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ABSTRACT

Diffusion models (DMs) have demonstrated powerful distributional modeling ca-
pabilities by matching the first-order score of diffused distributions. Recent ad-
vancements have explored incorporating the second-order Fisher information, de-
fined as the negative Hessian of log-density, into various downstream tasks and
theoretical analysis of DMs. However, current practices often overlook the inher-
ent structure of diffused distributions, accessing Fisher information via applying
auto-differentiation to the learned score network. This approach, while straight-
forward, leaves theoretical properties unexplored and is time-consuming. In this
paper, we derive the analytical formulation of Fisher information (AFI) by apply-
ing consecutive differentials to the diffused distributions. As a result, AFI takes a
gradient-free form of a weighted sum (or integral) of outer-products of the score
and initial data. Based on this formulation, we propose two algorithmic variants
of AFI for distinct scenarios. When evaluating the AFI’s trace, we introduce a
parameterized network to learn the trace. When AFI is applied as a linear opera-
tor, we present a training-free method that simplifies it into several inner-product
calculations. Furthermore, we provide theoretical guarantees for both algorithms
regarding convergence analysis and approximation error bounds. Additionally, we
leverage AFI to establish the first general theorem for the optimal transport prop-
erty of the diffusion ODE deduced map. Experiments in likelihood evaluation and
adjoint optimization demonstrate the superior accuracy and reduced time-cost of
the proposed algorithms.

1 INTRODUCTION

The emerging diffusion models (DMs) Sohl-Dickstein et al. (2015); Ho et al. (2020); Song & Ermon
(2019); Song et al. (2020), generating samples of data distribution from initial noise by learning a
reverse diffusion process, have been proven to be an effective technique for modeling data distribu-
tion, especially in generating high-quality images Nichol et al. (2022); Dhariwal & Nichol (2021a);
Saharia et al. (2022); Ramesh et al. (2022); Rombach et al. (2022); Ho et al. (2022). The training pro-
cess of DMs can be seen as employing a neural network to match the first-order score ∇x log qt(x)
of the diffused distributions at varying noise levels.

Recently, there has been a growing trend to recognize the importance of the Fisher information in
DMs, defined as the negative Hessian of the diffused distributions’ log-density, −∇2

x log qt(x). The
Fisher information provides valuable second-order information of DMs and plays a crucial role in
likelihood evaluation (Lu et al., 2022a; Zheng et al., 2023), adjoint optimization (Pan et al., 2023a;b;
Blasingame & Liu, 2024), and optimal transport analysis Zhang et al. (2024a).

However, current practices (Sanchez et al., 2022; Song & Lai, 2024) typically overlook the inherent
structure of diffused distributions, and access the Fisher information by applying auto-differentiation
to the score network. While this is a straightforward approach, it leads to time-consuming gradient
operations, even with the help of the Jacobian-vector-product (JVP) technique. Moreover, in the
likelihood evaluation task, the current JVP method still needs a quadratic order time complexity
concerning the dimension to calculate the trace of the Fisher information, rendering likelihood eval-
uation intractable for SD-level models. Additionally, due to a lack of comprehensive understanding
of Fisher Information, Zhang et al. (2024a) have to impose stringent assumptions to characterize the
optimal transport property of the diffusion ODE deduced map.
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In this paper, we delve deeper into the inherent quadratic structure of diffused distributions and
derive the analytical form of Fisher information (AFI) by applying the consecutive partial differ-
ential chain rule to the marginal distributions. Notice that, while this inherent structure has been
consistently utilized in the learning process of the score network, it has often been overlooked when
accessing Fisher Information up until now. The main contributions of our paper are listed as follows:

• We develop the first analytical formulation of the Fisher Information (AFI) of diffused
distributions, which is gradient-free. Initially, we show that the AFI manifests as a weighted
summation of outer-products of the score and initial data when the initial distribution is a
sum of Dirac. We then extend this result to an integral form in a more general setting.
The AFI suggests a theoretical possibility of accessing Fisher information without needing
costly gradient calculations in practice.

• Based on the AFI, we propose two algorithmic alternatives to the JVP, each tailored to dif-
ferent types of Fisher Information access. For the evaluation of Fisher information’s trace,
we introduce a parameterized network to learn the trace, significantly reducing the time
complexity of trace evaluation from quadratic to linear w.r.t. the dimension. In scenarios
where Fisher Information is applied as a linear operator, we present a training-free method
that simplifies the complex linear transformation calculations into several simple inner-
product calculations. Furthermore, we provide theoretical guarantees for these algorithms,
including convergence analysis and approximation error bounds.

• Utilizing the analytical knowledge of the Fisher information, we establish the first theorem
that allows the general diffusion ODE deduced mapping to possess the optimal transport
property, eliminating the need for stringent assumptions.

We evaluate our AFI algorithms on likelihood evaluation and adjoint optimization tasks. The empir-
ical results demonstrate the enhanced accuracy and reduced time-cost of our AFI methods.

2 PRELIMINARIES

Notation. The Euclidean norm over Rd is denoted by ∥·∥, and the Euclidean inner product is
denoted by ⟨·|·⟩. Throughout, we simply write

∫
g to denote the integral with respect to the Lebesgue

measure:
∫
g(x)dx. When the integral is with respect to a different measure µ, we explicitly write∫

gdµ. When clear from context, we sometimes abuse notation by identifying a measure µ with its
Lebesgue density. We also use δ(·) to denote the Dirac Delta function.

2.1 DIFFUSION MODELS AND DIFFUSION SDES

Suppose that we have a d-dimensional random variable x0 ∈ Rd following an unknown target
distribution q0(x0). Diffusion Models (DMs) define a forward process {xt}t∈[0,T ] with T > 0
starting with x0, such that the distribution of xt conditioned on x0 satisfies

(Diffusion Transition Kernel) qt|0(xt|x0) = N (xt;α(t)x0, σ
2(t)I), (1)

where α(·), σ(·) ∈ C([0, T ] ,R+) have bounded derivatives, and we denote them as αt and σt for
simplicity. The choice for αt and σt is referred to as the noise schedule of a DM. According to
Kingma et al. (2021); Karras et al. (2022), with some assumption on α(·) and σ(·), the forward
process can be modeled as a linear SDE which is also called Ornstein–Uhlenbeck process:

dxt = f(t)xtdt+ g(t)dBt, (2)

where Bt is the standard d-dimensional Brownian Motion (BM), f(t) = d logαt

dt and g2(t) =
dσ2

t

dt −
2 d logαt

dt σ2
t . Under some regularity conditions, the above forward SDE equation 2 have a reverse

SDE from time T to 0, which starts from xt Anderson (1982):
dxt =

[
f(t)xt − g2(t)∇xt log q(xt, t)

]
dt+ g(t)dB̃t, (3)

where B̃t is the reverse-time Brownian motion and q(xt, t) is the single-time marginal distribution
of the forward process. In practice, DMs Ho et al. (2020); Song et al. (2020) use εθ(xt, t) to estimate
−σ(t)∇xt

log q(xt, t) and the parameter θ is optimized by the following objective:

θ∗ = argmin
θ

Et

{
λtEx0,xt

[
∥sθ(xt, t)−∇xt

log p(xt, t|x0, 0)∥2
]}

, (4)
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where sθ represents the parameterized score, i.e., sθ(xt, t) = −εθ(xt,t)
σt

. This familiar parameteri-
zation is called ϵ-prediction. There are also y-prediction and v-prediction Salimans & Ho (2022).
The corresponding loss is equal to replace the term |ϵ − εθ(xt, t)| with αt

σt
|x0 − ȳθ(xt, t)| and

|αtϵ − σtx0 − vθ(xt, t)|. The learned εθ(xt, t) can be also transformed to a y-prediction form by
ȳθ(xt, t) =

xt−σtεθ(xt,t)
αt

.

