
Under review as submission to TMLR

NESTER: An Adaptive Neurosymbolic Method for
Treatment Effect Estimation

Anonymous authors
Paper under double-blind review

Abstract

Treatment effect estimation from observational data is a central problem in causal inference.
Methods based on potential outcomes framework solve this problem by exploiting inductive
biases and heuristics from causal inference. Each of these methods addresses a specific aspect
of treatment effect estimation, such as controlling propensity score, enforcing randomization,
etc., by designing neural network architectures and regularizers. In this paper, we propose an
adaptive method called Neurosymbolic Treatment Effect Estimator (NESTER), a generalized
method for treatment effect estimation. NESTER brings together the ideas used in existing
methods based on multi-head neural networks for treatment effect estimation into one
framework. To perform program synthesis, we design a Domain Specific Language (DSL) for
treatment effect estimation based on inductive biases used in literature. We also theoretically
study NESTER’s capability for treatment effect estimation. Our comprehensive empirical
results show that NESTER performs better than state-of-the-art methods on benchmark
datasets without compromising run time requirements.

1 Introduction
Treatment effect (a.k.a. causal effect) estimation measures the effect of a treatment variable on an outcome
variable (e.g., the effect of a medicine on recovery). Randomized Controlled Trials (RCTs), where individuals
are randomly split into treated and control (untreated) groups, are considered the gold standard approach
for treatment effect estimation (Chalmers et al., 1981; Pearl, 2009). However, RCTs are often: (i) unethical
(e.g., in a study to find the effect of smoking on lung disease, a randomly chosen person cannot be forced to
smoke), and/or (ii) impossible/infeasible (e.g., in finding the effect of blood pressure on the risk of an adverse
cardiac event, it is impossible to intervene on the same patient with and without high blood pressure with
all other parameters the same) (Sanson-Fisher et al., 2007; Carey & Stiles, 2016; Pearl et al., 2016). These
limitations leave us with observational data to compute treatment effects.

Observational data, similar to RCTs, suffer from the fundamental problem of causal inference (Pearl, 2009), viz.
for any individual, we cannot observe all potential outcomes at the same time (e.g., we cannot uniquely record
the same person’s medical condition/response at a given time to two different treatments individually, say, on
consuming a medicinal drug and an alternate placebo). Observational data also suffers from selection bias (e.g.,
certain age groups are more likely to take certain kinds of medication compared to other age groups) (Collier
& Mahoney, 1996). For these reasons, estimating unbiased treatment effects from observational data can
be challenging (Hernan & Robins, 2019; Farajtabar et al., 2020). However, due to the many use cases in
the real-world, estimating treatment effects from observational data has remained an important problem in
causal inference (Rosenbaum & Rubin, 1983; 1985; Brady et al., 2008; Morgan & Winship, 2014), with recent
efforts leveraging learning-based methods to this end (Curth & van der Schaar, 2021a; Zhang et al., 2021).

Simpson’s paradox (Pearl et al., 2016) underpins the necessity of choosing the correct set of variables to
control/adjust for estimating treatment effects from observational data. The Pearlian framework (Pearl,
2009) uses graphical criteria such as back-door criterion and front-door criterion depending on the available
adjustment variables and identifiability conditions. However, the Pearlian framework requires knowledge of
the underlying causal graph, which is not feasible for many real-world scenarios. On the other hand, under
the no latent confounding/ignorability assumption, methods based on the classical Neyman-Rubin potential
outcomes framework (Rubin, 1974) assume that a known set of observed features to control is available.

1

Under review as submission to TMLR

However, as discussed above, observational data suffers from issues such as selection bias, leading to biased
estimates of treatment effects. Various methods have been proposed to address one or more of these issues in
recent literature (Shalit et al., 2017; Shi et al., 2019; Farajtabar et al., 2020; Curth & van der Schaar, 2021a).

TARNet (Shalit et al., 2017)

if subset (v, {0})
then subset (v, {0..|v|})
else subset (v, {0..|v|})

if subset (v, {0})
then subset (v, paT)
else subset (v, paT)

CFR (Shalit et al., 2017)

if subset (v, {0})
then transform (v)
else transform (v)

Dragonnet (Shi et al., 2019)

PT

PC

PD

X

t = 1

t = 0

ϕ

p(y|ϕ, t = 1)

p(y|ϕ, t = 0)
p(t|ϕ)

X

t = 1

t = 0

ϕ

p(y|ϕ, t = 1)

p(y|ϕ, t = 0)

X

t = 1

t = 0

ϕ

p(y|ϕ, t = 1)

p(y|ϕ, t = 0)

IPM(p(ϕ|t = 1), p(ϕ|t = 0))

Figure 1: Programs PT ,PC ,PD generated by NESTER us-
ing our Domain-Specific Language (DSL) (Tab 1) that are
functionality similar to the popular multi-head NN models
TARNet, CFR, and Dragonnet. X is feature/covariate vec-
tor, t is treatment variable, y is target variable, ϕ is learned
representation, v = [t;X] is the concatenation of t,X, paT is
the parents of treatment variable.

In this paper, we provide a pathway to integrate
existing solutions based on the potential out-
comes framework, especially the methods based
on multi-head neural network (NN) architec-
tures with regularizers, into a single framework
and propose a generalized method for treat-
ment effect estimation. As shown in Fig 1, our
method generates programs, each of which can
instantiate existing methods based on multi-
head NN architectures with regularizers as spe-
cial cases. Concretely, we propose an adap-
tive method called NEuroSymbolic Treatment
Effect EstimatoR (NESTER) that automati-
cally synthesizes different programs for esti-
mating treatment effects given observational
data. For example, the two branches (or heads)
in the TARNet NN architecture (Shalit et al.,
2017) in Fig 1 can be seen as implementing an
if − then − else program primitive. That is,
from Fig 1, in the synthesized program PT , if
subset(v, {0}) evaluates to a positive scalar
value (see § 4.1 for details), then clause gets
executed otherwise else clause gets executed.
Also, the IPM regularization in the counterfac-
tual regression model (CFR) (Shalit et al., 2017)
can be viewed as implementing the transform
primitive and the propensity head p(t|ϕ) in
Dragonnet Shi et al. (2019) can be seen as im-
plementing subset primitive with the set of parents paT of the treatment variable T as a parameter (see
§ 4.1,4.2 for details).

As part of our proposed method NESTER, we develop a Domain-Specific Language (DSL) of program
primitives (e.g., subset) containing learnable components, which is then used by a neurosymbolic program
synthesis (NPS) technique to automatically synthesize programs. This is equivalent to putting together
modules (program primitives in our DSL) to obtain a model architecture/workflow that can be used for the
given observational data. In other words, NESTER learns to adaptively synthesize differentiable programs
for a given set of input-output examples, wherein the sequence of learnable program modules provides an
overall network architecture that is used to estimate treatment effects. Empirically, by limiting the depth of
synthesized programs, NESTER performs state-of-the-art treatment effect estimation on benchmark datasets
with almost no additional time overhead.

NPS methods generate programs using a language of program primitives that satisfy given observational
data of input-output pairs so that the synthesized programs generalize well to unseen inputs (see Appendix
§ C,D for real-world examples) (Biermann, 1978; Gulwani, 2011; Parisotto et al., 2016; Valkov et al., 2018;
Shah et al., 2020; Cui & Zhu, 2021). Usually, a Domain-Specific Language (DSL) (e.g., a specific context-free
grammar) is used to synthesize programs for a given domain or task. Recently, various NN-based techniques
have been proposed to perform NPS (Parisotto et al., 2016; Valkov et al., 2018; Gaunt et al., 2017; Bošnjak
et al., 2017; Shi et al., 2022; Tang & Ellis, 2022; Cui & Zhu, 2021). We use an NPS paradigm where each
program primitive (e.g., if − then − else, subset, add) is a differentiable module (Shah et al., 2020). Such
differentiable programs simultaneously optimize program primitive parameters while learning the overall
program structure. Many methods have been proposed to efficiently synthesize and learn such a program

2

Under review as submission to TMLR

using a DSL (Gulwani et al., 2012; Valkov et al., 2018; Shah et al., 2020). To synthesize programs, we use (i)
neural admissible relaxation (NEAR) (Shah et al., 2020), which uses neural networks as relaxations of partial
programs while searching the program space using informed search algorithms such as A∗ (Hart et al., 1968)
and (ii) domain-specific program architecture differentiable synthesis (dPads) (Cui & Zhu, 2021) that learns
the probability distribution of program architectures in a continuous relaxation of the search space of DSL
grammar rules. Our key contributions in this work are summarized below:
• We develop an adaptive neurosymbolic method that can learn to estimate treatment effects given observa-

tional data. Such a method is not restricted by its architecture and is easy to implement and extend. To
the best of our knowledge, this is the first neurosymbolic approach to estimate treatment effects.

• We propose a domain-specific language (DSL) for treatment effect estimation, whose program primitives
are inspired by treatment effect estimation efforts in literature.

• We theoretically study the universal approximation ability of a synthesized neurosymbolic program and
show how this provides a pathway for our method for treatment effect estimation. We also study how the
proposed NESTER method can be viewed as a generalization of a class of treatment effect estimation
methods based on multi-head NN architectures.

• We perform comprehensive empirical studies on multiple benchmark datasets where NESTER outperforms
existing state-of-the-art models. We also observe that these results are obtained with almost no additional
empirical time complexity beyond existing methods.

2 Related Work
Matching and Covariate Adjustment Methods: Early methods of treatment effect estimation are
primarily based on matching techniques (Brady et al., 2008; Morgan & Winship, 2014; Stuart, 2010) where
similar data points in treatment and control groups are compared using methods such as nearest neighbor
matching and propensity score matching. In nearest neighbor matching (Stuart, 2010), for each sample in
the treatment group, the nearest points from the control group w.r.t. Euclidean distance are identified, and
the difference in observed outcomes between the treatment and corresponding control data points is the
estimate of treatment effect. In propensity score matching (Rosenbaum & Rubin, 1983), a model is trained
to predict the treatment value using data from both treatment and control groups. Using this model, points
from treatment and control groups that are close w.r.t. the model’s output are compared, and the difference
in observed outcomes of these points is the estimate of treatment effect. However, such matching techniques
are known to not scale to high-dimensional or large-scale data (Abadie & Imbens, 2006).

Another family of methods estimates treatment effects using the idea of backdoor adjustment (Pearl, 2009;
Rubin, 2005). Assuming the availability of a sufficient adjustment set, these models rely on fitting conditional
probabilities given the treatment variable and a sufficient adjustment set of covariates. Such models are
however known to suffer from high variance in the estimated treatment effects (Shalit et al., 2017). Covariate
balancing is another technique to control for the confounding bias in estimating treatment effects. Weighting
techniques perform covariate balancing by assigning weights to each instance based on various techniques (e.g.,
weighting each instance using propensity score in the inverse probability weighting technique) (Rosenbaum
& Rubin, 1983; Assaad et al., 2021; CRUMP et al., 2009; Li & Greene, 2013; Diamond & Sekhon, 2013;
Li & Fu, 2017). As noted in Assaad et al. (2021), such methods face challenges with large weights and
high-dimensional inputs. Besides, leveraging the success of learning-based methods has yielded significantly
better performance in recent years.

