component-specific attributes are stored as edge features. For571

transistors, labels such as GS, DS, and DG denote source-to-gate, drain-to-source, and drain-to-gate572

connections, respectively.573

Figure 12 illustrates two representative graph structures extracted from our dataset: an IFVCO and574

a ClassBPA. The visual encoding highlights the diversity of components and connectivity patterns575

across topologies. Edges corresponding to the same component type share a common color for visual576

consistency and semantic clarity. These structured graphs serve as the primary input to our GNN577

pipeline for performance prediction and inverse design.578
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Figure 12: Graph representations of two analog circuit topologies from our dataset: (a) IFVCO and
(b) ClassBPA. Nodes represent electrical nets, and colored edges denote circuit components such
as transistors, capacitors, inductors, and sources. Each component type is visually distinguished by
color and labeled with its name and terminal role (e.g., N2_GS, V0). These graphs serve as input to
our GNN-based performance modeling and inverse design pipeline.
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(c) Per-class accuracy across circuit topologies

Figure 13: Topology selection results. (a) Performance vectors form well-separated clusters in t-SNE
space, showing that circuit functionality is semantically predictive of topology. (b) Misclassifications
primarily occur among voltage amplifier variants with overlapping gain-bandwidth tradeoffs. (c)
Per-class test accuracy exceeds 93% across all 20 circuit topologies.

D Additional Results for Performance-Driven Topology Selection579

To further analyze the topology classification stage, we visualize the learned input representation580

and per-class performance. Normalized performance vectors encode rich semantic information581

about circuit behavior. When projected into a two-dimensional t-SNE space [63] (Figure 13(a)), the582

resulting clusters align closely with topology labels, indicating that performance specifications reflect583

underlying schematic structure and are effective inputs for supervised classification.584
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These trends are reinforced by the per-class accuracy plot in Figure 13(c), where most topologies reach585

100% accuracy. The confusion matrix in Figure 13(b) visualizes only the misclassified instances,586

as most classes achieve perfect accuracy. The few observed errors are concentrated among the two587

voltage amplifier topologies—common-gate (CGVA) and common-source (CSVA)—which operate588

near the gain-bandwidth limit of the transistor. When the main amplifier transistor size is held constant,589

performance metrics such as power consumption, gain, and bandwidth can converge across these590

architectures, introducing ambiguity in classification for a small subset of instances. For other circuit591

categories, no significant confusion is expected or observed. These results validate that performance592

vectors contain sufficient semantic structure for accurate, scalable topology classification.593

E Robustness Across Random Seeds594

To evaluate the robustness of our models to random initialization and data shuffling, we repeated595

experiments using five distinct random seeds: {42, 123, 777, 2023, 3407}. Reporting across multiple596

seeds is important for ensuring that observed results are not artifacts of a specific initialization or597

training trajectory, but rather reflect the stable behavior of the method. For each metric, we compute598

the mean and 95% confidence interval across seeds, reporting results in the form µ±∆.599

For the MLP topology selection model, results are
highly stable across random seeds. The accuracy
reaches 99.57 ± 0.01% with balanced accuracy
at 99.34 ± 0.02%, while both macro and micro
F1 scores exceed 99.3% with confidence intervals
no larger than ±0.02. These narrow intervals
indicate that the MLP’s performance is effectively
invariant to random initialization, underscoring its
robustness and reliability in the topology selection
stage of the pipeline.

Table 11: Topology selection performance
with mean scores and 95% confidence

intervals across five random seeds.