2.2 DIFFUSION MODELS INFERENCE AS NEURAL ODE

It is noted that the reverse diffusion SDE in equation 3 has an associated probability flow ODE (also
called diffusion ODE), which is a deterministic process that shares the same single-time marginal
distribution Song et al. (2020):

(PF-ODE) dxt =

[
f(t)xt −

1

2
g2(t)∇xt

log qt(xt, t)

]
dt. (5)

By replacing the score function in equation 5 with the noise predictor εθ, the inference process of
DMs can be constructed by the following neural ODE:

dxt

dt
= hθ (xt, t) := f(t)xt +

g2(t)

2σt
ϵθ (xt, t) , xT ∼ N

(
0, σ2

T I
)

(6)

2.3 FISHER INFORMATION IN DIFFUSION MODELS

The Fisher information matrix in DMs is defined as the negative Hessian of the marginal log-density
function, which takes the following matrix-valued form Song et al. (2021); Song & Lai (2024):

Ft(xt, t) := − ∂2

∂x2
t

log qt (xt, t) (7)

The current technique typically approximately accesses to the Fisher information by accessing the
scaled Jacobian matrix of the learned score estimator network εθ:

Ft(xt, t) = − ∂

∂xt

(
∂

∂xt
log p (xt, t)

)
≈ − ∂

∂xt

(
−εθ(xt, t)

σt

)
=

1

σt

∂εθ(xt, t)

∂xt

(8)

The full Fisher information matrix within DMs cannot be obtained due to dimensional constraints.
For instance, the Stable Diffusion-1.5 model (Rombach et al., 2022) features a latent dimension
of d = 4 × 64 × 64 = 16384, resulting in a Fisher matrix of 16384 × 16384. Fortunately, for
applications that only need to access the trace or multiplication of Fisher information, it is feasible
to use Jacobian-vector-product (JVP) to access Fisher information. For any d-dimensional vector v,
the approximation of v left multiplied by Ft(xt, t) using JVP is as follows:

(JVP) Ft(xt, t)v ≈ 1

σt

∂εθ(xt, t)

∂xt
v =

1

σt

∂ [⟨εθ(xt, t)|v⟩]
∂xt

(9)

The JVP is a time-consuming process due to its requirement for gradient calculations within the
neural network. In addition, empirical evidence from synthetic distributions, as demonstrated in
Lu et al. (2022a), shows that the approximation results from the JVP significantly deviate from the
true underlying Fisher information. To our knowledge, there is no theoretical guarantee that Fisher
information can be accurately accessed through the JVP. Moreover, the JVP fails to provide any
theoretical insight into the Fisher information of diffused distributions.

3 ANALYTICAL FISHER INFORMATION

Accessing Fisher information via the JVP as shown in equation 9 is straightforward, but it does not
take advantage of any inherent structure of the diffused distribution. In this section, we initially de-
rive the analytical Fisher information (AFI) of diffused distribution under a simplified setting, where

3
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Methods
Likelihood Evaluation Adjoint Sampling

Theoretical
Time-cost

Practical
Time-cost (s)

Theoretical
Error Bound

Theoretical
Time-cost

Practical
Time-cost (s)

Approximation
Error Bound

JVP c1d+ c2d
2 2195.48 ✗ c1d+ c2d 0.155 ✗

AFI (Ours) 2c1d 0.07299% ↓ ✓(Proposition 7) 2c1d 0.06359% ↓ ✓(Proposition 8)

Table 1: Comparison of Jacobian-vector-product (JVP) and our analytical-Fisher-information (AFI)
in terms of per-iteration theoretical time-cost, practical time-cost, and approximation error bound.
The theoretical time-cost is based on assumptions of a network access cost of c1d time and a back-
propagation on network cost of c2d time (c2 ≈ 4c1). The practical time-cost is tested using the
SD-V1.5 model over 10k COCO prompts. Here, our JVP baseline calculates every element of the
trace, and discussion on its approximation is deffer to Appendix C.5.

we assume that the initial q0 is a sum of Dirac. Subsequently, we extend the AFI to a more general
setting. Importantly, the AFI obtained in both settings does not involve any gradient calculations
and is expressed into the initial data distribution, thus enabling the derivation of novel algorithms.
Several studies Lu et al. (2022a); Benton et al. (2024) have investigated a similar form, but have
not expressed it in terms of the initial data distribution. Our formulation can also be derived from a
transformation of their formula. A detailed discussion on this topic is provided in Appendix C.4.

3.1 THE DIRAC SETTING

We start with a simple setting where we assume that the initial distribution is characterized as a sum
of Dirac distributions composed of the set of samples in the dataset. If we suppose the dataset is
denoted as {yi}Ni=0, then the initial distribution follows

(Dirac Setting) q(x, t)|t=0 =
1

N

N∑
i=0

δ(x− yi), (10)

where exists a 0 < Dy < ∞ such that ∥yi∥ ≤ Dy holds true for every i. In this Dirac setting, we
derive the following Analytical Fisher Information, which is a weighted outer-product sum devoid
of gradients and composed solely of the initial distribution and the noise schedule.

Proposition 1. Defines vi(xt, t) as exp
(
− |xt−αtyi|2

2σ2
t

)
∈ R and wi(xt, t) as vi(xt,t)∑

j vj(xt,t)
∈

R. If q0 takes the form as in equation equation 10, the Fisher information matrix of the
diffused distribution qt for t ∈ (0, 1] can be analytically formulated as follows:

(Dirac AFI) Ft(xt, t) =
1

σ2
t

I − α2
t

σ4
t

∑
i

wiyiy
⊤
i −

(∑
i

wiyi

)(∑
i

wiyi

)⊤


(11)
where we have simplified wi(xt, t) to wi, as it does not lead to any confusion.

We also find that the
∑

i wiyi component in equation 11 can be effectively approximated by the
trained score network in the form of y-prediction, as demonstrated in the following proposition.

Proposition 2. Given the diffusion training loss in equation 4, and if q0 conforms to the form
presented in equation 10, then the optimal ȳθ(xt, t) can accurately estimate

∑
i wiyi.

3.2 THE GENERAL SETTING

We then begin to extend the AFI in equation 11 to a more general setting, where we only assume
that the initial distribution q0 is a measure on Rd with finite second momentum.

(General Setting) q0 ∈ P2(Rd). (12)

In this general setting, we derive the following Analytical Fisher Information, which is a weighted
outer-product integral devoid of gradients.

4
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Figure 1: The training loss of AFI-TM for SD-
1.5 and SD-2base. It demonstrates commendable
convergence behavior.
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Figure 2: The trades-off curve of NLL and Clip
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guidance scales in [1.5, 2.5, ..., 12.5, 13.5]

Proposition 3. Let us define v(xt, t,y) as exp
(
− |xt−αty|2

2σ2
t

)
∈ R and w(xt, t,y) as

v(xt,t,y)∫
Rd v(xt,t,y)dq0(y)

∈ R. If q0 takes the form as in equation 12, the Fisher information matrix
of the diffused distribution qt for t ∈ (0, 1] can be analytically formulated as follows:

(General AFI) Ft(xt, t)=
1

σ2
t

I−α2
t

σ4
t

[∫
w(y)yy⊤dq0−

(∫
w(y)ydq0

)(∫
w(y)ydq0

)⊤
]

(13)
where we simply write w(xt, t,y) as w(y), as long as it does not lead to any confusion.

We further ascertain that the
∫
w(y)ydq0(y) component in equation 13 can be effectively approxi-

mated by the score network in the form of y-prediction, as demonstrated in the following proposition.

Proposition 4. Given the diffusion loss in equation 4, and if q0 conforms to the form in
equation 12, then the optimal ȳθ(xt, t) can accurately estimate

∫
w(y)ydq0(y).

The derivation of the AFI under the general setting is akin to the sum in the Dirac setting but in an
integral form. For the remainder of the paper, we will focus on developing our method based on the
Dirac setting AFI. However, the same results can be naturally extended to the general setting.

4 AFI TRACE MATCHING (AFI-TM) METHOD

The likelihood evaluation of DMs would require access to Fisher Information’s trace. In this section,
we introduce a network to learn the trace, thus facilitating effective likelihood evaluation in DMs.

Log-Likelihood in DMs Log-likelihood is a classic and significant metric for probabilistic gener-
ative models, extensively utilized for comparison between samples or models Bengio et al. (2013);
Theis et al. (2015). According to Chen et al. (2018); Song et al. (2021), The log-likelihood of
samples generated by PF-ODE in equation 6 from DMs can be computed through a connection to
continuous normalizing flows as follows:

∂ log qt(xt, t)

∂t
= −tr

(
∂

∂xt

(
f(t)xt −

1

2
g2(t)∂xt log qt(xt, t)

))
= −tr

((
f(t)I − 1

2
g2(t)

∂2

∂xt
2
log qt(xt, t)

))
= −f(t)d− g2(t)

2
tr (Ft(xt, t))

(14)

where tr(·) denotes the trace of a matrix, which is defined to be the sum of elements on the diagonal.