Representation Learning-based Methods: Recent methods to estimate treatment effects have largely
been based on multi-head NN architectures (NN architectures which branch out into different heads for
different treatments) equipped with regularizers (Curth & van der Schaar, 2021a;b; Shi et al., 2019; Schwab
et al., 2020; Chu et al., 2020; Shalit et al., 2017). Considering multiple treatment values and continuous
dosage for each treatment, Schwab et al. (2020) devised an NN architecture with multiple heads for multiple
treatments, and multiple sub-heads from each of the treatment-specific heads to model (discretized) dosage
values. CFR (Shalit et al., 2017) proposed a two-headed NN architecture with a regularizer that forced the
latent representations of treatment and control groups to be close to each other to adjust confounding features.
Extending CFR, (Farajtabar et al., 2020) proposed an additional regularizer to adjust for confounding by
forcing both treatment-specific heads to have same baseline outcomes. In Dragonnet (Shi et al., 2019),

3

Under review as submission to TMLR

along with two heads for predicting treatment-specific (potential) outcomes, an additional head to predict
treatment value was also used; this allowed pre-treatment covariates to be used in predicting potential
outcomes. Assuming that potential outcomes are strongly related, (Curth & van der Schaar, 2021a;b)
proposed techniques that improve existing models using the structural similarities between potential outcomes.
These methods, however, have a fixed architecture design, and each addresses a specific problem in estimating
treatment effects. Our approach is also NN-based but uses a neurosymbolic approach to automatically
synthesize an architecture (or a flow of program primitives), thereby allowing it to generate different programs
for different observational data. Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) have also
been used to learn the interventional distribution (Yoon et al., 2018; Bica et al., 2020) from observed data in
both categorical and continuous treatment variable settings to estimate treatment effects. By disentangling
confounding variables from instrumental variables, Zhang et al. (2021) proposed a variational inference method
that uses only confounding variables. However, generative modeling requires a large amount of data to be
useful, which is often not practical in treatment effect estimation tasks.Yao et al. (2018) proposed a method
to learn representations by leveraging local similarities and thereby estimate treatment effects. Ensemble
models such as causal forests (Wager & Athey, 2018), and Bayesian additive regression trees (Chipman et al.,
2010) have also been considered for effect estimation. Our work is very different from these efforts – we
choose to integrate the heuristics and corresponding NN architectures under a single framework, and seek to
provide a flexible yet powerful framework for treatment effect estimation using NPS.

Relevance of Causal Discovery Methods: In Pearlian approaches to treatment effect estimation (which
assume knowledge of causal graph), performing causal discovery before treatment effect estimation has also
been studied in literature (Hoyer et al., 2008; Mooij et al., 2016; Maathuis et al., 2010; Gupta et al., 2022).
However, NN-based learning approaches have primarily focused on the potential outcomes approach for this
objective. Since our work is situated in the latter context, under the ignorability assumption (see § 3), we
assume that the underlying causal graph takes a form in which the treatment is independent of the potential
outcomes given a set (possibly empty) of pre-treatment covariates (Shalit et al., 2017). Thus, we avoid
performing causal discovery before estimating treatment effects.

Neurosymbolic Program Synthesis (NPS): Program synthesis, viz. automatically learning a program
that satisfies given observational data of input-output pairs (Biermann, 1978; Gulwani, 2011; Parisotto et al.,
2016; Valkov et al., 2018; Shah et al., 2020; Shi et al., 2022; Tang & Ellis, 2022; Cui & Zhu, 2021), has been
shown to be helpful in diverse tasks such as low-level bit manipulation code (Solar-Lezama et al., 2005),
data structure manipulations (Solar Lezama, 2008), and regular expression-based string generation (Gulwani,
2011). For each task, a specific DSL is used to synthesize programs. Even with a small DSL, the number of
programs that can be synthesized is very large. Several techniques such as greedy enumeration, Monte Carlo
sampling, Monte Carlo tree search (Kocsis & Szepesvári, 2006), evolutionary algorithms (Valkov et al., 2018),
and recently, node pruning with neural admissible relaxation (NEAR) (Shah et al., 2020) have been proposed
to search for optimal programs from a vast search space efficiently. Improving NEAR, dPads Cui & Zhu
(2021) propose differentiable program architecture synthesis that avoids the problem of combinatorial search
required to find optimal programs. We use both NEAR and dPads to implement our method. To the best of
our knowledge, this is the first use of NPS for treatment effect estimation.

Neurosymbolic Program Synthesis (NPS) vs Neural Architecture Search (NAS): NAS, similar to
NPS, is a technique to automatically design the best NN architecture to solve particular problems (Zoph & Le,
2017; Liu et al., 2018; Pham et al., 2018). The significant difference between NPS and NAS is that, in NPS,
symbolic and domain knowledge can be introduced in terms of the program primitives of a DSL. However,
the goal in NAS is to design the best-performing architecture using a combination of standard neural network
components, such as convolution blocks. In NPS, DSL changes for different applications, whereas in NAS, the
underlying neural network blocks are fixed for all the problems. In NPS, we can combine symbolic reasoning
and representation learning algorithms, making it a good choice for treatment effect estimation.

3 Background and Problem Formulation
Treatment Effect Estimation: Let D = {(xi, ti, yi)}n

i=1 be an observational dataset of n triplets. xi ∈ Rd

denotes the d−dimensional covariate vector, ti ∈ R denotes the treatment variable (ti ̸⊆ xi), and yi ∈ R
denotes the observed potential outcome. Each (xi, ti, yi) is randomly sampled from p(X, T, Y), where X,

4

Under review as submission to TMLR

Y and T are the corresponding random variables. In a binary treatment setting (t ∈ {0, 1}), for the ith

observation, let Y 0
i denote the true potential outcome under treatment ti = 0 and Y 1

i denote the true potential
outcome under treatment ti = 1. Because of the fundamental problem of causal inference, we observe only one
of Y 0

i , Y
1

i for a given [ti; xi]. Hence, observed yi can be expressed in terms of Y 0
i , Y

1
i as yi = tiY

1
i + (1 − ti)Y 0

i .
One of the goals in treatment effect estimation from observational data is to learn an estimator f(x, t) such
that the difference between estimated potential outcomes under t = 1 and t = 0, f(xi, 1) − f(xi, 0), is close
to the difference in true potential outcomes: Y 1

i − Y 0
i ; ∀i. This difference for a specific instance/individual i

is called the Individual Treatment Effect (ITE).
Definition 3.1. The Individual Treatment Effect (ITE) of T on Y for an instance x ∼ X is defined as

IT EY
T (x) := E[Y 1 − Y 0|x] (1)

Definition 3.2. With respect to the true ITEY
T (x), the expected Precision in Estimation of Heterogeneous

Effect (ϵP EHE) using f(x, t) is defined as

ϵP EHE(f) := E
x∼X

[
((f(x, 1)− f(x, 0))− IT EY

T (x))2]
(2)

Extending ITE to an entire population, our goal is to estimate the Average Treatment Effect (ATE) (Pearl,
2009) of the treatment variable T on the outcome variable Y .
Definition 3.3. The Average Treatment Effect (ATE) of T on Y is defined as

AT EY
T := E[Y |do(T = 1)]− E[Y |do(T = 0)] (3)

Definition 3.4. The error in estimation of Average Treatment Effect (ϵAT E) using f(x, t) is defined as

ϵAT E(f) := | E
x∼X

[f(x, 1)− f(x, 0)]−AT EY
T | (4)

do(.) in Defn 3.3 denotes an intervention to the treatment variable (Pearl, 2009). E[Y |do(T = t)] refers to
the expected value of Y when every instance in the population is given the treatment t (if t is not binary,
treatment effects are calculated w.r.t. a baseline treatment value t∗ i.e., 1, 0 in Defn 3.3 are replaced with
t, t∗ respectively). Assuming X satisfies the backdoor criterion relative to the treatment effect of T on Y ,
we can write E[Y |do(T = t)] = Ex∼X [E[Y |T = t,X = x]] (Pearl, 2009). Using this, a simple technique to
estimate E[Y |T = t,X = x] (and thus E[Y |do(T = t)]) is to fit a regression model for Y given T , and
X. Estimation of E[Y |T = t,X = x] is the primary task of many treatment effect estimation methods.
In the same vein, we also aim to synthesize programs that compute the quantity E[Y |T = t,X = x]
given the observational data D. Once E[Y |T = t,X = x] is estimated, the ATEY

T can be estimated as
ATEY

T = Ex∼X[E[Y |T = 0,X = x]] − Ex∼X[E[Y |T = 0,X = x]]. Following (Shalit et al., 2017; Lechner,
2001; Imbens, 2000; Schwab et al., 2020; Zhang et al., 2021), we make the following assumptions which are
sufficient to guarantee the identifiability (Pearl, 2009) of treatment effects from observational data.
Assumptions 3.1. (Ignorability, Positivity, Stable Unit Treatment Value Assumption (SUTVA)) Ignorability
says that for a given set of pre-treatment covariates, treatment is randomly assigned, i.e., conditioned on a
set of pre-treatment covariates X, T is independent of Y 0, Y 1 i.e., ((Y 0, Y 1) ⊥⊥ T |X). Positivity entails that
treatment assignment for each individual is not deterministic, and it must be possible to assign all treatments
to each individual, i.e., 0 < p(t|x) < 1 ∀t,x. SUTVA states that the observed outcome of any individual
under treatment must be independent of the treatment assignment to other individuals. (Ignorability is also
referred to as no-latent-confounding assumption.)

Neurosymbolic Program Synthesis (NPS): Following Shah et al. (2020), let (P, θ) be a neurosymbolic
program where P denotes the program structure and θ denotes the program parameters. (P, θ) is differentiable
in θ. P is synthesized using a Context-Free Grammar (CFG) (Hopcroft et al., 2001) (which is a DSL in
this work). A CFG consists of a set of production rules (rules for short) of the form ρ → σ1, . . . , σn where ρ
is a non-terminal and σ1, . . . , σn are either non-terminals or terminals. A nonterminal denotes a missing
subexpression in a program structure and a terminal is a symbol that appears in a final program structure.
Program synthesis starts with an initial non-terminal (see Fig 2), then iteratively applies the production
rules to produce a series of partial structures, viz. structures made from one or more non-terminals and zero
or more terminals. These partial structures form internal nodes of a program tree, and the production rules

5

Under review as submission to TMLR

ρ

if α1 > 0 then α2
else α3

α1 + α2

α1 + subset(v, S)

subset(v, S)+
transform(v)

Root node with initial non-terminal

Internal node/ Partial structure

Leaf node (goal node) / Program structure P with only terminals

if subset(v, S) > 0
then α2 else α3

h = 1.2
f = 0.9 + 1.2

ζ(P , θ) = 0.5
f = 0.7 + 0.5 + 0.1 + 0.5

h = 0.1
f = 0.7 + 0.5 + 0.1

h = 0.6
f = 0.7 + 0.6

h = 0.8
f = 0.9 + 1.3 + 0.8

0.9 0.7

0.5

0.1

1.3

Figure 2: Example program tree generated using DSL in Tab 1. Structural costs are shown in red color (e.g., s(r) = 0.7 for the
rule r : ρ → α1 + α2). h is the heuristic value, and f is the sum of structural cost and heuristic value. The path from the root
node to a goal node returned by A∗ algorithm is shown in blue color. For this example, s(r) is not constant.

form the (directed) edges connecting these nodes (e.g., a production rule r is considered as an edge from
node u to node v when v is obtained from u by applying r). The process continues until no non-terminals are
left, i.e., we have synthesized a program. The resultant program tree’s leaf nodes (a.k.a. goal nodes) contain
structures consisting of only terminals (see Fig 2 for an example).

