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Abstract

We study quantum algorithms based on quantum (sub)gradient estimation using
noisy function evaluation oracles, and demonstrate the first dimension-independent
query complexities (up to poly-logarithmic factors) for zeroth-order convex opti-
mization in both smooth and nonsmooth settings. Interestingly, only using noisy
function evaluation oracles, we match the first-order query complexities of classical
gradient descent, thereby exhibiting exponential separation between quantum and
classical zeroth-order optimization. We then generalize these algorithms to work
in non-Euclidean settings by using quantum (sub)gradient estimation to instan-
tiate mirror descent and its variants, including dual averaging and mirror prox.
By leveraging a connection between semidefinite programming and eigenvalue
optimization, we use our quantum mirror descent method to give a new quantum
algorithm for solving semidefinite programs, linear programs, and zero-sum games.
We identify a parameter regime in which our zero-sum games algorithm is faster
than any existing classical or quantum approach.

1 Introduction

Convex optimization has long been a central topic of study in computer science, mathematics,
operations research, statistics, and engineering due to its large number of scientific and industrial
applications. These problems are at the core of many machine learning pipelines, and generalize
well studied settings such as linear programming, second-order conic programming, and semidefinite
programming, to name a few. A convex optimization problem is of the form

Find x̃ ∈ X such that f(x̃)−min
x∈X

f(x) ≤ ε, (OPT)

where X ⊆ Rd is a closed convex set with nonempty interior, f : Rd → R is convex and G-Lipschitz
on X with respect to a given norm ∥ · ∥, and ε > 0 is an error parameter. We make the standard
assumption that (OPT) is solvable, i.e., there exists an optimal point x⋆ ∈ argminx∈X f(x), and that
there exists R ≥ 1 such that supx∈X dist(x, x⋆) ≤ R for a suitable distance metric dist(·, ·).
In practical applications, problems of the form (OPT) are solved in very high dimension d, to very
high precision ε, or both. Developing algorithms with better scaling in d and 1/ε is a primary goal of
optimization theory. Due to the ubiquity and practical importance of convex optimization, there has
been a significant effort to develop quantum algorithms providing speedups for these problems.

∗These authors contributed equally.
†shouvanik.chakrabarti@jpmchase.com

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



Research on convex optimization focuses on two different settings. In the black-box setting, the
constraints defining the feasible region and the objective function are accessed via black-box oracles.
The focus then is on developing algorithms that repeatedly query these oracles, with the aim of
minimizing the number of queries necessary to solve the problem, which is called the query complexity.
In the white-box setting, the objective function and constraints are known explicitly in some form,
and the focus is on minimizing the time required to perform the optimization. As an example, linear
programs are specified by the vector defining the (linear) objective function, while the constraints
are specified by a matrix and right-hand-side vector. Aside from linear programs, white-box convex
optimization generalizes common settings such as quadratic, second-order conic, and semidefinite
programming. Black-box optimization algorithms can be directly applied to white-box optimization,
but it is often possible to obtain more efficient methods by leveraging the specific problem structure,
which has led to the development of many classical algorithms that are tailored to particular settings.
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Figure 1: Regimes for speedup in solving zero-
sum games in the (m, 1/ε)-plane. See also Corol-
lary 3.1. Algorithms: Mirror Descent (MD), Ma-
trix Multiplicative Weights (MWU).

In this paper, we present improved algorithms
for convex optimization in both the black-
box and white-box settings. We begin with
an investigation of black-box optimization via
(sub)gradient methods, and show that quantum
algorithms with access to only the noisy func-
tion value can match the query complexity of
classical (sub)gradient methods that require the
(sub)gradient of the objective function. Since
the classical computation of a gradient in the
oracle setting requires a number of queries that
is linear in the dimensionality d, this represents
an exponential speedup in terms of d.

Notably, our results in the black-box setting ap-
ply for optimization in both Euclidean and more
general ℓp-normed spaces (p ≥ 1). This allows
us to derive algorithms that offer improvements
for white-box optimization. To this end, we
leverage a connection between semidefinite pro-
gramming and eigenvalue optimization that has
been previously studied to motivate the spec-
tral bundle method. Specifically, semidefinite
programming is reduced to a nonsmooth opti-
mization problem that is Lipschitz continuous in ℓ1-space. Leveraging our black-box results for
this setting, we obtain algorithms for semidefinite programming, linear programming, and zero-sum
games that improve upon the previously best known quantum and classical algorithms in some
regimes; see Figure 1 for an illustration.

In short, we demonstrate several algorithmic speedups using quantum (sub)gradient methods in both
the black-box and white-box settings. Specifically, our contributions can be summarized as follows:

• In Section 2, we show that, using only a noisy function evaluation oracle (Definition 1), the
zeroth-order quantum projected subgradient method (ℓ2-space) and quantum mirror descent (ℓp-
space) match the first-order query complexities (up to polylogarithmic factors in d) achieved by
their respective classical counterparts for solving (OPT). See, Theorem 2.1. We thus exhibit an
exponential separation between quantum and classical zeroth-order optimization of convex and
Lipschitz functions. These results are summarized in Table 1.

• In Section 3, we leverage the connection between semidefinite programming and eigenvalue
optimization, and demonstrate how the quantum mirror descent framework can be applied to
solving white-box settings, including semidefinite programming (Theorem 3.1), linear programming
(Theorem 3.2), and zero-sum games (Corollary 3.1). In some regimes, we attain a better complexity
(Table 2 and Figure 1) than the current state-of-the-art approaches (both quantum and classical).

• In Section 4, we characterize the effort required by zeroth-order quantum gradient methods to
solve (OPT) when the objective function has Lipschitz continuous gradients, often referred to
as the L-smooth setting in the optimization literature. In this setting, we study the zeroth-order
quantum gradient descent (ℓ2-space) and mirror prox (ℓp-space), again matching first-order query
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Table 1: Comparison of oracle complexities for zero-order quantum (sub)gradient methods (this
work) and the first-order classical (sub)gradient methods on minimizing G-Lipschitz functions with
additional structures (2nd column). Algorithms: Gradient Descent (GD), Projected Subgradient
Method (PSG), Mirror Descent (MD), Dual Averaging (DA), and Mirror Prox (MP).

Domain Assumptions on f Algorithm Quantum (0th order) Result Classical (1st order)

ℓ2-space Convex PSG Õ
(
G2R2/ε2

)
Thm 2.1 O

(
G2R2/ε2

)
(Euclidean) Convex, L-smooth GD Õ

(
LR2/ε

)
Thm 4.2 O

(
LR2/ε

)
µ-PL, L-smooth GD Õ (L/µ) Thm 4.3 Õ (L/µ)

ℓp-space Convex MD, DA Õ
(
G2R2/ε2

)
Thm 2.1 O(G2R2/ε2)

(Non-Euclidean) Convex, L-smooth MP Õ
(
LR2/ε

)
Thm 4.2 O(LR2/ε)

complexities of the corresponding classical algorithms only using noisy function evaluation oracle.
See, Theorem 4.2. Additionally assuming f satisfies the µ-PŁ condition, we show a Õ(L/µ) query
complexity for zeroth-order quantum gradient descent (Theorem 4.3).

Notation. We let ∥·∥p denote the ℓp-norm on Rd for p ∈ [1,∞]: ∥v∥p :=
(∑d

i=1 |vi|
p )1/p

. For a
finite-dimensional space E , we denote its dual space by E∗. If E ⊂ Rd is equipped with an arbitrary
inner product ⟨·, ·⟩ and a norm ∥ · ∥p, the dual norm ∥ · ∥∗ is ∥g∥∗ := sup{x∈Rd:∥x∥≤1} ⟨g, x⟩ . We
define the (closed) ℓp-ball of radius r centered at c ∈ Rd as Bdp(c, r) := {x ∈ Rd : ∥x− c∥p ≤ r}.
We define the Bregman divergence associated to Φ as DΦ(x, y) = Φ(x)− Φ(y)− ⟨∇Φ(y), x− y⟩.
We also use the standard definitions of (strongly) convex functions; more detailed notations are
summarized in the supplementary material.

2 Black-box setting: zeroth-order quantum (sub)gradient methods

In the black-box setting, (sub)gradient methods access the problem through a qth-order oracle O(q)
f

for the objective function f . On input x ∈ Rd, O(q)
f returns the function value and its derivatives up

to the qth-order:
O

(q)
f : x 7→ {f(x),∇f(x), . . . ,∇qf(x)} .

Let G(q) denote the Lipschitz constant of the qth-order derivative, i.e., for any (x, x̄) ∈ X × X ,

∥∇qf(x)−∇qf(x̄)∥∗ ≤ G(q)∥x− x̄∥p,
where ∥ · ∥p is an appropriate ℓp-norm and ∥ · ∥∗ is its dual norm. For fixed q and any ε > 0, the
complexity of an algorithm for solving (OPT) can be expressed as a function of d and G(q)R/ε (since
one can always re-scale the input and output spaces, and adjust the precision accordingly). We focus
on the high-dimensional setting where d is potentially much larger than the other problem parameters,
i.e., d≫ poly(G(q)Rε−1). For any q ≥ 1, the number of queries to O(q)

f needed to solve (OPT) to
precision ε > 0 using classical (sub)gradient methods depends polynomially on G(q)R/ε and thus is
“independent” of the ambient dimension d [61].

First-order methods play a fundamental role in large-scale optimization due to their near dimension
independence. While the convergence rates of first-order methods are far slower than the (local)
quadratic convergence enjoyed by Newton’s method, first-order methods exhibit an advantage with
respect to simplicity, robustness, and the fact that they provably converge to the global optimum
of a convex optimization problem irrespective of the starting point. From a practical standpoint,
algorithms that rely on computing second-order information at every iterate, such as interior point
methods (IPMs), are often outperformed by first-order methods for large-scale problems.

Recent studies [31, 32] have demonstrated that no quantum speedup over classical (accelerated)
gradient descent rates can be achieved when q ≥ 1. Consequently, it is natural to consider instances
of (OPT) where derivatives are unavailable (or accessible only at a prohibitive cost). In optimization
theory, this is modeled by so called zeroth-order oracles that only specify the objective function value
and not its gradients (i.e., q = 0), and hence is also called derivative-free optimization.
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In the derivative-free setting, there is reason to be optimistic about the potential for quantum speedup
due to the aforementioned algorithms for quantum gradient [45, 34] and subgradient [20, 75] estima-
tion, which provide an exponential speedup in d for estimating a gradient from function evaluations
in the black-box model. However, previous applications of these algorithms to convex optimiza-
tion [20, 75] have focused on arbitrarily constrained problems in the high-precision regime, rather
than the low-precision regime where gradient methods typically outperform more complex techniques
such as cutting plane or center of gravity methods. Consequently, the speedups in terms of dimension
are only quadratic. It is natural to wonder whether the dimension-independent rates of gradient
methods can be achieved using only function evaluations. Our first set of results answers this question
in the affirmative, as summarized in Table 1, under the approximate binary oracle model below:

Definition 1 (θ-approx. binary oracle). A unitary U (θ)
f is a θ-approximate binary oracle for f if

U
(θ)
f : |x⟩|y⟩ 7→ |x⟩|y ⊕ f̃(x)⟩ such that ∥f̃ − f∥∞ < θ.