Metric Mean ± 95% CI (%)
Accuracy 99.57 ± 0.01
Balanced Accuracy 99.34 ± 0.02
Macro Precision 99.27 ± 0.01
Macro Recall 99.34 ± 0.02
Macro F1 99.30 ± 0.01
Micro F1 99.57 ± 0.01

For the GNN-based forward performance prediction model, the overall mean relative error across600

all metrics is 9.14 ± 0.38% (95% CI). Individual performance predictions, including DC power601

consumption, gain, bandwidth, and oscillation frequency, exhibit narrow confidence intervals—for602

example, noise figure achieves 4.48± 0.07% error and oscillation frequency 0.65± 0.03%. These603

results indicate that the GNN achieves consistently accurate predictions across diverse circuit charac-604

teristics. The tight confidence intervals further demonstrate that the model’s performance is robust605

to random initialization, underscoring its reliability as a generalizable forward predictor within the606

pipeline. The full seed-dependent results for both models are provided in Tables 11 and 12.607

Table 12: Prediction accuracy of the forward GNN with mean scores and 95% confidence intervals
across five random seeds.

Metric DCP VGain PGain CGain S11 S22 NF BW OscF TR OutP PSAT DE PAE PN VSwg
Rel. Err.

± 95% CI (%)
11.64
± 1.06

3.10
± 0.42

18.46
± 0.36

5.25
± 0.44

11.49
± 0.09

1.94
± 0.15

4.48
± 0.07

6.28
± 0.43

0.65
± 0.03

6.55
± 0.04

4.86
± 0.59

4.31
± 0.24

4.51
± 0.14

11.58
± 1.72

1.34
± 0.02

1.71
± 0.29

608

F Generalizing to Unseen Topologies via Fine-Tuning609

To assess the generalization ability of our pretrained GNN, we evaluate it on the held-out RVCO610

topology, which was entirely excluded from the Stage 2 training, validation, and test splits (see611

Section 5). Notably, the RVCO training partition used here matches that of the Stage 1 experiments612

(Section 4), enabling consistent cross-stage evaluation.613

We fine-tune the GNN by freezing all encoder and message-passing layers and updating only the614

final output head (output_mlp). Fine-tuning is performed on the RVCO training set, which contains615

approximately 30,000 instances, and completes in under 30 minutes on a MacBook CPU.616
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Even in the zero-shot setting—where the
model has never seen RVCO topologies—the
pretrained GNN achieves a nontrivial mean
relative error of 30.4%, highlighting its strong
cross-topology generalization. Fine-tuning
reduces this error to just 0.9%, demonstrat-
ing that the structural and parametric priors
learned during pretraining are highly transfer-
able. Table 13 reports detailed performance
across five key metrics, confirming that the pre-
trained GNN can be rapidly adapted to novel
circuit families with minimal supervision.

Table 13: Fine-tuning results on the held-out
RVCO topology. Only the output head is updated
using RVCO samples.

Metric DCP OscF TR OutP PN
Unit W GHz GHz dBm dBc/Hz

R² 1.0 1.0 1.0 0.97 0.98
RMSE 0.643 0.324 0.026 0.099 0.953
MAE 0.508 0.256 0.02 0.077 0.619
Rel. Err. 0.75% 0.85% 1.63% 0.69% 0.73%

617

G User-Defined Loss Functions for Gradient Reasoning618

Stage 3 of FALCON employs gradient reasoning with the forward GNN fixed, enabling the op-619

timization objective to be redefined without retraining or fine-tuning the predictive model. This620

design allows users to flexibly adapt the loss function to capture specific trade-offs or constraints. We621

illustrate this flexibility with two examples.622

Weighted Performance Loss. Rather than treating all performance metrics equally, users can specify623

weights αi for each target metric:624

Lperf-weighted =
1∑

i miαi

d∑
i=1

miαi (ŷi − ytarget
i )2,

where larger αi prioritize certain specifications (e.g., gain or noise figure). Here, mi = 1 if the i-th625

metric is defined for the current sample, and 0 otherwise.626

Interval-Constrained Performance Loss. Users may also define acceptable ranges for metrics627

rather than fixed targets. Given optional lower and/or upper bounds ylower
i , yupper

i , the interval penalty628

is:629

Lperf-interval =
1∑
i mi

d∑
i=1

mi

[
1{yupper

i defined} max(0, ŷi−yupper
i )+1{ylower

i defined} max(0, ylower
i − ŷi)

