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Abstract

Designing analog circuits from performance specifications is a complex, multi-
stage process encompassing topology selection, parameter inference, and layout
feasibility. We introduce FALCON, a unified machine learning framework that
enables fully automated, specification-driven analog circuit synthesis through topol-
ogy selection and layout-constrained optimization. Given a target performance,
FALCON first selects an appropriate circuit topology using a performance-driven
classifier guided by human design heuristics. Next, it employs a custom, edge-
centric graph neural network trained to map circuit topology and parameters to
performance, enabling gradient-based parameter inference through the learned
forward model. This inference is guided by a differentiable layout cost, derived
from analytical equations capturing parasitic and frequency-dependent effects, and
constrained by design rules. We train and evaluate FALCON on a large-scale
custom dataset of 1M analog mm-wave circuits, generated and simulated using
Cadence Spectre across 20 expert-designed topologies. Through this evaluation,
FALCON demonstrates >99% accuracy in topology inference, <10% relative error
in performance prediction, and efficient layout-aware design that completes in un-
der 1 second per instance. Together, these results position FALCON as a practical
and extensible foundation model for end-to-end analog circuit design automation.

1 Introduction

Analog radio frequency (RF) and millimeter-wave (mm-wave) circuits are central to modern electron-
ics, powering applications in signal processing [1]], wireless communication [2], sensing [3], radar [4],
and wireless power transfer [5]]. Yet their design remains largely manual and heuristic-driven [6H8]],
hindered by a vast continuous design space, tightly coupled trade-offs among gain, noise, bandwidth,
and power, and strong layout-dependent interactions. As demand for high-performance custom
blocks grows, this slow, expert-dependent cycle has become a bottleneck. While ML has transformed
digital design automation, analog efforts remain fragmented: most focus on isolated tasks such as
topology generation or device sizing [9} 10], often assuming fixed topologies [11H14], relying on
non-scalable black-box optimization [[15]], or predicting performance without supporting inverse
design [[16]]. Layout is usually treated as post-processing [17], and benchmarks often rely on sym-
bolic or synthetic data [18]], limiting realism. Consequently, no current ML pipeline achieves fully
generalizable, layout-aware, end-to-end analog circuit design.

We propose FALCON (Fully Automated Layout-Constrained analOg circuit desigN), a scalable ML,
framework for end-to-end analog and RF design. Trained on over one million Cadence-simulated
circuits, FALCON integrates three stages (Figure : (1) a multilayer perceptron (MLP) selects the
topology from target specifications; (2) a graph neural network (GNN) maps topology and parameters
to performance on native netlist graphs; and (3) gradient-based optimization over the GNN recovers
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Figure 1: Our Al-based circuit design pipeline. Given a target performance specification, FALCON
first selects a suitable topology, then generates design parameters through layout-aware gradient-based
reasoning with GNN model. Then, the synthesized circuit is validated using Cadence simulations.

parameters that satisfy targets under a differentiable layout-aware loss. The GNN generalizes to
unseen topologies with optional fine-tuning, enabling inverse design across circuit families. By
embedding layout constraints directly in optimization, FALCON unifies schematic and physical
considerations within a single differentiable framework

Our main contributions are as follows:

* We construct a large-scale analog/RF circuit dataset comprising over one million Cadence-
simulated datapoints across 20 expert-designed topologies and five circuit types.

* We introduce a native netlist-to-graph representation that preserves both structural and
parametric fidelity, enabling accurate learning over physical circuit topologies.

* We develop a modular ML framework for end-to-end inverse design, incorporating
performance-driven topology selection and layout-aware gradient-based optimization, with
a differentiable loss that enforces area constraints, design-rule compliance, and frequency-
dependent modeling of passive components.

* We design a generalizable GNN capable of accurate performance prediction and parameter
inference across both seen and unseen topologies, with optional fine-tuning.

2 Related Work

While recent ML-based approaches have advanced analog and RF circuit design, they typically target
isolated stages of the design flow—such as topology generation, parameter sizing, or schematic-level
performance prediction—without supporting unified, end-to-end synthesis. FALCON bridges this
gap by jointly addressing aforementioned stages within a single framework.

Topology generation methods aim to select or synthesize candidate circuit structures [9} |19} 20],
often using discrete optimization or generative models to explore the circuit graph space. However,
these approaches typically target low-frequency or simplified designs [9] and may produce physically
invalid or non-manufacturable topologies. In contrast, FALCON leverages a curated set of netlists,
ensuring manufacturable validity and eliminating the need to rediscover fundamental circuit structures.

Parameter sizing and performance prediction have been explored through various learning
paradigms. Reinforcement learning [[10,21] and Bayesian optimization [15) [22] optimize parameters
via trial-and-error, often requiring large simulation budgets. Supervised learning methods [23} 24/ [11]]
regress parameter values from performance targets under fixed topologies. Graph-based models [16]
incorporate topology-aware representations to predict performance metrics from netlists. However,
these approaches focus on forward prediction or black-box sizing and do not support inverse design
across varied topologies. In contrast, FALCON unifies forward modeling and parameter inference in
a single differentiable architecture that generalizes to unseen netlists.

Layout-aware sizing and parasitic modeling have been explored to mitigate schematic-to-layout
mismatch. Parasitic-aware methods [25]] integrate pre-trained parasitic estimators into Bayesian
optimization loops for fixed schematics. While effective for estimation, these approaches rely on
time-consuming black-box search and lack inverse design capabilities. Other methods, such as
ALIGN [26] and LayoutCopilot [27], generate layouts from fully sized netlists using ML-based
constraint extraction or scripted interactions, but assume fixed parameters and do not support co-
optimization or differentiable inverse design. In contrast, FALCON embeds layout objectives

'Code, trained models, and dataset will be released upon publication.
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directly into the learning loss, enabling joint optimization of sizing and layout without relying on
external parasitic models. For mm-wave circuits, our layout-aware loss captures frequency-sensitive
constraints via simplified models that implicitly reflect DRC rules, EM coupling, and performance-
critical factors such as quality factor and self-resonance frequency.

Datasets for analog design are often limited to symbolic SPICE simulations or small-scale testbeds
that do not reflect real-world design flows. AnalogGym [18]] and AutoCkt [[13] rely on synthetic
circuits and symbolic simulators, lacking the process fidelity, noise characteristics, and layout-
dependent behavior of foundry-calibrated flows. In contrast, FALCON is trained on a large-scale
dataset constructed from over one million Cadence-simulated circuits across 20 topologies and five
circuit categories, offering a substantially more realistic foundation for ML-driven analog design.

To the best of our knowledge, FALCON is the first framework to unify topology selection, parameter
inference, and layout-aware optimization in a single end-to-end pipeline, validated at scale using
industrial-grade Cadence simulations for mm-wave analog circuits. A qualitative comparison with
representative prior work is provided in Appendix [A]

3 A Large-Scale Dataset and Inverse Design Problem Formulation

3.1 Dataset Overview

We construct a large-scale dataset of analog and RF circuits simulated using industry-grade Cadence
tools [28]] with a 45nm CMOS process design kit (PDK). The dataset spans five widely used mm-wave
circuit types for wireless applications [29,130]]: low-noise amplifiers (LNAs) [31H34]], mixers [35H38]],
power amplifiers (PAs) [39-H43]), voltage amplifiers (VAs) [44-48]], and voltage-controlled oscillators
(VCOs) [49453]). Each circuit type is instantiated in four distinct topologies, resulting in a total of 20
expert-designed architectures.

For each topology, expert-designed schematics were implemented in Cadence Virtuoso, and key
design parameters were manually identified based on their functional relevance. Parameter ranges
were specified by domain experts and systematically swept using Cadence ADE XL, enabling
parallelized Spectre simulations across the design space. For each configuration, performance
metrics—such as gain, bandwidth, and oscillation frequency—were extracted and recorded. Each
datapoint therefore includes the full parameter vector, the corresponding Cadence netlist, and the
simulated performance metrics. The resulting dataset comprises over one million datapoints, capturing
a wide range of circuit behaviors and design trade-offs across diverse topologies. This large-scale,
high-fidelity dataset forms the foundation for training and evaluating our inverse design pipeline.
Detailed metric definitions and per-topology parameter ranges appear in Appendix [B]

3.2 Graph-Based Circuit Representation

To enable flexible and topology-agnostic learning, we represent each analog circuit as a graph
extracted from its corresponding Cadence netlist. Nodes correspond to voltage nets (i.e., electrical
connection points), and edges represent circuit elements such as transistors, resistors, capacitors, or
sources. Multi-terminal devices—such as transistors and baluns—are decomposed into multiple edges,
and multiple components may connect the same node pair, resulting in heterogeneous, multi-edged
graphs that preserve structural and functional diversity.