Approximate binary oracles are the standard function oracle considered for quantum optimization
algorithms [10, 20, 75], since any classical arithmetic circuit for a function can be converted into a
binary oracle by implementing each arithmetic operation with reversible quantum arithmetic.

Before discussing the black-box results, we briefly review quantum (sub)gradient estimation.
(Sub)gradient-based methods are a popular class of iterative black-box methods which generate
a sequence of candidate solutions based on the (sub)gradients of the objective function. Gradient
methods lend themselves to quantum speedups due the existence of a quantum algorithm proposed by
Jordan [45] and refined by Gilyén et al. [34], to estimate the gradient of a function in Õ(1) function
evaluation queries.3 These algorithms were generalized to compute subgradients of convex functions
in [20, 75], resulting in the first query complexity speedups for constrained convex optimization. We
state the subgradient estimation lemma based on [75], which we slightly modified for our purposes.
Lemma 2.1 (Subgradient estimation ([75, Lemma 18])). Suppose f : Rd → R is a convex function
that is G-Lipschitz on B∞(0, 2r1) with a given norm ∥ · ∥p with p ≥ 1, and we have quantum query
access to f̃ , which is a θ-approximate version of f , as in Definition 1. Let r1, G > 0, ρ ∈ (0, 1/3],
and suppose θ ∈ (0, r1dG/ρ]. Then, we can compute a subgradient g̃ ∈ Rd using O(log(d/ρ))
queries to θ-approximate binary oracle, such that with probability ≥ 1− ρ, we have

f(y) ≥ f(x) + ⟨g̃, y − x⟩ − (23d)2

√
θG

ρr1
∥y − x∥p − 2G

√
dr1, sup

g∈∂f(x)

∥g̃ − g∥∞ ≤

√
θd3G

ρr1
.

That is, one can obtain an approximate subgradient g̃ using an approximate binary oracle in Defi-
nition 1, with some bias that has to be appropriately controlled. In Section 4, we also provide an
improved gradient estimation based on [72] where one can control both the bias and the variance
(Theorem 4.1), which we apply to solve convex optimization problems in the L-smooth setting.

Equipped with Lemma 2.1, we study the quantum projected subgradient method, which iterates as:

xt+1 = ΠX (xt − ηg̃xt
) , g̃xt

estimate∼ Lemma 2.1 (QPSM)

While the projected subgradient method is optimal for convex and Lipschitz functions [61], the con-
vergence guarantee depends on problem-dependent parameters being well-behaved in the Euclidean
norm. For instance, if f is G-Lipschitz with respect to ℓ∞-norm, subgradient method may not retain
its dimension-free rate [16]. A powerful extension of the subgradient method to remedy this issue is
mirror descent [61, 9], which iterates as:

∇Φ(yt+1) = ∇Φ(xt)−ηg̃xt
, g̃xt

estimate∼ Lemma 2.1 and xt+1 ∈ argmin
x∈X∩P

DΦ(x, yt+1) (QMD)

where Φ is called the mirror map (see Definition 4), whose gradient defines a bijection between the
primal and the dual ambient spaces. Due to space limitations, we review mirror descent in more
detail in Appendix B.

A technical challenge in analyzing the above algorithms is that we must handle the additional
technicality that these algorithms actually input an erroneous subgradient at a point that is not the

3Here and throughout, the Õ(·) notation suppresses polylogarithmic factors in the usual O(·).
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Table 2: State-of-the-art quantum and classical algorithms for SDP and LP. For zero-sum games,
set rprd = 1 in LP complexities. Algorithms: Interior Point Method (IPM), Cutting Plane Method
(CPM), Matrix Multiplicative Weights (MWU), Mirror Descent (MD), Primal-Dual Hybrid Gradient
(PDHG), and Multiplicative Weight Update (MWU).

SDP solvers LP solvers
Classical Time complexity Classical Time complexity

IPM [43] Õ
(√
n
(
mns+mω + nω

))
IPM [23, 77] Õ

(
(m+ n)ω

)
CPM [44] Õ

(
m
(
mns+mω + nω

))
PDHG [5] Õ

(
Hoffman(A, b, c) ·mn

)
MWU [6, 76] Õ

(
mns

(
rprd
ε

)4
+ ns

(
rprd
ε

)7)
Stochastic MD [37] Õ

(
(m+ n)

(
rprd
ε

)2)
Variance-reduced SMD [18] Õ

(
mn+

√
mn(m+ n)

(
rprd
ε

))
Quantum Gate complexity Quantum Gate complexity

QMWU [73] Õ
(√

ms
(

rprd
ε

)4
+
√
ns
(

rprd
ε

)5)
QMWU [11, 30] Õ

(√
m+ n

(
rprd
ε

)2.5
+
(

rprd
ε

)3)
QMD (Thm 3.1) Õ

(
(mns+ nω)

(
rprd
ε

)2)
QIPM [4] Õ

(√
mn9.5

)
QMD (Thm 3.2) Õ

(
m
√
n
(

rprd
ε

)2)

point queried, but instead a randomly chosen nearby point. This is due to a randomized smoothing
procedure employed in [20, 75]. We show how to handle such errors in the robust analysis by
leveraging the fact that the algorithms using subgradients average over their iterates. Below, we
establish that both QPSM and QMD achieve a query complexity of Õ((GR/ε)2), matching the lower
bound of classical first-order method [82, 64].

Theorem 2.1 (Zeroth-order nonsmooth optimization, informal). Let X ⊆ Rd be a closed convex
set with nonempty interior. Suppose f : Rd → R is convex and G-Lipschitz on X with respect to
a given p-norm ∥ · ∥p and set ε ∈ (0, 1). There is a quantum algorithm A that solves (OPT) using
Õ((GR/ε)2) queries to a noisy zeroth-order binary oracle U (θ)

f (Definition 1) such that:

• Euclidean (p = 2): A is QPSM (Theorem B.3); R = ∥x1 − x⋆∥2; θ = O1/ε,d

(
ε5/d4.5

)
;

• non-Euclidean (p ̸= 2): A is QMD (Theorem C.1); R =
√
DΦ(x⋆, x1); θ = O1/ε,d

(
ε5/d5

)
.

Remark 1. Quantum dual averaging (Theorem C.2), a variant of mirror descent, also performs
similarly in the non-Euclidean setting (p ̸= 2). We provide a formal theorem characterizing the
complexity of quantum dual averaging in the supplementary material.

Related work. For black-box convex optimization under a noisy evaluation oracle, the most closely
related work to ours is by Gong et al. [36] which analyzes quantum gradient methods in the context of
nonconvex optimization, under a similar oracle model. Their analysis yields an algorithm for finding
stationary points of an L-gradient Lipschitz (i.e., L-smooth), ρ-Hessian Lipschitz function using
Õ
(
1/ε1.75

)
queries, each of which must be Õ(ε6/d4) accurate. This algorithm can be applied to

convex optimization as stationary points are global optima in this setting. Our results improve upon
this simple application of [36] in three ways: i) our result above do not require Hessian or gradient
Lipschitzness; ii) for functions with L-Lipschitz gradients, which we analyze in Section 4, we obtain
a faster Õ(1/ε) rate; and iii) a milder accuracy requirement of Õ(ε4/d3) (Theorem 4.2).

There are also other works [36, 69, 54] that investigate convex optimization in the zeroth-order
setting that focus on faster estimation of gradient estimators using quantum mean estimation. The
focus in these papers is to improve the ε-dependence of classical algorithms and they do not achieve
exponential speedups in terms of the dimension d. Finally, under a related but different setting
of online convex optimization, [41] investigated a similar algorithm to the zeroth-order quantum
subgradient method we analyze in Theorem B.3 for the Euclidean nonsmooth case, yet without taking
the noisy evaluation oracle into account.
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3 White-box setting: application to SDPs, LPs, and zero-sum games

Semidefinite programming. Define rp ≥ 1. Let b ∈ Rm be a vector with ∥b∥∞ ≤ rp, and
A1, . . . , Am, C ∈ Rn×n be symmetric matrices with at most s non-zero elements in any of their
rows. We write the primal semidefinite program (SDP) as:

sup
X∈Rn×n

{tr(CX) : tr(X) = rp, tr (AiX) ≤ bi for all i ∈ [m], X ⪰ 0}. (P)

Here tr(·) denotes the trace and P ⪰ 0 indicates that P is positive semidefinite. We make the
standard assumption that the matrices {Ai}i∈[m] are linearly independent. Defining A0 := I and
b0 := rp, the dual problem associated with (P) is given by

inf
(y0,y)∈R×Rm

≥0

{
b0y0 + b⊤y : y0I +

∑
i∈[m]

yiAi − C ⪰ 0

}
, (D)

where Rm
≥0 denotes the nonnegative orthant. We assume that the input matrices are normalized with

respect to the operator norm ∥A1∥op, . . . , ∥Am∥op, ∥C∥op ≤ 1, and that any primal-feasible solution
satisfies tr(X) = rp. These assumptions are mild (and standard in the literature), since any nontrivial
SDP with bounded feasible region can be brought into this form through projection, scaling and
(possibly) the introduction of linear slack variables.

SDPs constitute a fundamental class of convex optimization problems due to their expressive power,
capturing fundamental applications in control [12], information theory [68], machine learning [50, 80],
finance [25, 81], and quantum information science [1, 29, 40, 79]. Both Linear Programming (LP)
and Second-Order Conic Programming can be cast as special instances of SDP. Famously, SDP can
be used to obtain approximate solutions to NP-Hard problems in polynomial time [55, 35].

SDPs have been known to be polynomial time solvable (to finite precision) since the pioneering work
of Nesterov and Nemirovskii [65, 66] and Grötschel, Lovász and Schrijver [38]. The best performing
algorithms for general SDPs (in theory and practice) are interior point methods (IPMs) [3, 59, 71, 43].
There are also algorithms for SDP based on first-order methods [6, 42, 17, 60].

Currently there are two classes of quantum SDP solvers with provable guarantees. One is comprised
of quantum IPMs [8, 48], which replace the classical solution of the Newton linear system in interior
point methods with a quantum linear systems algorithm (QLSA) [39, 22, 21]. The other class is
comprised of quantum matrix multiplicative weights update methods [13, 15, 14, 76, 73], which
recast trace-normalized positive semidefinite matrices as mixed quantum states that can be efficiently
prepared using Gibbs sampling. Currently the state-of-the-art running time is due to van Apeldoorn
and Gilyén [73], whose algorithm runs in time Õ

(√
ms(rprd/ε)

4 +
√
ns(rprd/ε)

5
)
, where rd ≥ 1

is an ℓ1-norm bound on dual optimal solutions (y⋆0 , y
⋆) ∈ R × Rm

≥0. Our main result on solving
SDPs is the following theorem. Let ω ∈ [2, 2.38) be the exponent of matrix multiplication [23, 77].