Let s(r) be the cost incurred in using the production rule r for generating a program structure (leaf node) or
partial structure (internal node) from a given partial structure (internal node). The structural cost of any
node u is the sum of the structural costs of rules used to get u from the root node. Similarly, the structural
cost s(P) of the program P is defined as s(P) =

∑
r∈R(P) s(r), where R(P) is the multiset of rules used to

create the structure P. In this paper, we set s(r) to a constant real number for all production rules (e.g.,
s(r) = 1 ∀r ∈ R(P)). The program learning problem is usually formulated as a node search problem, i.e.,
starting with an empty tree, the tree is expanded by creating new partial structures (internal nodes) and
structures (leaf nodes).

This paper uses A∗ informed search algorithm Hart et al. (1968) to generate a program tree. While generating
a program tree, a node u with minimum f(u) value is expanded next, where f(u) = s(P(u)) + h(u) is the
sum of the structural cost s(P(u)) of the partial structure P(u) in u plus the heuristic value h(u) at the
node u that underestimates the cost to reach goal node from u (see Fig 2 and § 4.3). While searching for an
optimal program, the program parameters (and program structures) are updated simultaneously along with
the synthesis of the programs. Since the goal of this paper is to synthesize a program (P, θ) that estimates
the quantity E[Y |T = t,X = x], which can be modeled as a regression problem, the squared error is a good
choice for assessing the performance of the program (P, θ) in estimating potential outcomes. Hence, for a
synthesized program (P, θ), we define ζ(P, θ) = E(x,t,y)∼D[((P, θ)(x, t) − y)2] as the loss incurred by (P, θ) in
estimating potential outcomes. The overall goal of NPS is then to find a structurally simple program with
low prediction error, i.e., to solve the following optimization problem.

(P∗, θ∗) = arg min
(P,θ)

(s(P) + ζ(P, θ)) (5)

4 NESTER: Methodology

The key idea of our methodology is to design a Domain-Specific Language (DSL) for treatment effect
estimation and subsequently leverage well-known search algorithms such as A∗ to synthesize programs or
model architectures for given observational data. We begin by discussing the proposed DSL and its connections
to existing literature, followed by our overall algorithm that uses this DSL to synthesize programs.

6

Under review as submission to TMLR

4.1 DSL for Treatment Effect Estimation

We pose the problem of treatment effect estimation as the problem of mapping a set of observational input
data points to the corresponding observed outcomes. Formally, given D = {(xi, ti, yi)}n

i=1, the set {(ti,xi)}n
i=1

contains inputs and the set {yi}n
i=1 contains outputs. For simplicity, let vi = [ti; xi] (concatenation of ti

and xi) denote the ith input. A synthesized program learns to estimate the potential outcomes for unseen
inputs by learning a mapping between given input-output examples. To this end, we propose a set of program
primitives (basic building blocks of a synthesized program), which are differentiable and encode specific
inductive biases in an NN model architecture. These primitives comprise our proposed DSL, shown in Tab 1.
Each of these listed primitives outputs a real scalar number, which can be the final output (terminal) or fed
as input into another primitive. We briefly describe each of them below. We also later state Propn 5.1 in § 5
that guarantees the existence of a DSL for the treatment effect estimation task.

Table 1: A DSL for the treatment effect estimation in Backus-Naur form (Winskel, 1993) and its semantics. ρ is the initial
non-terminal. v = [t; x] is input from D. MLP stands for multi-layer perceptron. All primitives output real numbers as output.

ρ → if α1 > 0 then α2 else α3 | subset(v, S) | transform(v) | ⊙ (α1, α2)
α1/α2/α3 → if α1 > 0 then α2 else α3 | subset(v, S) | transform(v) | ⊙ (α1, α2)

Program Primitive Description
1. if α1 > 0 then α2 Usual if − then − else condition. To avoid discontinuities and to enable

else α3 backpropagation, we implement a smooth approximation of if − then − else.
2. subset(v, S) Select/retain a set of features of v indexed by the set S. Features at other indices

are set to 0. Feed the resultant vector into an MLP to get a real number as output.
3. transform(v) Transforms the input vector v into ϕ(v) using a pre-trained model ϕ as explained

in § 4.1. Feed ϕ(v) into an MLP to get a real number as output.
4. ⊙(α1, α2) Arithmetic function of α1, α2 where ⊙ ∈ {+,−,×, /} (e.g., α1 + α2, α1 × α2).

The primitive “if α1 > 0 then α2 else α3” works similar to the equivalent programming construct.
To avoid discontinuities and enable backpropagation, following Shah et al. (2020), we implement
a smooth approximation of if − then − else, i.e., if α1 > 0 then α2 else α3 can be written as
sig(β · α1) · α2 + (1 − sig(β · α1)) · α3, where sig(·) is the sigmoid function and β is a temperature pa-
rameter. As β → 0, the approximation approaches the usual if − then − else. Since we implement a smooth
approximation of if − then − else, it is not required for α1 to evaluate to a boolean value.

The primitive “subset(v, S)” selects a set of features of v indexed by the set S of indices. Other features of v
that are not indexed by the set S are set to 0. The resultant vector is then fed into a multi-layer perceptron
(MLP) (whose parameters are learned during the end-to-end backpropagation of the full program) to get a
real number as output.

The “transform(v)” primitive transforms a given input vector v into ϕ(v). ϕ is an NN whose parameters
are optimized to produce similar outputs for inputs with different treatment values to act as a regularizer
based on the Integral Probability Metric (IPM), similar to Shalit et al. (2017). In particular, given two
inputs v0 ∼ p(v|t = 0) and v1 ∼ p(v|t = 1), we would want ϕ(v0) ≈ ϕ(v1). We pre-train ϕ such that the
Maximum Mean Discrepancy is minimized between p(ϕ(v)|t = 1) and p(ϕ(v)|t = 0). Since ϕ is pre-trained,
all instances of transform in a synthesized program share the same representation of the pre-trained model
ϕ. The transformed vector ϕ(v) is subsequently fed into a learnable MLP to produce a real number as output.
Even though ϕ seems like the backbone in Shalit et al. (2017), unlike its fixed architecture, the proposed
program synthesizer can choose when to use this primitive. The synthesizer can also use transform multiple
times in a program too (see Tab 5 for examples).

The last primitive, “⊙(α1, α2)” is included for giving additional flexibility to the program synthesizer to
allow simple arithmetic operations. ⊙(α1, α2) takes two real numbers as inputs and returns a real number as
output after performing an arithmetic operation ⊙.

7

Under review as submission to TMLR

4.2 Connection to Existing Methods

As discussed earlier, existing learning-based treatment effect estimation methods introduce inductive biases
into machine learning models through regularizers or through changes in NN architectures. One could view
the primitives of our DSL as learnable modules inspired by existing learning-based methods such as TARNet,
CFR (Shalit et al., 2017), Dragonnet (Shi et al., 2019), SNet (Curth & van der Schaar, 2021a), etc. Tab 2
presents a summary of these relationships, which we also discuss below.

(if − then − else, subset) Primitives for Multi-head NNs: In treatment effect estimation, our goal is
to estimate the quantity E[Y |T = t,X = x]. If a single model is used to estimate both E[Y |T = 0,X = x]
and E[Y |T = 1,X = x], it is often the case that X is high-dimensional and the treatment T is a relatively
much smaller set of variables (often, just one variable) when compared to X.

Table 2: Connection between inductive biases in existing literature and the
program primitives in the proposed DSL.

Regularizer/Architectural Changes Alternative Primitives
Two-head/Multi-head network if − then − else
(Farajtabar et al., 2020),(Shi et al., 2019) subset
(Shalit et al., 2017),(Schwab et al., 2020)
Pre-treatment selection, subset
Propensity Score Matching(Shi et al., 2019)
IPM regularization transform
(Shalit et al., 2017),(Farajtabar et al., 2020)

Hence, T may not have an impact on the
model when making predictions, resulting
in the estimated treatment effect being
biased towards zero (Künzel et al., 2019).
Using two different models to estimate
E[Y |T = 0,X = x] and E[Y |T = 1,X =
x] suffers from high variance in estimating
treatment effect due to limited data in
treatment-specific sub-groups as well as
from selection bias. Shalit et al. (2017);
Shi et al. (2019); Schwab et al. (2020);
Farajtabar et al. (2020) hence leverage
modified NN architectures in which two separate heads are spawned from a latent representation layer (See
Fig 1) to predict treatment-specific outcomes. To implement such a two-head NN architecture, an NPS
can leverage the if − then − else and subset primitives. As in Tab 1, replacing α1 with an appropriate
subset(v, 0) would check for the treatment variable value, and accordingly return α2 or α3, which in turn
are each sub-structures that act as two heads of the overall architecture. A NN with multiple heads would be
implemented using nested if − then − else primitives. We reiterate that we do not hard-code/pre-define
the network architecture; the NPS learns to generate programs that compose primitives suitably to minimize
overall loss during training.

subset Primitive for Covariate Selection: To achieve ignorability, pre-treatment covariates are typically
controlled while estimating treatment effect (e.g.,Dragonnet (Shi et al., 2019) controls pre-treatment covariates
via controlling propensity score). However, controlling all input covariates may not be required. To identify a
correct set of pre-treatment covariates to control, we can use the subset(v, S) primitive. If we are unsure on
the specific covariates, multiple instances of subset(v, S) with different S can be used, allowing the NPS to
select the appropriate subset for given data.

transform Primitive for IPM Regularization: To improve the results from two-head NN models,
CFR (Shalit et al., 2017) used IPM regularization (using Maximum Mean Discrepancy (Gretton et al., 2012)
or Wasserstein distance (Cuturi & Doucet, 2014)) on a latent layer representation. As in § 4.1, the transform
primitive is intended to achieve a similar purpose in our DSL. We now present the algorithm to synthesize
neurosymbolic programs for the estimation of treatment effects.

4.3 Overall Algorithm
We refer to § 3 for the background on NPS, which we build on here. We use the A∗ informed search
algorithm (Hart et al., 1968) to implement NESTER. At any internal node u, informed search algorithms
usually rely on a heuristic value h(u) that underestimates the cost to reach the goal node from u. h(u)
decides which node to explore/expand next. During program tree generation, non-terminals in an internal
node u are substituted by a type-correct NN or MLP (e.g., if the primitive α1 + α2 returns a vector as
output, the NNs substituted for α1, α2 must also return vectors as outputs). The training loss of the resultant
program (P(u), θ(u)) on D then acts as the heuristic value h(u) at node u (Shah et al., 2020). We run the
A∗ algorithm using this heuristic function to find programs that estimate treatment effects. We outline our
overall algorithm in Algorithm 1. Algorithm 1 returns the program that satisfies the objective 5. Similar to

8

Under review as submission to TMLR

traditional NN training, the parameters of the best program (line 10 of Algorithm 1) are chosen based on the
cross-validation score. Using a small DSL and keeping the overall program to only a limited depth allows us
to build models that are efficiently learned and effective in practice with almost no additional time overhead
compared to the state-of-the-art methods.