]
,

where the indicator 1{·} indicates whether the corresponding bound is specified. This formulation630

naturally handles the cases where only an upper bound, only a lower bound, or both bounds are631

provided. As above, mi = 1 if the i-th metric is defined for the current sample, and 0 otherwise.632

General Extensibility. More generally, the total loss in Eqn. 3 can be replaced with any user-defined633

formulation, allowing both Lperf and Llayout to be substituted with customized objectives. Additional634

physical constraints, multi-objective trade-offs, or alternative layout penalties can be incorporated635

with only a few lines of code. This extensibility underscores the flexibility of FALCON and enables636

the framework to adapt to diverse design objectives.637

H Layout Design and DRC Compliance638

H.1 Design Rule Enforcement in 45 nm CMOS639

We implemented FALCON using a 45 nm CMOS technology node, applying rigorous Design Rule640

Checking (DRC) at both the cell and full-chip layout levels. At the cell level, our parameterized641

layout generators enforced foundry-specific constraints, including minimum feature width and642

length, contact and via spacing, and metal enclosure rules. At the circuit level, we incorporated643

physical verification to mitigate interconnect coupling, IR drop, and layout-dependent parasitic644

mismatches—factors that are especially critical in high-frequency and precision analog design.645

DRC plays a vital role in ensuring that layouts comply with process design rules defined by the646

semiconductor foundry. Adhering to these rules ensures not only physical manufacturability but647

also electrical reliability. Violations may lead to fabrication failures, including yield degradation,648

electrical shorts or opens, electromigration-induced issues, and parasitic mismatches. Moreover,649
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DRC compliance is essential for compatibility with downstream fabrication steps such as photomask650

generation, optical lithography, and chemical-mechanical planarization (CMP), safeguarding the651

yield and fidelity of the final IC.652

Circuit-Level Layout Guidelines. We enforced several topology-aware layout constraints during653

full-circuit integration to preserve signal integrity and robustness:654

• Inductor-to-inductor spacing: ≥ 35.0µm to mitigate mutual inductive coupling and655

magnetic interference.656

• Guardring placement: Sensitive analog blocks are enclosed by N-well or deep N-well657

guardrings with spacing ≥ 5.0µm to suppress substrate noise coupling.658

• Differential pair symmetry: Differential signal paths are layout-matched to ensure ∆L <659

0.5µm, minimizing mismatch and preserving phase balance.660

DRC Constraints and Layer Definitions. Table 14 summarizes the DRC constraints applied to key661

analog components across relevant process layers. Table 15 provides the abbreviations used for metal,662

contact, and via layers in the 45 nm CMOS process.663

Table 14: Design rule constraints for key analog components in 45 nm CMOS.

Component Layer Physical Constraint Symbol Value Unit

MIM Capacitor (QT, LD, VV, OB)

QT/LD Minimum Cap Width WMIN 6.05 µm
QT/LD Maximum Cap Width WMAX 150.0 µm
QT/LD Cap Length L 6.0 µm
VV VV Square Size VV_SIZE 4.0 µm
VV VV Spacing VV_SPACE 2.0 µm
VV VV to Edge Spacing VV_EDGE_MIN 1.0 µm

Resistor (RX, CA, M1)

RX Minimum Width WMIN 0.462 µm
RX Maximum Width WMAX 5.0 µm
RX Minimum Length LMIN 0.4 µm
RX Maximum Length LMAX 5.0 µm
CA Contact Size CA_SIZE 0.06 µm
CA Contact Spacing CA_SPACE 0.10 µm
CA CA to Edge Spacing CA_EDGE 0.11 µm

Inductor (M3)
M3 Minimum Width M3_W_MIN 2.0 µm
M3 Maximum Width M3_W_MAX 20.0 µm
M3 Minimum Spacing M3_S_MIN 2.0 µm

Grid All Layers Minimum Grid Min_Grid 0.005 µm

664

Table 15: Process layer abbreviations in the 45 nm CMOS design flow.