We now describe an application of the algorithmic frameworks underlying our results on black-box
nonsmooth convex optimization to white-box problems including SDPs, LPs, and zero-sum games. It
can be shown that, upon performing the normalization 1

rp
(b0, b) = (1, b̃), the dual SDP in (D) can be

equivalently reformulated as a nonsmooth convex optimization problem (see, e.g., [42, 70, 81]):

min
y∈Rm

≥0

f(y) := λmax

(
C −

∑
i∈[m]

yiAi

)
+ b̃⊤y. (Eigenvalue SDP)

This problem concerns the minimization of the largest eigenvalue of a symmetric matrix, and can
be readily solved using the quantum mirror descent method (QMD) we developed in the previous
section, as we detail below.
Theorem 3.1 (SDP solver, informal version of Theorem D.2). There is a quantum algorithm which
solves (P)-(D) to precision ε ∈ (0, 1) in time Õ((mns+ nω)(rprd/ε)

2). The output is an ε-optimal
solution to the dual problem (D). That is, a vector (y⋆0 , y

⋆) ∈ R × Rm
≥0 satisfying

y⋆0I +
∑
i∈[m]

y⋆iAi − C ⪰ 0, and b0y
⋆
0 + b⊤y⋆ ≤ OPT + ε,

where OPT is the optimal objective value of the primal and dual SDPs in (P)-(D).
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The objective in (Eigenvalue SDP) is 2-Lipschitz with respect to the ℓ1-norm of y (Lemma D.1).
Therefore, we can apply the (zeroth-order) QMD to find an ε-precise approximation of the optimal
objective value using Õ((rprd/ε)2) queries to an evaluation oracle for f(y). The rub is that our
algorithms are sensitive to noise in the evaluation oracle, and so we are relegated to high-precision
oracles, i.e., those with polylogarithmic dependence on the inverse accuracy to which we evaluate f .
A straightforward implementation is to “classically” compute the inner product term and perform an
eigendecomposition on C −

∑
i∈[m] yiAi to determine its largest eigenvalue. Evaluating f in this

manner has cost O((mns + nω) log(1/ε)), yielding a quantum SDP solver with gate complexity
Õ((mns+ nω)(rprd/ε)

2).
Remark 2. We compare our running times to state of the art quantum and classical algorithms for
SDPs and LPs in Table 2. For dense SDPs with m ≥ n constraints, our SDP algorithm provides
a quadratic speedup in rprd/ε over the classical matrix-multiplicative weights method of Arora
and Kale [6]. We observe a similar enhancement over the quantum SDP solvers in [73], but their
dependence on m and n is superior to ours.

Linear programming. Linear Programs (LPs) correspond to SDPs in which each of the input
matrices is a diagonal matrix. The primal and dual LPs can be written as

max
{x∈Rn

≥0
:1⊤

n x=rp,Ax≤b}
c⊤x and min

{(y0,y)∈R×Rm
≥0

:y01n+A⊤y≥c}
rpy0 + b⊤y, (LP)

where A ∈ Rm×n, c ∈ Rn and 1n ∈ Rn is the all-ones vector. LPs have been known to be
polynomial-time solvable since the work of Khachiyan [49], and the first polynomial-time IPM for
LP is due to Karmarkar [47].

Naturally, the formulation in (Eigenvalue SDP) becomes simpler for LPs, as the λmax(·) term
simplifies to maxj∈[n] {cj − ⟨Aj , y⟩}, where Aj is the jth column of A. Thus, one can evaluate f in
time Õ(m

√
n) using generalized quantum maximum finding [27, 76, 33]. This yields a quantum LP

solver with gate complexity Õ(m
√
n(rprd/ε)

2) (and Õ(m
√
nε−2) complexity for zero-sum games.)

Due to their simpler structure, LPs admit more efficient algorithms than SDPs. Classical IPMs can
solve LPs in matrix-multiplication time Õ ((m+ n)ω) [24, 77]. Like the case of SDP, there are
quantum IPMs that are based on QLSAs [48, 56–58]. More recent quantum algorithms accelerate
the IPM framework without using QLSAs: Apers and Gribling [4] give a speedup for tall LPs with
m ≫ n, and Augustino et al. [7] solve LPs through quantum simulation of the central path. Our
application of (QMD) to solving LPs results in the following.
Theorem 3.2 (LP solver, informal version of Theorem D.3). There is a quantum algorithm which
solves (LP) to precision ε ∈ (0, 1) in time Õ(m

√
n(rprd/ε)

2).
Remark 3. In the case of LP solving, the simplified structure of the objective function enables it to
be evaluated quadratically faster by quantum amplitude amplification. We thus obtain an algorithm
whose dependence on m and n compares favorably to other quantum and classical algorithms,
but we cannot make decisive conclusions regarding an end-to-end speedup without making further
assumptions on the behavior of the rprd/ε term.

Zero-sum games. There are also fast LP algorithms based on a reduction to zero-sum games, which
are matrix games in which each player has a finite number of pure strategies. These problems are
fundamental to computer science, economics and machine learning. A standard setup concerns two
players Alice and Bob, whose action spaces are [m] and [n] respectively. Payoffs from the game
are encoded in the entries of a matrix A ∈ [−1, 1]m×n. If Alice plays action i ∈ [m] and Bob
plays j ∈ [n], then Alice obtains the payoff Aij , while Bob receives a payoff of −Aij . Each player
aims to maximize their expected payoff through randomized strategies over the probability simplex
(x, y) ∈ ∆n ×∆m, giving rise to the minimax optimization problem:

min
x∈∆n

max
y∈∆m

y⊤Ax. (ZSG)

Saddle points of (ZSG) are called mixed Nash equilibria, which always exist for zero-sum games due
to von Neumann’s minimax theorem [67].

Zero-sum games can be reformulated as LPs, and vice versa (they are LPs with rprd = O(1)).
This relationship has led to the development of fast classical and quantum algorithms that obtain
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large speedups in m and n over second-order methods like IPMs, at the cost of polynomial scaling
in the inverse precision. A classical algorithm due to Grigoriadis and Khachiyan [37] can solve
zero-sum games in time Õ((m + n)ε−2), which implies an Õ((m + n)(rprd/ε)

2) algorithm for
LP. Quantumly, the dependence on m and n can be improved quadratically, and a series of works
[53, 74, 11, 30] have reduced the overall complexity of solving zero-sum games from Õ(

√
m+ nε−4)

to Õ(
√
m+ nε−2.5 + ε−3). Our quantum algorithm for (ZSG) is as follows.

Corollary 3.1 (Zero-sum games, informal version of Corollary D.1). There is a quantum algorithm
which solves (ZSG) to precision ε ∈ (0, 1) in time Õ(m

√
n(1/ε)2).

Figure 1 illustrates the parameter regimes for which our algorithm provides outperforms the state of
the art approaches for solving zero-sum games.

Remark 4. It is interesting to note that previous quantum algorithms for zero-sum games [53, 74, 11,
30] improved the dependence on the leading term from

√
m+ nε−4 to

√
m+ nε−2.5 through the

use of better Gibbs sampling techniques. In contrast, our algorithm makes Õ(ε−2) queries, and does
not incur any additional polynomial dependence on 1/ε because our per-iteration complexity boils
down to the cost of evaluating the objective function, which we do with O(m

√
n log(1/ε)) cost.

4 Zeroth-order smooth optimization

In Section 2, we studied zeroth-order convex optimization in a general form, where the only structure
of the objective function f we assumed is the Lipschitz continuity of f , measured both in ℓ2-space
(quantum projected subgradient method) and in ℓp-space (quantum mirror descent). We showed that
the zeroth-order quantum algorithms match the first-order query complexities of the corresponding
classical methods, and then applied the quantum mirror descent framework to white-box settings in
Section 3, yielding the state-of-the-art results in some regimes.

A natural next question to ask is whether the zeroth-order quantum gradient methods can achieve
faster convergence rates when the objective function f exhibits additional structures. Motivated by
this question, we now analyze quantum gradient methods in the case where the gradient∇f exists and
is also L-Lipschitz continuous. This condition is often referred to as L-smoothness in optimization
literature, and the classical gradient descent enjoys an improved convergence rate.

We first need a quantum algorithm to estimate the gradient. The work of van Apeldoorn et al. intro-
duced a “suppressed-bias” version of Jordan’s quantum gradient estimation, wherein the expectation
of the gradient to be controlled is independent of the accuracy to which the phase estimation step is
carried out [72, Theorem 31]. We modify this gradient estimation protocol so that the variance is also
controlled with noisy evaluation oracles (Corollary A.1), and hence the gradients of smooth functions
can also be estimated efficiently (Theorem A.2). We state the informal version below.

Theorem 4.1 (Gradient estimation, informal version of Theorem A.2). Let f : Rd → R be G-
Lipschitz with L-Lipschitz gradients, and let θ, σ be real positive parameters. Further, suppose we
can query a θ-approximate binary oracle with θ = Õ(σ4/(Ld2G2)). Then, there exists a procedure
that outputs k that satisfies E[∥k −∇f(y)∥2∞] ≤ σ2 and ∥E[k]−∇f(y)∥∞ ≤ σ using Õ(1) calls
to the unitary U (θ)

f (see Definition 1).

Equipped with the gradient estimation above, the quantum gradient descent algorithm iterates as:

xt+1 = xt − ηgxt , gxt

estimate∼ Theorem 4.1. (QGD)

We also quantize mirror prox, a variant of mirror descent, to achieve similar rate for general ℓp-spaces,
similarly to the nonsmooth cases in Section 2. Quantum mirror prox iterates as:

∇Φ(z̄t+1) = ∇Φ(xt)− ηgxt

zt+1 ∈ argmin
x∈X∩P

DΦ(x, z̄t+1) and
∇Φ(x̄t+1) = ∇Φ(xt)− ηgzt+1

xt+1 ∈ argmin
x∈X∩P

DΦ(x, x̄t+1),
(QMP)

again with gxt
and gzt estimated via Theorem 4.1. We now show that the zeroth-order quantum

gradient descent and quantum mirror prox match the first-order rates of corresponding classical
algorithms, Õ(LR2/ε), as follows.
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Theorem 4.2 (Zeroth-order smooth optimization, informal). Let X ⊆ Rd be a closed convex set with
nonempty interior. Suppose f : Rd → R is convex, G-Lipschitz, and L-smooth on X with respect to
a given p-norm ∥ · ∥p and set ε ∈ (0, 1). There is a quantum algorithm A that solves (OPT) using
Õ(LR2/ε) queries to a noisy zeroth-order binary oracle U (θ)

f (Definition 1) such that:

• Euclidean (p = 2): A is QGD (Theorem B.2);R = maxf(x)≤f(x0) ∥x−x⋆∥2; θ = O1/ε,d

(
ε4/d3

)
• non-Euclidean (p ̸= 2): A is QMP (Theorem C.3) and R =

√
DΦ(x⋆, x1); θ = O1/ε,d

(
ε4/d4

)
.

The primary technical challenge in deriving the above result is that quantum gradient estimation
algorithms are inexact and incur errors that depend on algorithmic parameters, which are themselves
connected to the query complexity and bounds on the input precision. Our task therefore is to
prove robust convergence theorems for all the settings considered here that accommodate errors of
the form incurred by quantum gradient estimation. The convergence of gradient methods that use
erroneous/inexact gradients has been well studied in optimization theory [26, 28] but we were unable
to find preexisting robustness results that suffice directly for our purposes.
Remark 5. As an illustration of the challenge, a recent paper [19] considers the optimization of
a smooth and strongly convex function with condition number κ, and obtain an oracle complexity
of (1/ε)κ due to a multiplicative accumulation of errors, which is much slower than classical
gradient descent with exact gradients. In order to recover convergence rates that match classical
gradient descent, we use proofs based on the classical analysis of stochastic gradient descent with
controlled bias (c.f., Lemma B.1). As a result, our quantum gradient descent do not incur such
multiplicative-error overheads and do in fact match the classical first-order rates.