Recent works such as DICE [54] have explored transistor-level circuit-to-graph conversions for
self-supervised learning, highlighting the challenges of faithfully capturing device structure and
connectivity. In contrast, our approach maintains a native representation aligned with foundry-
compatible netlists. Rather than flattening or reinterpreting device abstractions, we preserve symbolic
parameters, multi-edge connections, and device-specific edge decomposition directly from the
schematic source, enabling scalable learning across diverse analog circuit families.

To support learning over such structured graphs, each edge is annotated with a rich set of attributes:
(i) a categorical device type, specifying the component and connected terminal pair (e.g., NMOS
drain—gate, resistor); (ii) numeric attributes, such as channel length or port resistance, fixed by
the schematic; (iii) parametric attributes, defined symbolically in the netlist (e.g., W1, R3) and
resolved numerically during preprocessing; (iv) one-hot categorical features, such as source type
(DC, AC, or none); and (v) computational attributes, such as diffusion areas (Ad, As) derived from
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sizing. This rule-based graph construction generalizes across circuit families without task-specific
customization. Graphs in the FALCON dataset range from 4—40 nodes and 7-70 edges, reflecting
the variability of practical analog designs. Further details on the graph representation and attribute
encoding are provided in Appendix [C|

3.3 Inverse Design Problem Definition

In analog and RF circuit design, the traditional modeling process involves selecting a topology 7" and
parameter vector x, then evaluating circuit behavior via simulation to obtain performance metrics
y = f(T,z). This forward workflow depends heavily on designer intuition, manual tuning, and
exhaustive parameter sweeps. Engineers typically simulate many candidate (7', x) pairs and select
the one that best satisfies the target specification—a slow, costly, and unguided process.

In contrast, our goal is to perform inverse design: given a target performance specification Yarget,
we aim to directly infer a topology and parameter configuration (T, ) such that f(T,2) = Yrarger,
without enumerating the full design space. This inverse problem is ill-posed and the search space is
constrained by both device-level rules and layout-aware objectives.

Formally, the task is to find the optimal topology 7™ € 7 and the optimal parameters z* € R?
such that f(7™, 2*) = Yiargert Where f : T x RP — R? the true performance function implemented
by expensive Cadence simulations. In practice, f is nonlinear and non-invertible, making direct
inversion intractable. FALCON addresses this challenge through a modular, three-stage pipeline:

Stage 1: Topology Selection. We frame topology selection as a classification problem over a curated
set of K candidate topologies {77, ..., Tk }. Given a target specification yarger, a lightweight MLP
selects the topology T € T most likely to satisfy it, reducing the need for exhaustive search.

Stage 2: Performance Prediction. Given a topology 7" and parameter vector =, we train a GNN fy
to predict the corresponding performance § = fy(T, x). This model emulates the forward behavior
of the simulator f, learning a continuous approximation of circuit performance across both seen and
unseen topologies. By capturing the topology-conditioned mapping from parameters to performance,
fo serves as a differentiable surrogate that enables gradient-based inference in the next stage.

Stage 3: Layout-Aware Gradient Reasoning. Given et and a selected topology 1™, we infer a
parameter vector z* by minimizing a loss over the learned forward model fy. Specifically, we solve:

= arg rr%cin »Cperf(fﬂ (T*v LE), ytarget) +A »Clayout(x); (D

where L;f measures prediction error, and Liay0u €ncodes differentiable layout-related constraints
such as estimated area and soft design-rule penalties. Optimization is performed via gradient descent,
allowing layout constraints to guide the search through a physically realistic parameter space.

4 Stage 1: Performance-Driven Topology Selection

Task Setup. We formulate topology selection as a supervised classification task over a fixed library
of 20 expert-designed circuit topologies 7 = {71, T3, ..., T }. Rather than generating netlists
from scratch—which often leads to invalid or impractical circuits—we select from a vetted set of
designer-verified topologies. This ensures that all candidates are functionally correct, layout-feasible,
and manufacturable. While expanding the topology set requires retraining, our lightweight MLP
classifier enables rapid updates, making the approach scalable. This formulation also aligns with
practical design workflows, where quickly identifying a viable initial topology is critical.

Each datapoint is represented by a 16-dimensional performance vector of key analog/RF metricsE] We
normalize features using z-scores computed from the training set. Missing metrics (e.g., oscillation
frequency for amplifiers) are imputed with zeros, yielding zero-centered, fixed-length vectors that
retain task-relevant variation. Dataset splits are stratified to preserve class balance across training,
validation, and test sets. We assume each target vector is realizable by at least one topology in 7,
though the library can be extended with new designs.

Model Architecture and Training. We train a 5-layer MLP with hidden size 256 and ReLLU
activations for this problem. The model takes the normalized performance vector Yger € RS as

2See Appendix @for the complete definitions of performance metrics.
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Table 1: Classification

Netlist 1 performance on topology selection.

Target Netlist 2 -

Perf::f‘:mce Metric Score (%)

Netlist N Accuracy 99.57

Balanced Accuracy 99.33

Figure 2: In Stage 1, an MLP classifier selects the most o 99.27

- L - . Macro Recall 99.33

suitable circuit topology from a library of human-designed Macro F1 99.30

netlists, conditioned on the target performance specification. Micro Fl 99 57

input and outputs a probability distribution over 20 candidate topologies. The predicted topology is
selected as T = arg maxy, e MLP(Yarget) - We train the model using a cross-entropy loss and
the Adam optimizer [55]], with a batch size of 256. An overview of this process is shown in Figure 2]

Evaluation. We assess classification performance using accuracy, balanced accuracy, macro precision,
macro recall, macro F1, and micro F1 scores on the test set. As summarized in Table [T] the
classifier achieves an overall accuracy of 99.57%, with macro F1 of 99.30% and balanced accuracy
of 99.33%, demonstrating strong generalization across all 20 circuit topologies. Micro F1 (identical
to accuracy in the multiclass setting) reaches 99.57%, while macro metrics—averaged equally across
classes—highlight robustness to class imbalance. Additional visualizations and detailed analysis
are presented in Appendix [D] Seed-averaged results with 95% confidence intervals are provided in

Appendix [E]

5 Stage 2: Generalizable Forward Modeling for Performance Prediction

Task Setup. The goal of Stage 2 is to learn a differentiable approximation of the circuit simulator that
maps a topology 7' and parameter vector z to a performance prediction § = fo(7T, z), where §j € R1C,
Unlike black-box simulators, this learned forward model enables efficient performance estimation
and supports gradient-based parameter inference in Stage 3. The model is trained to generalize across
circuit families and can be reused on unseen topologies with minimal fine-tuning.

Each datapoint consists of a graph-structured Cadence netlist annotated with resolved parameter
values and the corresponding performance metrics. We frame the learning task as a supervised
regression problem. Since not all performance metrics apply to every topology (e.g., oscillation
frequency is undefined for amplifiers), we train the model using a masked mean squared error loss:

d
1 N 2
Zmi (i — i),
Z’Z m; i=1

where m; = 1 if the i-th metric is defined for the current sample, and O otherwise.

@

l:masked =

Model Architecture and Training. Each cir-
cuit is represented as an undirected multi-
edge graph with voltage nets as nodes and cir-

cuit components as edges. All circuit parame-
ters—both fixed and sweepable—are assigned
to edges, along with categorical device types
and one-hot encoded indicators. For each edge
(u,v), these attributes are concatenated to form
a unified feature vector x,,. The feature set is
consistent within each component type but varies
across types (e.g., NMOS vs. inductor), reflect-
ing the structure defined in Section[3.2]

— | Performance

—_—
o )
Circuit N
Parameters
. J

Figure 3: In Stage 2, a custom edge-centric GNN
maps an undirected multi-edge graph constructed
from the circuit netlist to a performance vector.

To account for component heterogeneity, we apply type-specific MLP encoders (;séf,)c to each edge

feature vector, producing initial embeddings 67(2,) = (béﬁ)c(xw), where ¢ is the component type. These

embeddings are updated via a 4-layer edge-centric message-passing GNN with shared weights. At
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each layer ¢, for each node u, we first compute the node hidden state using the edge embeddings of
all neighbors of the node u, A (u). Then, for each edge (u,v) in the circuit graph, we compute the
edge embedding at the next layer ¢ 4 1 is using the edge embedding e%)

forming the edge (u, v) at the current layer £ as follows:

) = Z dmsalely), el = dupp(el), B, D),
weN (u)

and the hidden node states

where ¢wmsc, Pupp are the message and update parameters of message-passing GNN and hq(f), hff) are

the hidden states for the nodes forming the edge (u, v) respectively. After message passing [36], final

edge embeddings 67%) are aggregated to form a graph-level representation zgraph = Z(u v) egf;‘,), which

is decoded by a fully connected MLP (hidden size 256) to predict the 16-dimensional performance
vector §J € R'6. An overview of this GNN-based forward prediction pipeline is shown in Figure 3]

To stabilize training, physical parameters are rescaled by their expected units (e.g. resistance by
10%), and performance targets are normalized to z-scores using training statistics. We train the model
using the Adam optimizer (learning rate 10~3, batch size 256) and a ReduceLROnPlateau scheduler.
Xavier uniform initialization is used for all layers, and early stopping is based on validation loss. We
adopt the same splits as in Section 4] for consistency in evaluation.