5
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Log-Likelihood Evaluation via JVP The current technique is only capable of conducting back-
propagation of scalar value to the neural network. Therefore, the JVP in equation 9 cannot directly
calculate the trace of the Fisher information. The JVP must iterate through each dimension to com-
pute the individual elements on the diagonal, and then sum them up as follows

(JVP for trace) tr (Ft(xt, t)) ≈
1

σt

d∑
i=1

∂
[〈
εθ(xt, t)

∣∣e(i)〉]
∂xt

. (15)

Evaluating the trace using the JVP method would be extremely time-consuming due to the curse
of dimensionality. If the time-complexity of a single backpropagation is O(d), then the calculation
in equation 15 would have a time-complexity of O(d2). In practice, as demonstrated in Table 1,
evaluating the trace of Fisher information on the SD-1.5 model would require half an hour, rendering
it nearly infeasible.

Gradient-free Log-Likelihood Evaluation via AFI trace matching To overcome the limitations
of the JVP method in evaluating the trace of the Fisher information, we propose to directly obtain
its analytical form. Given the AFI in Proposition 1, we can also derive its trace in an analytical form
of weighted norm sum, as highlighted in the following proposition:

Proposition 5. In the same context as Proposition 1, the trace of the Fisher information
matrix for the diffused distribution qt, where t ∈ (0, 1], is given by:

tr (Ft(xt, t)) =
d

σ2
t

− α2
t

σ4
t

∑
i

wi∥yi∥2 −

∥∥∥∥∥∑
i

wiyi

∥∥∥∥∥
2
 (16)

As demonstrated in Proposition 2, the ∥
∑

i wiyi∥2 can be directly estimated by ∥ȳθ(xt, t)∥2. There-
fore, the only unknown element in equation 16 is

∑
i wi∥yi∥2. Consequently, we suggest estimating

this term using a scalar-valued neural network, as per the following training algorithm:

Algorithm 1 Training of AFI-TM Network

1: Input: data space dimension d, initial network tθ(·, ·) : Rd ×R 7→ R, noise schedule {αt} and
{σt}.

2: repeat
3: x0 ∼ q0 (x0)
4: t ∼ Uniform({1, . . . , T})
5: ε ∼ N (0, I)
6: xt = αtx0 + σtε

7: Take gradient descent step on ∇θ

∣∣∣tθ(xt, t)− ∥x0∥2

d

∣∣∣2
8: until converged
9: Output: tθ(·, ·)

The training scheme detailed in Algorithm 1 can indeed enable tθ(xt, t) to estimate the weighted
norm term 1

d

∑
i wi(xt, t)∥yi∥2. This is substantiated by the convergence analysis Proposition 6, as

presented below.

Proposition 6. ∀(xt, t) ∈ Rd × R≥0, the optimal tθ(xt, t)s trained by the objective in
Algorithm 1 are equal to 1

d

∑
i wi(xt, t)∥yi∥2.

Once we have obtained tθ, we can evaluate the trace of Fisher Information in a gradient-free manner,
as illustrated below. This approach is a straightforward result of equation 16 and Propositions 2 and
6, which we refer to as AFI trace matching (AFI-TM).

(AFI-TM) tr (Ft(xt, t)) ≈ d

[
1

σ2
t

− α2
t

σ4
t

(
tθ(xt, t)−

∥∥∥∥xt − σtεθ(xt, t)

αt

∥∥∥∥2
)]

(17)

6
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Figure 3: Our AFI-TM method facilitates the effective evaluation of the Negative Log-Likelihood
(NLL) of generated samples with varying seeds. It can be demonstrated that a lower NLL signifies
a region of higher possibility, thereby consistently indicating superior image quality.

To estimate the trace using AFI-TM in equation 17, we simply need one access to tθ and εθ. AFI-
TM enables us to effectively evaluate the log-likelihood in a gradient-free manner with linear time
complexity. We can further substantiate the theoretical approximation error bound when using AFI-
TM to calculate the trace of the Fisher information, as illustrated in the Proposition 7.

Proposition 7. Assume the approximation error on tθ(xt, t) is δ1 and the approximation
error on εθ(xt, t) is δ2, then the approximation error of the approximated Fisher trace equa-
tion 17 is at most α2

t

σ4
t
δ1 +

1
σ2
t
δ22 .

Experiments We trained two AFI-TM networks for the SD-1.5 and SD-2base pipeline on the
Laion2B-en dataset (Schuhmann et al., 2022), which contains 2.32 billion text-image pairs. Our
tθ follows the U-net structure, similar to stable diffusion models, but with an added MLP head to
produce a scalar-valued output. We utilize the AdamW optimizer (Loshchilov & Hutter, 2019) with
a learning rate of 1e-4. The training is executed across 8 Ascend 910B chips with a batch size of
384 and completes after 150K steps. In Figure 1, we demonstrate that the training loss of AFI-TM
nets converges smoothly, indicating the robustness of the AFI-TM training scheme in Algorithm 1.

In Figure 2, we evaluate the average NLL and Clip score of samples generated by various SD models,
using 10k randomly selected prompts from the COCO dataset Lin et al. (2014). A lower NLL
suggests more realistic data generation, while a higher Clip score indicates a better match between
the generated images and the input prompts. The results imply that the NLL and the Clip score form
a trade-off curve across different guidance scales. This phenomenon, previously hypothesized in
theory (Wu et al., 2024), is now confirmed in the SD models, thanks to the effective NLL evaluation
via the AFI-TM method.

In Figure 3, we display images with varying NLL under the same prompt with 10 steps on SD-1.5
using DDIM. It’s clear that images with lower NLL exhibit greater visual realism, while those with
higher NLL often contain deformed elements (emphasized by the yellow rectangle). Our proposed
NLL evaluation method proves to be an effective tool for automatic sample selection.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0 100 200 300 400 500 600
Time cost (s)

5.6

5.8

6.0

6.2

6.4

SA
C-

Ae
st

he
ti

c 
Sc

or
e 

(
)

SD-15 + AFI-EA (Ours)
SD-15 + JVP
SD-2b + AFI-EA (Ours)
SD-2b + JVP

(a) SAC Aesthetic Score (
x)

0 100 200 300 400 500 600
Time cost (s)

5.2

5.4

5.6

5.8

6.0

6.2

6.4

AV
A-

Ae
st

he
ti

c 
Sc

or
e 

(
)

SD-15 + AFI-EA (Ours)
SD-15 + JVP
SD-2b + AFI-EA (Ours)
SD-2b + JVP

(b) AVA Aesthetic Score (
x)

0 100 200 300 400 500 600
Time cost (s)

1.10

1.15

1.20

1.25

Cl
ip

 L
os

s 
(

)

SD-15 + AFI-EA (Ours)
SD-15 + JVP
SD-2b + AFI-EA (Ours)
SD-2b + JVP

(c) Clip Loss (
y)

0 100 200 300 400 500 600
Time cost (s)

0.8

0.9

1.0

1.1

1.2

1.3

1.4

Fa
ce

 ID
 L

os
s 

(
)

SD-15 + AFI-EA (Ours)
SD-15 + JVP
SD-2b + AFI-EA (Ours)
SD-2b + JVP

(d) Face ID Loss (
y)

Figure 4: Comparison between our AFI method and the JVP method on adjoint guidance sampling
across four objective scores: SAC/AVA aesthetic score, clip loss, and Face ID loss. Notably, our
AFI consistently achieves superior scores with less time expenditure.

5 AFI ENDPOINT APPROXIMATION (AFI-EA) METHOD

The adjoint optimization of DMs would require applying Fisher Information as a linear operator.
In this section, we present a training-free method that simplifies the complex linear transformation
calculations thus enabling faster and more accurate adjoint optimization.

Adjoint optimization sampling. Guided sampling techniques are extensively utilized in diffusion
models to facilitate controllable generation. Recently, to address the inflexibility of commonly used
classifier-based guidance (Dhariwal & Nichol, 2021b) and classifier-free guidance (Ho & Salimans,
2022), a series of training-free adjoint guidance methods have been investigated and explored (Pan
et al., 2023a;b).

Consider optimizing a scalar-valued loss function L(·) : Rd 7→ R, which takes x0 in the data space
as input. Adjoint guidance is implemented by applying gradient descent on xt in the direction of
∂L(x0(xt))

∂xt
. The essence of adjoint guidance is to use the gradient at t = 0 and follow the adjoint

ODE (Pollini et al., 2018; Chen et al., 2018) to compute λt :=
∂L(x0(xt))

∂xt
for t > 0.