Departing from convexity. Finally, we also analyze the quantum gradient descent for L-smooth
functions that, instead of convexity, satisfy the Polyak-Łojasiewicz inequality:

∥∇f(x)∥22 ≥ 2µ (f(x)− f(x⋆)) , (PŁ)

which we refer to as the µ-PŁ condition, following [46]. Note that the µ-PŁ condition is implied by,
and hence weaker than, µ-strong convexity [46]. In fact, there exist nonconvex functions that satisfy
the µ-PŁ condition [78]. Therefore, the result below can be applied to strongly convex functions and
attain the same rate up to constant factors, showing that the zeroth-order quantum gradient descent is
efficient for minimizing (structured) nonconvex functions as well as strongly convex functions.
Theorem 4.3 (Informal version of Theorem B.1). Let f : Rd → R be G-Lipschitz, µ-PŁ, and
L-smooth. The zeroth-order quantum gradient descent (QGD) minimizes f to accuracy ε with high
probability with Θ̃ (κ) queries to a θ-approximate binary oracle of f with θ = O1/ε,d

(
ε2/d3

)
.

5 Conclusion and discussions

In this work, we studied the zeroth-order convex optimization with quantum gradient methods. We
demonstrated that, using only a noisy evaluation oracle, zeroth-order quantum gradient methods
can match the first-order query complexities of the corresponding classical methods. These results
exhibit exponential separations between quantum and classical zeroth-order convex optimization.
In particular, we analyzed our framework both in the ℓ2-space (quantum (sub)gradient methods)
as well as the ℓp-space (quantum mirror descent methods). We then applied the quantum mirror
descent framework to develop quantum algorithms for solving SDPs, LPs, and zero-sum games,
which achieve the state-of-the-art complexity in some regimes. In short, this work provides improved
quantum algorithms for zeroth-order convex optimization, both in black- and white-box settings.

Limitations and future work. The main limitation is that practical performances of the analyzed
algorithms cannot be experimentally studied due to the lack of sufficiently powerful quantum hardware
at the moment. Theoretically, our results generally match the first-order query complexities of classical
gradient descent. For convex optimization, however, there exists faster (and in fact optimal) gradient
methods due to Nesterov [62, 64], especially in the smooth setting. An interesting future work is
whether the zeroth-order quantum gradient methods can match the accelerated convergence rates of
the classical first-order methods. Moreover, the precision requirements are stringent to achieve the
presented query complexities. As such, in the white-box setting, other quantum LP/SDP solvers can
have better overall complexity in some regimes. Therefore, alleviating the precision requirement, as
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well as developing more structure-aware zeroth-order quantum algorithms can be interesting future
directions.
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Justification: Our main claims are mostly theoretical. We have summarized our main results
in the abstract and introduction accurately.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We briefly discuss the limitation of our work in the concluding remarks.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: All informal theorems we provide in the main text are formally stated in the
supplementary material with proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: This is a theoretical paper, and does not include experimental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

17



Answer: [NA]
Justification: This paper does not include experiments requiring code.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: This paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: This paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: This paper does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in this paper conform in every respect with the NuerIPS
Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This work concerns with theoretical analysis of utilizing quantum computer
for mathematical optimization. We do not believe there are significant societal impacts to be
discussed in detail.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This work is theoretical and does not pose such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: This work does not have any experiments, and cite the original paper for
previous theoretical results and tools.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper is theoretical and does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

21



Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this work does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Technical Appendices and Supplementary Material for
“Fast Zeroth-Order Convex Optimization

with Quantum Gradient Methods”

In this appendix, we provide more thorough preliminaries and background information that supple-
ment the main text. We also state the formal version of the informal theorems from the main text, as
well as their proofs. This appendix is organized as follows:

• In Section A, we establish notation and the class of functions we study in this work. We
also briefly review the quantum protocols for (sub)gradient estimation.

• In Section B, we analyze the efficiency of zeroth-order quantum (sub)gradient methods
instantiated with quantum (sub)gradient applied to black-box convex optimization. We
consider three classes of functions f that are well-behaved with respect to the Euclidean
norm: i) convex and G-Lipschitz; ii) convex and L-smooth (i.e., gradients are L-Lipschitz);
and iii) L-smooth and µ-PL, which also implies µ-strong convexity.

• In Section C, we study the zeroth-order quantum mirror descent and its variants, including
quantum dual averaging and quantum mirror prox. This extends the quantum (sub)gradient
methods from the previous section to non-Euclidean settings (ℓp-space).

• In Section D, we leverage a connection between eigenvalue optimization and semidefinite
programming to apply the quantum mirror descent framework to convex optimization
in white-box settings. We analyze the complexity of this approach applied to solving
semidefinite programs (SDPs), linear programs (LPs), and zero-sum games, and identify
parameter regimes for which our algorithm outperforms the best-known algorithms for
solving these problems.

A Preliminaries

A.1 Notation

We let [d] = {1, . . . , d}. For a finite-dimensional space E , we denote its dual space by E∗. If E ⊂ Rd

is equipped with an arbitrary inner product ⟨·, ·⟩ and norm ∥ · ∥, the dual norm ∥ · ∥∗ is

∥g∥∗ := sup
{x∈Rd:∥x∥≤1}

⟨g, x⟩ .

From Hölder’s inequality, one has

⟨x, y⟩ ≤ ∥x∥∥y∥∗ ∀(x, y) ∈ Rd × Rd.

We let ∥·∥p denote the usual ℓp-norm on Rd for p ∈ [1,∞]:

∥v∥p :=

(
d∑

i=1

|vi|p
)1/p

.

At times, we also work with Schatten norms, which correspond to the ℓp-norms of the singular
values of Hermitian operators in a given Hilbert space. For example, the operator norm ∥·∥op is the
Schatten-∞ norm, and the trace norm ∥ · ∥tr is the Schatten-1 norm. Note that for ℓp-norms, the dual
norm is ∥ · ∥q where

1/p+ 1/q = 1

Hence, the ℓ2-norm is self-dual, i.e., setting ∥ · ∥ = ∥ · ∥2, one has ∥ · ∥∗ = ∥ · ∥2. We define the
(closed) ℓp-ball of radius R centered at c ∈ Rd as Bdp(c,R) := {x ∈ Rn : ∥x− c∥p ≤ R}.
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A.2 Convexity and smoothness

This work is concerned with convex functions f : Rn → [−∞,∞] (taking extended-real values)
which are proper, meaning f(x) > −∞ for all x and f(y) <∞ for some y. For such functions a
subgradient may be defined.

Definition 2 (Subgradient). Let f : Rn → (−∞,∞] be a proper convex function and let x ∈ dom(f).
We say that g ∈ X ∗ is a subgradient of f at x if

f(x̄) ≥ f(x) + ⟨g, x̄− x⟩ ∀x̄ ∈ X . (1)

Equation (1) defines the subgradient inequality, which asserts that the first-order approximation of a
convex function f serves as a global lower bound. Subgradients extend the concept of differentiability
to functions that are nondifferentiable: when f is differentiable, the subgradient is simply the gradient.
The set of all subgradients is called the subdifferential of f at x, which we denote by ∂f(x).

A function f : X → R is G-Lipschitz with respect to ∥ · ∥ on X if

∥g∥∗ ≤ G, ∀x ∈ X , g ∈ ∂f(x).

We say that f is L-smooth with respect to ∥ · ∥ if the gradients∇f are L-Lipschitz continuous:

∥∇f(x)−∇f(x̄)∥∗ ≤ L ∥x− x̄∥ ∀(x, x̄) ∈ X × X .

Note that any twice-continuously differentiable function is L-smooth with respect to ∥ · ∥ on Rd if
and only if

⟨∇2f(x)z, z⟩ ≤ L∥z∥2 for all x, z ∈ Rd.

Smoothness assumptions provide a global quadratic upper bound on the function around a point x:

f(x̄) ≤ f(x) + ⟨∇f(x), x̄− x⟩+ L

2
∥x̄− x∥2 .

A function f is µ-strongly convex on X if there exists a µ > 0 such that

f(x̄) ≥ f(x) + ⟨∇f(x), x̄− x⟩+ µ

2
∥x̄− x∥2.

Collecting these facts, when ∥ · ∥ = ∥ · ∥2 is the Euclidean norm, smoothness implies

∇2f(x) ⪯ LI

and strong convexity implies
∇2f(x) ⪰ µI

for all x ∈ X . The ratio κ = L
µ is called the condition number of f .

The Fenchel conjugate f∗ : Rd → cl(R) of a function f is defined by

f∗(y) := sup
x∈Rd

{⟨x, y⟩ − f(x)} y ∈ Rd.

The conjugate function is defined as the point-wise supremum of affine functions of y, and is therefore
convex by definition. When f is convex and differentiable, f∗ is the Legendre transform of f .

The conjugate function admits a useful identity: the inverse operator for the gradient of f is the
gradient of the conjugate:

∇f∗ = (∇f)−1.

A.3 Quantum gradient estimation

Gradients with suppressed bias. We will use the “low-bias" version of Jordan’s protocol for
quantum gradient estimation restated below, which were introduced by [72] in the context of state
tomography. Such protocols allow for the expectation value of the gradient estimate to be made
arbitrarily close to the true value, independent of the protocol accuracy itself.
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Theorem A.1 (Suppressed-bias gradient estimation ([72, Theorem 31])). Let σ′, δ ∈
(
0, 16

]
and

g ∈ Rd such that ∥g∥∞ ≤ 1
3 . Let b := ⌈log2

(
2
σ′

)
⌉ and B := 2b. If∥∥∥∥∥∥|ψ⟩ − 1√

Bd

∑
x∈Gd

b

exp (2πi⟨g, x⟩) |x⟩

∥∥∥∥∥∥
2

≤ δ

24⌈ln(6d/δ)⌉+ 3
,

given access to 8⌈ln(6d/δ)⌉+ 1 copies of |ψ⟩, we can compute k ∈
[
− 1

2 ,
1
2

]d
satisfying

Pr[∥k − g∥∞ > σ′] ≤ δ and ∥E[k]− g∥∞ ≤ δ.

The procedure has a gate complexity of O
(
d log(dδ ) log(

1
σ′ ) log(

d
δ log(

1
σ′ ))

)
and requires a corre-

sponding circuit depth of O
(
log( 1

σ′ ) log(
d
δ log(

1
σ′ ))

)
.

We utilize the suppressed-bias gradient estimation subroutine above, which we modify such that the
variance is also controlled with noisy evaluation oracles. We start with the following corollary:
Corollary A.1 (Suppressed-bias, low-variance gradient estimation). Let σ ∈

(
0, 13

]
and g ∈ Rd such

that ∥g∥∞ ≤ 1
3 . Let b := ⌈log2 (4/σ)⌉ and B := 2b. If∥∥∥∥∥∥|ψ⟩ − 1√

Bd

∑
x∈Gd

b

exp (2πi⟨g, x⟩) |x⟩

∥∥∥∥∥∥
2

≤ σ2

32⌈ln(8d/σ2)⌉+ 4
,

given access to 8⌈ln(8d/σ2)⌉+ 1 copies of |ψ⟩, we can compute k ∈
[
− 1

2 ,
1
2

]d
satisfying

E[∥k − g∥2∞] ≤ σ2 and ∥E[k]− g∥∞ ≤ σ.