0.175
0.150 /

0.125

Evaluation. We evaluate the accuracy of the GNN
forward model fy on a test set drawn from 19 of the
20 topologies. One topology—RVCO—is entirely
excluded from training, validation, and test splits
to assess generalization to unseen architectures.
Additional generalization results are included in
Appendix [F| Prediction quality is measured using
standard regression metrics: coefficient of deter-
mination (R?), root mean squared error (RMSE),
and mean absolute error (MAE), computed inde-
pendently for each of the 16 performance metrics.  *™ o s 10 15 0 25 3
We also report the mean relative error per metric, Retative Error (%)

- Mean: 3.76%
- Median: 1.66%
Mode: 1.40%

0.100

Density

0.075

0.050

0.025

computed as the average across all test samples
where each metric is defined. As summarized in
Table 2] the model achieves high accuracy across

Figure 4: Distribution of relative error (%) across
the test set for the GNN forward model. Plot is
trimmed at the 95th percentile.

all dimensions, with an average R? of 0.972.

To evaluate end-to-end prediction accuracy at the sample level, we compute the mean relative error
per instance, defined as the average relative error across all valid (non-masked) performance metrics
for each test sample. Figure ] shows the distribution of this quantity across the test set (trimmed
at the 95th percentile to reduce the impact of outliers). The distribution is sharply concentrated,
indicating that most predictions closely match their corresponding target vectors. Without percentile
trimming, the overall mean relative error across the full test set is 9.09%. Seed-averaged results with
95% confidence intervals are provided in Appendix [E]

Table 2: Prediction accuracy of the forward GNN on all 16 circuit performance metrics.

Metric DCP VGain PGain CGain Sj; Soo NF BW OscF TR OutP Psyy DE PAE PN VSwg
Unit mW dB dB dB dB dB dB GHz GHz GHz dBm dBm % % dBc/Hz ~ mV
R? 1.0 1.0 0.99 1.0 0.93 1.0 099 098 097 083 097 1.0 1.0 1.0 0.89 1.0
RMSE 0.27 0.101 0536 0.833 1515 021 0534 0972 0723 0293 091 0.095 0226 0.143 2536 0.071
MAE 0.198  0.072 0208 0.188 0554 0.12 02 0376 0.184 0.097 0238 0.066 0.163 0.105 1.159  0.046
Rel. Err.  112%  2.6% 190% 61% 114% 19% 45% 65% 0.6% 65% 4.6% 44% 4.6% 11.0% 1.3% 1.4%

6 Stage 3: Layout-Aware Parameter Inference via Gradient Reasoning

Task Setup. Given a target performance vector yuree and a selected topology 1™, the goal of Stage
3 is to recover a parameter vector £* that minimizes a total loss combining performance error and
layout-aware penalties, using the learned forward model fy from Stage 2. This formulation enables
instance-wise inverse design without requiring circuit-level simulation.
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Figure 5: In Stage 3, gradient reasoning iteratively updates parameters to minimize a loss combining
performance error and layout cost, computed via a differentiable analytical model.

To initialize optimization, we perturb domain-specific scale factors (e.g., 10~'2 for capacitors) to
sample a plausible starting point xo. Parameters are iteratively updated via gradient descent, guided
by both functional and physical objectives. Topology-specific constants are held fixed, and parameter
values are clipped to remain within valid domain bounds throughout the process.

Loss Function. The total loss follows the structure defined in Eqn[I] jointly minimizing performance
mismatch and layout cost:

Ltolal = Eperf + )\area : Elayout . g(ﬁperf)a (3)

where Lperf is the masked mean squared error (see Eqn[2)) between predicted and target performance
vectors, and Liayoue 1S @ normalized area penalty derived from analytical layout equations. To prioritize
functionality, layout loss is softly gated by:

g(ﬁperf) =1l-o (’Y(ﬁperf - T)) ,

which attenuates layout penalties when performance error exceeds a threshold 7, encouraging the
model to first achieve functionality before optimizing for layout compactness.

We set 7 = 0.05, v = 50, and normalize layout area by 1 mm? to stabilize gradients. The layout
weight Ayea = 0.02 is chosen empirically to balance performance accuracy and physical realism
without dominating the loss. This gated formulation supports manufacturable parameter recovery and
reflects the broader paradigm of physics-informed learning [57]]. Further discussion on user-defined
objectives is provided in Appendix

Differentiable Layout Modeling. In mm-wave analog design, layout is not a downstream concern
but a critical determinant of circuit performance—particularly for passive components. Substrate
coupling, proximity effects, and DRC-imposed geometries directly affect key metrics such as reso-
nance frequency, quality factor, and impedance matching. To incorporate these effects, we introduce
a differentiable layout model that computes total physical area analytically from circuit parameters.
This enables layout constraints to directly guide parameter optimization during inverse design. By
minimizing the layout area in distributed mm-wave circuits [38]], unwanted signal loss [39] is reduced,
the self-resonance frequency of passives can increase [60], and phase and amplitude mismatches
across signal paths [61] can be reduced.

The layout model is deterministic and non-learned. It estimates area contributions from passive
components—capacitors, inductors, and resistors—as these dominate total area and exhibit layout-
sensitive behavior. Active devices (e.g., MOSFETS) are excluded since their geometries are fixed by
the PDK and are negligible [62]]. For a given parameter vector x, the total layout loss is computed as:

»Clayoul(x): Z Ae($)7

€€ Epassive

where Epagsive 18 the set of passive elements, and A, (z) is the area of the created layout for the passive
component based on analytical physics-based equations. The area of element e is estimated based on
its 2D dimensions (e.g., A = W - L for resistors and capacitors). This area is normalized and used as
a differentiable penalty in the optimization objective (see Eqn[3). Further implementation details are
provided in Appendix [H]

Gradient Reasoning Procedure. Starting from the initialized parameter vector z, we iteratively
update parameters via gradient reasoning. At each step, the frozen forward model fy predicts the
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Figure 6: Stage 3 results for a synthesized DohPA. The schematic (a) reflects optimized parameters
to meet the target specification. The layout (b) is DRC-compliant and physically realizable. The final
design achieves a mean relative error of 5.4% compared to the target performance.

performance § = fp(T, ), and the total loss L is evaluated. Gradients are backpropagated with
respect to x, and updates are applied using the Adam optimizer. Optimization proceeds for a fixed
number of steps, with early stopping triggered if the loss fails to improve over a predefined window.

To handle varying circuit difficulty and initialization quality, we employ an adaptive learning rate
strategy. Each instance begins with a moderate learning rate (10~°), refined during optimization via
a ReduceLROnPlateau scheduler. If the solution fails to meet thresholds on performance error or
layout area, optimization restarts with a more exploratory learning rate. This adjustment balances
exploration and fine-tuning, enabling rapid convergence to physically valid solutions, typically within
milliseconds to under one second per instance. An overview is shown in Figure 5]

Evaluation. We evaluate Stage 3 on 9,500 test instances (500 per topology) using our gradient-based
optimization pipeline. A design is considered converged if it meets both: (i) a predicted mean relative
error below 10%, and (ii) a layout area under a topology-specific bound—1 mm? for most circuits and
1.5 mm?2 for DLNA, DohPA, and ClassBPA. The 10% error threshold reflects the forward model’s
~ 9% average prediction error (Section . A design is deemed successful if its final Cadence-
simulated performance deviates from the target by less than 20%, confirming real-world viability.
Our method achieves a success rate of 78.5% and a mean relative error of 17.7% across converged
designs, with average inference time under 1 second on a MacBook CPU. Notably, success rate is
coupled with convergence threshold: tighter error bounds yield higher accuracy with more iterations.

To illustrate the effectiveness of our pipeline, Figure [6] shows a representative result for the DohPA
topology: the synthesized schematic is shown on the left, and the corresponding layout is on the right.
These results confirm that the recovered parameters are both functionally accurate and physically
realizable. Together, they demonstrate that FALCON enables layout-aware inverse design within a
single differentiable pipeline—a capability not supported by existing analog design frameworks.