Layer Name Description

RX Resistor implant or diffusion layer used to define integrated resistor geometries.
CA Contact layer forming vias between diffusion/poly and the first metal layer (M1).
M1 First metal layer, typically used for local interconnects and resistor terminals.
M3 Third metal layer, used for wider routing tracks and planar inductor layouts.
QT Top metal plate in MIM capacitor structures, providing the upper electrode.
LD Lower metal plate in MIM capacitor structures, acting as the bottom electrode.
VV Via layer connecting different metal layers, especially in capacitor and dense routing regions.
OB Opening/blocking layer used to define restricted zones, often to exclude metal or for CMP mask clarity.

665

H.2 MIM Capacitor Capacitance Model666

The total capacitance CN of a metal-insulator-metal (MIM) capacitor is modeled as:667

CN = Ca · L ·W + Cp · 2 · (L+W ) [fF]

where L and W are the layout length and width in µm, Ca is the area capacitance density, and668

Cp is the fringing field contribution per unit length. This model includes both area and perimeter669

contributions to more accurately reflect layout-dependent capacitance in IC design (see Figure 14(a)).670

1. Area Capacitance Term: Ca · L ·W671
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(a) MIM capacitor layout (b) Resistor layout (c) Inductor layout

Figure 14: Layout views of passive components. (a) MIM capacitor with metal-insulator-metal stack.
(b) Resistor layout with matching geometry. (c) Spiral inductor with octagonal turns for optimized
area and Q-factor.

Physical Concept: This term represents the primary (parallel-plate) capacitance formed between the672

overlapping top and bottom metal layers. It arises from the uniform electric field across the dielectric.673

Layer Physics Explanation:674

• L ·W corresponds to the overlap area of the plates.675

• Ca = 0.335 fF/µm2 is the area capacitance density, derived from:676

– Dielectric permittivity ε of the insulating material.677

– Dielectric thickness d, with C ∝ ε/d.678

2. Perimeter (Fringing) Capacitance Term: Cp · 2 · (L+W )679

Physical Concept: This term models fringing fields at the plate edges, contributing additional680

capacitance—particularly relevant in small geometries.681

Layer Physics Explanation:682

• 2 · (L+W ) is the physical perimeter of the capacitor.683

• Cp = 0.11 fF/µm accounts for the fringing field contribution per unit length.684

Summary: This composite model enables accurate estimation of MIM capacitance by capturing685

both parallel-plate and fringing effects. The constants Ca and Cp are typically calibrated using686

process-specific measurements or electromagnetic simulations.687

For a fixed capacitor length L = 20µm and width W ∈ [6.05, 150.0]µm, the layout-aware capaci-688

tance is approximated by:689

C ≈ 6.92W + 4.4 [fF] (4)

The corresponding bounding area is estimated from the component’s geometric envelope:690

Bounding_Area = 22W + 44 [µm2] (5)

H.3 N+ Silicided Polysilicon Resistor Model691

The resistance of a layout-defined resistor implemented using the ndslires layer is modeled as:692

R = Rs ·
L

W +∆W
+ 2Rend + δ [Ω]

Physical Concept: This structure uses heavily doped N+ polysilicon overlaid with a silicide layer693

to reduce resistance. Current flows laterally through the poly-silicide film (see Figure 14(b)), and694

resistance is shaped by the aspect ratio of the layout as well as process-dependent corrections.695

Layer Physics Explanation:696

• Rs = 17.6Ω/□ (ohm per square) is the sheet resistance of the silicided poly layer.697

• W = 5.0µm is the drawn width; ∆W = 0.048µm accounts for process-induced width698

bias.699
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• L is the drawn resistor length.700