The procedure has a gate complexity O
(
d log2(

√
d/σ) log(1/σ)

)
and requires a corresponding

circuit depth of O
(
log(
√
d/σ) log(1/σ)

)
.

Proof. Define σ ∈
(
0, 13

]
. We use the procedure in Theorem A.1 with parameters σ′ = σ/2,

δ = 3σ2/4. The number of copies, gate complexity, and circuit depth follow by direct substitution
with minor simplifications. It remains to calculate the variance of k − g. Noting that by assumption
and the guarantee on k, it holds that ∥k − g∥∞ < 1, we observe

E[∥k − g∥2∞] ≤ σ2

4
+ Pr[∥k − g∥∞ > σ/2] ≤ σ2,

where the probability is bounded due to the guarantees of Theorem A.1. This completes the proof.

Using the above corollary, we can estimate the gradient of smooth functions with noisy oracles. The
quantum gradient descent algorithm we analyze in Theorems B.1 and B.2 will therefore invoke the
following result at each iterate. In the Euclidean case in Section B, note that ϑ = ϑ∗ =

√
d in the

below statement.
Theorem A.2 (Suppressed-Bias Gradient Estimation of Smooth Functions with Noisy Oracles). Let
f : Rd → R be a G-Lipschitz function with L-Lipschitz gradients in a p ≥ 1 norm ∥·∥, and let θ, σ
be real positive parameters, σ/G ≤ 1. Let 1 ≤ ϑ, ϑ∗ ≤ d be such that

∥x∥ ≤ ϑ∥x∥∞,∀x ∈ Rd

∥x∥∗ ≤ ϑ∗∥x∥∞,∀x ∈ Rd,

satisfying ϑϑ∗ ≤ d. Define r :=
√
2θ√
Lϑ

, and let f̃ be an θ-approximation for f in Bd∞(y, r) for some

y ∈ Rd. Then, if

θ = O

(
σ4

Lϑ2G2 log2
(
dG2/σ2

)) ,
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there exists a procedure that outputs k that satisfies

E[∥k −∇f(y)∥2∗] ≤ (ϑ∗σ)
2 and ∥E[k]−∇f(y)∥∗ ≤ ϑ∗σ,

using 8⌈ln(72dG2/σ2)⌉ + 1 calls to the unitary Uf̃ =
∑

x∈Gd
b
exp

(
2πif̃(y+rx)

3Gr

)
|x⟩ ⟨x|.

The procedure has a gate complexity O
(
d log2(

√
dG/σ) log(G/σ)

)
and circuit depth of

O
(
log(
√
dG/σ) log(G/σ)

)
. The unitary Uf̃ can be implemented using O(1) queries to a bi-

nary oracle for f̃ , or O
(
R0

√
dL/
√
θ
)

to a (GR0)-phase oracle where R0 is a length scale chosen

to ensure that for all x ∈ Bd∞(y, r), f(x) ≤ GR0.

Proof. First, note that by assumption for arbitrary p-norm ∥·∥ with p ≥ 1, we have

|f(x)− f(y)| ≤ G∥x− y∥ ≤ Gϑ∥x− y∥∞,

and

|f(x)− f(y)− ⟨∇f(x), y − x⟩| ≤ L

2
∥x− y∥2 ≤ ϑ2L

2
∥x− y∥2∞.

It suffices to show how to compute∇f(0) by a simple shift of co-ordinates, and by a similar argument
we assume without loss of generality that f(0) = 0. First, note that since f̃ is the θ-approximate
version of f and the gradient∇f is L-Lipschitzness, we have for all x ∈ Gdb :∣∣∣∣∣ f̃(rx)3Gr

− f(rx)

3Gr
+
f(rx)

3Gr
−
〈
∇f(0)
3G

, x

〉∣∣∣∣∣ ≤
∣∣∣∣∣ f̃(rx)3Gr

− f(rx)

3Gr

∣∣∣∣∣+
∣∣∣∣f(rx)3Gr

−
〈
∇f(0)
3G

, x

〉∣∣∣∣
≤ θ

3Gr
+
Lrϑ2

6G

≤
√
2θLϑ

3G
. (2)

Now, let |ψ⟩ := 1√
Bd

∑
x∈Gd

b
exp

(
2πif̃(rx)

3Gr

)
|x⟩. Using the above estimates and the inequality

|eia − eib| ≤ |a− b|, it follows that∥∥∥∥∥∥|ψ⟩ − 1√
Bd

∑
x∈Gd

b

exp

(
2πi

〈
∇f(0)
3G

, x

〉)
|x⟩

∥∥∥∥∥∥
2

≤ 2πmax
x∈Gd

b

∣∣∣∣∣ f̃(rx)3Gr
−
〈
∇f(0)
3G

, x

〉∣∣∣∣∣
Eq.(2)
≤ 2π

√
2θLϑ

3G

≤ (σ/3G)2

32⌈ln(8d/(σ/3G)2)⌉+ 4
,

where the last line follows from our choice of θ in the statement. Since f is G-Lipschitz (in ℓp-norm,
p ≥ 1), we have ∥∇f(0)/3G∥∞ ≤ 1/3, and we can now apply Corollary A.1 with σ → σ/3G to
obtain an estimate k′ satisfying,

E

[∥∥∥∥k′ − ∇f(0)3G

∥∥∥∥2
∗

]
≤ (ϑ∗σ/3G)

2,

and
∥∥∥∥E[k′]− ∇f(0)3G

∥∥∥∥
∗
≤ ϑ∗σ/3G.

Clearly, k = 3Gk′ is an estimate satisfying our desired properties. The number of copies of |ψ⟩
required, the gate complexity, and the circuit depth can be determined by direct substitution. It is
evident that each copy of |ψ⟩ can be prepared using a single call to Uf , resulting in the desired oracle
complexities.
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Quantum subgradients. In the case of minimizing convex and G-Lipschitz functions, which can
be nonsmooth, the gradients might not be available. In that case, we use the subgradient estimation
Lemma 2.1, which is based on [75]; we slightly modify for our purposes, which we prove below.
Note that one can perform a similar analysis with [20, Lemma 2.4].
Lemma A.1 (Subgradient Estimation in arbitrary ℓp-norms). Let r1 > 0, G > 0, ρ ∈ (0, 1/3], and
suppose θ ∈ (0, r1dG/ρ]. Suppose f : Rd → R is a convex function that is G-Lipschitz with respect
to a given p-norm ∥ · ∥ with p ≥ 1, and we have quantum query access to f̃ , which is a θ-approximate
version of f , via a unitary U over a (fine-enough) hypergrid of B∞(x, 2r1). Then we can compute
an approximate subgradient g̃ ∈ Rd at x using O(log(d/ρ)) queries to U and U†, such that with
probability ≥ 1− ρ, we have

f(q) ≥ f(x) + ⟨g̃, q − x⟩ − 232ϑ∗

√
θd3G

ρr1
∥q − x∥ − 2Gϑr1, (3)

where 1 ≤ ϑ, ϑ∗ ≤ d, and ϑϑ∗ ≤ d.

Proof. Let r2 :=
√

θr1ρ
dG and note that r2 ≤ r1. The quantum algorithm chooses a uniformly random

z ∈ B∞(0, r1) and applies Jordan’s quantum algorithm to compute an approximate gradient at z by
approximately evaluating f in superposition over a discrete hypergrid in B∞(z, r2/d).

Since B∞(z, r2/d) ⊆ B1(z, r2), [75, Lemma 17] implies

sup
y∈B∞(0,r2/d)

∣∣∣f(z + y)− f(z)−
〈
y,∇(r2)f(z)

〉∣∣∣ ≤ r22∆
(r2)f(z)

2
. (4)

Also as shown by [75, Lemma 11] and Markov’s inequality we have

∆(r2)f(z) ≤ 2dG

ρr1
(5)

with probability ≥ 1− ρ/2 over the choice of z. If z is such that Equation (5) holds, then we get

sup
y∈B∞(0,r2/d)

∣∣∣f(z + y)− f(z)−
〈
y∇(r2)f(z)

〉∣∣∣ ≤ dGr22
ρr1

= θ.

Also we have by Definition 1

∥f − f̃∥∞ ≤ θ.

Now apply the quantum algorithm of [75, Corollary 15] with r = 2r2/d, c = f(z), g = ∇(r2)f(z),
and B = Gr. This usesO (log(d/ρ)) queries to U and U†, and with probability≥ 1−ρ/2 computes
an approximate gradient g̃ such that∥∥∥∇(r2)f(z)− g̃

∥∥∥
∞
≤ 8 · 42πd

2r2
· θ = 4 · 42 · π

√
θd3G

ρr1
. (6)

Also, if z is such that Equation (5) holds, then by [75, Lemma 10] we get that

sup
g∈∂f(z)

∥∥∥∇(r2)f(z)− g
∥∥∥
1
≤ r2∆

(r2)f(z)

2
≤ dGr2

ρr1
=

√
θdG

ρr1
,

and therefore by the triangle inequality and Equation (6) we get that

sup
g∈∂f(z)

∥g − g̃∥∞ ≤ sup
g∈∂f(z)

∥∥∥g −∇(r2)f(z)
∥∥∥
∞

+
∥∥∥∇(r2)f(z)− g̃

∥∥∥
∞

≤ sup
g∈∂f(z)

∥∥∥g −∇(r2)f(z)
∥∥∥
1
+
∥∥∥∇(r2)f(z)− g̃

∥∥∥
∞

≤

√
θdG

ρr1
+ 4 · 42 · π

√
θd3G

ρr1

< 232

√
θd3G

ρr1
. (7)
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Hence,

sup
g∈∂f(z)

∥g − g̃∥∗ < 232ϑ∗

√
θd3G

ρr1
. (8)

Thus with probability at least 1− ρ, for all y ∈ dom f and for all g ∈ ∂f(z) we have that

f(y) ≥ f(z) + ⟨g, y − z⟩
= f(0) + ⟨g̃, y⟩+ ⟨g − g̃, y⟩+ (f(z)− f(0)) + ⟨g,−z⟩
≥ f(0) + ⟨g̃, y⟩ − | ⟨g − g̃, y⟩ | −G ∥z∥ − ∥g∥∗ ∥z∥
≥ f(0) + ⟨g̃, y⟩ − ∥g − g̃∥∗ ∥y∥ − 2G∥z∥

≥ f(0) + ⟨g̃, y⟩ − 232ϑ∗

√
θd3G

ρr1
∥y∥ − 2Gϑr1.

B Convex optimization with quantum (sub)gradient estimation

B.1 Zeroth-order quantum gradient descent

In order to analyze quantum gradient descent, we need a quantum algorithm for gradient estimation.
As mentioned in the introduction, a core challenge is that quantum gradient estimation algorithms
incur errors that depend on algorithmic parameters, which have to be handled carefully to achieve
compelling convergence rates and query complexities.

B.1.1 Strongly convex functions with Lipschitz gradients

We first analyze the quantum gradient descent for functions with L-Lipschitz gradients (also known
as L-smooth functions in optimization literature). We further assume that f satisfies the Polyak-
Łojasiewicz inequality:

∥∇f(x)∥22 ≥ 2µ (f(x)− f(x⋆)) , (PŁ)

which hereafter we refer to as the µ-PŁ condition, following [46]. Note that the µ-PŁ condition is
implied by, and hence weaker than, µ-strong convexity [46]. 4 Therefore, the results we present
below can be applied to strongly convex functions, and attain the same rate up to constant factors.