7 Conclusion and Future Work

We presented FALCON, a modular framework for end-to-end analog and RF circuit design that
unifies topology selection, performance prediction, and layout-aware parameter optimization. Trained
on over one million Cadence-simulated mm-wave circuits, FALCON combines a lightweight MLP, a
generalizable GNN, and differentiable gradient reasoning to synthesize circuits from specification
to layout-constrained parameters. FALCON achieves >99% topology selection accuracy, <10%
prediction error, and efficient inverse design—all within sub-second inference. In addition, the GNN
forward model generalizes to unseen topologies with minimal fine-tuning, supporting broad practical
deployment. Further discussion of efficiency and limitations are provided in Appendix [l

In future work, we aim to expand the topology library and support hierarchical macroblocks for
scalable design beyond the cell level. We also plan to extend the dataset to cover multiple operating
frequencies, enabling validation across diverse bands, and to enhance the layout-aware optimization
with learned parasitic models, EM-informed constraints, and electromigration considerations for
more accurate post-layout estimation. Finally, integrating models for generative topology synthesis
represents a promising step toward general-purpose analog design automation.
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A Qualitative Comparison with Prior Work

To contextualize FALCON within the broader landscape of analog circuit design automation, we
provide a qualitative comparison against representative prior works in Table [3] This comparison
spans key capabilities including topology selection, parameter inference, performance prediction,
layout awareness, and simulator fidelity. We additionally assess reproducibility via dataset and code
availability, and introduce a new axis—RF/mm-wave support—to highlight methods evaluated on
high-frequency circuit blocks such as LNAs, mixers, and VCOs. Compared to existing approaches,
FALCON is the only framework that unifies all these dimensions while maintaining foundry-grade
fidelity and open-source accessibility. Definitions for each comparison axis are provided in Table ]

Table 3: Qualitative comparison of FALCON with prior works across key capabilities in analog
circuit design automation.

Method Tl]pl]ll.]gy Parameter Perfor.mz.mce Layout Foundry RF/ Public Public
Selection  Inference Prediction  Awareness Grade mm-Wave Dataset Code
CktGNN [9 (4 (4 X X X (SPICE) X v (4
LaMAGIC [19 v x x x X (SPICE) X x X
AnalogCoder [20] v X X X X (SPICE) X 4 v
GCN-RL [10 X v X X v (SPICE/Cadence) X X X (incomplete)
Caoetal. [21] X v X X v (ADS/Cadence) X X X
BO-SPGP (I3 X v v X v (Cadence) X x X
ESSAB [22] X v v x v (Cadence) x x x
AlCircuit [23124] X v X X v (Cadence) v (4 v
Krylov et al. [11 X v X X X (SPICE) X 4 v
Deep-GEN [16 x X v x X (SPICE) x v v
Liu et al. [25] X X X (4 X (SPICE + Parasitic Model) v X X
ALIGN [26 X X X v v (Cadence) 4 v v
LayoutCopilot [27 X X X (4 v (Cadence) X X X
AnalogGym [18] X v X X X (SPICE) X v (4
AutoCkt [13] b 4 v b 4 b 4 v (Cadence) b 4 b 4 X (incomplete)
L2DC [i2] x v x x X (SPICE) x x x
CAN-RL [14] X (%4 X v v (Cadence) X X X
AnGeL. [17 (4 (4 v X X (SPICE) X X X
FALCON (This work) v v (4 (4 v (Cadence) v (4 (4
Table 4: Definitions of each comparison axis in Table
Column Definition
Topology Selection Does the method automatically select or predict circuit topology given a target specification?
Parameter Inference Does the method infer element-level parameters (e.g., transistor sizes, component values) as part of design generation?
Performance Prediction Can the method predict circuit performance metrics (e.g., gain, bandwidth, noise) from topology and parameters?
Layout Awareness Is layout considered during optimization or training (e.g., via area constraints, parasitics, or layout-informed loss)?
Dataset Fidelity Does the dataset reflect realistic circuit behavior (e.g., SPICE/Cadence simulations, PDK models)?
RF/mm-Wave Is the method evaluated on at least one RF or mm-wave circuit type that reflects high-frequency design challenges?
Public Dataset Is the dataset used in the work publicly released for reproducibility and benchmarking?
Public Code Is the implementation code publicly available and documented for reproducibility?

B Dataset Details and Performance Metric Definitions

During dataset generation, each simulated circuit instance is annotated with a set of performance
metrics that capture its functional characteristics. All simulations are performed at a fixed frequency
of 30 GHz, ensuring consistency across circuit types and relevance to mm-wave design. A total of 16
metrics are defined across all circuits—spanning gain, efficiency, impedance matching, noise, and
frequency-domain behavior—though the specific metrics used vary by topology. For example, phase
noise is only applicable to oscillators. An overview of all performance metrics is provided in Table [5]

B.1 Low-Noise Amplifiers (LNAs)

Low-noise amplifiers (LNAs) are critical components in receiver front-ends, responsible for amplify-
ing weak antenna signals while introducing minimal additional noise. Their performance directly
influences downstream blocks such as mixers and analog-to-digital converters (ADCs), ultimately de-
termining system-level fidelity [31]]. To capture the architectural diversity of practical radio-frequency
(RF) designs, we include four widely used LNA topologies in this study—common-source LNA
(CSLNA), common-gate LNA (CGLNA), cascode LNA (CLNA), and differential LNA (DLNA)—as
shown in Figure
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Table 5: Overview of 16 performance metrics used during dataset generation.

Performance Name

Description

DC Power Consumption (DCP)

Voltage Gain (VGain)
Power Gain (PGain)

Conversion Gain (CGain)

Si1

S22

Noise Figure (NF)
Bandwidth (BW)
Oscillation Frequency
Tuning Range (TR)
Output Power (OutP)
Psar

Drain Efficiency (DE)

(OscF)

Power-Added Efficiency (PAE)

Phase Noise (PN)
Voltage Swing (VSwg)

Total power drawn from the DC supply indicating energy consumption of the circuit
Ratio of output voltage amplitude to input voltage amplitude

Ratio of output power to input power

Ratio of output power at the desired frequency to input power at the original frequency
Input reflection coefficient indicating impedance matching at the input terminal
Output reflection coefficient indicating impedance matching at the output terminal
Ratio of input signal-to-noise ratio to output signal-to-noise ratio

Frequency span over which the circuit maintains specified performance characteristics
Steady-state frequency at which the oscillator generates a periodic signal

Range of achievable oscillation frequencies through variation of control voltages
Power delivered to the load

Maximum output power level beyond which gain compression begins to occur

Ratio of RF output power to DC power consumption.

Ratio of the difference between output power and input power to DC power consumption

Measure of oscillator stability represented in the frequency domain at a specified offset
Maximum peak voltage level achievable at the output node

The CSLNA is valued for its simplicity and favorable gain—noise trade-off, especially when paired
with inductive source degeneration [30]. The CGLNA, often used in ultra-wideband systems, enables
broadband input matching but typically suffers from a higher noise figure [32]]. The CLNA improves
gain—bandwidth product and reverse isolation, making it ideal for high-frequency, high-linearity
applications [33]]. The DLNA exploits circuit symmetry to enhance linearity and reject common-mode
noise, and is commonly found in high-performance RF front-end designs [34]]. The design parameters
and performance metrics associated with these topologies are summarized in Table|[6]

(2) CSLNA

Voo

(b) CGLNA (c) CLNA (d) DLNA

C Ly Cz Ly

Voo
La Lg La
[} Cy Cy
P Fpovee
Wiz I Wi I I Wi,
[N Vi o—| Wit Vins0—]| Wiy Wy "
’

Le

Figure 7: Schematic diagrams of the four LNA topologies.

Table 6: LNA topologies with parameter sweep ranges, sample sizes, and performance metrics.