Algorithm 1 NESTER using A∗

Require: Root node u0 with initial non-terminal, DSL L.
1: Initialize: Q = {u0}, f(u0) =∞, ubest = u0, fbest =∞
2: while Q ̸= ∅ do
3: v ← arg minu∈Q f(u), Q← Q \ {v} ▷ Q contains unexplored nodes in search
4: if v is leaf node and f(v) < fbest then ▷ v contains only terminals
5: fbest ← f(v), ubest ← v
6: else
7: for child u of v do ▷ Create new partial structures from v using DSL L
8: h(u)← minθ(u) ζ(P(u), θ(u)) ▷ P(u) contains MLPs in place of non-terminals in u
9: f(u)← s(P(u)) + h(u) ▷ s is defined in § 3

10: Q← Q ∪ {u}
11: end for
12: end if
13: end while
14: return ubest

5 NESTER: Analysis
We analyze NESTER from two perspectives: (i) the capability of a program synthesized using NPS methods
to achieve treatment effect estimation, and (ii) the capabilities of our proposed DSL in relation to well-known
learning-based treatment effect estimation methods. For the former, we hypothesize that if the relationship
between treatment and effect is a continuous function, NPS is a viable candidate for estimating treatment
effects. To this end, we first define the notion of an ϵ-admissible heuristic in Defn 5.1, show how a synthesized
program’s training loss can serve as such an ϵ-admissible heuristic in Lemma 5.1, and then state our result in
Propn 5.1. All proofs are in Appendix § A.
Definition 5.1. (ϵ-Admissible Heuristic (Harris, 1974; Pearl, 1984)) In an informed search algorithm,
a heuristic function h(u) that estimates the cost to reach the goal node g from a node u is said to be admissible
if h(u) ≤ h∗(u),∀u where h∗(u) is the true cost to reach g from u. Given an ϵ > 0, h(u) is said to be
ϵ−admissible if h(u) ≤ h∗(u) + ϵ,∀u.

Lemma 5.1. (Neural Admissible Relaxations (Shah et al., 2020)) In an informed search algorithm
A, given an internal node ui and a leaf node ul, let the cost of the leaf edge (ui, ul) be s(r) + ζ(P, θ∗), where
θ∗ = arg minθ ζ(P, θ) and s(r) is the structural cost in using rule r to create ul from ui. If a neural network
model N with adequate capacity in terms of depth and width of N is used to substitute each non-terminal of
ui, the training loss of the program obtained is an ϵ−admissible heuristic for ui.

Proposition 5.1. (Universal Approximation Result for NPS) If the interventional effect of the
treatment variable T on the target variable Y is a continuous function g(T) i.e., E[Y |do(T)] = g(T), using
any DSL L for synthesizing a single-hidden-layer neural network, NESTER synthesizes a program (P, θ) that
ϵ−approximates g for a given ϵ > 0.

Our proof follows from the universal approximation theorem for NN models (Hornik et al., 1989), a DSL for
a single-hidden-layer NN and Lemma 5.1. The above result shows that if the relationship between treatment
and effect is a continuous function, using NESTER is a viable candidate for estimating treatment effects. We
next discuss the capabilities of the proposed DSL w.r.t. existing methods.
Proposition 5.2. (Error Bounds of NESTER) The program (PC , θC) generated by NESTER using the
proposed DSL, whose architecture is the same as CFR (Shalit et al., 2017), has the same error bounds in
estimating treatment effects as that of CFR.

The above theoretical results show that the models for treatment effect estimation generated by NESTER
can be shown to have performance bounds for the task similar to existing methods.

9

Under review as submission to TMLR

Table 4: Results on IHDP, Twins, and Jobs datasets. Lower is better. The best numbers are in bold. Simple machine learning
models, ensemble models, and neural network-based models are separated using horizontal lines. Further analysis on k-NN
results and dataset details are in Appendix § B

Datasets (Metric) → IHDP (ϵAT E(↓)) Twins (ϵAT E(↓)) Jobs (ϵAT T (↓))
Methods ↓ In-Sample Out-of-Sample In-Sample Out-of-Sample In-Sample Out-of-Sample
OLS-1 .73±.04 .94±.05 .0038±.0025 .0069±.0056 .01±.00 .08±.04
OLS-2 .14±.01 .31±.02 .0039±.0025 .0070±.0059 .01±.01 .08±.03
k-NN .14±.01 .90±.05 .0028±.0021 .0051±.0039 .21±.01 .13±.05
BLR (Johansson et al., 2016) .72±.04 .93±.05 .0057±.0036 .0334±.0092 .01±.01 .08±.03
BART (Chipman et al., 2010) .23±.01 .34±.02 .1206±.0236 .1265±.0234 .02±.00 .08±.03
Random Forest (Breiman, 2001) .73±.05 .96±.06 .0049±.0034 .0080±.0051 .03±.01 .09±.04
Causal Forest (Wager & Athey, 2018) .18±.01 .40±.03 .0286±.0035 .0335±.0083 .03±.01 .07±.03
BNN (Johansson et al., 2016) .37±.03 .42±.03 .0056±.0032 .0203±.0071 .04±.01 .09±.04
TARNet (Shalit et al., 2017) .26±.01 .28±.01 .0108±.0017 .0151±.0018 .05±.02 .11±.04
MHNET (Farajtabar et al., 2020) .14±.13 .37±.43 .0108±.0008 .0101±.0002 .04±.01 .06±.02
GANITE (Yoon et al., 2018) .43±.05 .49±.05 .0058±.0017 .0089±.0075 .01±.01 .06±.03
CFRW ASS (Shalit et al., 2017) .25±.01 .27±.01 .0112±.0016 .0284±.0032 .04±.01 .09±.03
Dragonnet (Shi et al., 2019) .16±.16 .29±.31 .0057±.0003 .0150±.0003 .04±.00 .04±.00
CMGP (Alaa & van der Schaar, 2017) .11±.10 .13±.12 .0124±.0051 .0143±.0116 .06±.06 .09±.07
TNet (Curth & van der Schaar, 2021a) .20±.18 .22±.11 .0200±.0070 .0200±.0070 .06±.00 .02±.00
SNet (Curth & van der Schaar, 2021a) .09±.10 .14±.12 .0040±.0030 .0040±.0030 .06±.00 .02±.00
NESTER - NEAR .05±.04 .05±.03 .0034±.0005 .0039±.0006 .06±.00 .02±.01
NESTER - dPads .05±.01 .05±.02 .0043±.0001 .0028±.0001 .06±.00 .01±.01

6 Experiments and Results Table 3: Results on IHDP, Twins dataset on ϵP EHE

Datasets (Metric) → IHDP (√ϵP EHE(↓)) Twins (√ϵP EHE(↓))
Methods ↓ In-Sample Out-Sample In-Sample Out-Sample
OLS-1 5.80±0.30 5.80±0.30 .319±.001 .318±.007
OLS-2 2.50±0.10 2.50±0.10 .320±.002 .320±.003
k-NN 2.10±0.10 4.10±0.20 .333±.001 .345±.007
BLR 5.80±0.30 5.80±0.30 .312±.003 .323±.018
BART 2.10±0.10 2.30±0.10 .347±.009 .338±.016
R Forest 4.20±0.20 6.60±0.30 .306±.002 .321±.005
C Forest 3.80±0.20 3.80±0.20 .366±.003 .316±.011
BNN 2.20±0.10 2.10±0.10 .325±.003 .321±.018
TARNet 0.88±0.02 0.95±0.02 .317±.005 .315±.003
MHNET 1.54±0.70 1.89±0.52 .319±.000 .321±.000
GANITE 1.90±0.40 2.40±0.40 .289±.005 .297±.016
CFRW ASS 0.71±0.02 0.76±0.02 .315±.007 .313±.003
Dragonnet 1.37±1.57 1.42±1.67 .319±.000 .321±.000
CMGP 0.65±0.44 0.77±0.11 .320±.002 .319±.008
TNet 0.90±0.01 0.91±0.03 .318±.002 .319±.000
SNet 0.69±0.01 0.76±0.01 .318±.002 .318±.000
NESTER - NEAR 0.73±0.19 0.76±0.20 .318±.002 .319±.000
NESTER - dPads 0.71±0.10 0.76±0.32 .314±.001 .331±.001

We perform a comprehensive suite of exper-
iments to study the usefulness of NESTER
in estimating treatment effects with our pro-
posed DSL. Our code and instructions to
reproduce the results are included in the
supplementary material and will be made
publicly available.

Datasets: Evaluating treatment effect es-
timation methods requires all potential
outcomes to be available (Defn 3.2 and
Defn 3.4), which is not possible due to
the fundamental problem of causal inference.
Thus, following Shalit et al. (2017); Yoon
et al. (2018); Shi et al. (2019); Farajtabar
et al. (2020), we experiment on two semi-
synthetic datasets–Twins (Almond et al.,
2005), IHDP (Hill, 2011)–that are derived
from real-world RCTs (see Appendix § B
for details). For these two datasets, ground truth potential outcomes (a.k.a. counterfactual outcomes) are
synthesized and available, and hence can be used to study the effectiveness of models in predicting potential
outcomes. We also experiment on one real-world dataset–Jobs (LaLonde, 1986)–where we observe only one
potential outcome. We note that we are commensurate or better than existing work on the number of datasets
studied. More details of datasets are provided in Appendix§ B.

Baselines: We compare NESTER with different methods including: Ordinary Least Squares with treatment as
a feature (OLS-1), OLS with two regressors for two treatments (OLS-2), k-Nearest Neighbors (k-NN), balancing
linear regression (BLR) (Johansson et al., 2016), Bayesian additive regression trees (BART) (Chipman
et al., 2010), random forest (Breiman, 2001), causal forest (Wager & Athey, 2018), balancing neural network
(BNN) (Johansson et al., 2016), TARNet (Shalit et al., 2017), multi-head network (MHNET) (Farajtabar et al.,
2020), Generative Adversarial Nets for inference of individualized treatment effects (GANITE) (Yoon et al.,
2018), counterfactual regression with Wasserstein distance (CFRW ASS) (Shalit et al., 2017), Dragonnet (Shi

10

Under review as submission to TMLR

et al., 2019), multi-task Gaussian process (CMGP) (Alaa & van der Schaar, 2017) and TNet/SNet (Curth &
van der Schaar, 2021a). We implement NESTER using NEAR (Shah et al., 2020) (NESTER-NEAR) that
uses neural networks as relaxations of partial programs and dPads (Cui & Zhu, 2021) (NESTER-dPads) that
avoids combinatorial search over possible programs using a differentiable pruning strategy.

Evaluation Metrics: For the experiments on IHDP and Twins datasets where we have access to both
potential outcomes, following (Shalit et al., 2017; Yoon et al., 2018; Shi et al., 2019; Farajtabar et al., 2020),
we use the evaluation metrics: ϵAT E and ϵP EHE (Defn 3.2 and Defn 3.4). ϵAT E measures the error in the
estimation of the average treatment effect in a population. ϵP EHE is operated on the error in the estimation
of individual treatment effects. For the experiments on the Jobs dataset where we observe only one potential
outcome per data point, following (Shalit et al., 2017; Yoon et al., 2018; Shi et al., 2019; Farajtabar et al.,
2020), we use the metric error in the estimation of average treatment effect on the treated (ϵAT T). Definitions
and more details of these metrics are provided in Appendix § B. We report both in-sample and out-of-sample
performance w.r.t. ϵAT E , ϵAT T ,

√
ϵP EHE in our results. Unlike traditional supervised learning, in-sample

performance is non-trivial in this context, since we do not observe counterfactual outcomes (all potential
outcomes) during training. Additional details on the experimental setup are presented in Appendix § B.

Results: Tabs 4, 3 presents our main results. To permit efficient learning (and to some degree, interpretability
of the learned program, as discussed in ablation studies (§ 7), and in Appendix § E), we limit the program
depth to utmost 5 for the main experiments. We present results with other depths in ablation studies (§ 7).
The results show the superior performance of NESTER over existing methods.