• Rend = 1Ω models terminal resistance due to contact diffusion and current crowding.701

• δ = 0.917Ω accounts for residual layout-dependent parasitics.702

Summary: The empirical layout relation used in parameterized generation is:703

R ≈ 3.5007 · L+ 2.917 [Ω] (6)

This model is valid for L ∈ [0.4, 5.0]µm with fixed width W = 5.0µm. The estimated layout area704

based on bounding box dimensions is:705

Bounding_Area = 5.2L+ 8.362 [µm2] (7)

H.4 Octagon Spiral Inductor Model706

Physical Concept: Accurate modeling and layout optimization of planar spiral inductors are critical707

in analog circuit design. Inductor performance is highly sensitive to parasitic elements, achievable708

quality factor (Q), and layout constraints imposed by process design rules. To support accurate709

performance prediction and inform layout choices, we adopt a modified power-law model that710

expresses inductance as a function of key geometric parameters. The model is validated against711

empirical measurements and shows strong agreement with classical analytical formulations.712

Numerous classical formulations relate inductance to geometric factors such as the number of turns,713

average diameter, trace width, and inter-turn spacing. Among these, the compact closed-form714

expressions in RF Microelectronics textbook [30] are widely adopted for their balance of simplicity715

and accuracy. Building on this foundation, we adopt a reparameterized monomial model that better716

fits our empirical measurement data:717

L = 2.454× 10−4 ·D−1.21
out ·W−0.163 ·D2.836

avg · S−0.049 [nH]

Layer Physics Explanation:

• Dout = 2(R+ W
2 ) is the outer diameter,

• Din = 2(R− W
2 ) is the inner diameter,

• Davg = (Dout +Din)/2 = 2R is the aver-
age diameter,

• R is the radius in µm,
• W is the trace width in µm,
• S is the spacing in µm.

Table 16: Measured inductance for one-turn in-
ductors with fixed W = 10 µm and S = 0.0 µm

R (µm) 30 40 50 60

L (nH) 0.123 0.170 0.220 0.276

718

This expression is calibrated using measured data from a series of one-turn inductors fabricated with719

varying radius (R), while keeping the trace width fixed at W = 10 µm and spacing at S = 0.0 µm.720

Table 16 summarizes the measured inductance values used for model fitting.721

Summary: With W and S fixed, inductance simplifies to:722

L ≈ 2.337× 10−3 ·R1.164 [nH] (8)

The bounding area is estimated by:723

Bounding_Area = 4R2 + 108R+ 440 [µm2] (9)

The performance of on-chip inductors is fundamentally influenced by layout-dependent factors such724

as trace width, metal thickness, and inter-turn spacing. Increasing the trace width (Wind) reduces725

series resistance by enlarging the conductor’s cross-sectional area, thereby improving the quality726

factor, Q = ωL/Rseries. However, wider traces also increase parasitic capacitance to adjacent turns727

and the substrate, which lowers the self-resonance frequency.728
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Metal thickness (Hind) also plays a crucial role in minimizing ohmic losses. At high frequencies,729

current is confined near the conductor surface due to the skin effect. For copper at 25GHz, the skin730

depth δ is approximately 0.41 µm; thus, using a metal layer thicker than 4δ (i.e., 1.6 µm) ensures731

efficient current flow. However, increasing thickness beyond this threshold yields diminishing returns732

in Q due to saturation in current penetration.733

Turn-to-turn spacing (S) affects both inductance and quality factor (Q). Tighter spacing enhances734

magnetic coupling, thereby increasing inductance density. However, it also intensifies capacitive735

coupling and dielectric losses—particularly in modern CMOS processes with high-k inter-metal736

dielectrics—which can degrade Q. Conversely, excessive spacing reduces inductance without737

providing a proportionate benefit in loss reduction. As a result, one-turn spiral inductors are commonly738

favored in RF design due to their low series resistance, minimized parasitics, and improved modeling739