Dataset Type | Topology (Code) | #of Samples | Parameter | Sweep Range | Performance Metrics (Unit)

LNA

C [100-600] fF
C, [50-300] fF
Gy [250-750] fF
CGLNA (0) 52k Ld [50-550] pE
L, [0.5-5.5]nH
Wy [12-23]um
C1,Cs [50-2501 fF
Lg [140-300] pH
CLNA (1) 62k L 0.4-2] nH DCP (W)
L [50-250] pH PGain (dB)
Wi [3-5] um
Wxo [7-9] um S11 (dB)
C [100-300] fF NF (dB)
L, [4-6]nH BW (Hz)
CSLNA (2) 39k L, [100-200] pH
Wy [2.5-4] pum
A [0.5-0.9]V
C [100-190] fF
C, [130-220] fF
Ly [100-250] pH
DLNA (3) 92k L, [600-900] pH
L. [50-80] pH
Wi [4-9.4] um
Wn2 [5-14] um
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B.2 Mixers

Mixers are fundamental nonlinear components in RF systems, responsible for frequency translation
by combining two input signals to produce outputs at the sum and difference of their frequencies. This
functionality is essential for transferring signals across frequency domains and is widely used in both
transmission and reception paths [35]]. To capture diverse mixer architectures, we implement four
representative topologies in this work—double-balanced active mixer (DBAMixer), double-balanced
passive mixer (DBPMixer), single-balanced active mixer (SBAMixer), and single-balanced passive
mixer (SBPMixer)—as shown in Figure[8]

The DBAMixer integrates amplification and differential switching to achieve conversion gain and
high port-to-port isolation. Despite its elevated power consumption and design complexity, it is well
suited for systems requiring robust performance over varying conditions [36]. The DBPMixer features
a fully differential structure that suppresses signal leakage and improves isolation, at the cost of signal
loss and a strong local oscillator drive requirement [37]. The SBAMixer includes an amplification
stage preceding the switching core to enhance signal strength and reduce noise, offering a balanced
performance trade-off with increased power consumption and limited spurious rejection [30]. The
SBPMixer employs a minimalist switching structure to perform frequency translation without active
gain, enabling low power operation in applications with relaxed performance demands [38]]. The
parameters and performance metrics for these mixer topologies are listed in Table

Voo

L d

cT__E R R S
—oVie  Vir.o—]
VL0‘°—| Wy Wi
Ve o—|
®
Vio. c
(a) DBAMixer (b) DBPMixer (c) SBAMixer (d) SBPMixer

Figure 8: Schematic diagrams of the four Mixer topologies.

Table 7: Mixer topologies with parameter sweep ranges, sample sizes, and performance metrics.

Dataset Type | Topology (Code) | #of Samples | Parameter | Sweep Range | Performance Metrics (Unit)

C [1-10] pF
. R [1-10]1k2
DBAMixer (4) 42k Wt [10-30] um
Wn2 [5-25] um
) C [100-500] fF DCP (W)
DBPMixer (5) 42k R [100-600] 2 .
Mixer Wy [10-30] um CE;m d(l;iB)
C [1-15]pF (dB)
R [0.7-2.11k2 VSwg (V)
SBAMixer (6) 52k Wi [10-30] um
WNZ [ 1 0—20] um
Tait [3-10] mA
C [1-30] pF
SBPMixer (7) 44k R [1-30]1 k2
Wi [5-29.5] um

B.3 Power Amplifiers (PAs)

Power amplifiers (PAs) are the most power-intensive components in radio-frequency (RF) systems and
serve as the final interface between transceiver electronics and the antenna. Given their widespread
use and the stringent demands of modern communication standards, PA design requires careful
trade-offs across key performance metrics [39]. Based on the transistor operating mode, PAs are
typically grouped into several canonical classes [40]]. In this work, we implement four representative
topologies—Class-B PA (ClassBPA), Class-E PA (ClassEPA), Doherty PA (DohPA), and differential
PA (DPA)—as shown in Figure[9]
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The ClassBPA employs complementary transistors to deliver high gain with moderate efficiency,
making it suitable for linear amplification scenarios [41]. The ClassEPA uses a single transistor
configured as a switch, paired with a matching network. By minimizing the overlap between drain
voltage and current, this topology enables high-efficiency operation and improved robustness to
component variation [30]. The DohPA combines main and peaking amplifiers using symmetric
two-stack transistors, maintaining consistent gain and efficiency under varying power levels [42].
The DPA features a two-stage cascode structure designed to maximize gain and linearity, offering a
favorable trade-off between output power and power consumption [43]. For this topology, we replace
the transformer with a T-equivalent network to simplify modeling and training of the graph neural
network. Parameter sweeps and performance metrics for these PAs are listed in Table 8]

Equivalent Model of Transformers

(d) DPA
Figure 9: Schematic diagrams of the four PA topologies.

Table 8: PA topologies with parameter sweep ranges, sample sizes, and performance metrics.

Dataset Type | Topology (Code) | #of Samples | Parameter | Sweep Range | Performance Metrics (Unit)

C [55-205] fF
L [1-1.4]nH
ClassBPA (8) 35k I]‘; [[11;8_2} Eg
Wy [10-20] ym
Wp [3-8] um
C [100-200] fF
C, [500-700] fF
ClassEPA (9) 46k Ly [100-300] pH
L, [100-150] pH DCP (W)
Wx [15-30] um PGain (dB)
C [2-3] pF S11 (dB)
PA Cy [200-300] fF S» (dB)
C3,Cs [100-200] fF
[ [300—400] fF Psar (dBm)
Ly, Ls [100-200] pH DE (%)
DohPA (10) 120k " [350_4501 o oA (1
o)
Ly [500-600] pH
La [150-250] pH
Le [300-400] pH
Wni, Waa [6-13] um
Lip [100-500] pH
Lis [300-700] pH
Lop [0.8-1.2] nH
DPA (11) 80k Los [400-800] pH
Lm [50-250] pH
Wi [6-31] um
WN2 [ 1 0—35] um




530

531

533
534
535

536
537
538
539
540
541
542
543
544

545

546

547
548
549
550
551

553
554

B.4 Voltage Amplifiers (VAs)

Voltage amplifiers (VAs) are fundamental components in analog circuit design, responsible for
increasing signal amplitude while preserving waveform integrity. Effective VA design requires
balancing key performance metrics tailored to both RF and baseband operating conditions [44]. In
this work, we implement four widely used VA topologies—common-source VA (CSVA), common-
gate VA (CGVA), cascode VA (CVA), and source follower VA (SFVA)—as shown in Figure 10}

The CSVA remains the most widely adopted configuration due to its structural simplicity and high
voltage gain. It is frequently used as the first gain stage in various analog systems [45]]. The CGVA
is suitable for applications requiring low input impedance and wide bandwidth, such as impedance
transformation or broadband input matching [46]. The CVA, which cascades a common-source stage
with a common-gate transistor, improves the gain—bandwidth product and enhances stability, making
it ideal for applications demanding wide dynamic range and robust gain control [47]. The SFVA, also
known as a common-drain amplifier, provides near-unity voltage gain and low output impedance,
making it well suited for interstage buffering, load driving, and impedance bridging [48]]. Parameter
ranges and performance specifications for these VA topologies are listed in Table[9]

v Voo —
Voo _ o 2R Voo
T S I
O Veu "L -] Vo

VQate._| Wy I = W |_|_|_|:W Vin°—| Wy Ve "_I Was
= N2
ol Vin Ve ’—I W3

(a) CSVA

(b) CGVA ¥ (d) SFVA
(c) CVA

Figure 10: Schematic diagrams of the four VA topologies.

Table 9: VA topologies with parameter sweep ranges, sample sizes, and performance metrics.

Dataset Type | Topology (Code) | # of Samples | Parameter | Sweep Range | Performance Metrics (Unit)

C [0.1-1.5] pF
R [0.1-1.51kQ
CGVA (12) 33k we, s
Wi [5-10] um
R [0.7-1.5]1k2
Wy [3-15] um
CSVA (13 21k DCP (W
13 Vbp [1-1.8]V A W)
VA Veate [0.6-0.9]1V VGain (dB)
R [1-31kQ BW (Hz)
CVA (14) 22k Wni, W2 [1-10] um
W3 [10-15] um
Wi [40—60] um
W2 [2-8] um
SEVA (15) 28k Voo [1.1-1.8]V
Vate [0.6-1.2]1V
Vb [0.5-0.9]V

B.5 Voltage-Controlled Oscillators (VCOs)

Voltage-controlled oscillators (VCOs) are essential building blocks in analog and RF systems,
responsible for generating periodic waveforms with frequencies modulated by a control voltage.
These circuits rely on amplification, feedback, and resonance to sustain stable oscillations. Owing to
their wide tuning range, low power consumption, and ease of integration, VCOs are broadly used in
systems such as phase-locked loops (PLLs), frequency synthesizers, and clock recovery circuits [49].
In this work, we implement four representative VCO topologies—inductive-feedback VCO (IFVCO),
cross-coupled VCO (CCVCO), Colpitts VCO (ColVCO), and ring VCO (RVCO)—as shown in

Figure

17



555
556
557
558
559
560
561
562
563
564
565

566

567

568
569
570
571
572
573

574

576

577
578

The IFVCO employs an NMOS differential pair with an inductor-based feedback path to sustain
oscillations. This topology provides favorable noise performance and compact layout, making it well
suited for low-voltage, low-power designs [50]. The CCVCO achieves negative resistance through
cross-coupling, enabling low phase noise and high integration density, and is widely adopted in
frequency synthesizers and PLLs [S1]. The ColVCO uses an LC tank and capacitive feedback to
achieve high frequency stability and low phase noise, making it ideal for precision RF communication
and instrumentation [52]]. The RVCO consists of cascaded delay stages forming a feedback loop,
offering low power consumption, wide tuning range, and minimal area footprint, though at the
cost of higher phase noise. It is commonly used in on-chip clock generation and low-power sensor
applications [53]. Design parameters and performance metrics for these VCO topologies are presented

in Table
Voo
% L Voo

Jw @ %w F

Voo O

iRt )

= Veont

(a) IFVCO (b) CCVCO (c) ColVCO (d) RVCO

Figure 11: Schematic diagrams of the four VCO topologies.