(Adjoint ODE)
dλt

dt
= −∂hθ (xt, t)

∂xt

⊤
λt, λ0 =

∂L(x0)

∂x0

(18)

Adjoint ODE via JVP. Regardless of the ODE solver being used, it is necessary to compute the
right-hand-side of equation 18, or equivalently, F (xt, t)

⊤λt. This computation can be interpreted as
applying the Fisher information matrix as a linear operator to the adjoint state λt, from a functional
analysis perspective (Yosida, 2012). Current practices utilize the JVP technique to approximate this
linear transformation operation as follows:

(JVP for Adjoint) F (xt, t)
⊤λt ≈

1

σt

∂εθ (xt, t)

∂xt

⊤
λt ≈

1

σt

∂ [⟨εθ (xt, t)|λt⟩]
∂xt

(19)
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Figure 5: Qualitative comparison of AFI-EA (Ours) and JVP in the adjoint aesthetic improvement
task. AFI-EA consistently generates high-aesthetic images with reduced time expenditure. The
smoother visual effect is a desirable outcome of the target score, but not a result of our AFI-EA.

This process involves computationally intensive gradient operations on the neural network, and the
approximation errors introduced by the JVP technique have no theoretical bound.

Adjoint ODE via AFI-EA. As previously discussed in Section 3, the AFI inherently doesn’t re-
quire gradients, suggesting that we could potentially apply the Fisher information as a linear operator
in a gradient-free manner. The challenging part in equation 11 is

∑
i wiyiy

⊤
i , which represents a

weighted form of outer-products of data. Based on the definition of wi, the closest yi to x0 will
dominate as t → 0. This makes it intuitive to replace this sum with a single final sample outer-
product x0x

⊤
0 . It’s also important to note that the adjoint guidance itself needs to compute x0 at

each guidance step, eliminating the need for additional computation to obtain x0. Given that we
utilize the endpoint sample x0, we refer to this approximation technique as AFI Endpoint Approxi-
mation (EA). The formulation for AFI-EA in adjoint ODE is as follows:

(AFI-EA) F (xt, t)
⊤λt ≈

(
1

σ2
t

I − α2
t

σ4
t

(∑
i

wiyiy
⊤
i − ȳθ(xt, t)ȳθ(xt, t)

⊤

))⊤

λt

≈
(

1

σ2
t

I − α2
t

σ4
t

(
x0x

⊤
0 − ȳθ(xt, t)ȳθ(xt, t)

⊤))⊤

λt

=
1

σ2
t

λt −
α2
t

σ4
t

⟨x0,λt⟩x0 +
α2
t

σ4
t

⟨ȳθ(xt, t),λt⟩ ȳθ(xt, t)

(20)

The AFI-EA approximation leads to a scalar-weighted combination of λt, x0, and ȳθ(xt, t), which
importantly, does not involve any gradients. Additionally, we derive the theoretical approximation
error bound of the AFI-EA in Proposition 8. To measure the accuracy of AFI-EA as a linear operator,
we opt to use the Hilbert–Schmidt norm (Gohberg et al., 1990) for measurement, as follows:

Proposition 8. Assume that the approximation error on εθ(xt, t) is denoted as δ2, the ap-
proximation error of the endpoint approximated Fisher linear operator, as referenced in 20,
is at most α2

t

σ3
t

(
2D2

y +
√
dδ2

)
when measured in terms of the Hilbert–Schmidt norm.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Experiments on AFI-EA. As depicted in Figure 4, we conducted experiments comparing our
AFI-EA and JVP methods in adjoint guidance sampling, using four different scores and two different
base models. AFI-EA consistently achieves better scores due to its bounded approximation error.
Furthermore, AFI-EA requires less processing time as it eliminates the need for time-consuming
gradient operations. AFI-EA and JVP are compared under the same guidance scales and schemes
across various numbers of steps. Details regarding the score function can be found in Appendix B.2.

As depicted in Figure 5, our AFI-EA consistently generates samples with higher aesthetic scores
with a reduced time-cost compared to JVP. It’s worth noting that this enhancement in aesthetics
results in final images that are more vibrant and smoother. All samples are generated within 50
steps, with adjoint applied from the 15th to the 35th step, details on hyperparameters can be found in
Appendix B.2.

6 THEOREM ON THE OT PROPERTY OF THE PF-ODE DEDUCED MAP
There is an increasing trend towards analyzing the probability modeling capabilities of DMs by
interpreting them from an optimal transport perspective (Albergo et al., 2023; Chen et al., 2024).
The foundational concepts of optimal transport can be found in Appendix A.9. One of the central
questions is whether the map deduced by the PF-ODE could represent an optimal transport. If so,
how should we design the noise schedule, or what conditions should the data distribution meet? For
a specific noise schedule where f(t) ≡ 0, Zhang et al. (2024a) demonstrates that having all data
points lying on a single line is a sufficient condition for the map to represent an optimal transport.

In this section, we find out that the AFI, as derived in section 3, can contribute to the first equivalence
condition for the OT property of PF-ODE deduced mapping under a general noise schedule. We refer
to this theorem as the AFI Optimal Transport (AFI-OT) theorem. The AFI-OT condition is presented
in the following:

Theorem 1. Denote the diffeomorphism deduced by the PF-ODE 5 as follows

Ts,t : Rn −→ Rn;xs 7−→ xt, ∀t ≥ s > 0. (21)

This diffeomorphism is well-posed guaranteed by the global version of Picard-Lindelöf the-
orem Amann (2011); Zhang et al. (2024a). The diffeomorphism Ts,T is a Monge optimal
transport map if and only if the normalized fundamental matrix for B(t) ≡ B(t,xt) at s is
semi-positive definite for every PF-ODE chain start from a xT ∈ Rd. where

B(t,xt) =

[
f(t)− g2(t)

2σ2
t

]
I +

α2
t g

2(t)

2σ4
t

∑
i

wiyiy
⊤
i −

(∑
i

wiyi

)(∑
i

wiyi

)⊤
 .

(22)

The outline of the proof is as follows: We first apply Brenier’s theorem (Brenier, 1991; Santam-
brogio, 2015) to convert the problem of whether the PF-ODE mapping is an optimal transport into
the task of finding a convex potential, where the existence is guaranteed by the Poincaré’s Theorem
(Lang, 2012). We then use adjoint methods to express the second derivatives of the convex potential
function in the form of an integral of information Rockafellar (2015); Pollini et al. (2018). Finally,
we apply matrix exponential integration theory Masuyama (2016) to reformulate the condition into
the AFI-OT theorem. Detailed proofs can be found in Appendix A.10.

7 CONCLUSIONS

This paper introduced the Analytical Fisher Information (AFI), an analytical formulation that al-
lows for more efficient and theoretical exploration of Fisher Information of diffused distribution.
Practically, we have proposed two algorithmic variants of AFI for different scenarios: AFI trace
matching (AFI-TM) and AFI endpoint approximation (AFI-EA). Both methods are gradient-free,
theoretically guaranteed for approximation error bounds and convergence properties, and offer im-
proved accuracy and reduced time-cost compared to the traditional JVP method. Theoretically, we
have established the first general theorem for the PF-ODE map to be optimal transport. This work
not only improves the efficiency of Fisher Information evaluation but also widens our understanding
of the diffused distributions. Please refer to further discussions in appendix C.
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A PROOFS AND FORMULATIONS

A.1 PROOF OF PROPOSITION 1

Notice that, in the subsection, we can do an interchange of sum and gradient, this is due to the
Leibniz’s rule (Osler, 1970) and the boundness condition we set in equation 10. Before we give the
proof of Proposition 1, we would like to establish two technical lemmas. The first lemma is about
the first partial derivative of vi(xt, t) w.r.t. xt.
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Lemma 1.

∂vi(xt, t)

∂xt
=

∂ exp
(
− |xt−αtyi|2

2σ2
t

)
∂xt

= − 1

σ2
t

(xt − αtyi) exp

(
−|xt − αtyi|2

2σ2
t

)
= − 1

σ2
t

(xt − αtyi)vi(xt, t)

(23)

The second lemma is about the Jacobian of
∑

i wi (xt, t)yi w.r.t. xt.

Lemma 2.