Before analyzing the quantum gradient descent equipped with Theorem A.2, we first state a descent
lemma for gradient descent with bias and stochasticity, which are the main ingredients for proving
Theorems B.1 and B.2. The proof largely follows [2], modified appropriately for our setting.

Lemma B.1 (Descent lemma of stochastic gradient descent with bias for smooth functions). Suppose
f : Rd → R has L-Lipschitz gradients. Consider the biased stochastic gradient descent algorithm
xt+1 = xt − ηgt, where gt = ∇f(xt) + bt + nt such that

Et[gt] = ∇f(xt) + bt (⇔ Et[nt] = 0) and Et[∥gt − Et[gt]∥22] := σ2
v , ∀t,

where Et[·] := E [·|xt] denotes expectation conditional on xt. Then, for any step size η ≤ 1
L , the

following is satisfied:

Et

[
f(xt+1)− f(xt)

]
≤ −η

2
∥∇f(xt)∥22 +

η

2
∥bt∥22 +

η2L

2
σ2
v .

Proof. We start with the L-smooth inequality [64, Equation 2.1.6]:

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ L

2
∥y − x∥22. (9)

4In fact, there exist nonconvex functions that satisfy the µ-PŁ condition [78].
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Invoking the above with y ← xt+1 and x← xt, we have

f(xt+1) ≤ f(xt) + ⟨∇f(xt), xt+1 − xt⟩+
L

2
∥xt+1 − xt∥22

= f(xt)− η ⟨∇f(xt), gt⟩+
Lη2

2
∥gt∥22

= f(xt)− η ⟨∇f(xt), gt⟩+
Lη2

2
∥gt − Et[gt] + Et[gt]∥22

= f(xt)− η ⟨∇f(xt), gt⟩+
Lη2

2

(
∥gt − Et[gt]∥22 + ∥Et[gt]∥22 + 2 ⟨gt − Et[gt],Et[gt]⟩

)
.

Taking expectations conditional on xt, we have

Et[f(xt+1)] ≤ f(xt)− η ⟨∇f(xt),Et[gt]⟩+
Lη2

2
Et[∥gt − Et[gt]∥22] + Et[∥Et[gt]∥22]

= f(xt)− η ⟨∇f(xt),∇f(xt) + bt⟩+
Lη2

2

(
Et[∥gt − Et[gt]∥22] + Et[∥∇f(xt) + bt∥22]

)
≤ f(xt)− η ⟨∇f(xt),∇f(xt) + bt⟩+

Lη2

2
σ2
v +

Lη2

2
∥∇f(xt) + bt∥22.

Choose η ≤ 1
L , then we have

Et [f(xt+1)] ≤ f(xt)− η ⟨∇f(xt),∇f(xt) + bt⟩+
Lη2

2
σ2
v +

η

2
∥∇f(xt) + bt∥22

= f(xt) +
η

2

(
−2 ⟨∇f(xt),∇f(xt) + bt⟩+ ∥∇f(xt) + bt∥22

)
+
Lη2

2
σ2
v

= f(xt) +
η

2

(
−∥∇f(xt)∥22 + ∥bt∥22

)
+
Lη2

2
σ2
v ,

where in the last equality we used the following identity:

−2 ⟨a, a+ b⟩+ ∥a+ b∥22 = −∥a∥22 + ∥b∥22.

Lemma B.2 (Stochastic gradient descent with bias for µ-PŁ & smooth functions). Consider the
biased stochastic gradient estimator described in Lemma B.1. Assume f : Rd → R is µ-PŁ as in (PŁ),
which implies µ-strong convexity. Then, after running T iterations of stochastic gradient descent, the
following is satisfied:

E[f(xT )]− f(x⋆) ≤ (1− ηµ)T (f(x0)− f(x⋆)) +
∥b∥22
2µ

+
ηL

2µ
σ2
v .

Proof. First observe that by Lemma B.1 and (PŁ), we have

Et[f(xt+1)]− f(x⋆) + f(x⋆)− f(xt) ≤ −
η

2
∥∇f(xt)∥22 +

η

2
∥bt∥22 +

η2L

2
σ2
v

≤ −ηµ(f(xt)− f(x⋆)) +
η

2
∥bt∥22 +

η2L

2
σ2
v

=⇒ Et[f(xt+1)]− f(x⋆) ≤ (1− ηµ)(f(xt)− f(x⋆)) +
η

2
∥bt∥22 +

η2L

2
σ2
v .

Assuming ∥bt∥22 = ∥b∥22 for all t (due to quanutm gradient estimation, we can ensure all bt are below
some bound which we denote ∥b∥), and unfolding for T iterations, and using the tower law, we have

E[f(xT )]− f(x⋆) ≤ (1− ηµ)T (f(x0)− f(x⋆)) +
T−1∑
k=0

(1− ηµ)k
(
η

2
∥b∥22 +

η2L

2
σ2
v

)
≤ (1− ηµ)T (f(x0)− f(x⋆)) +

∥b∥22
2µ

+
ηL

2µ
σ2
v ,
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where in the last step we used

T−1∑
k=0

(1− c)k ≤
∞∑
k=0

(1− c)k =
1

c
for c ∈ (0, 1).

We are now ready to analyze the convergence of quantum gradient descent for µ-PŁ functions with
L-Lipschitz gradients.
Theorem B.1 (Quantum gradient descent for µ-PŁ & smooth functions). Suppose f : Rd → R is
G-Lipschitz, L-smooth, and µ-PŁ, which also implies µ-strong convexity. Consider the (zeroth-order)
quantum gradient descent xt+1 = xt − ηgt with step size η = 1/L that outputs the last iterate xT
after running T = O(κ log 1/ε) iterations, where the (biased stochastic) gradient gt is estimated via
the quantum gradient estimation in Theorem A.2 on each iteration. Let ε0 := εµ/G2 and κ := L/µ.
Assume that d/ε0 ≥ 1/5, and one has access to θ-evaluation oracle satisfying

θ ≤ ε2µ2

450d3G2L
(
32
⌈
ln
(
360d2G2/(εµ)

)⌉
+ 4
)2 = Θ

(
ε · ε0

d3κ log(d2/ε0)2

)
.

Then, with probability at least 2/3, one can obtain an ε-approximate solution to (OPT) with

Θ̃
(
κ log

(
d2/ε0

))
queries to an θ-approximate binary oracle of f . The procedure has a gate complexity
O
(
d log2(d2/ε0) log(d/ε0)

)
, and corresponding circuit depth of O

(
log(d2/ε0) log (d/ε0)

)
.

With (GR0)-phase oracle access instead, the above complexities must be multiplied by a factor of

O
(
R0

√
dL/
√
θ
)

, where R0 is a length scale chosen to ensure that for all x ∈ Bd∞(y, r), f(x) ≤
GR0.

Proof. We start from Lemma B.2, where we plug in the quantum gradient estimation from Theo-
rem A.2 (with ϑ = ϑ∗ =

√
d). First, for the bias term involving ∥b∥2, we have

∥bt∥22 = ∥Et[gt]−∇f(xt)∥22 ≤ d∥Et[gt]−∇f(xt)∥2∞ ≤ dσ2, ∀t.

Next, for the variance term involving σ2
v , we have

σ2
v := Et[∥gt − Et[gt]∥22] ≤ dEt[∥gt − Et[gt]∥2∞]

≤ 2d
(
Et[∥gt −∇f(xt)∥2∞] + Et[∥∇f(xt)− Et[gt]∥2∞]

)
≤ 4dσ2.

Therefore, we arrive at

E[f(xT )]− f(x⋆) ≤ (1− ηµ)T (f(x0)− f(x⋆)) + (1 + 4ηL)
dσ2

2µ
.

The first term exhibits linear convergence, which we bound by ε/2 as follows. Observe that

T log

(
1

1− µη

)
= T (− log(1− µr)) ≥ − log

(
ε

2(f(x0)− f(x⋆))

)
= log

(
2(f(x0)− f(x⋆))

ε

)
.

Using log(1/ξ) ≥ 1− ξ for ξ ∈ (0, 1), we have

log

(
1

1− µη

)
≤ µη =⇒ 1

µη
≥ 1

log
(

1
1−µη

) .
Thus,

T ≥ 1

µη
log

(
2(f(x0)− f(x⋆))

ε

)
≥ 1

log
(

1
1−µη

) log

(
2(f(x0)− f(x⋆))

ε

)
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suffices to have the first term bounded by ε/2; with η = 1/L, we have T ≥ κ log
(

2(f(x0)−f(x⋆))
ε

)
.

Now, for the combined bias and variance term, we want

(1 + 4ηL)
dσ2

2µ
≤ ε

2
=⇒ σ ≤

√
εµ

d(1 + 4ηL)

η=1/L
=

√
εµ

5d
. (10)

By assumption εµ
dG2 ≤ 5 =⇒ σ

G ≤ 1 as required. Plugging (10) back into the precision requirement
for the evaluation oracle in Theorem A.2, we get:

θ ≤ σ4

2Ld(3G)2 (32⌈ln(72dG2/σ2)⌉+ 4)
2 =

(
εµ
5d

)2
2Ld(3G)2

(
32
⌈
ln
(
72dG2 · 5dεµ

)⌉
+ 4
)2 .

Simplifying the above bound gives the desired result on the precision requirement to the evaluation
oracle. Using our choice of T and applying Markov’s inequality, we get

1

3
≥ Pr [f(xt)− f(x⋆) ≥ 3E [f(xt)− f(x⋆)]]

= Pr [f(xt)− f(x⋆) ≥ ε] .

To complete the proof, for each gradient estimation, we make 8⌈ln(72dG2/σ2)⌉+1 = Θ(log(d2/ε0))
calls to the unitary Uf̃ per Theorem A.2 and using the bound in (10). This gives the total number of

calls in the statement combined with T ≥ κ log
(

2(f(x0)−f(x⋆))
ε

)
we obtained previously. Finally,

for the gate complexity, circuit depth, and phase oracle cost, we again use the bound (10) to the
statement in Theorem A.2.

B.1.2 Convex functions with Lipschitz gradients

We now perform a similar analysis for convex functions with Lipschitz continuous gradients, but not
necessarily strongly convex.

Theorem B.2 (Quantum Gradient Descent for Convex & Smooth Functions). Suppose f : Rd → R is
a convex function with L-Lipschitz gradients. Consider the (zeroth-order) quantum gradient descent
xt+1 = xt−ηgt with step size η = 1/L that outputs the last iterate xT after running T = O(LR2/ε)
iterations, where the (biased stochastic) gradient gt is estimated via the quantum gradient estimation
in Theorem A.2 on each iteration, and R := maxf(x)≤f(x0) ∥x − x⋆∥2. Additionally, assume we
are given access to the value of f(x⋆).5 Let ε0 := ε/(GR). Assume one has access to an θ-precise
evaluation oracle satisfying

θ ≤ ε4

4608R4d3G2L
(
32
⌈
ln
(
1152d2G2R2/ε2

)⌉
+ 4
)2 = Θ

(
ε40G

2

d3L log(d/ε0)2

)
.

Then, with probability at least 2/3, one can obtain an ε-approximate solution with

Θ

(
LR2

ε
log (d/ε0)

)
queries to θ-approximate binary oracle of f . The procedure has gate complexity
O
(
d log2(d/ε0) log(

√
d/ε0)

))
and corresponding circuit depth of O

(
log(d/ε0) log(

√
d/ε0)

)
.