7 Additional Empirical Analysis and Discussion
Table 5: Programs synthesized by
NESTER. |v| = size of v.

IHDP

if subset(v, {0..|v|})
then transform(v)
else transform(v)

Twins

subset(v, {0..|v|}))

Jobs

if subset(v, {0..|v|})
then subset(v, {0..|v|})
else subset(v, {0..|v|})

In this section, we present ablation studies to understand various aspects
of synthesized programs.

Flexibility of NESTER: We study different programs generated by
NESTER to estimate treatment effects for different datasets. NESTER has
the flexibility to learn both complex models that are required for datasets
such as IHDP (complex models such as CMGP outperform simpler models
such as OLS on IHDP; see Tab 4) and to learn simple models for datasets such
as Twins and Jobs (OLS, k−NN perform better on Twins, Jobs compared
to complex models). Tab 5 shows sample programs learned by NESTER
to estimate treatment effects for various datasets. {0..|v|} is the set of
natural numbers from 0 to |v| (length/size of v). To explain the results
further, for each dataset, NESTER has the flexibility to: (i) choose or not
choose a specific program primitive; (ii) decide the order in which program
primitives are used; and (iii) use a specific program primitive zero or more
times. Unlike traditional fixed architectures, this flexibility allows NESTER to use primitives differently for
different datasets to perform better.

Interpretability of NESTER: We now provide the interpretability to the program generated by
NESTER for estimating treatment effects for the Twins dataset: “subset(v, {0..|v|})” (Tab 5). Since
the subset primitive allows us to check the performance w.r.t. different subsets of covariates, we empir-
ically verified the effect of choosing a subset of input covariates (other covariates are set to 0) on ϵAT E .

Figure 3: Feature count vs ϵAT E

Results in Fig 3 show the performance of NESTER as the number of
covariates are increased from 1 to 31 (starting with treatment variable,
adding one covariate at a time; we chose this ordering because checking with
all possible subsets, 231 in this case, is not feasible). This analysis allows
us to understand which features are useful to better estimate treatment
effects and which are not. For example, if the exclusion of a set of features
S is improving a model’s performance in estimating treatment effects, S
can then be used to infer the causal relationships in the underlying causal
structure of the data (e.g., if the sample size is small, not controlling
the parents of treatment variable that are not the ancestors of the target
variable is likely to improve the precision in estimation of treatment effects Cinelli et al. (2022)). Also, this

11

Under review as submission to TMLR

simple program synthesized by NESTER supports the fact that simpler models perform better on the Twins
dataset. This can be observed from the first three rows and the final row of Tab 4. See Appendix § E for
real-world examples of the interpretability of synthesized programs.

Table 6: Run time in minutes
Dataset SNet NESTER-NEAR NESTER-dPads
Twins 1.85±0.3 2.12±0.12 1.40±0.20
Jobs 1.23±0.2 1.09±0.40 1.00±0.10

Runtime Analysis: We also compare the run time
of NESTER against the state-of-the-art learning-based
method SNet (Curth & van der Schaar, 2021a). As shown
in Tab 6, on Twins and Jobs datasets, NESTER-dPads
require less time compared to SNet and NESTER-NEAR
on average. NESTER-NEAR also achieves state-of-the-art performance with smaller program depths, avoid-
ing heavy computation requirements in practice. Experiments are conducted on a computing unit with an
NVIDIA GeForce 1080Ti, and the average time over five runs is reported.

Table 7: Results on Twins. Primitives 1-4 alone in our proposed
DSL are achieving better results compared to the primitives 4-5.

Metrics → √
ϵP EHE(↓) ϵAT E(↓)

Primitives In-Sample Out-of In-Sample Out-of
of DSL 1 Sample Sample
1,2,3 .318±.003 .319±.000 .0050±.0030 .0039±.0006
1,2,4 .332±.001 .319±.002 .0210±.0030 .0140±.0000
1,3,4 .332±.001 .319±.002 .0210±.0030 .0140±.0000
2,3,4 .325±.001 .331±.001 .0160±.0030 .0170±.0000
1,2,3,4 .318±.002 .319±.000 .0034±.0026 .0039±.0006

Choice of DSL: The choice of DSL im-
pacts the performance of any program
synthesis method. We argue that the suc-
cess of NESTER is because of the spe-
cific program primitives in the proposed
DSL and their connection to the causal
inference literature (Tab 2). Specifically,
we study the usefulness of the primitives
if − then − else, transform, subset.
We conduct an ablation study where the
DSL only contains the subset of primi-
tives from the set of primitives 1-4 in the original DSL (Tab 1). When we remove one of the primitives 1-3
from the DSL, we observe the degradation in the performance (Tab 7). Results improved when we added all
primitives 1-3 in the DSL.

Figure 4: Program depth vs performance.

Analysis on Depth of Synthesized Program
Structures: We study the effect of program depth
on the estimated treatment effects while keeping
all other hyperparameters fixed. Fig 4 shows the
results on IHDP and Jobs datasets for various values
of program depth. Since IHDP dataset contains
1000 realizations of simulated outcomes (Hill, 2011),
we take the first realization and verify the effect of
program depth on ϵAT E . For a program depth of 4,
we observed that the sum of in-sample and out-sample ϵAT E is less compared to other depths. We believe that
this is because of model over-fitting for large program depths (In Fig 4 left, out-sample ϵAT E is increasing
while in-sample ϵAT E is decreasing). In the Jobs dataset, we observed that almost all program depths results
in similar in-sample and out-sample ϵAT T . Hence, in this case it is advisable to limit the program depth to
be a small number as it helps to interpret the results better. On Twins dataset, we observed that simple
models give best results. It is observed that, even though we set the hyperparameter that controls the depth
of the program graph to be a large value, the resultant optimal program always ends up to be of depth 1,
again supporting our claim that simple models work better for the Twins dataset.

8 Conclusions
This paper presents an adaptive method for estimating treatment effects using neurosymbolic program
synthesis. We propose a domain-specific language for treatment effect estimation by establishing an analogy
between parameterized program primitives and model building blocks. The viability and suitability of this
approach are theoretically demonstrated. Our approach is validated through extensive experimentation on
benchmark datasets, with multiple baselines, showcasing its usefulness. Exploring new program primitives for
treatment effect estimation is a promising future direction. NESTER-NEAR encounters time complexity
issues for program depths greater than five, but achieves state-of-the-art performance with small program
depths. NESTER enables treatment effect estimation from observational data and is particularly well-suited
for scenarios with shallow program synthesis requirements. This work has no known detrimental effects.

12

Under review as submission to TMLR

References
Jeffrey A. Smith and Petra E. Todd. Does matching overcome LaLonde’s critique of nonexperimental

estimators? Journal of Econometrics, 125(1-2):305–353, 2005.

Alberto Abadie and Guido W Imbens. Large sample properties of matching estimators for average treatment
effects. Econometrica, 74(1):235–267, 2006.

Ahmed M. Alaa and Mihaela van der Schaar. Bayesian inference of individualized treatment effects using
multi-task gaussian processes. In NIPS, 2017.

Douglas Almond, Kenneth Y. Chay, and David S. Lee. The costs of low birth weight. The Quarterly Journal
of Economics, 120(3):1031–1083, 2005.

Serge Assaad, Shuxi Zeng, Chenyang Tao, Shounak Datta, Nikhil Mehta, Ricardo Henao, Fan Li, and
Lawrence Carin Duke. Counterfactual representation learning with balancing weights. In AISTATS, 2021.

Ioana Bica, James Jordon, and Mihaela van der Schaar. Estimating the effects of continuous-valued
interventions using generative adversarial networks. In NeurIPS, 2020.

Alan W. Biermann. The inference of regular lisp programs from examples. IEEE Transactions on Systems,
Man, and Cybernetics, 8(8):585–600, 1978.

Matko Bošnjak, Tim Rocktäschel, Jason Naradowsky, and Sebastian Riedel. Programming with a differentiable
forth interpreter. In ICML, 2017.

Henry Brady, David Collier, and Jasjeet Sekhon. The neyman-rubin model of causal inference and estimation
via matching methods. The Oxford Handbook of Political Methodology, 01 2008.

Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

Timothy A Carey and William B Stiles. Some problems with randomized controlled trials and some viable
alternatives. Clinical Psychology & Psychotherapy, 23(1):87–95, 2016.

Thomas C. Chalmers, Harry Smith, Bradley Blackburn, Bernard Silverman, Biruta Schroeder, Dinah Reitman,
and Alexander Ambroz. A method for assessing the quality of a randomized control trial. Controlled
Clinical Trials, 2(1):31–49, 1981.

Hugh A. Chipman, Edward I. George, and Robert E. McCulloch. BART: Bayesian additive regression trees.
The Annals of Applied Statistics, 4(1):266 – 298, 2010.

Zhixuan Chu, Stephen L. Rathbun, and Sheng Li. Matching in selective and balanced representation space
for treatment effects estimation. In CIKM, 2020.

Carlos Cinelli, Andrew Forney, and Judea Pearl. A crash course in good and bad controls. Sociological
Methods & Research, 2022.

David Collier and James Mahoney. Insights and pitfalls: Selection bias in qualitative research. World politics,
49(1):56–91, 1996.

RICHARD K. CRUMP, V. JOSEPH HOTZ, GUIDO W. IMBENS, and OSCAR A. MITNIK. Dealing with
limited overlap in estimation of average treatment effects. Biometrika, 96(1):187–199, 2009.

Guofeng Cui and He Zhu. Differentiable synthesis of program architectures. In NeurIPS, 2021.

Alicia Curth and Mihaela van der Schaar. Nonparametric estimation of heterogeneous treatment effects:
From theory to learning algorithms. In Proceedings of the 24th International Conference on Artificial
Intelligence and Statistics (AISTATS). PMLR, 2021a.

Alicia Curth and Mihaela van der Schaar. On inductive biases for heterogeneous treatment effect estimation.
In Advances in Neural Information Processing Systems, 2021b.

13

Under review as submission to TMLR

Marco Cuturi and Arnaud Doucet. Fast computation of wasserstein barycenters. In ICML, 2014.

Alexis Diamond and Jasjeet S Sekhon. Genetic matching for estimating causal effects: A general multi-variate
matching method for achieving balance in observational studies. Review of Economics and Statistics, 95(3):
932–945, 2013.

Vincent Dorie. Npci: Non-parametrics for causal inference., 2016. URL https://github.com/vdorie/npci.

Mehrdad Farajtabar, Andrew Lee, Yuanjian Feng, Vishal Gupta, Peter Dolan, Harish Chandran, and Martin
Szummer. Balance regularized neural network models for causal effect estimation. CoRR, abs/2011.11199,
2020.

Alexander L. Gaunt, Marc Brockschmidt, Nate Kushman, and Daniel Tarlow. Differentiable programs with
neural libraries. In ICML, 2017.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron C.
Courville, and Yoshua Bengio. Generative adversarial nets. In NIPS, 2014.

Arthur Gretton, Karsten M. Borgwardt, Malte J. Rasch, Bernhard Schölkopf, and Alexander Smola. A kernel
two-sample test. JMLR, 13(25):723–773, 2012.

Sumit Gulwani. Automating string processing in spreadsheets using input-output examples. ACM Sigplan
Notices, 46(1):317–330, 2011.

Sumit Gulwani, William R. Harris, and Rishabh Singh. Spreadsheet data manipulation using examples.
Commun. ACM, 55(8):97–105, 2012.

Shantanu Gupta, David Childers, and Zachary Chase Lipton. Local causal discovery for estimating causal
effects. In NeurIPS 2022 Workshop on Causality for Real-world Impact, 2022.