∂
∑

i wi (xt, t)yi

∂xt

=
∑
i

yi

(
∂wi (xt, t)

∂xt

)⊤

=
∑
i

yi

(
∂

∂xt

[
vi (xt, t)∑
j vj (xt, t)

])⊤

=
∑
i

yi


∂vi(xt,t)

∂xt
[
∑

k vk (xt, t)]− vi (xt, t)
∂

∂xt

[∑
j vj (xt, t)

]
[
∑

k vk (xt, t)]
2


⊤

=
1

(
∑

k vk)
2

∑
i

yi

− 1

σ2
t

(xt − αtyi) vi
∑
k

vk − vi (xt, t)

(
− 1

σ2
t

)∑
j

(xt − αtyj) vj


⊤

=
1

(
∑

k vk)
2

(
− 1

σ2
t

)∑
i

viyi

(xt − αtyi)
∑
k

vk −
∑
j

(xt − αtyi) vj


⊤

=
1

(
∑

k vk)
2

(
− 1

σ2
t

)∑
i

viyi

−αtyi

∑
k

vk + αt

∑
j

yjvj


⊤

=
αt

σ2
t

∑i viyiy
⊤
i
XXXX(
∑

k vk)

(
∑

k vk)
C2

−
(∑

i viyi∑
k vk

)(∑
i viyi∑
k vk

)⊤


=
αt

σ2
t

∑
i

wiyiy
⊤
i −

(∑
i

wiyi

)(∑
i

wiyi

)⊤


(24)

Now we are ready to give the Proof of Proposition 1

Proof. According to the initial distribution (equation 10) and the diffusion kernel (equation 1), the
marginal distribution at some time t > 0 would be

p (xt, t) =
1

N

∑
i

(
2πσ2

t

)− d
2 exp

(
−|xt − αtyi|2

2σt2

)
(25)
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Thus the log-density has the following analytical formulation

log p(xt, t) = log

[
1

N

(
2πσ2

t

)− d
2
∑
i

exp

(
−|xt − αtyi|2

2σt2

)]

= log

[∑
i

exp

(
−|xt − αtyi|2

2σ2
t

)]
+ C

= log

[∑
i

vi (xt, t)

]
+ C

(26)

The score can be expressed as follows

∂

∂xt
log p (xt, t) =

∂

∂xt
log

[∑
i

vi (xt, t)

]

=
∂

∂xt
[
∑

i vi (xt, t)]∑
i vi (xt, t)

=
− 1

σ2
t

∑
j (xt − αtyj) vj∑
i vi (xt, t)

= − 1

σ2
t

xt − αt

∑
j

wj (xt, t) yj


(27)

The Fisher information we want can then be calculated by further applying a gradient on the score.

Ft(xt, t) = − ∂

∂xt

(
∂

∂xt
log p (xt, t)

)

= − ∂

∂xt

− 1

σ2
t

xt − αt

∑
j

wj (xt, t) yj


=

1

σ2
t

I − αt

σ2
t

∂
∑

i wi (xt, t)yi

∂xt

=
1

σ2
t

I − α2
t

σ4
t

∑
i

wiyiy
⊤
i −

(∑
i

wiyi

)(∑
i

wiyi

)⊤
 (by Lemma 2)

(28)

This proof is inherently the calculation of the Hessian of a log-convolution of a density, we provide
the detailed derivation here for completeness.

A.2 PROOF OF PROPOSITION 2

Proof. Given fixed (xt, t), L is a quadratic form of yθ. To obtain the optimal ȳθ, we differentiate L
and set this derivative equal to zero, resulting in the following

0 =
∂L

∂ȳθ(xt, t)
=

∂

∂ȳθ(xt, t)

∑
j

1

N
(2πσ2

t )
− d

2︸ ︷︷ ︸
At

vj(xt, t)λt
α2
t

σ2
t

∥ȳθ(xt, t)− yj∥2

= 2Atλt
α2
t

σ2
t

∑
j

vj(xt, t)(ȳθ(xt, t)− yj), (29)
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which yields

ȳ∗
θ(xt, t) =

∑
k

vk(xt, t)∑
j vj(xt, t)

yk =
∑
i

wiyi. (30)

A.3 PROOF OF PROPOSITION 3

Notice that, in the subsection, we can do an interchange of integral and gradient, this is due to the
Leibniz’s rule (Osler, 1970) and the bounded momentum condition we set in equation 12. Before we
give the proof of Proposition 3, we would like to establish two technical lemmas. The first lemma is
about the first partial derivative of v(xt, t,y) w.r.t. xt.

Lemma 3.

∂v(xt, t,y)

∂xt
=

∂ exp
(
− |xt−αty|2

2σ2
t

)
∂xt

= − 1

σ2
t

(xt − αty) exp

(
−|xt − αty|2

2σ2
t

)
= − 1

σ2
t

(xt − αty)v(xt, t,y)

(31)

Lemma 4.

∂
∫
Rd w(xt, t,y)ydq0(y)

∂xt

=

∫
Rd

y

(
∂w (xt, t,y)

∂xt

)⊤

dq0(y)

=

∫
Rd

y

(
∂

∂xt

[
v(xt, t,y)∫

Rd v(xt, t,y′)dq0(y′)

])⊤

dq0(y)

=

∫
Rd

y

{
∂vi(xt,t)

∂xt

[∫
Rd v(xt, t,y

′)dq0(y′)
]
− v (xt, t,y)

∂
∂xt

[∫
Rd v(xt, t,y

′)dq0(y′)
][∫

Rd v(xt, t,y′′)dq0(y′′)
]2

}⊤

dq0(y)

=
1[∫

v(y′′)dq0(y′′)
]2 ∫ y

{
− (xt − αty) v(y)

σ2
t

∫
v(y′)dq0(y′)− v(y)

(
− 1

σ2
t

)∫
(xt − αty

′) v(y′)dq0(y′)

}⊤

dq0(y)

=
1[∫

v(y′′)dq0(y′′)
]2 (− 1

σ2
t

)∫
v(y)y

{
(xt − αty)

∫
v(y′)dq0(y′)−

∫
(xt − αty

′) v(y′)dy′
}⊤

dq0(y)

=
1[∫

v(y′′)dq0(y′′)
]2 (− 1

σ2
t

)∫
v(y)y

{
−αty

∫
v(y′)dq0(y′) + αt

∫
v(y′)y′dy′

}⊤

dq0(y)

=
αt

σ2
t

∫ v(y)yy⊤dq0(y′)
hhhhhhhh
[∫

v(y′)dq0(y′)
]

[∫
v(y′′)dq0(y′′)

]C2 −
( ∫

v(y)ydq0(y)∫
v(y′′)dq0(y′′)

)(∫
v(y′)y′dq0(y′)∫
v(y′′)dq0(y′′)

)⊤


=
αt

σ2
t

[∫
w(y)yy⊤dq0(y)−

(∫
w(y)ydq0(y)

)(∫
w(y)ydq0(y)

)⊤
]

(32)

Proof. According to the initial distribution (equation 12) and the diffusion kernel (equation 1), the
marginal distribution at some time t > 0 would be

p (xt, t) =

∫
Rd

(
2πσ2

t

)− d
2 exp

(
−|xt − αty|2

2σt2

)
dq0(y) (33)
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Thus the log-density has the following analytical formulation

log qt(xt, t) = log

[∫
Rd

(
2πσ2

t

)− d
2 exp

(
−|xt − αty|2

2σt2

)
dq0(y)

]

= log

[∫
Rd

exp

(
−|xt − αty|2

2σt2

)
dq0(y)

]
+ C

= log

[∫
Rd

v (xt, t,y) dq0(y)
]
+ C

(34)

The score can be expressed as follows

∂

∂xt
log p (xt, t) =

∂

∂xt
log

[∫
Rd

v (xt, t,y) dq0(y)
]

=
∂

∂xt

[∫
Rd v (xt, t,y) dq0(y)

]∫
Rd v (xt, t,y) dq0(y)

=

∫
Rd

∂
∂xt

[v (xt, t,y)] dq0(y)∫
Rd v (xt, t,y) dq0(y)

(by xx and Leibniz integral rule)

=
− 1

σ2
t

∫
Rd(xt − αty)v (xt, t,y) dq0(y)∫

Rd v (xt, t,y) dq0(y)

= − 1

σ2
t

[
xt − αt

∫
Rd

w(xt, t,y)ydq0(y)
]

(35)

The Fisher information we want can then be calculated by further applying a gradient on the score.

Ft(xt, t) = − ∂

∂xt

(
∂

∂xt
log p (xt, t)

)
= − ∂

∂xt

{
− 1

σ2
t

[
xt − αt

∫
Rd

w(xt, t,y)ydq0(y)
]}

=
1

σ2
t

I − αt

σ2
t

∂
∫
Rd w(xt, t,y)ydq0(y)

∂xt

=
1

σ2
t

I − α2
t

σ4
t

[∫
wiyy

⊤dq0(y)−
(∫

wiydq0(y)
)(∫

wiydq0(y)
)⊤
]

(by Lemma 4)

(36)

This proof is also inherently the calculation of the Hessian of a log-convolution of a density, we
provide the detailed derivation here for completeness.