With (GR0)-phase oracle access instead the above complexities must be multiplied by a factor of

O
(
R0

√
dL/
√
θ
)

, where R0 is a length scale chosen to ensure that for all x ∈ Bd
∞(x0, R), f(x) ≤

GR0.
5This can typically be assumed without loss of generality with only polylogarithmic overhead in the inverse

error. This is because as long as a bounded interval containing f(x⋆) is known, we can guess a value and run
our algorithm with that guess. The success of the algorithm can be verified by computing a single gradient at the
final point. This allows the true value of the optimum to be calculated by binary search.
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Proof. We follow the standard convergence proof for gradient descent on smooth and convex objec-
tives (e.g., [51, Theorem 2.9]), with modifications to handle with the bias of the gradient. Define
δt := f(xt+1)− f(x⋆). By convexity and Cauchy-Schwarz we have

δt = f(xt)− f(x⋆) ≤ ⟨∇f(xt), xt − x⋆⟩ ≤ ∥∇f(xt)∥2∥xt − x⋆∥2 ≤ ∥∇f(xt)∥2R,
from which we have the bound δt/R ≤ ∥∇f(xt)∥2. From Lemma B.1, we have:

Et [δt+1] ≤ δt −
η

2
∥∇f(xt)∥22 +

η

2
∥bt∥22 +

η2L

2
σ2
v ,

≤ δt −
η

2
· δ

2
t

R2
+
η

2
∥bt∥22 +

η2L

2
σ2
v

= δt −
1

2L
· δ

2
t

R2
+

1

2L
∥bt∥22 +

1

2L
σ2
v

where we denoted Et := E [·|xt]. The key insight is that, using Theorem A.2, we can suppress both
the bias and variance enough on each iteration to ensure descent. Hence, we demand

∥bt∥2 ≤
δt
2R

and σv ≤
δt
2R

, (11)

which we will justify later. Given that we assumed access to f(x⋆), at each iteration we can compute
the value δt to input to the suppressed-bias quantum gradient algorithm. Then, we have

Et [δt+1] ≤ δt −
δ2t

2LR2
+

1

2L
∥bt∥22 +

1

2L
σ2
v

≤ δt −
δ2t

2LR2
+

δ2t
8LR2

+
δ2t

8LR2

= δt −
1

4L

(
δt
R

)2

.

Taking expectation again and using the law of total expectation, we have

E [δt+1] ≤ E [δt]−
1

4L
E
[(δt
R

)2]
≤ E [δt]−

1

4L

(
E [δt]

R

)2

,

where the last step follows from an application of Jensen’s inequality. Rearranging, we have

1

4LR2
≤ E [δt+1]− E [δt+1]

(E [δt])
2 ≤ E [δt+1]− E [δt+1]

E [δt]E [δt+1]
=

1

E [δt+1]
− 1

E [δt]
.

Rearranging and unfolding, we have

1

E [δt]
≥ 1

E [δt−1]
+

1

4LR2
≥ · · · ≥ 1

δ0
+

t

4LR2
,

where we used E[δt] ≥ E[δt+1] coming from the assurance of descent. By L-smoothness in (9), we
have

δ0 = f(x0)− f(x⋆) ≤
L

2
∥x0 − x⋆∥22 ≤

LR2

2
.

Thus,

1

E [δt]
≥ 1

δ0
+

t

4LR2
≥ 2

LR2
+

t

4LR2
≥ t+ 8

4LR2
=⇒ E [δt] ≤

4LR2

t+ 8
.

This gives the desired scaling in T . It remains to justify the choices in (11). To that end, we again use
Theorem A.2 (with ϑ = ϑ∗ =

√
d). For the bias term ∥bt∥2, we have for all t,

∥bt∥2 = ∥E[gt]−∇f(xt)∥2 ≤
√
dσ.

For the variance term involving σ2
v ,

σ2
v := E[∥gt − E[gt]∥22] ≤ 2

(
E[∥gt −∇f(xt)∥22] + E[∥∇f(xt)− E[gt]∥22]

)
≤ 4dσ2.
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Therefore, it suffices to choose 4dσ2 ≥ σ2
v , ∥bt∥22 to compute the precision requirement on the

evaluation oracle from Theorem A.2. We will assume that once we observe that δt+1 ≤ ε, we
terminate the algorithm, and so δt in the bias and variance requirements in (11) is lower bounded by
ε. Thus, we only have to suppress the bias and variance enough such that

σ2 ≤ ε2

16R2d
. (12)

We now plug in our condition on σ in (12) to obtain the precision requirement on the evaluation
oracle.

θ ≤ σ4

2Ld(3G)2 (32⌈ln(72dG2/σ2)⌉+ 4)
2 =

(
ε2

16R2d

)2
2Ld(3G)2

(
32
⌈
ln
(
72dG2 · 16R2d

ε2

)⌉
+ 4
)2 .

The statement in the theorem can be obtained by simplifying the above.

To complete the proof, for each gradient estimation, we make 8⌈ln(72dG2/σ2)⌉ + 1 =
Θ(ln(dG2/σ2)) calls to the unitary Uf̃ per Theorem A.2. Using the bound in (12), we have

Θ

(
ln

(
dG2

σ2

) )
= Θ

(
ln

(
d2G2R2

ε2

) )
,

giving the total number of calls in the statement combined with T = O
(

LR2

ε

)
we obtained previously.

Finally, for the gate complexity and circuit depth, we again use the bound (10) to the statement in
Theorem A.2.

Using our choice of T and applying Markov’s inequality, we get

1

3
≥ Pr [f(xt)− f(x⋆) ≥ 3E [f(xt)− f(x⋆)]]

= Pr [f(xt)− f(x⋆) ≥ ε] .

B.2 Zeroth-order quantum projected subgradient method

Suppose that f : Rd → R is G-Lipschitz on X , where X is closed, bounded, and nonempty. Define
K := diam(X ) = supx,y∈X ∥x − y∥2. Define ΠX to be the Euclidean projection onto X . The
subgradient method is defined by the following equations:

xt+1 = ΠX (xt − ηgt) , gt ∈ ∂f(xt). (PSM)

We now analyze the precision requirement on the evaluation oracle to implement the zeroth-order
quantum projected subgradient method for convex and G-Lipschtiz functions, which can be nons-
mooth. The algorithm we analyze is similar to the (classical) subgradient method but equipped with
the quantum subgradient estimation from [75, Lemma 18], which we reproduced in Lemma A.1.
Note that one can perform a similar analysis with [20, Theorem 2.2].
Theorem B.3 (Quantum projected subgradient method). Suppose f : Rd → R is a convex function
that is G-Lipschitz. Consider the zeroth-order quantum projected subgradient method xt+1 =

ΠX (xt − ηg̃t), with η = R
G
√
T

, that outputs the average 1
T

∑T
t=1 xt after running T iterations,

where the g̃t is an approximate subgradient at xt computed via quantum subgradient estimation
in Lemma A.1 on each iteration. Assume one has access to an θ-precise evaluation oracle for f ,
with θ = O

(
ε5

G4R4d4.5

)
. Then, using the quantum projected subgradient method, with probability

at least 2/3, one can obtain an ε-approximate solution to (OPT) with Õ(G2R2/ε2) queries to an
θ-approximate binary oracle of f and Õ((d+TΠ)(GR/ε)2) gates, where TΠ is the cost of performing
the projection onto X .

Proof. Recall that the projected subgradient algorithm iterates as xt+1 = ΠX (xt − ηg̃t) , where g̃s
is a subgradient at xt, and η > 0 is a step size, which we choose later. For analysis purposes, we
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denote the intermediate variable before the projection step as zt. That is, we can write the projected
subgradient method as

zt+1 = xt − ηgt,
xt+1 = ΠX (zt+1).

We analyze the case where the projected subgradient method is performed for T iterations, and
outputs the average: 1

T

∑T
t=1 xt. Following standard analysis of projected subgradient methods (e.g.

[16, Theorem 3.2]), and utilizing Lemma A.1 (where ϑ = ϑ∗ =
√
d when we specifically use the

Euclidean norm ∥ · ∥2, i.e., p = 2), we have:

f(xt)− f(x⋆) ≤ ⟨g̃t, xt − x⋆⟩+ (23d)2

√
θG

ρr1
∥xt − x⋆∥2 + 2G

√
dr1

=
1

η
⟨xt − zt+1, xt − x⋆⟩+ (23d)2

√
θG

ρr1
∥xt − x⋆∥2 + 2G

√
dr1

=
1

2η

(
∥xt − x⋆∥22 − ∥zt+1 − x⋆∥22

)
+
η

2
∥g̃t∥22 + (23d)2

√
θG

ρr1
∥xt − x⋆∥2 + 2G

√
dr1

≤ 1

2η

(
∥xt − x⋆∥22 − ∥zt+1 − x⋆∥22

)
+
η

2
∥g̃t∥22 + (23d)2

√
θG

ρr1
K + 2G

√
dr1

≤ 1

2η

(
∥xt − x⋆∥22 − ∥xt+1 − x⋆∥22

)
+
η

2
∥g̃t∥22 + (23d)2

√
θG

ρr1
K + 2G

√
dr1

≤ 1

2η

(
∥xt − x⋆∥22 − ∥xt+1 − x⋆∥22

)
+
η

2
∥g − g + g̃t∥22 + (23d)2

√
θG

ρr1
K + 2G

√
dr1

≤ 1

2η

(
∥xt − x⋆∥22 − ∥xt+1 − x⋆∥22

)
+G2η + 234η

θd4G

ρr1
+ (23d)2

√
θG

ρr1
K + 2G

√
dr1

where in the second equality we used ∥a∥22 + ∥b∥22 − ∥a− b∥22 = 2⟨a, b⟩, and the second inequality
is since xt+1 = ΠX (zt+1) and hence ∥zt+1 − x⋆∥2 ≥ ∥xt+1 − x⋆∥2. In the last step, we also used
from (8) with ϑ = ϑ∗ =

√
d such that

sup
g∈∂f(z)

∥g − g̃∥2 < 232

√
θd4G

ρr1
.

for some z that is internal to the quantum subgradient estimation algorithm.

Summing over t ∈ [T ], and using ∥x1 − x⋆∥22 ≤ R2, we get

T∑
t=1

(f(xt)− f(x⋆)) ≤
R2

2η
+
ηG2

2
T + 234Tη

θd4G

ρr1
+ (23d)2

√
θG

ρr1
KT + 2G

√
dr1T.

Dividing both sides by T , choosing η = R
G
√
T

, and using f
(

1
T

∑T
t=1 xt

)
≤ 1

T

∑T
t=1 f(xt) by

convexity, we have

f

(
1

T

T∑
t=1

xt

)
− f(x⋆) ≤ RG√

T
+ 234

θd4R√
Tρr1

+ (23d)2

√
θG

ρr1
K + 2G

√
dr1.

We want the above expression to be bounded by ε. First, choose T =
(
3RG
ε

)2
and r1 = ε

6G
√
d

. Then,
the first and the fourth terms are bounded by ε/3. We want to second term to be bounded by ε/3 as
well; before doing so, we first choose the failure probability ρ such that the all T calls of quantum

34



subgradient estimation in Lemma A.1 succeed with (overall) probability ≥ 2/3. Observe that, if we
choose ρ = 1/(3T ), then the probability that none of the T subroutines fail is:(

1− 1

3T

)T

≥ 1− T

3T
=

2

3
.