Table 10: VCO topologies with parameter sweep ranges, sample sizes, and performance metrics.

Dataset Type | Topology (Code) | #of Samples | Parameter | Sweep Range | Performance Metrics (Unit)

el [700-900] {F
C, [50-250] fF
IFVCO (16) 43k L, [400-600] pH
L, [500-700] pH
Wn, Wyar [5-9] um
L [200-400] pH
CCVCO (17) 54k Wi [10-35] um DCP (W)
Woar [5-30] pm OscF (Hz)
veo C [80-140] fF TR (Hz)
L [250-350] pH OutP (dBm)
Wi [30-50] um
ColVCO (18) 90k W [5-15] pm PN (dBc/Hz)
Vi [0.7-1.2]V
Trail [5-15] mA
C [300-700] fF
L, [300-500] pH
RVCO (19) 46k L, [50-250] pH
Wn [20-40] um
Woar [5-25] um

C Graph-Based Circuit Representation

To enable GNN-based modeling of analog circuits, we represent each netlist as a directed multigraph
where nodes correspond to electrical nets and edges encode circuit components such as transistors,
capacitors, inductors, and voltage sources. Each edge is labeled with its component type and terminal
role (e.g., gate, source, drain), and component-specific attributes are stored as edge features. For
transistors, labels such as GS, DS, and DG denote source-to-gate, drain-to-source, and drain-to-gate
connections, respectively.

Figure[12]illustrates two representative graph structures extracted from our dataset: an IFVCO and
a ClassBPA. The visual encoding highlights the diversity of components and connectivity patterns
across topologies. Edges corresponding to the same component type share a common color for visual
consistency and semantic clarity. These structured graphs serve as the primary input to our GNN
pipeline for performance prediction and inverse design.
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Figure 12: Graph representations of two analog circuit topologies from our dataset: (a) IFVCO and
(b) ClassBPA. Nodes represent electrical nets, and colored edges denote circuit components such
as transistors, capacitors, inductors, and sources. Each component type is visually distinguished by
color and labeled with its name and terminal role (e.g., N2_GS, V0). These graphs serve as input to
our GNN-based performance modeling and inverse design pipeline.
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(c) Per-class accuracy across circuit topologies

Figure 13: Topology selection results. (a) Performance vectors form well-separated clusters in t-SNE
space, showing that circuit functionality is semantically predictive of topology. (b) Misclassifications
primarily occur among voltage amplifier variants with overlapping gain-bandwidth tradeoffs. (c)
Per-class test accuracy exceeds 93% across all 20 circuit topologies.

D Additional Results for Performance-Driven Topology Selection

To further analyze the topology classification stage, we visualize the learned input representation
and per-class performance. Normalized performance vectors encode rich semantic information
about circuit behavior. When projected into a two-dimensional t-SNE space [63] (Figure[I3[a)), the
resulting clusters align closely with topology labels, indicating that performance specifications reflect
underlying schematic structure and are effective inputs for supervised classification.
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These trends are reinforced by the per-class accuracy plot in Figure[T3](c), where most topologies reach
100% accuracy. The confusion matrix in Figure[I3[b) visualizes only the misclassified instances,
as most classes achieve perfect accuracy. The few observed errors are concentrated among the two
voltage amplifier topologies—common-gate (CGVA) and common-source (CSVA)—which operate
near the gain-bandwidth limit of the transistor. When the main amplifier transistor size is held constant,
performance metrics such as power consumption, gain, and bandwidth can converge across these
architectures, introducing ambiguity in classification for a small subset of instances. For other circuit
categories, no significant confusion is expected or observed. These results validate that performance
vectors contain sufficient semantic structure for accurate, scalable topology classification.

E Robustness Across Random Seeds

To evaluate the robustness of our models to random initialization and data shuffling, we repeated
experiments using five distinct random seeds: {42, 123, 777, 2023, 3407}. Reporting across multiple
seeds is important for ensuring that observed results are not artifacts of a specific initialization or
training trajectory, but rather reflect the stable behavior of the method. For each metric, we compute
the mean and 95% confidence interval across seeds, reporting results in the form g + A.

Table 11: Topology selection performance
with mean scores and 95% confidence
intervals across five random seeds.

For the MLP topology selection model, results are
highly stable across random seeds. The accuracy
reaches 99.57 + 0.01% with balanced accuracy
at 99.34 £ 0.02%, while both macro and micro
F1 scores exceed 99.3% with confidence intervals
no larger than +0.02. These narrow intervals Accuracy 99.57 £ 0.01

Metric Mean + 95% CI (%)

indicate that the MLP’s performance is effectively B{alanc;d Accuracy ggg‘; i 88?
invariant to random initialization, underscoring its Mggig RreeCC;isllon 99.34 1+ 0.02
robustness and reliability in the topology selection Macro Fl 9930 + 0.01
stage of the pipeline. Micro F1 99.57 + 0.01

For the GNN-based forward performance prediction model, the overall mean relative error across
all metrics is 9.14 + 0.38% (95% CI). Individual performance predictions, including DC power
consumption, gain, bandwidth, and oscillation frequency, exhibit narrow confidence intervals—for
example, noise figure achieves 4.48 + 0.07% error and oscillation frequency 0.65 + 0.03%. These
results indicate that the GNN achieves consistently accurate predictions across diverse circuit charac-
teristics. The tight confidence intervals further demonstrate that the model’s performance is robust
to random initialization, underscoring its reliability as a generalizable forward predictor within the
pipeline. The full seed-dependent results for both models are provided in Tables [[T]and [I2]

Table 12: Prediction accuracy of the forward GNN with mean scores and 95% confidence intervals
across five random seeds.

Metric DCP VGain PGain CGain S S22 NF BW OscF TR OutP Psar DE PAE PN VSwg

Rel. Err. 11.64 3.10 18.46 5.25 11.49 1.94 4.48 6.28 0.65 6.55 4.86 4.31 4.51 11.58 1.34 1.71
+95%CI (%) +106 +£042 036 +£044 £0.09 +£0.15 £007 £043 £003 £0.04 +£059 +£024 £0.14 £172 £0.02 £0.29

F Generalizing to Unseen Topologies via Fine-Tuning

To assess the generalization ability of our pretrained GNN, we evaluate it on the held-out RVCO
topology, which was entirely excluded from the Stage 2 training, validation, and test splits (see
Section[3)). Notably, the RVCO training partition used here matches that of the Stage 1 experiments
(Section ), enabling consistent cross-stage evaluation.

We fine-tune the GNN by freezing all encoder and message-passing layers and updating only the
final output head (output_mlp). Fine-tuning is performed on the RVCO training set, which contains
approximately 30,000 instances, and completes in under 30 minutes on a MacBook CPU.
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Even in the zero-shot setting—where the
model has never seen RVCO topologies—the  Table 13: Fine-tuning results on the held-out
pretrained GNN achieves a nontrivial mean ~ RVCO topology. Only the output head is updated
relative error of 30.4%, highlighting its strong  using RVCO samples.

cross-topology generalization. Fine-tuning

reduces this error to just 0.9%, demonstrat- Metric DCP OscF TR  OutP PN
ing that the structural and parametric priors Unit W GHz GHz dBm dBc/Hz
learned during pretraining are highly transfer- Rz 10 10 10 097 0.98
able. Table [I3| reports detailed performance RMSE  0.643 0324 0.026 009 0953
across five key metrics, confirming that the pre- MAE 0508 0256 0.02 0077 0619

trained GNN can be rapidly adapted to novel Rel. Er. 0.75% 0.85% 1.63% 0.69% 0.73%
circuit families with minimal supervision.

G User-Defined Loss Functions for Gradient Reasoning

Stage 3 of FALCON employs gradient reasoning with the forward GNN fixed, enabling the op-
timization objective to be redefined without retraining or fine-tuning the predictive model. This
design allows users to flexibly adapt the loss function to capture specific trade-offs or constraints. We
illustrate this flexibility with two examples.

Weighted Performance Loss. Rather than treating all performance metrics equally, users can specify
weights «; for each target metric:

1 tar;
N A gety 2
[fperf—weighted = E m;o; (yi - Y; ) )
Do mioy

where larger «; prioritize certain specifications (e.g., gain or noise figure). Here, m; = 1 if the ¢-th
metric is defined for the current sample, and 0 otherwise.