A.4 PROOF OF PROPOSITION 4

Proof. Given fixed (xt, t), L is a quadratic form of yθ. To obtain the optimal ȳθ, we differentiate L
and set this derivative equal to zero, resulting in the following

0 =
∂L

∂ȳθ(xt, t)
=

∂

∂ȳθ(xt, t)

∫
Rd

1

N
(2πσ2

t )
− d

2︸ ︷︷ ︸
At

v(xt, t,y)λt
α2
t

σ2
t

∥ȳθ(xt, t)− y∥2dq0(y)

= 2Atλt
α2
t

σ2
t

∫
Rd

v(xt, t,y)(ȳθ(xt, t)− y)dq0(y), (37)
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which yields

ȳ∗
θ(xt, t) =

∫
Rd

v(xt, t,y
′)∫

Rd v(xt, t,y′′)dq0(y′′)
y′dq0(y′) =

∫
Rd

w(xt, t,y
′)y′dq0(y′). (38)

A.5 PROOF OF PROPOSITION 5

Lemma 5. Given a vector v ∈ Rd, the trace of the outer-product matrix of this vector is precisely
equal to the square of its 2-norm. This can be shown as follows:

tr
(
vvT

)
=

d∑
i=1

(
vvT

)
i,i

=

d∑
i=1

vi ∗ vi = ∥v∥2 (39)

Proof. Then we can start to give the derivation of Proposition 5

tr (Ft(xt, t)) = tr

 1

σ2
t

I − α2
t

σ4
t

∑
i

wiyiy
⊤
i −

(∑
i

wiyi

)(∑
i

wiyi

)⊤


=
1

σ2
t

tr (I)− α2
t

σ4
t

∑
i

witr
(
yiy

⊤
i

)
− tr

(∑
i

wiyi

)(∑
i

wiyi

)⊤


=
d

σ2
t

− α2
t

σ4
t

∑
i

wi∥yi∥2 −

∥∥∥∥∥∑
i

wiyi

∥∥∥∥∥
2


(40)

A.6 PROOF OF PROPOSITION 6

Proof. The objective in Algorithm 1 obviously equals to:

argmin
tθ

Ex0∼q0(x0),xt∼N (α(t)x0,σ2(t)I

∣∣∣∣∣tθ(xt, t)−
∥x0∥2

d

∣∣∣∣∣
2

. (41)

By expressing the expectation of Equation equation 41 in the form of a marginal distribution, we
can transform the objective as follows:

argmin
tθ

∑
i

1

N
(2πσ2

t )
− d

2

∣∣∣∣∣tθ(xt, t)−
∥yi∥2

d

∣∣∣∣∣
2

(42)

The optimal t∗θ must satisfy the condition that the gradient of the loss equals 0. Therefore, we have:

0 = ∇t∗θ(xt,t)

∑
i

1

N
(2πσ2

t )
− d

2︸ ︷︷ ︸
At

vi(xt, t)

∣∣∣∣∣∥yi∥2

d
− t∗θ(xt, t)

∣∣∣∣∣
2


=
∑
i

Atvi(xt, t)(t
∗
θ(xt, t)−

∥yi∥2

d
)

= At

∑
j

vj(xt, t)t
∗
θ(xt, t)−At

∑
i

vi(xt, t)
∥yi∥2

d
,
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Thus

t∗θ(xt, t) =
At

∑
i vi(xt, t)

∥yi∥2

d

At

∑
j vj(xt, t)

=
∑
i

vi(xt, t)∑
j vj(xt, t)

∥yi∥2

d

=
1

d

∑
i

wi(xt, t)∥yi∥2

(43)

We have successfully completed the proof that the optimal tθ(xt, t), as trained by Algorithm 1, is
equivalent to 1

d

∑
i wi(xt, t)∥yi∥2.

A.7 PROOF OF PROPOSITION 7

The approximation error of estimated trace equation 17 will be its difference from the true Fisher
information trace equation 16. We use consecutive Cauchy–Schwartz and triangle inequality to get
the bound of the approximation error:∣∣∣∣∣∣ dσ2

t

− α2
t

σ4
t

∑
i

wi∥yi∥2 −

∥∥∥∥∥∑
i

wiyi

∥∥∥∥∥
2
−

{
d

[
1

σ2
t

− α2
t

σ4
t

(
tθ(xt, t)−

∥∥∥∥xt − σtεθ(xt, t)

αt

∥∥∥∥2
)]}∣∣∣∣∣∣

=
α2
t

σ4
t

∣∣∣∣∣∣
∑
i

wi∥yi∥2 −

∥∥∥∥∥∑
i

wiyi

∥∥∥∥∥
2

−

(
tθ(xt, t)−

∥∥∥∥xt − σtεθ(xt, t)

αt

∥∥∥∥2
)∣∣∣∣∣∣

≤α2
t

σ4
t

[∣∣∣∣∣∑
i

wi∥yi∥2 − tθ(xt, t)

∣∣∣∣∣+
∣∣∣∣∣
∥∥∥∥∥∑

i

wiyi −
xt − σtεθ(xt, t)

αt

∥∥∥∥∥
∣∣∣∣∣
]

≤α2
t

σ4
t

[
δ1 +

σ2
t

α2
t

δ22

]
=
α2
t

σ4
t

δ1 +
1

σ2
t

δ22

(44)

A.8 PROOF OF PROPOSITION 8∥∥∥∥∥∥ 1

σt
I − α2

t

σ3
t

∑
i

wiyiy
⊤
i −

(∑
i

wiyi

)(∑
i

wiyi

)⊤
−

(
1

σt
I − α2

t

σ3
t

(
x0x

⊤
0 − ȳθ(xt, t)ȳθ(xt, t)

⊤))∥∥∥∥∥∥
HS

=

∥∥∥∥∥∥−α2
t

σ3
t

∑
i

wiyiy
⊤
i −

(∑
i

wiyi

)(∑
i

wiyi

)⊤
−

(
−α2

t

σ3
t

(
x0x

⊤
0 − ȳθ(xt, t)ȳθ(xt, t)

⊤))∥∥∥∥∥∥
HS

≤α2
t

σ3
t

∥∥∥∥∥∑
i

wiyiy
⊤
i − x0x

⊤
0

∥∥∥∥∥
HS

+
α2
t

σ3
t

∥∥∥∥∥∥
(∑

i

wiyi

)(∑
i

wiyi

)⊤

− ȳθ(xt, t)ȳθ(xt, t)
⊤

∥∥∥∥∥∥
HS

=
α2
t

σ3
t

∑
i

wi

∥∥yiy
⊤
i − x0x

⊤
0

∥∥
HS

+
α2
t

σ3
t

∥∥∥∥∥∥
(∑

i

wiyi

)(∑
i

wiyi

)⊤

− ȳθ(xt, t)ȳθ(xt, t)
⊤

∥∥∥∥∥∥
HS

≤α2
t

σ3
t

∑
i

wi max
i

∥∥yiy
⊤
i − x0x

⊤
0

∥∥
HS

+
α2
t

σ3
t

∑
j

∣∣∣∣∣∑
i

wiyi[j]− ȳθ(xt, t)[j]

∣∣∣∣∣
∥∥∥∥∥∑

i

wiyi − ȳθ(xt, t)

∥∥∥∥∥
≤α2

t

σ3
t

(
2D2

y +
√
dδ2

)
(45)
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A.9 PRELIMINARIES ON OPTIMAL TRANSPORT

The optimal transport is the general problem of moving one distribution of mass to another as
efficiently as possible. The optimal transport problem can be formulated in two primary ways,
namely the Monge formulation (Monge, 1781) and the Kantorovich formulation (Kantorovich,
1960). Suppose there are two probability measures µ and ν on (Rn,B), and a cost function
c : Rn × Rn → [0,+∞]. The Monge problem is

(MP) inf
T

{∫
c(x,T(x)) dµ(x) : T#µ = ν

}
. (46)

The measure T#µ is defined through T#µ(A) = µ(T−1(A)) for every A ∈ B and is called the
pushforward of µ through T.