predictability.740

These insights guided our design choices for layout-aware inductor implementation. To balance the741

competing demands of Q optimization, parasitic control, and DRC compliance, we implemented742

inductors using Metal 3 and set W = 10 µm as the default trace width. This width offers a low-743

resistance path that enhances Q while maintaining manageable parasitic capacitance and sufficient744

pitch for lithographic reliability. Metal 3 was selected for its favorable trade-off between thickness and745

routing density—it is thick enough to mitigate skin-effect losses at high frequencies while offering746

sufficient flexibility for compact layout integration.747

The implemented spiral inductor geometry is shown in Figure 14(c). Table 17 summarizes the748

DRC-compliant tuning ranges, estimated layout areas, and decomposition strategies for single-cell749

passive components in our layout library.750

Table 17: Single-cell passive component limits based on DRC and associated layout area costs.

Component Tunable Variable Value Range Area Range Decomposition Rule

Resistor Length L 4.32–20.42Ω 10.44–34.36µm2 Series if > max, parallel if < min
Capacitor Width W 46.32–1042.4 fF 176–3344µm2 Parallel if > max, series if < min
Inductor Radius R ≥ 0.1 nH ≥ 5640µm2 Continuous radius scaling

751

H.5 Layout Examples of Synthesized Circuits752

To illustrate the correspondence between schematic and layout representations, we present three753

synthesized circuits: DBAMixer, IFVCO, and DLNA, shown in Figures 15, 16, and 17, respectively.754

(a) Designed DBAMixer schematic
(b) Layout of designed DBAMixer

Figure 15: Stage 3 results for a synthesized DBAMixer. The schematic (a) reflects optimized
parameters to meet the target specification. The layout (b) is DRC-compliant and physically realizable.
The final design achieves a mean relative error of 0.2% compared to the target performance.

In the IFVCO example, the inductor labeled L3 functions as an RF choke and is excluded from the755

on-chip layout due to its large area requirement. Instead, it is intended for off-chip implementation at756

the PCB level and connected to the die via wire bonding. This external connection is indicated by the757

yellow pad in Figure 16(b), which serves as the wire-bonding interface.758
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(a) Designed IFVCO schematic (b) Layout of designed IFVCO

Figure 16: Stage 3 results for a synthesized IFVCO. The schematic (a) reflects optimized parameters
to meet the target specification. The layout (b) is DRC-compliant and physically realizable. The final
design achieves a mean relative error of 1.3% compared to the target performance.

(a) Designed DLNA schematic

(b) Layout of designed DLNA

Figure 17: Stage 3 results for a synthesized DLNA. The schematic (a) reflects optimized parameters
to meet the target specification. The layout (b) is DRC-compliant and physically realizable. The final
design achieves a mean relative error of 5.0% compared to the target performance.

Since the current stage of system lacks automated routing, all interconnects in the layout were759

manually drawn to ensure accurate correspondence with the schematic connectivity. These examples760

demonstrate that synthesized circuit parameters can be successfully translated into DRC-compliant,761

physically realizable layouts, bridging the gap between high-level optimization and tapeout-ready762

design.763

I Practical Considerations and Limitations764

I.1 Training and Inference Efficiency765

Although our codebase supports GPU acceleration, all experiments in this work—excluding initial766

dataset generation—were conducted entirely on a MacBook CPU. This highlights the efficiency767

and accessibility of the FALCON pipeline, which can be executed on modest hardware without768

specialized infrastructure. Our MLP and GNN models contain 207k and 1.4M trainable parameters,769

respectively, with memory footprints of just 831 KB and 5.6 MB.770

In Stage 1, the MLP classifier trains in approximately 30 minutes with a batch size of 256 and771

performs inference in the order of milliseconds per batch. Stage 2’s GNN model takes around 3 days772

to train on the full dataset using the same batch size and hardware. Fine-tuning on an unseen topology773