Larry R. Harris. The heuristic search under conditions of error. Artificial Intelligence, 5(3):217–234, 1974.

Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. A formal basis for the heuristic determination of
minimum cost paths. IEEE Transactions on Systems Science and Cybernetics, 4(2):100–107, 1968.

M.A. Hernan and J.M. Robins. Causal Inference. Taylor & Francis, 2019.

Jennifer L. Hill. Bayesian nonparametric modeling for causal inference. Journal of Computational and
Graphical Statistics, 20(1):217–240, 2011.

John E Hopcroft, Rajeev Motwani, and Jeffrey D Ullman. Introduction to automata theory, languages, and
computation. Acm Sigact News, 32(1):60–65, 2001.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are universal
approximators. Neural networks, 2(5):359–366, 1989.

Patrik Hoyer, Dominik Janzing, Joris M Mooij, Jonas Peters, and Bernhard Schölkopf. Nonlinear causal
discovery with additive noise models. In Advances in Neural Information Processing Systems, 2008.

Guido W Imbens. The role of the propensity score in estimating dose-response functions. Biometrika, 87(3):
706–710, 2000.

Fredrik Johansson, Uri Shalit, and David Sontag. Learning representations for counterfactual inference. In
ICML, 2016.

Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning. In European conference on
machine learning, pp. 282–293. Springer, 2006.

Sören R. Künzel, Jasjeet S. Sekhon, Peter J. Bickel, and Bin Yu. Metalearners for estimating heterogeneous
treatment effects using machine learning. Proceedings of the National Academy of Sciences, 116(10):
4156–4165, 2019.

14

https://github.com/vdorie/npci

Under review as submission to TMLR

Robert J. LaLonde. Evaluating the econometric evaluations of training programs with experimental data.
The American Economic Review, 76(4):604–620, 1986.

Michael Lechner. Identification and estimation of causal effects of multiple treatments under the conditional
independence assumption. In Econometric evaluation of labour market policies, pp. 43–58. Springer, 2001.

Liang Li and Tom Greene. A weighting analogue to pair matching in propensity score analysis. The
international journal of biostatistics, 9(2):215–234, 2013.

Sheng Li and Yun Fu. Matching on balanced nonlinear representations for treatment effects estimation. In
I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.),
NIPS, 2017.

Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille,
Jonathan Huang, and Kevin Murphy. Progressive neural architecture search. In ECCV, 2018.

Marloes H Maathuis, Diego Colombo, Markus Kalisch, and Peter Bühlmann. Predicting causal effects in
large-scale systems from observational data. Nature methods, 7(4):247–248, 2010.

Joris M Mooij, Jonas Peters, Dominik Janzing, Jakob Zscheischler, and Bernhard Schölkopf. Distinguishing
cause from effect using observational data: methods and benchmarks. The Journal of Machine Learning
Research, 17(1):1103–1204, 2016.

Stephen L. Morgan and Christopher Winship. Counterfactuals and Causal Inference: Methods and Principles
for Social Research. Analytical Methods for Social Research. Cambridge University Press, 2 edition, 2014.

Emilio Parisotto, Abdel-rahman Mohamed, Rishabh Singh, Lihong Li, Dengyong Zhou, and Pushmeet Kohli.
Neuro-symbolic program synthesis. arXiv preprint arXiv:1611.01855, 2016.

J. Pearl, M. Glymour, and N.P. Jewell. Causal Inference in Statistics: A Primer. Wiley, 2016.

Judea Pearl. Heuristics: Intelligent Search Strategies for Computer Problem Solving. Addison-Wesley
Longman Publishing Co., Inc., 1984.

Judea Pearl. Causality. Cambridge university press, 2009.

Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean. Efficient neural architecture search via
parameters sharing. In ICML, 2018.

Paul R Rosenbaum and Donald B Rubin. The central role of the propensity score in observational studies for
causal effects. Biometrika, 70(1):41–55, 1983.

Paul R Rosenbaum and Donald B Rubin. Constructing a control group using multivariate matched sampling
methods that incorporate the propensity score. The American Statistician, 39(1):33–38, 1985.

Donald B Rubin. Estimating causal effects of treatments in randomized and nonrandomized studies. Journal
of educational Psychology, 66(5):688, 1974.

Donald B Rubin. Causal inference using potential outcomes. Journal of the American Statistical Association,
100(469):322–331, 2005.

Robert William Sanson-Fisher, Billie Bonevski, Lawrence W. Green, and Cate D’Este. Limitations of the
randomized controlled trial in evaluating population-based health interventions. American Journal of
Preventive Medicine, 33(2):155–161, 2007.

Patrick Schwab, Lorenz Linhardt, Stefan Bauer, Joachim M Buhmann, and Walter Karlen. Learning
counterfactual representations for estimating individual dose-response curves. In AAAI, 2020.

Ameesh Shah, Eric Zhan, Jennifer Sun, Abhinav Verma, Yisong Yue, and Swarat Chaudhuri. Learning
differentiable programs with admissible neural heuristics. In NeurIPS, 2020.

15

Under review as submission to TMLR

Uri Shalit, Fredrik D Johansson, and David Sontag. Estimating individual treatment effect: generalization
bounds and algorithms. In ICML, 2017.

Claudia Shi, David Blei, and Victor Veitch. Adapting neural networks for the estimation of treatment effects.
In NeurIPS, 2019.

Kensen Shi, Hanjun Dai, Kevin Ellis, and Charles Sutton. Crossbeam: Learning to search in bottom-up
program synthesis. In ICLR, 2022.

Armando Solar Lezama. Program Synthesis By Sketching. PhD thesis, EECS Department, University of
California, Berkeley, Dec 2008.

Armando Solar-Lezama, Rodric Rabbah, Rastislav Bodík, and Kemal Ebcioğlu. Programming by sketching
for bit-streaming programs. SIGPLAN Not., 40(6):281–294, 2005.

Elizabeth A Stuart. Matching methods for causal inference: A review and a look forward. Statistical science:
a review journal of the Institute of Mathematical Statistics, 25(1):1, 2010.

Hao Tang and Kevin Ellis. From perception to programs: Regularize, overparameterize, and amortize. In
Proceedings of the 6th ACM SIGPLAN International Symposium on Machine Programming, pp. 30–39,
2022.

Lazar Valkov, Dipak Chaudhari, Akash Srivastava, Charles Sutton, and Swarat Chaudhuri. Houdini: Lifelong
learning as program synthesis. In NeurIPS, 2018.

Stefan Wager and Susan Athey. Estimation and inference of heterogeneous treatment effects using random
forests. Journal of the American Statistical Association, 113(523):1228–1242, 2018.

Glynn Winskel. The Formal Semantics of Programming Languages: An Introduction. MIT Press, Cambridge,
MA, USA, 1993.

Liuyi Yao, Sheng Li, Yaliang Li, Mengdi Huai, Jing Gao, and Aidong Zhang. Representation learning for
treatment effect estimation from observational data. In NeurIPS, 2018.

Jinsung Yoon, James Jordon, and Mihaela van der Schaar. GANITE: estimation of individualized treatment
effects using generative adversarial nets. In ICLR, 2018.

Weijia Zhang, Lin Liu, and Jiuyong Li. Treatment effect estimation with disentangled latent factors. In
AAAI, 2021.

Barret Zoph and Quoc Le. Neural architecture search with reinforcement learning. In ICLR, 2017.

16

Under review as submission to TMLR

Appendix

In this appendix, we include the following additional details.

• Proofs of propositions
• Additional details on the experimental setup, including:

– Details on evaluation metrics
– Details on datasets

• Example of program synthesis application - FlashFill
• Example of a neurosymbolic program - solving XOR problem
• Interpretability of Synthesized Programs - A real-world example

A Proofs of Propositions

Lemma 5.1. (Neural Admissible Relaxations (Shah et al., 2020)) In an informed search algorithm
A, given an internal node ui and a leaf node ul, let the cost of the leaf edge (ui, ul) be s(r) + ζ(P, θ∗), where
θ∗ = arg minθ ζ(P, θ) and s(r) is the structural cost in using rule r to create ul from ui. If a neural network
model N with adequate capacity in terms of depth and width of N is used to substitute each non-terminal of
ui, the training loss of the program obtained is an ϵ−admissible heuristic for ui.

Proof. Let G denote the program graph that is being generated by an informed search algorithm. At any
node u in G, let s(u) be the structural cost of u i.e., the sum of costs of rules used to construct u. Now, let
u[α1, . . . , αk] be any structure (that is not partial) obtained from u by using the rules α1, . . . , αk. Then the
cost to reach goal node from u is given by:

J(u) = min
α1,...,αn,θ(u),θ

[s(u(α1, . . . , αk)) − s(u) + ζ(u[α1, . . . , αk], (θu, θ))]

where θ(u) is the set of parameters of u and θ is the set of parameters of α1, . . . , αk. Now, let the heuristic
function value h(u) at u be obtained as follows: substitute the non-terminals in u with neural networks
parametrized by the set of parameters ω (these networks are type-correct— for example, if a non-terminal
is supposed to generate sub-expressions whose inputs are sequences, then the neural network used in its
place is recurrent). Now, let us denote the program obtained by this construction with (P(u), (θ(u), ω)). The
heuristic function value at u is now given by:

h(u) = min
θ(u),ω

ζ(P(u), (θ(u), ω)) (6)

In practice, neural networks may only form an approximate relaxation of the space of completions and
parameters of architectures; also, the training of these networks may not reach global optima. To account for
these issues, consider an approximate notion of admissibility Harris (1974); Pearl (1984). For a fixed constant
ϵ > 0, let an ϵ-admissible heuristic be a function h∗(u) over architectures such that h∗(u) ≤ J(u) + ϵ; ∀u.

As neural networks with adequate capacity are universal function approximators, there exist parameters ω∗

for our neurosymbolic program such that for all u, α1, . . . , αk, θ(u), θ:

ζ(P (u), (θ(u), ω∗)) ≤ ζ(P (u[α1, . . . , αk]), (θ(u), θ)) + ϵ

If s(r) > 0; ∀r ∈ L (where L is the DSL under consideration), then s(u) ≤ s(u[α1, . . . , αk]), which implies:

h(u) ≤ min
α1,...,αn,θ(u),θ

ζ(u[α1, . . . , αk], (θu, θ))) + ϵ

≤ min
α1,...,αn,θ(u),θ

ζ(u[α1, . . . , αk], (θu, θ))) + s(u(α1, . . . , αk)) − s(u) + ϵ

= J(u) + ϵ

17

Under review as submission to TMLR

In other words, h(u) is ϵ-admissible.

Let C denote the optimal path cost in G. If an informed search algorithm returns a node ug as the goal node
that does not have the optimal path cost C, then there must exist a node u′ on the frontier (nodes to explore)
that lies along the optimal path but has not yet explored. Let g(ug) denote the path cost at ug (note that
path cost includes the prediction error of the program at ug). This lets us establish an upper bound on the
path cost of ug.

g(ug) ≤ g(u′) + h(u′) ≤ g(u′) + J(u′) + ϵ ≤ C + ϵ.

In an informed search algorithm, the heuristic estimate at the goal node h(ug) is 0. That is, the path cost of
the optimal program returned by the informed search algorithm is at most an additive constant ϵ away from
the path cost of the optimal solution.

Proposition 5.1. (Universal Approximation Result for NPS) If the interventional effect of the
treatment variable T on the target variable Y is a continuous function g(T) i.e., E[Y |do(T)] = g(T), using
any DSL L for synthesizing a single-hidden-layer neural network, NESTER synthesizes a program (P, θ) that
ϵ−approximates g for a given ϵ > 0.