It is evident that the Monge Problem (MP) transports the entire mass from a particular point, denoted
as x, to a single point T(x). In contrast, Kantorovich provided a more general formulation, referred
to as the Kantorovich problem:

(KP) inf
γ

{∫
Rn×Rn

cdγ : γ ∈ Π(µ, ν)

}
, (47)

where Π(µ, ν) is the set of transport plans, i.e.,

Π(µ, ν) = {γ ∈ P(Rn × Rn) : (πx)#γ = µ, (πy)#γ = ν} , (48)

where πx and πy are the two projections of Rn × Rn onto Rn. For measures absolutely continu-
ous with respect to the Lebesgue measure, these two problems are equivalent Villani et al. (2009).
However, when the measures are discrete, they are entirely distinct as the constraint of the Monge
Problem may never be fulfilled.

A.10 PROOF OF THEOREM 1

To prove the Proposition 1, we first introduce two theorems to transform the problem of whether the
PF-ODE mapping is a Monge map into the task of deciding the convexity of the potential function
of Ts,T .

Theorem 2. (Santambrogio, 2015, Theorem 1.48) Suppose that µ is a probability measure
on (Rn,B) such that

∫
|x|2dµ(x) < ∞ and that u : Rn → R ∪ {+∞} is convex and

differentiable µ-a.e. Set T = ∇u and suppose
∫
|T(x)|2dµ(x) < ∞. Then T is optimal for

the transport cost c(x, y) = 1
2 |x− y|2 between the measures µ and ν = T#µ.

Theorem 3. The Brenier’s Theorem. (Santambrogio, 2015, Theorem 1.22) (Brenier,
1987; 1991) Let µ, v be probabilities over Rd and c(x, y) = 1

2 |x − y|2. Suppose∫
|x|2 dx,

∫
|y|2 dy < +∞, which implies min(KP) < +∞ and suppose that µ gives no

mass to (d− 1) surfaces of class C2. Then there exists, unique, an optimal transport map T
from µ to v, and it is of the form T = ∇u for a convex function u.

To ensure the existence of the potential function, we need leverage the following

Theorem 4. The Poincaré’s Theorem. (Lang, 2012, Theorem 4.1 of Chapter V, §4) Let U
be an open ball in Rn and let ω be a differential form of degree ≥ 1 on U such that dω = 0.
Then there exists a differential form ϕ on U such that dϕ = ω.

Remark 1. The conclusion remains valid when the open ball U is substituted with the en-
tirety of Rn

For s > 0, it is clear that dqT (xT )
dqs(xs)

is non-singular, and therefore, it satisfies the requirements of
Brenier’s Theorem 3, leading to the existence of a unique optimal transport map. According to
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Theorem 2, if we can establish that the potential function of Ts,T is convex, then the PF-ODE
mapping will indeed be a Monge map. Notice that the existence of the potential map is guaranteed
by Poincaré’s Theorem 4.

We can now convert the condition of the potential function of Ts,T being convex into the condition
that its Jacobian, ∂Ts,T (xs)

∂xs
, is positive semi-definite, as per the following theorem in convex analysis.

Theorem 5. (Rockafellar, 2015, Theorem 4.5) Let f be a twice continuously differentiable
real-valued function on an open convex set C in Rn. Then f is convex on C if and only if its
Hessian matrix

Qx = (qij(x)) , qij(x) =
∂2f

∂ξi∂ξj
(ξ1, . . . , ξn) (49)

is positive semi-definite for every x ∈ C.

If we denote that

A(t) =
∂Tt,T (xt)

∂xt

(50)

obviously, A(T ) = I is p.s.d., our goal is to answer when A(t) is p.s.d.. We try to answer this to
set up a connection between A(t) and A(T ) = I . We can derive that:
dA(t)

dt
= lim

ϵ→0+

A(t+ ϵ)−A(t)

ϵ

= lim
ϵ→0+

A(t+ ϵ)−A(t+ ϵ)∇xt

[
xt + ϵ

(
f(t)xt − g2(t)

2 ∇xt
logt qt(xt)

)
+O(ϵ2)

]
ϵ

= lim
ϵ→0+

ϵf(t)A(t+ ϵ) + g2(t)
2 ϵA(t+ ϵ)∇xt

logt qt(xt) +O(ϵ2)

ϵ

=f(t)A(t) +
g2(t)

2
A(t)∇xt logt qt(xt)

=f(t)A(t)− g2(t)

2
A(t)

{
1

σ2
t

I − α2
t

σ4
t

[∫
w(y)yy⊤dq0(y)−

(∫
w(y)ydq0(y)

)(∫
w(y)ydq0(y)

)⊤
]}

=A(t)


[
f(t)− g2(t)

2σ2
t

]
I +

α2
t g

2(t)

2σ4
t

∑
i

wiyiy
⊤
i −

(∑
i

wiyi

)(∑
i

wiyi

)⊤
︸ ︷︷ ︸

B(t)

(51)
Notice that, the above ODE starts from T .

According to the Solution Matrices theory (Masuyama, 2016)1, let us denote the C(t) is the nor-
malized fundamental matrix at T for B(T ), which implies C(t) is the solution to the following
ODE:

C ′(t) = B(t)C(t), C(T ) = I, (flow from T to t) (52)

Then we can deduce that
∂Tt,T (xt)

∂xt
= A(t)

= C(t)A(T )

= C(t)I

= C(t)

(53)

Thus the diffeomorphism Ts,T is a Monge optimal transport map if and only if C(s) is semi-positive
definite. Notice that the above requirement needs to be satisfied for every PF-ODE chain xt, t ∈
[T, t].

1The Definition 6.2 in https://math.mit.edu/˜jorloff/suppnotes/suppnotes03/ls6.
pdf suffice the result here.
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B EXPERIMENTS DETAILS

B.1 EVALUATION OF NLL

We employ the explicit Euler method to compute the NLL, excluding the final step near t = 0, for
reasons discussed in Appendix C.1. We evaluate the NLL across 10 steps throughout the timeline of
the PF-ODE. The AFI-TM network we trained uses float-point16 data type.

Network architectures In terms of network architecture, we employ an SD Unet structure with
an additional MLP head. However, we believe that a lighter network could potentially be sufficient
for AFI-TM.

Training cost of AFI-TM For training the AFI-TM network, we approximately spend 24 hours
using 8 Ascend 910B chips. Given the size of the Laion2B-en dataset (which contains 2.32 billion
images), this is quite an efficient speed. Additionally, the convergence behavior of the training loss
is robust, as illustrated in Figure 1. We also hypothesize that our network design has redundancy,
suggesting that we could further reduce costs by opting for lighter networks. We will provide more
details about training costs in our revised manuscript.

B.2 ADJOINT GUIDANCE SAMPLING

For Figure 4, we examined varying numbers of adjoint guidance, ranging from 0 to 20, under a full
inference number of 50. The adjoint guidance scale was grid-searched by the JVP method.

Base method for AFI-EA Several variants of adjoint-optimization algorithms exist, such as Ad-
jointDPM (Pan et al., 2023a), AdjointDES (Blasingame & Liu, 2024), and SAG (Pan et al., 2023b).
However, while these algorithms differ in their design of solvers for the adjoint ODE, they all utilize
JVP when accessing Fisher information. We selected SAG as our base method due to its state-of-the-
art performance. We believe that replacing JVP with AFI-EA could also enhance the performance
of algorithms like AdjointDPM and AdjointDES.

The Design of Score functions

• Aesthetic Score
For aesthetic score predictor faes : Rd 7→ R, the adjoint optimization target is simply faes
itself.

L(x0) := faes(x0) (54)

• Clip Loss
Following the implementation of (Pan et al., 2023a), we use the features from the CLIP
image encoder as our feature vector. The loss function is L2-norm between the Gram
matrix of the style image and the Gram matrix of the estimated clean image.

L(x0) :=
∥∥clip(x0)clip(x0)

⊤ − clip(xref )clip(xref )
⊤∥∥ (55)

• FaceID Loss
Following the implementation of (Pan et al., 2023b), we use ArcFace to extract the target
features of reference faces to represent face IDs and compute the l2 Euclidean distance
between the extracted ID features of the estimated clean image and the reference face image
as the loss function.