(e.g., RVCO) using ∼30,000 samples completes in under 30 minutes.774
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In Stage 3, the pretrained GNN is used without retraining to perform layout-constrained parameter775

inference via gradient-based optimization. Inference is conducted one instance at a time (batch size 1),776

with typical runtimes under 1 second per circuit. Runtime varies based on the convergence threshold777

and circuit complexity but remains below 2–3 seconds in the worst case across the full test set.778

A solution is considered successful if the predicted performance meets the target within a specified779

relative error threshold. While tighter thresholds (e.g., 5%) improve accuracy, they require more780

optimization steps—particularly over large datasets. As a result, both success rate and inference781

time in Stage 3 are directly influenced by this tolerance, which can be tuned based on design fidelity782

requirements.783

I.2 Limitations784

This work focuses on a representative set of 20 curated analog topologies spanning five circuit785

families. Consequently, the topology selection stage is limited to suggesting only among the designs786

present in the training set and cannot synthesize novel circuits. A natural future direction is to either787

extend the training library to a broader set of topologies or replace the classifier with a generative788

model capable of directly proposing new netlists conditioned on input specifications. In contrast,789

the GNN-based forward modeling stage is designed to operate on arbitrary circuit graphs and has790

already demonstrated strong generalization to unseen architectures (e.g., RVCO), indicating that no791

modification to this stage is required to support novel circuits.792

Beyond topology considerations, the dataset is constructed at a fixed operating frequency of 30 GHz,793

which ensures consistency across circuit families but constrains frequency generalization. Although794

the framework can, in principle, extend to other operating points—for example, the voltage amplifier795

topologies already demonstrate scalability across varying gain–bandwidth trade-offs—systematic796

validation across diverse frequency bands is beyond the scope of this work. Extending the dataset to797

cover multiple operating frequencies, or incorporating frequency as an explicit conditioning variable798

during training, represents an important direction for broadening applicability.799

Finally, the differentiable layout model in FALCON captures parasitic effects through analytical800

approximations of passive components, which is effective for guiding parameter optimization within801

the learning framework. However, this approach does not fully replace electromagnetic (EM)802

simulations or post-layout verification, and electromigration constraints are not explicitly incorporated.803

Incorporating learned parasitic estimators, EM-informed models, and reliability constraints, therefore,804

remains an important extension toward bridging schematic-level optimization and silicon-proven805

robustness. In addition, all interconnect routing in the current flow is performed manually to ensure806

precise control over parasitic management and DRC compliance. While this provides accuracy for807

the studied designs, it limits scalability for more complex circuits, motivating future integration with808

automated analog routing tools.809

27


	Introduction
	Related Work
	A Large-Scale Dataset and Inverse Design Problem Formulation
	Dataset Overview
	Graph-Based Circuit Representation
	Inverse Design Problem Definition

	Stage 1: Performance-Driven Topology Selection
	Stage 2: Generalizable Forward Modeling for Performance Prediction
	Stage 3: Layout-Aware Parameter Inference via Gradient Reasoning
	Conclusion and Future Work
	Qualitative Comparison with Prior Work
	Dataset Details and Performance Metric Definitions
	Low-Noise Amplifiers (LNAs)
	Mixers
	Power Amplifiers (PAs)
	Voltage Amplifiers (VAs)
	Voltage-Controlled Oscillators (VCOs)

	Graph-Based Circuit Representation
	Additional Results for Performance-Driven Topology Selection
	Robustness Across Random Seeds
	Generalizing to Unseen Topologies via Fine-Tuning
	User-Defined Loss Functions for Gradient Reasoning
	Layout Design and DRC Compliance
	Design Rule Enforcement in 45 nm CMOS
	MIM Capacitor Capacitance Model
	N+ Silicided Polysilicon Resistor Model
	Octagon Spiral Inductor Model
	Layout Examples of Synthesized Circuits

	Practical Considerations and Limitations
	Training and Inference Efficiency
	Limitations