Proof. We know by universal approximation theorem Hornik et al. (1989) that there exist a trained 1-hidden
layer neural network model N with d inputs x1, . . . , xd, n hidden neurons h1, . . . , hn, and output y that
ϵ̂-approximates g : Rd → R for some ϵ̂ > 0. We now show that N ’s output can be ϵ′-approximated using a
program synthesized using NPS with ϵ′-admissible heuristic and a DSL.

In N , let the activation function used in hidden and output layers be f(·); θij be the weight connecting ith

input to jth hidden neuron; and θj be the weight connecting jth hidden neuron to output y. The output y of
N can be expressed in terms of inputs, activation function, and parameters as:

y = f(θ1f(θ11x1 + · · · + θd1xd) + · · · + θnf(θ1nx1 + · · · + θdnxd)) (7)

Since the above expression consists of additions, multiplications, and an activation function f , it is easy to
see that Eqn 7 can be synthesized using the following DSL L:

α := f(α) | mul(θ, α) | add(α, α) | x1 | . . . | xn

where mul, add represent usual multiplication and addition operations. If d = 2 and n = 2, the synthesized
program that matches the expression for y in Eqn 7 looks like:

f (add (mul (θ, f(add (mul (θ, x1), mul(θ, x2)))), mul(θ, f (add (mul(θ, x1), mul(θ, x2)))))) (8)

Note that θ is overloaded in the above expression only for convenience and readability; each θ is however
updated independently while training the above program using gradient descent.

Using Expression 8, it is clear that Eqn 7 can be synthesized using L for any given m,n. Now, as part of our
construction, set s(r) = 0; ∀r ∈ L to synthesize programs of arbitrary depth and width without worrying
about the structural cost of the synthesized program. Now the path cost p of a node u returned by the
synthesizer contains only the prediction error value of the program at the node u (Eqn 5). Using Lemma 5.1,
p is at most ϵ′ away from the path cost of the optimal solution (node with the expression for y, the output
of N). Since the path cost of any node only contains the prediction error values, we conclude that the loss
incurred by the synthesized program is ϵ′−close to the loss incurred by N .

Finally, as per the universal approximation theorem, we can increase the number of hidden layer neurons of a
1-hidden layer NN N to approximate g : Rd → R with a certain error, say ϵ̂. Also, there exists a neurosymbolic
program (P, θ) whose error in approximating N is ϵ′. Equivalently, there exists a neurosymbolic program
(P, θ) whose error in approximating f is (ϵ̂+ ϵ′). If we choose ϵ̂, ϵ′ such that ϵ = ϵ̂+ ϵ′ for a given ϵ, we have
the desired result.

Before proceeding with the proof of next proposition, we describe how NESTER, using the proposed DSL
can generate programs (PT , θT), (PC , θC), and (PD, θD), whose architectures are the same as TARNet,
CFR Shalit et al. (2017), and Dragonnet Shi et al. (2019) respectively.

18

Under review as submission to TMLR

Table 8: Programs generated using our DSL (Tab 1) equivalent to TARNet (PT), CFR (PC), and Dragonnet
(PD).

PT PC PD

if subset(v, {0}) if subset(v, {0}) if subset(v, {0})
then subset(v, {0..|v|}) then transform(v) then subset(v, paT)
else subset(v, {0, |v|}) else transform(v) else subset(v, paT)

We construct the program architectures PT ,PC , and PD using the DSL 1. The parameter sets θT , θC , and
θD are implicit in the program primitives used in the respective architectures. The program architectures for
PT ,PC , and PD are shown in Tab 8. In Tab 8, paT denotes the indices of the parents of T in v.

Construction of PT : TARNet is a simple 2-head network without any constraints on the learned represen-
tation ϕ (Fig 1). Since there are no constraints on ϕ, PT has two subset primitives responsible for learning
two representations ϕ0, ϕ1 for p(x|t = 0) and p(x|t = 1) respectively before producing the estimated potential
outcomes (i.e., the outputs of these two subset primitives act as the two hypothesis functions h0, h1 in
TARNet to predict the treatment-specific effects.) The condition check for deciding which head to execute is
done using subset(v, {0}]) where subset primitive chooses the first index of input and returns t value as its
output.

Construction of PC : CFR minimizes the distance between ϕ0, ϕ1 (equivalently between p(x|t = 0), p(x|t =
1)) to achieve IPM regularization. To get similar behavior, PC uses transform primitive that implicitly
generates representations close to each other for inputs with different treatment values. Now, similar to PT ,
PC has two heads corresponding to two transform primitives that output treatment-specific effects.

Construction of PD: In Dragonnnet Shi et al. (2019), along with two treatment-specific heads (similar to
TARNet), there is another head that predicts the treatment variable so that the parents of the treatment
variable are being used for propensity score matching. To achieve this behavior, PD uses subset primitive that
selects parents of the treatment variable paT. Once the parent set is chosen, similar to PT and PC , the outputs
of two subset primitives of PD act as the two hypothesis functions h0, h1 to predict the treatment-specific
effects.
Proposition 5.2. (Error Bounds of NESTER) The program (PC , θC) generated by NESTER using the
proposed DSL, whose architecture is the same as CFR (Shalit et al., 2017), has the same error bounds in
estimating treatment effects as that of CFR.

Proof. Since CFR provides error bounds in estimating ϵP EHE , we show how such bounds can be extended to
NESTER. We first restate the following definitions and notations from Shalit et al. (2017).

Let pt=1(x) = p(x|t = 1), and pt=0(x) = p(x|t = 0) denote respectively the treatment and control distributions.
Let ϕ : X → R be the representation function which is assumed to be one-to-one and differentiable. Let
pt=1

ϕ (x) = pϕ(x|t = 1), and pt=0
ϕ (x) = pϕ(x|t = 0) denote respectively the treatment and control distributions

induced over R. Let h : R × {0, 1} → Y be a hypothesis function (e.g., treatment-specific heads of
TARNet/CFR). The expected loss for the unit (x, t) is defined as follows

lh,ϕ(x, t) :=
∫

Y

L(Y t, h(ϕ(x), t))p(Y t|x)dY t

Where L : Y × Y → R+ is squared loss function defined as L(y, ŷ) := (y − ŷ)2. Now consider the two
complimentary loss functions: one is the standard machine learning loss, call the factual loss, denoted by ϵF .
The other is the expected loss with respect to the distribution where the treatment assignment is flipped,
called the counterfactual loss, ϵCF . These are defined as follows

ϵF (h, ϕ) :=
∫

X×{0,1}
lh,ϕ(x, t)p(x, t)dxdt ϵCF (h, ϕ) :=

∫
X×{0,1}

lh,ϕ(x, t)p(x, 1 − t)dxdt

19

Under review as submission to TMLR

Similarly, one can define the expected treated and control losses as follows

ϵt=1
F (h, ϕ) =

∫
X
lh,ϕ(x, 1)pt=1(x)dx ϵt=0

F (h, ϕ) =
∫

X
lh,ϕ(x, 0)pt=0(x)dx

ϵt=1
CF (h, ϕ) =

∫
X
lh,ϕ(x, 1)pt=0(x)dx ϵt=0

CF (h, ϕ) =
∫

X
lh,ϕ(x, 0)pt=1(x)dx

For u := p(t = 1), we have the following Shalit et al. (2017)

ϵF (h, ϕ) = uϵt=1
F (h, ϕ) + (1 − u)ϵt=0

F (h, ϕ)
ϵCF (h, ϕ) = (1 − u)ϵt=1

CF (h, ϕ) + uϵt=0
CF (h, ϕ)

Let G be a function family consisting of functions g : S → R. For a pair of distributions p1, p2 over S, the
Integral Probability Metric is defined as follows

IPMG(p1, p2) = sup
g∈G

∣∣∫
S
g(s)(p1(s) − p2(s))ds

∣∣
For t ∈ {0, 1}, let mt(x) = E[Y t|x], τ(x) = m1(x) − m0(x) and τ̂(x) = f(x, 1) − f(x, 0) (f is defined in
Sec. 3). Then we have the following

ϵP EHE(f) :=
∫

X
(τ̂(x) − τ(x))2p(x)dx

Let
σ2

Y t(p(x, t)) =
∫

X×Y

(Y t −mt(x))2p(Y t|x)p(v, t)dY tdx

and σ2
Y t = min{σ2

Y t(p(x, t)), σ2
Y t(p(x, 1 − t))}

and σ2
Y = min{σ2

Y 0 , σ2
Y 1}

Now assume there exists a constant Bϕ and loss L(y1, y2) = (y1 − y2)2 such that for t ∈ {0, 1}, the functions
gϕ,h(r, t) := 1

Bϕ
lh,ϕ(ψ(r), t) ∈ G. Then we have

ϵP EHE(h, ϕ) ≤ 2(ϵCF (h, ϕ) + ϵF (h, ϕ) − 2σ2
Y) ≤ 2(ϵt=0

F (h, ϕ) + ϵt=1
F (h, ϕ) +BϕIPMG(pt=0

ϕ , pt=1
ϕ) − 2σ2

Y) (9)

We refer to Shalit et al. (2017) for the complete proof of the inequality 9 which is valid for Counterfactual
Regression (CFR) model Shalit et al. (2017). We now present the following equivalences to show that the
above error bound is valid for the program (PC , θC) equivalent to CFR.

• In PC , subset(v, {0}) acts as the decision node to decide which specific transform(v) to execute.
The outputs of these specific transform are the same as the outputs of the hypothesis function h
used in the factual and counterfactual losses ϵF , ϵCF defined earlier.

• By our construction of (PC , θC), we have a two transform primitives to output pt=0
ϕ and pt=1

ϕ . ϕ is
trained to minimize the MMD between pt=0

ϕ and pt=1
ϕ . Since MMD is one specific IPM, we replace

IPM with MMD in the inequality 9.

• σ2
Y can be directly obtained from the observational data. Hence the error bounds guaranteed by

NESTER w.r.t. ϵP EHE is as follows.

ϵP EHE(h, ϕ) ≤ 2(ϵCF (h, ϕ)+ϵF (h, ϕ)−2σ2
Y) ≤ 2(ϵt=0

F (h, ϕ)+ϵt=1
F (h, ϕ)+BϕMMD(pt=0

ϕ , pt=1
ϕ)−2σ2

Y)

20

Under review as submission to TMLR

B Experimental Setup

B.1 Additional Details on Evaluation Metrics

For the experiments on IHDP and Twins datasets where we have access to both potential outcomes,
following Shalit et al. (2017); Yoon et al. (2018); Shi et al. (2019); Farajtabar et al. (2020), we use the
evaluation metrics: error in the estimation of Average Treatment Effect (ϵAT E) and the expected Precision in
Estimation of Heterogeneous Effect (ϵP EHE). For a sample of n data points, ϵAT E , ϵP EHE are defined as
follows.

ϵAT E := | 1
n

n∑
i=1

[f(xi, 1) − f(xi, 0)] − 1
n

n∑
i=1

[Y 1
i − Y 0

i]|

ϵP EHE := 1
n

n∑
i=1

[(f(xi, 1) − f(xi, 0)) − (Y 1
i − Y 0

i)]2

For the experiment on the Jobs dataset where we observe only one potential outcome per data point,
following Shalit et al. (2017); Yoon et al. (2018); Shi et al. (2019); Farajtabar et al. (2020), we use the metric
error in estimation of Average Treatment Effect on the Treated (ϵAT T), which is defined as follows.