L(x0) := ∥ArcFace(x0)− ArcFace(xref )∥ (56)

Hyperparameters For the hyperparameters in adjoint guided sampling, we ensure a fair com-
parison between the JVP and AFI-EA methods. For most hyperparameters, we directly adopt the
settings from previous works Pan et al. (2023b) for both the baseline JVP method and our AFI-EA
method. For the guidance scale, we tune the value for the JVP method and use the same value for
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our AFI-EA method. The AFI-EA method does not introduce additional hyperparameters, and for
mutual hyperparameters, our AFI-EA method uses the exact same values as the JVP method. We
adopt this strategy because our AFI-EA method solely improves the approximation of the Fisher
information linear operator, without altering the adjoint sampling mechanism. Therefore, the suit-
able hyperparameters should remain unchanged, and we simply use the same parameters from the
JVP method for our AFI-EA method. For all experiments, we set the number of sampling steps to
T = 50. Adjoint guidance is applied starting from steps ranging from 15 to 35 and ending at step
35, with one guidance per step. Thus the only parameter we tune is the guidance strength. We deter-
mine this value for the JVP method via a grid search from 0.1 to 0.5 with a step size of 0.1 and find
that the optimal guidance strength for JVP is 0.2. We then use this value for our AFI-EA method.
Notice that, we apply a normalization to the guidance gradient for both JVP and AFI-EA methods,
making our optimal guidance strength consistent across different scores. The tuning is conducted
on 1k COCO prompts, and the computational budget for tuning is 4 * 5 * 3 GPU hours (4 tasks * 5
grids * 3 hours per single test) on Ascend 910B chips.

B.3 PRETRAINED MODELS

All of the pretrained models used in our research are open-sourced and available online as follows:

• stable-diffusion-v1-5
https://huggingface.co/runwayml/stable-diffusion-v1-5

• stable-diffusion-2-base
https://huggingface.co/stabilityai/stable-diffusion-2-base

• SAC-aesthetic score predictor
https://github.com/christophschuhmann/improved-aesthetic-predictor/
blob/main/sac%2Blogos%2Bava1-l14-linearMSE.pth

• AVA-aesthetic score predictor
https://github.com/christophschuhmann/improved-aesthetic-predictor/
blob/main/ava%2Blogos-l14-linearMSE.pth

• ArcFace ID loss
https://github.com/TreB1eN/InsightFace_Pytorch

• Clip loss
https://huggingface.co/openai/clip-vit-large-patch14

C DISCUSSIONS

C.1 SINGULARITY OF FISHER INFORMATION AT t = 0

Previous studies (Yang et al., 2023; Zhang et al., 2024b) have shown that the diffusion model, par-
ticularly when learned in ϵ-prediction, can encounter a singularity issue at t = 0. Our AFI in
equation 11 reaffirms this issue, as this formulation becomes ill-formed at t = 0 due to division
by zero (σ0). Consequently, our formulation does not describe the behavior at t = 0. The deep
theoretical exploration of the singularity problem remains an open question in the diffusion model
field. However, as it is not the primary focus of this paper, we will not discuss the AFI at t = 0.

C.2 STATISTICAL CALIBER OF NEGATIVE LOG-LIKELIHOOD

When dealing with high-dimensional data such as images, direct likelihood comparisons may en-
counter scaling issues due to the dimensionality. In this study, unless explicitly indicated otherwise,
we adopt the approach of Zheng et al. (2023) and typically use Negative Log-Likelihood (NLL) to
refer to Bits Per Dimension (BPD).

BPD = Ex0∼q0

[
− logP0 (x0)

d log 2

]
(57)
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C.3 THE ODE SOLVERS

To compute the numerical solutions for the PF-ODE in equation 5, the likelihood ODE in equa-
tion 14, and the adjoint ODE in equation 18, we require ODE solvers. In our paper’s experiments,
we consistently use the explicit Euler method (referred to as DDIM when applied to PF-ODE). How-
ever, it’s important to note that our approach is not dependent on a specific ODE solver. We can also
utilize alternatives like fast ODE solvers (Lu et al., 2022b;c; Liu et al., 2022) or exact inversion ODE
solvers (Wallace et al., 2023; Zhang et al., 2023).

C.4 THE RELATION OF AFI TO COVARIANCE IN DMS

We note that there is a series of studies aiming to learn the covariance of the reverse diffusion
Stochastic Differential Equation (SDE) (Bao et al., 2022b;a). In Bayesian statistics, Fisher informa-
tion is defined as the covariance of the score. These studies derive their formulation by analyzing the
covariance of the score and obtaining the Fisher information in terms of the score. However, our AFI
is derived directly from the marginal distribution and is composed solely of the initial distribution
and noise schedule. Furthermore, our application is unique; we are the first to replace the use of
JVP with AFI, while the focus of these studies is to enhance the performance of Diffusion Models
(DMs) with analytical covariance.

A very similar form of the Fisher information is proposed in Lemma 5 of Benton et al. (2024). The
difference is that our Proposition 3 presents the specific form of Fisher information in terms of data
distribution, which is not included in Lemma 5 of Benton et al. (2024). This distinction is crucial
as it facilitates the derivation of our new algorithms. Also, we adopt the currently more commonly
used αt, σt notation to represent the noise schedule. Instead, Benton et al. (2024) αt ≡ e−2t. We
gave out this detailed formulation to avoid unnecessary misunderstandings in the development of
the subsequent training scheme.

C.5 COMPARISON OF AFI-TM TO HUTCHINSON TRACE ESTIMATOR

We notice that the naive trace calculation of the JVP method can be accelerated by the Hutchinson
trace estimator. We have not conducted experiments using the Hutchinson estimator, as it is a Monte-
Carlo type estimation, unlike the direct evaluation methods like the full-JVP baseline and our AFI-
TM. Furthermore, the JVP method under the help of the Hutchinson method and its variants is still
considerably more expensive than our method, and their applicability is also more restricted.

• The Hutchinson method is much more costly: To attain a relative error less than ϵ with a
probability of 1− δ, the Hutchinson method requires 2(1− 8

3 ϵ) log
1
δ

ϵ2 samples Skorski (2021).
Assuming that the goal is to obtain an estimation with a relative error of less than 10%
with a probability exceeding 90%, a minimum of 351 NFEs is required. This equates to 1
or 2 minutes on SD-v1.5 for a single trace estimation. For a complete NLL estimation of
an image with 20 steps, this would take 20 minutes, which is entirely impractical in any
business context. In contrast, our AFI-TM only requires 1 NFE for a single trace estimation,
needing merely 10 seconds for the full NLL estimation of an image.

• The application of the Hutchinson method is more restricted: Due to its Monte-Carlo
characteristics, the Hutchinson method is more appropriate for contributing to the com-
putation of certain training objectives as in Lu et al. (2022a), where the unbiased prop-
erty is sufficient, and large variance may be absorbed into network training. However, the
Hutchinson method may encounter difficulties with accurate per-sample trace estimation.
Our method can accommodate both scenarios, including per-sample computation.

There are already attempts to use the Hutchinson method to expedite the JVP of trace estimation in
diffusion models Lu et al. (2022a). Nonetheless, due to Hutchinson’s limitations, these practices are
restricted to relatively small DMs (CIFAR-10 at most). We will add discussions on the Hutchinson
method in our revision.
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C.6 DISCUSSIONS ON THE THEORETICAL BOUND OF AFI-EA

We notice that the error bound in Proposition 8 does not vanish as the training error decreases. From
the rigorous theoretical perspective, considering the error bounds in Propositions 7 and 8, the AFI-
EA method is less valid than the AFI-TM method, as we currently cannot establish vanishing bounds
for it. However, from an empirical perspective, our AFI-EA outperforms the naive JVP method in
terms of score improvement across various tasks and pretrained models, as demonstrated in Fig-
ure 4. Thus, the AFI-EA approximation proves to be valid in a practical sense. The replacement∑

i yiy
⊤
i ≈ x0x

⊤
0 originates from the observation that wi is a weighting of the summation equal to

1, and as t approaches 0, the wi closest to x0 will dominate due to the diffusion kernel. Therefore,
this approximation is intuitively reasonable near t = 0, which is precisely where we apply adjoint
guidance.

C.7 BROADER (SOCIAL) IMPACTS

The development of accurate Fisher information of diffused distribution, as discussed in this paper,
holds significant potential for several domains, including machine learning, healthcare, environmen-
tal modeling, and economics.

However, while this research holds great potential for positive impacts, it is also important to con-
sider potential negative societal impacts. The enhanced ability of generative models given by AFI
could potentially be misused. For instance, it could be exploited to create aesthetic-improved deep-
fakes, leading to misinformation. In healthcare, if not properly regulated, the use of synthetic patient
data could lead to ethical issues. Therefore, it is crucial to ensure that the findings of this research are
applied ethically and responsibly, with necessary safeguards in place to prevent misuse and protect
privacy.

C.8 LIMITATIONS

This paper does not explore the integration of AFI into accelerated ODE solvers. This paper is con-
strained in the scope of DMs, but similar second-order information may also exist in flow matching
generative models. The AFI may also contribute to a more effective inference method, which we
did not explore.
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