Interval-Constrained Performance Loss. Users may also define acceptable ranges for metrics
rather than fixed targets. Given optional lower and/or upper bounds y!°%", y:"P®_ the interval penalty

182

d

1 . "

Eperf-interval = W Z m; {]]-{y;"’p” defined} max((), Yi— y;}pper) + ]].{yliower defined} max(O, yiower - yq') s
=1

where the indicator 1.y indicates whether the corresponding bound is specified. This formulation

naturally handles the cases where only an upper bound, only a lower bound, or both bounds are

provided. As above, m; = 1 if the i-th metric is defined for the current sample, and 0 otherwise.

General Extensibility. More generally, the total loss in Eqn. |3|can be replaced with any user-defined
formulation, allowing both L and Ljayous to be substituted with customized objectives. Additional
physical constraints, multi-objective trade-offs, or alternative layout penalties can be incorporated
with only a few lines of code. This extensibility underscores the flexibility of FALCON and enables
the framework to adapt to diverse design objectives.

H Layout Design and DRC Compliance

H.1 Design Rule Enforcement in 45 nm CMOS

We implemented FALCON using a 45 nm CMOS technology node, applying rigorous Design Rule
Checking (DRC) at both the cell and full-chip layout levels. At the cell level, our parameterized
layout generators enforced foundry-specific constraints, including minimum feature width and
length, contact and via spacing, and metal enclosure rules. At the circuit level, we incorporated
physical verification to mitigate interconnect coupling, IR drop, and layout-dependent parasitic
mismatches—factors that are especially critical in high-frequency and precision analog design.

DRC plays a vital role in ensuring that layouts comply with process design rules defined by the
semiconductor foundry. Adhering to these rules ensures not only physical manufacturability but
also electrical reliability. Violations may lead to fabrication failures, including yield degradation,
electrical shorts or opens, electromigration-induced issues, and parasitic mismatches. Moreover,
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DRC compliance is essential for compatibility with downstream fabrication steps such as photomask
generation, optical lithography, and chemical-mechanical planarization (CMP), safeguarding the
yield and fidelity of the final IC.

Circuit-Level Layout Guidelines. We enforced several topology-aware layout constraints during
full-circuit integration to preserve signal integrity and robustness:
* Inductor-to-inductor spacing: > 35.0 um to mitigate mutual inductive coupling and
magnetic interference.

* Guardring placement: Sensitive analog blocks are enclosed by N-well or deep N-well
guardrings with spacing > 5.0 um to suppress substrate noise coupling.

* Differential pair symmetry: Differential signal paths are layout-matched to ensure AL <
0.5 pm, minimizing mismatch and preserving phase balance.

DRC Constraints and Layer Definitions. Table[I4] summarizes the DRC constraints applied to key
analog components across relevant process layers. Table[I5]provides the abbreviations used for metal,
contact, and via layers in the 45 nm CMOS process.

Table 14: Design rule constraints for key analog components in 45 nm CMOS.

Component Layer Physical Constraint Symbol Value  Unit
QT/LD Minimum Cap Width WMIN 6.05 pm
QT/LD Maximum Cap Width WMmax 150.0 pm

MIM Capacitor (QT, LD, V'V, OB) QILD Cap Length - L 60 pm
\'AY% VV Square Size VV_SIZE 4.0 pm
\A% VV Spacing VV_SPACE 2.0 pm
\'AY% VYV to Edge Spacing VV_EDGE_MIN 1.0 pm
RX Minimum Width WmiN 0.462 pm
RX Maximum Width WnMmax 5.0 pm
RX Minimum Length Lyvin 0.4 pm

Resistor (RX, CA, M1) RX Maximum Length Lvax 5.0 pm
CA Contact Size CA_SIZE 0.06 pm
CA Contact Spacing CA_SPACE 0.10 pm
CA CA to Edge Spacing CA_EDGE 0.11 pm
M3 Minimum Width M3_W_MIN 2.0 pm

Inductor (M3) M3 Maximum Width M3_W_MAX 20.0 pm
M3 Minimum Spacing M3_S_MIN 2.0 pm

Grid All Layers ~ Minimum Grid Min_Grid 0.005 pm

Table 15: Process layer abbreviations in the 45 nm CMOS design flow.

Layer Name  Description

RX Resistor implant or diffusion layer used to define integrated resistor geometries.

CA Contact layer forming vias between diffusion/poly and the first metal layer (M1).

M1 First metal layer, typically used for local interconnects and resistor terminals.

M3 Third metal layer, used for wider routing tracks and planar inductor layouts.

QT Top metal plate in MIM capacitor structures, providing the upper electrode.

LD Lower metal plate in MIM capacitor structures, acting as the bottom electrode.

\'A% Via layer connecting different metal layers, especially in capacitor and dense routing regions.

OB Opening/blocking layer used to define restricted zones, often to exclude metal or for CMP mask clarity.

H.2 MIM Capacitor Capacitance Model

The total capacitance Cy of a metal-insulator-metal (MIM) capacitor is modeled as:
Cn=C,-L-WH+Cp-2-(L+W) [fF]

where L and W are the layout length and width in um, C, is the area capacitance density, and
C) is the fringing field contribution per unit length. This model includes both area and perimeter
contributions to more accurately reflect layout-dependent capacitance in IC design (see Figure [I4]a)).

1. Area Capacitance Term: C,-L-W
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(a) MIM capacitor layout (b) Resistor layout (c) Inductor layout

Figure 14: Layout views of passive components. (a) MIM capacitor with metal-insulator-metal stack.
(b) Resistor layout with matching geometry. (c) Spiral inductor with octagonal turns for optimized
area and Q-factor.

Physical Concept: This term represents the primary (parallel-plate) capacitance formed between the
overlapping top and bottom metal layers. It arises from the uniform electric field across the dielectric.

Layer Physics Explanation:

e L - W corresponds to the overlap area of the plates.
» O, = 0.335fF/um? is the area capacitance density, derived from:

— Dielectric permittivity ¢ of the insulating material.
— Dielectric thickness d, with C' « ¢/d.
2. Perimeter (Fringing) Capacitance Term: C,-2-(L+ W)

Physical Concept: This term models fringing fields at the plate edges, contributing additional
capacitance—particularly relevant in small geometries.

Layer Physics Explanation:

* 2. (L 4 W) is the physical perimeter of the capacitor.
* C, = 0.11fF/um accounts for the fringing field contribution per unit length.

Summary: This composite model enables accurate estimation of MIM capacitance by capturing
both parallel-plate and fringing effects. The constants C,, and C), are typically calibrated using
process-specific measurements or electromagnetic simulations.

For a fixed capacitor length L = 20 um and width W € [6.05, 150.0] um, the layout-aware capaci-
tance is approximated by:

|[C~6.92W +44 [fF]| )

The corresponding bounding area is estimated from the component’s geometric envelope:

‘ Bounding_Area = 22W + 44 [um?] ‘ 5)

H.3 N Silicided Polysilicon Resistor Model

The resistance of a layout-defined resistor implemented using the ndslires layer is modeled as:
L

R=R, - ——
W+ AW

+ 2Rend + 1) [Q]

Physical Concept: This structure uses heavily doped N* polysilicon overlaid with a silicide layer
to reduce resistance. Current flows laterally through the poly-silicide film (see Figure [I4[b)), and
resistance is shaped by the aspect ratio of the layout as well as process-dependent corrections.

Layer Physics Explanation:

* R, = 17.6Q/0 (ohm per square) is the sheet resistance of the silicided poly layer.

W = 5.0 um is the drawn width; AW = 0.048 um accounts for process-induced width
bias.
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* [ is the drawn resistor length.
* R.ng = 182 models terminal resistance due to contact diffusion and current crowding.

e § = 0.917 Q2 accounts for residual layout-dependent parasitics.

Summary: The empirical layout relation used in parameterized generation is:

| R~35007- L+2.917 [0]| 6)

This model is valid for L € [0.4, 5.0] um with fixed width W = 5.0 um. The estimated layout area
based on bounding box dimensions is:

| Bounding_Area = 5.2L +8.362 [um?] | %)

H.4 Octagon Spiral Inductor Model

Physical Concept: Accurate modeling and layout optimization of planar spiral inductors are critical
in analog circuit design. Inductor performance is highly sensitive to parasitic elements, achievable
quality factor (Q)), and layout constraints imposed by process design rules. To support accurate
performance prediction and inform layout choices, we adopt a modified power-law model that
expresses inductance as a function of key geometric parameters. The model is validated against
empirical measurements and shows strong agreement with classical analytical formulations.