ϵAT T := |ATT true − 1
|T |

∑
i∈T

[f(xi, 1) − f(xi, 0)]| (10)

where ATT true is defined as:

ATT true := 1
|T |

∑
i∈T

Y 1
i − 1

|U ∩ E|
∑

i∈U∩E

Y 0
i (11)

and T is the treated group, U is the control group, and E is the set of data points from a randomized
experiment Shalit et al. (2017) (see description of Jobs dataset below for an example of E, T, and U).

Understanding k-NN results: In k-NN algorithm, if k = 1 and treatment value t = 1, f(xi, 1) is exactly
same as Y 1

i . If treatment value t = 0, f(xi, 0) is exactly same as Y 0
i because of the way k-NN works during

test time on in-sample data. For this reason, the estimated value of ϵAT E is biased towards 0. This bias
exists even for higher values of k in k-NN while taking the average outputs of k nearest data points. However,
we do not observe such bias w.r.t. out-sample data. Hence, following earlier work Yoon et al. (2018), we only
consider K-NN results for out-sample performance.

B.2 Details on Datasets

IHDP: Infant Health and Development Program (IHDP) is a randomized control experiment on 747 low-
birth-weight, premature infants. The treatment group consists of 139 children, and the control group has
608 children. The treatment group received additional care such as frequent specialist visits, systematic
educational programs, and pediatric follow-up. The Control group only received pediatric follow-up. Hill
(2011) created the semi-synthetic version of IHDP dataset by synthesizing both potential outcomes. Following
Hill (2011); Shalit et al. (2017); Yoon et al. (2018); Shi et al. (2019), we use simulated outcomes of the IHDP
dataset from NPCI package Dorie (2016). This experiment aims to estimate the effect of treatment on the
IQ score of children at the age of 3.

Twins: The Twins dataset is derived from all births in the USA between 1989-1991 Almond et al. (2005).
Considering twin births in this period, for each child, we estimate the effect of birth weight on 1-year mortality
rate. Treatment t = 1 refers to the heavier twin and t = 0 refers to the lighter twin. Following Yoon et al.
(2018), for each twin-pair, we consider 30 features relating to the parents, the pregnancy, and the birth. We
only consider twins weighing less than 2kg and without missing features. The final dataset has 11,400 pairs
of twins whose mortality rate for the lighter twin is 17.7%, and for the heavier 16.1%. In this setting, for
each twin pair we observed both the case t = 0 (lighter twin) and t = 1 (heavier twin) (that is, since all other
features such as parent’s race, health status, gestation weeks prior to birth, etc. are same except the weight of

21

Under review as submission to TMLR

Table 9: Dataset details. ‘Input Size’ includes the treatment variable.

Dataset Sample Size Input Size Batch Size Epochs Train/Valid/Test Split (%)
IHDP 747 (1000 such instances) 26 16 100 64/16/20
Twins 11400 31 128 7 64/16/20
Jobs 3212 18 64 10 64/16/20

Table 10: Left: An example FlashFill task where input names are automatically translated to an output
format in which last name is followed by the initial of the first name; Right: The DSL for FlashFill task
based on regular expression string transformations Parisotto et al. (2016).

Input Output
William Henry Charles Charles, W.
Michael Johnson Johnson, M.
Barack Rogers Rogers, B.
Martha D. Saunders Saunders, M.
Peter T Gates Gates, P.

String e := Concat(f1, . . . , fn)
Substring f := ConstStr(s)|SubStr(v, pl, pr)
Position p := (r, k, dir)|ConstPos(k)
Direction Dir := Start|End

Regex r := s|T1| . . . |Tn

each twin, the choice of twin (lighter vs heavier) is associated with the treatment (t = 0 vs t = 1)); thus, the
ground truth of individualized treatment effect is known in this dataset. In order to simulate an observational
study from these 11,400 pairs, following Yoon et al. (2018), we selectively observe one of the two twins using
the feature information x (to create selection bias) as follows: t|x ∼ Bernoulli(sigmoid(wT x + n)) where
wT ∼ U((−0.1, 0.1)30×1) and n ∼ N(0, 0.1).

Jobs: The Jobs dataset is a widely used real-world benchmark dataset in causal inference. In this dataset,
the treatment is job training, and the outcomes are income and employment status after job training. The
dataset combines a randomized study based on the National Supported Work Program in the USA (we denote
the set of observations from this randomized study with E) with observational data A. Smith & E. Todd
(2005). Each observation contains 18 features such as age, education, previous earnings, etc. Following Shalit
et al. (2017); Yoon et al. (2018), we construct a binary classification task, where the goal is to predict
unemployment status given a set of features. The Jobs dataset is the union of 722 randomized samples
(t = 1 : 297, t = 0 : 425) and 2490 observed samples (t = 1 : 0, t = 0 : 2490). The treatment variable is job
training (t = 1 if trained for job else t = 0), and the outcomes are income and employment status after job
training. In Eqns 10-11, we then have |T | = 297, |C| = 2915, |E| = 722. Since all the treated subjects T were
part of the original randomized sample E, we can compute the true ATT (Eqn 11) and hence can study the
precision in the estimation of ATT (Eqn 10).

Tab 9 summarizes the dataset details. Each dataset is split 64/16/20% into train/validation/test sets, similar
to earlier efforts. All experiments were conducted on a computing unit with a single NVIDIA GeForce 1080Ti.

C FlashFill Task and Semantics of its DSL
Following our discussion in Section 1, for better understanding of symbolic program synthesis, we provide an
example of a symbolic program application called FlashFill Parisotto et al. (2016). Examples of the FlashFill
task and a DSL to synthesize programs that solve FlashFill task are given in Tab 10. Semantics of the DSL
in Tab 10 Right are as follows.

• Concat(f1, . . . , fn) - concatenates the results of the expressions f1, . . . , fn.
• ConstStr(s) - returns the constant string s.
• SubStr(v, pl, pr) - returns substring v[pl..pr] of the string v, using position logic corresponding to

pl, pr. v[i..j] denotes the substring of string v starting at index i (inclusive) and ending at index j
(exclusive), and len(v) denotes the length of the string v

22

Under review as submission to TMLR

Table 11: Left: A neurosymbolic program to solve XOR problem. Right: Smooth approximation of the
program on the left where σ is sigmoid function. β is a temperature parameter. As β → 0, the approximation
approaches usual if − then − else (Section 4.1).

if affine[1,1;0](x) > 0 then

if affine[1,1;−1](x) > 0 then

affine[0,0;0](x)
else

affine[1,1;0](x)
else

affine[0,0;0](x)

σ(β × affine[1,1;0](x))×
(σ(β × affine[1,1;−1](x)) × affine[0,0;0](x)+
(1 − σ(β × affine[1,1;−1](x))) × affine[1,1;0](x))+
(1 − σ(β × affine[1,1;0](x))) × affine[0,0;0](x)

• ConstPos(k) - returns k if k ≥ 0 else return l + k where l is the length of the string
• (r, k, Start) - returns the Start of kth match of the expression r in v from the beginning (if k ≥ 0)

or from the end (if k < 0).
• (r, k, End) - returns the End of kth match of the expression r in v from the beginning (if k ≥ 0) or

from the end (if k < 0).

Based on the above semantics, a program that generates the desired output given the input names in
Tab 10 is: Concat(f1, ConstStr(”, ”), f2, ConstStr(”.”)) where f1 ≡ SubStr(v, (” ”,−1, End), ConstPos(−1))
and f2 ≡ SubStr(v, ConstPos(0), ConstPos(1)).

D Neurosymbolic Program Example: Solving XOR Problem

Following our discussion in Section 3, for better understanding of the internal workings of a neurosymbolic
program, we provide an example on solving the XOR problem i.e., predicting the output of XOR operation
given two binary digits. Unlike symbolic programs, neurosymbolic programs are differentiable and can be
trained using gradient descent. Program primitives in a neurosymbolic program have trainable parameters
associated with them. The program shown in Tab 11 (left) is constructed using (i) if − then − else and
(ii) affine program primitives. affine primitive takes a vector as input and returns a scalar that is the
sum of dot product of parameters with the input and a bias parameter. For example, if x = [1, 0] then
affine[θ1,θ2;θ3](x) = θ1 × 1 + θ2 × 0 + θ3 = θ1 + θ3. The subscripts of affine in affine[θ1,θ2;θ3] contain the
parameters θ1, θ2 and bias parameter θ3 separated by semi colon (;). The smooth approximation of this
program, to enable backpropagation, is shown in Tab 11 (right). The parameter values are hard-coded for
illustation purposes. In practice, these weights are learned by training through gradient descent.

E Interpretability of Synthesized Programs: A Real World Example

Figure 5: A real-world ex-
ample for interpreting the
synthesized programs.

We expect that each program primitive in a domain-specific language has
a semantic meaning; hence, interpretability in program synthesis refers to
understanding the decision of a synthesized program using various aspects such
as: which program primitives are used and why? what does the learned sequence
of program primitives mean for the problem? what is the effect of each program
primitive on the output? etc.

We explain more clearly with an example. Consider a causal model consisting
of variables T,X1, X2, Y as shown in Fig 5 where: (i) X1 causes T and Y ; (ii) T
causes X2 and Y ; and (iii) X2 causes Y . A real-world scenario depicted by this causal model could be where
T is the average distance walked by a person in a day, X1 is age, X2 is metabolism, and Y is blood pressure.

23

Under review as submission to TMLR

In this example, our goal is to estimate the effect of walking (T) on blood pressure (Y). In this case, the
ideal estimator for the quantity E[Y |do(t)] is

∑
x1∼X1

E[Y |t, x1]p(x1). However, NESTER has access to only
observational data and is unaware of the underlying causal process. Now consider the following two possible
programs p1, p2 synthesized by NESTER to estimate the treatment effect of T on Y . Let v = [t, x1, x2] be an
input data point.

p1 : if subset(v, {0}])
then subset(v, {0, 1}])
else subset(v, {0, 1}])

p2 : if subset(v, {0}])
then subset(v, {0, 1, 2})
else subset(v, {0, 1, 2})

The only difference between p1 and p2 is the set of indices used in subset primitives. p1 uses only T,X1
(indicated by {0, 1} in p1) to predict Y ; while p2 uses T,X1, X2 (indicated by {0, 1, 2} in p2) to predict Y . In
this case, we would ideally observe p1 to perform better than p2 because p1 controls for the correct set of
confounding variables ({X1} in this case). Conversely, observing a strong performance for p1 tells us that
{X1} is the confounder, without knowledge of the causal model.

Observing the generated program and primitives gives us insights about the underlying data-generating
process such as which features are the potential causes of treatment (e.g., age affects the average distance a
person can walk), which features should not be controlled (e.g., we need the effect of walking on blood pressure
irrespective of the metabolism rate of a person), etc. Such information encoded in a synthesized program can
also be validated with domain experts if available. Our experimental results and ablation studies discussed
above show other ways of interpreting programs.

24

	Introduction
	Related Work
	Background and Problem Formulation
	NESTER: Methodology
	DSL for Treatment Effect Estimation
	Connection to Existing Methods
	Overall Algorithm

	NESTER: Analysis
	Experiments and Results
	Additional Empirical Analysis and Discussion
	Conclusions
	Proofs of Propositions
	Experimental Setup
	Additional Details on Evaluation Metrics
	Details on Datasets

	FlashFill Task and Semantics of its DSL
	Neurosymbolic Program Example: Solving XOR Problem
	Interpretability of Synthesized Programs: A Real World Example