Numerous classical formulations relate inductance to geometric factors such as the number of turns,
average diameter, trace width, and inter-turn spacing. Among these, the compact closed-form
expressions in RF Microelectronics textbook [30] are widely adopted for their balance of simplicity
and accuracy. Building on this foundation, we adopt a reparameterized monomial model that better
fits our empirical measurement data:

L = 2.454 x 10—4 X D—1.21 X W—O.163 . D,i;gBﬁ . 5—0.049 [I’IH]

out

Layer Physics Explanation:

* Doy =2(R+ %) is the outer diameter,
Table 16: Measured inductance for one-turn in-
° . _ _ w . . .
Din = 2(R 2 ) is the inner diameter, ductors with fixed W = 10 um and S = 0.0 ym
* Dyg = (Dow + Din)/2 = 2R is the aver-
age diameter, R (um) | 30 40 50 60

* Ris the radius in um, L(@H) | 0123 0.170 0220 0276
* IV is the trace width in pm,

» Sis the spacing in pm.

This expression is calibrated using measured data from a series of one-turn inductors fabricated with
varying radius (R), while keeping the trace width fixed at W = 10 um and spacing at .S = 0.0 pm.
Table|16|summarizes the measured inductance values used for model fitting.

Summary: With W and S fixed, inductance simplifies to:

|L~2337x107°-RV'% [uH]] 8)

The bounding area is estimated by:

| Bounding_Area = 4R” + 108R + 440 [um?]] ©)

The performance of on-chip inductors is fundamentally influenced by layout-dependent factors such
as trace width, metal thickness, and inter-turn spacing. Increasing the trace width (IWj,q) reduces
series resistance by enlarging the conductor’s cross-sectional area, thereby improving the quality
factor, Q = wL/Reies- However, wider traces also increase parasitic capacitance to adjacent turns
and the substrate, which lowers the self-resonance frequency.
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Metal thickness (Hjyq) also plays a crucial role in minimizing ohmic losses. At high frequencies,
current is confined near the conductor surface due to the skin effect. For copper at 25 GHz, the skin
depth § is approximately 0.41 um; thus, using a metal layer thicker than 46 (i.e., 1.6 ym) ensures
efficient current flow. However, increasing thickness beyond this threshold yields diminishing returns
in @ due to saturation in current penetration.

Turn-to-turn spacing (5) affects both inductance and quality factor (Q)). Tighter spacing enhances
magnetic coupling, thereby increasing inductance density. However, it also intensifies capacitive
coupling and dielectric losses—particularly in modern CMOS processes with high-k inter-metal
dielectrics—which can degrade ). Conversely, excessive spacing reduces inductance without
providing a proportionate benefit in loss reduction. As a result, one-turn spiral inductors are commonly
favored in RF design due to their low series resistance, minimized parasitics, and improved modeling
predictability.

These insights guided our design choices for layout-aware inductor implementation. To balance the
competing demands of () optimization, parasitic control, and DRC compliance, we implemented
inductors using Metal 3 and set W = 10 pum as the default trace width. This width offers a low-
resistance path that enhances () while maintaining manageable parasitic capacitance and sufficient
pitch for lithographic reliability. Metal 3 was selected for its favorable trade-off between thickness and
routing density—it is thick enough to mitigate skin-effect losses at high frequencies while offering
sufficient flexibility for compact layout integration.

The implemented spiral inductor geometry is shown in Figure [T4{(c). Table [I7] summarizes the
DRC-compliant tuning ranges, estimated layout areas, and decomposition strategies for single-cell
passive components in our layout library.

Table 17: Single-cell passive component limits based on DRC and associated layout area costs.

Component Tunable Variable  Value Range Area Range Decomposition Rule
Resistor Length L 4.32-20.42Q 10.44-34.36 yum?  Series if > max, parallel if < min
Capacitor Width W 46.32-1042.4 fF 176-3344 pym? Parallel if > max, series if < min
Inductor Radius R >0.1nH > 5640 jim? Continuous radius scaling

H.5 Layout Examples of Synthesized Circuits

To illustrate the correspondence between schematic and layout representations, we present three
synthesized circuits: DBAMixer, IFVCO, and DLNA, shown in Figures[T3] [I6] and[I7] respectively.
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Figure 15: Stage 3 results for a synthesized DBAMixer. The schematic (a) reflects optimized
parameters to meet the target specification. The layout (b) is DRC-compliant and physically realizable.
The final design achieves a mean relative error of 0.2% compared to the target performance.

In the IFVCO example, the inductor labeled L3 functions as an RF choke and is excluded from the
on-chip layout due to its large area requirement. Instead, it is intended for off-chip implementation at
the PCB level and connected to the die via wire bonding. This external connection is indicated by the
yellow pad in Figure [I6[b), which serves as the wire-bonding interface.
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Figure 16: Stage 3 results for a synthesized IFVCO. The schematic (a) reflects optimized parameters
to meet the target specification. The layout (b) is DRC-compliant and physically realizable. The final
design achieves a mean relative error of 1.3% compared to the target performance.
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(b) Layout of designed DLNA

Figure 17: Stage 3 results for a synthesized DLNA. The schematic (a) reflects optimized parameters
to meet the target specification. The layout (b) is DRC-compliant and physically realizable. The final
design achieves a mean relative error of 5.0% compared to the target performance.

Since the current stage of system lacks automated routing, all interconnects in the layout were
manually drawn to ensure accurate correspondence with the schematic connectivity. These examples
demonstrate that synthesized circuit parameters can be successfully translated into DRC-compliant,
physically realizable layouts, bridging the gap between high-level optimization and tapeout-ready
design.

I Practical Considerations and Limitations

I.1 Training and Inference Efficiency

Although our codebase supports GPU acceleration, all experiments in this work—excluding initial
dataset generation—were conducted entirely on a MacBook CPU. This highlights the efficiency
and accessibility of the FALCON pipeline, which can be executed on modest hardware without
specialized infrastructure. Our MLP and GNN models contain 207k and 1.4M trainable parameters,
respectively, with memory footprints of just 831 KB and 5.6 MB.

In Stage 1, the MLP classifier trains in approximately 30 minutes with a batch size of 256 and
performs inference in the order of milliseconds per batch. Stage 2’s GNN model takes around 3 days
to train on the full dataset using the same batch size and hardware. Fine-tuning on an unseen topology
(e.g., RVCO) using ~30,000 samples completes in under 30 minutes.
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In Stage 3, the pretrained GNN is used without retraining to perform layout-constrained parameter
inference via gradient-based optimization. Inference is conducted one instance at a time (batch size 1),
with typical runtimes under 1 second per circuit. Runtime varies based on the convergence threshold
and circuit complexity but remains below 2-3 seconds in the worst case across the full test set.

A solution is considered successful if the predicted performance meets the target within a specified
relative error threshold. While tighter thresholds (e.g., 5%) improve accuracy, they require more
optimization steps—particularly over large datasets. As a result, both success rate and inference
time in Stage 3 are directly influenced by this tolerance, which can be tuned based on design fidelity
requirements.

1.2 Limitations

This work focuses on a representative set of 20 curated analog topologies spanning five circuit
families. Consequently, the topology selection stage is limited to suggesting only among the designs
present in the training set and cannot synthesize novel circuits. A natural future direction is to either
extend the training library to a broader set of topologies or replace the classifier with a generative
model capable of directly proposing new netlists conditioned on input specifications. In contrast,
the GNN-based forward modeling stage is designed to operate on arbitrary circuit graphs and has
already demonstrated strong generalization to unseen architectures (e.g., RVCO), indicating that no
modification to this stage is required to support novel circuits.

Beyond topology considerations, the dataset is constructed at a fixed operating frequency of 30 GHz,
which ensures consistency across circuit families but constrains frequency generalization. Although
the framework can, in principle, extend to other operating points—for example, the voltage amplifier
topologies already demonstrate scalability across varying gain—bandwidth trade-offs—systematic
validation across diverse frequency bands is beyond the scope of this work. Extending the dataset to
cover multiple operating frequencies, or incorporating frequency as an explicit conditioning variable
during training, represents an important direction for broadening applicability.

Finally, the differentiable layout model in FALCON captures parasitic effects through analytical
approximations of passive components, which is effective for guiding parameter optimization within
the learning framework. However, this approach does not fully replace electromagnetic (EM)
simulations or post-layout verification, and electromigration constraints are not explicitly incorporated.
Incorporating learned parasitic estimators, EM-informed models, and reliability constraints, therefore,
remains an important extension toward bridging schematic-level optimization and silicon-proven
robustness. In addition, all interconnect routing in the current flow is performed manually to ensure
precise control over parasitic management and DRC compliance. While this provides accuracy for
the studied designs, it limits scalability for more complex circuits, motivating future integration with
automated analog routing tools.
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