Note that the above bound holds even when each call of the quantum subgradient estimation is
dependent; indeed, by union bound, at least one call of the quantum subgradient estimation fails is at
most T · 1/(3T ) ≤ 1/3, or equivalently, the probability that none of the T subroutines fails is ≥ 2/3.
With our choice T =

(
3RG
ε

)2
, we have ρ = ε2

27G2R2 . Given our choice the second term becomes

234
θd4R√
Tρr1

≤ (234 · 9 · 6)d
4.5θG2R2

ε2
,

and the precision requirement on the evaluation oracle θ is

(234 · 9 · 6)d
4.5θG2R2

ε2
+ (23d)2 ·K ·

(
θG · 27G

2R2

ε2
· 6G
√
d

ε

)1/2

≤ ε

3
.

Solving for θ, we get θ = O
(

ε5

G4R4d4.5

)
, completing the proof.

Finally, from Lemma 18 in [75] the discrete hypergrid used in the subgradient estimation algorithm

has radius r = 2r2
d , with r2 :=

√
θr1ρ
dG , giving the phase oracle cost.

C Generalizing to non-Euclidean geometries

We have seen that one can obtain dimension-free oracle complexities when the objective function f
is Lipschitz in the Euclidean norm. However, if f is well-behaved in some other norm, the schemes
discussed in the previous section may fail to maintain their dimension-free rates. Moreover, many
problems in optimization are defined over non-Euclidean spaces like the probability simplex and the
cone of positive semidefinite matrices.

In [61] Nemirovskii and Yudin observed that one can first define a mapping from the primal space
to the dual space, perform the subgradient update in the dual space, and subsequently map back to
the primal. This approach allows one to better leverage the problem geometry, and is well-suited to
high-dimensional constrained optimization problems. In order to keep the paper self-contained, we
briefly review some concepts that are essential to the mirror descent framework. Then, we prove that
one can instantiate mirror descent with quantum (sub)gradient estimation, and provide specialized
implementations, such as Nesterov’s dual averaging [63] and mirror prox [60].

Note that within this section, we use ∥ · ∥ to denote an arbitrary p-norm (p ≥ 1), and its dual
norm as ∥ · ∥∗.

C.1 Bregman divergence and Bregman projection

The methods we discuss in this section will require distance measures beyond the Euclidean metric.
We work with the Bregman divergence, defined below.
Definition 3 (Bregman divergence). Let P ⊂ Rd be a convex open set. Given a strictly convex
differentiable function Φ : P → R, we define the associated Bregman divergenceDΦ : P×P → R≥0
by

DΦ(x, x̄) := Φ(x)− Φ(x̄)− ⟨∇Φ(x̄), x− x̄⟩ .

Note thatDΦ(x, x̄) is nonnegative for all (x, x̄) ∈ P×P , since Φ is convex. The Bregman divergence
can be interpreted as the level of error present in the first-order Taylor series approximation of Φ at x̄
to Φ(x). Unlike the Euclidean distance, the Bregman divergence is not symmetric. This is because
the Bregman divergence is computed according to the local geometry with respect to∇Φ at x̄.

The following identity will be useful in our analysis later:
⟨∇Φ(x)−∇Φ(x̄), x− w⟩ = DΦ(x, x̄) +DΦ(w, x)−DΦ(w, x̄). (13)

For a closed convex set X ⊆ P , the Bregman projection ΠΦ
X : P → X of a point x ∈ Rd onto X is

defined as ΠΦ
X (x̄) := argminx∈X DΦ(x, x̄). Note that the Bregman projection is uniquely defined

since Φ is strictly convex.
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Rd
X

P
•xt

•xt+1

•∇Φ(xt)

•zt+1

• x̄t+1

∇Φ

∇Φ−1

−ηgt

ΠΦ
X

Figure 2: One iteration of mirror descent. At iteration t, the point xt ∈ X in the primal space P is
mapped into the dual space Rd, where a subgradient step can be taken. Upon mapping back to P , the
Bregman projection ΠΦ

X is applied to obtain the point xt+1 in X .

C.2 Methods of mirror descent

Mirror decent fundamentally applies a primal-dual approach to convex optimization, relying on the
ability to map points from a primal ambient space P to its dual space Rd (and vise-versa). This
mapping is defined as the gradient of a mirror map, which we formally define next. For more details
on mirror maps, we refer the reader to [16, Section 4.1].

Definition 4 (Mirror map). Let P ⊂ Rd be a convex open set that contains X in its closure, i.e.,
X ⊂ cl(P). Further assume that the intersection of X and P is nonempty. A mirror map Φ : P → R
is a strictly convex, differentiable function, whose gradient∇Φ satisfies the following:

1. The gradient of Φ takes all possible values in Rd, i.e.,∇Φ(P) = Rd.

2. The gradient of Φ diverges on the boundary of P , i.e., limx→∂P ∥∇Φ(x)∥ =∞.

At each iterate t of a mirror descent algorithm, a primal point xt ∈ X ∩ P is mapped to a point
∇Φ(xt) ∈ Rd in the dual space. From here, a subgradient step (with step length η) is taken in an
improving direction with respect to the dual. One can compactly write the mirror descent iterate as

xt+1 = ΠΦ
X
(
∇Φ−1 (∇Φ(xt)− ηgt)

)
, gt ∈ ∂f(xt). (MD)

The following lemma from [16] illustrates how the Bregman divergence functions similar to the
Euclidean norm squared in terms of projections.

Lemma C.1 (Lemma 4.1 in [16]). Let x ∈ X ∩ P and x̄ ∈ P . Then,〈
∇Φ

(
ΠΦ

X (x̄)
)
−∇Φ(x̄),ΠΦ

X (x̄)− x
〉
≤ 0 =⇒ DΦ

(
x,ΠΦ

X (x̄)
)
+DΦ

(
ΠΦ

X (x̄), x̄
)
≤ DΦ(x, x̄).

Adapting a standard convergence proof for mirror descent (see, e.g., [16, Theorem 4.2]) to account
for quantum subgradient estimation suffices to prove the following result for ℓp and Schatten norms.

Theorem C.1 (Mirror Descent Using Quantum Subgradient Estimation). Let X ⊆ Rd be a closed
and bounded convex set equipped with a given p-norm ∥ · ∥ with p ≥ 1. Denote K := diam(X ) =
supx,y∈X ∥x − y∥. Suppose f : Rd → R is a convex function that is G-Lipschitz with respect to
∥ · ∥ and attains its minimum at x⋆ ∈ X ∩ P . Let Φ be a mirror map that is µ-strongly convex on
X ∩P with respect to ∥ · ∥. Suppose we are given a point x1 ∈ X ∩P and define R2 = DΦ(x

⋆, x1).
Assume one has access to an θ-precise binary oracle for f , with

θ = O
(

µε5

G4R2K2ϑ2∗ϑd
3

)
.

Consider the zeroth-order quantum mirror descent method

xt+1 = ΠΦ
X
(
∇Φ−1 (∇Φ(xt)− ηg̃t)

)
, (MD)
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with η = R
G

√
µ
T , that outputs the average 1

T

∑T
t=1 xt after running T iterations, where the g̃t is an

approximate element of ∂f(xt) estimated via the quantum subgradient estimation in Lemma A.1
at each iterate. Then, with probability at least 2/3, one can obtain an ε-approximate solution with

Õ
((

GR√
µε

)2)
queries to θ-approximate evaluation oracle of f and Õ

(
(d + Tnext)

(
GR√
µε

)2)
gates,

where Tnext is the time to carry out the operations necessary to progress to the next iterate.

Proof. From Lemma A.1, the output g̃ satisfies the following with at least 1− ρ probability:

f(q) ≥ f(x) + ⟨g̃, q − x⟩ − 232ϑ∗

√
θd3G

ρr1
∥q − x∥ − 2Gϑr1,

where 1 ≤ ϑ, ϑ∗ ≤ d and ϑϑ∗ ≤ d. With q ← x⋆ and rearranging, we have the following:

Ξ1 := 232ϑ∗

√
θd3G

ρr1
K + 2Gϑr1 (14)

≥ 232ϑ∗

√
θd3G

ρr1
∥x⋆ − x∥+ 2Gϑr1

≥ f(x)− f(x⋆) + ⟨g̃, x⋆ − x⟩ ,
where we also define the quantity Ξ1.

Continuing, we have
f(xt)− f(x⋆) ≤ ⟨g̃t, xt − x⋆⟩+ Ξ1

Eq. (MD)
=

1

η
⟨∇Φ(xt)−∇Φ(x̄t+1), xt − x⋆⟩+ Ξ1

Eq. (13)
=

1

η
(DΦ (x⋆, xt) +DΦ (xt, x̄t+1)−DΦ (x⋆, x̄t+1)) + Ξ1

Lem. C.1
≤ 1

η
(DΦ (x⋆, xt) +DΦ (xt, x̄t+1)−DΦ (x⋆, xt+1)−DΦ (xt+1, x̄t+1)) + Ξ1.

The term DΦ (x⋆, xt)−DΦ (x⋆, xt+1) leads to a telescopic sum when summing over t ∈ [T ]. What
remains is to bound the other term using µ-strong convexity of the mirror map combined with the
identity

az − bz2 ≤ a2

4b
, ∀z ∈ R.

Indeed,
DΦ (xt, x̄t+1)−DΦ (xt+1, x̄t+1) = Φ(xt)− Φ(xt+1)− ⟨∇Φ(x̄t+1), xt − xt+1⟩

≤ ⟨∇Φ(xt)−∇Φ(x̄t+1), xt − xt+1⟩ −
µ

2
∥xt − xt+1∥2

= η ⟨g̃t, xt − xt+1⟩ −
µ

2
∥xt − xt+1∥2

≤ η ∥g̃t∥∗ ∥xt − xt+1∥ −
µ

2
∥xt − xt+1∥2

≤ η ∥g̃t − g + g∥∗ ∥xt − xt+1∥ −
µ

2
∥xt − xt+1∥2

≤ η ((∥g̃t − g∥∗ +G) ∥xt − xt+1∥)−
µ

2
∥xt − xt+1∥2

≤ (η(G+ Ξ2))
2

2µ

≤ η2G2

µ
+
η2Ξ2

2

µ
, (15)

where in the second to last step, we used from (8):

sup
g∈∂f(z)

∥g − g̃∥∗ < 232ϑ∗

√
θd3G

ρr1
:= Ξ2, (16)
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for some z that is internal to the quantum subgradient estimation algorithm.

Therefore,
T∑

s=1

(f(xt)− f(x⋆)) ≤
DΦ(x

⋆, x1)

η
+ η

G2

µ
T + TΞ1 + TΞ2

2

η

µ

≤ R2

η
+ η

G2

µ
T +

[
232ϑ∗

√
θd3G

ρr1
K + 2Gϑr1 + (23)4

η

µ
ϑ2∗
θd3G

ρr1

]
T

Dividing both sides by T , taking η = R
G

√
µ
T and using convexity, i.e.,

f

(
1

T

T∑
s=1

xt

)
≤ 1

T

T∑
s=1

f(xt)

one obtains

f

(
1

T

T∑
s=1

xt

)
− f(x⋆) ≤ 2GR√

µT
+O

(
ϑ∗

√
θd3G

ρr1
K +Gϑr1 +

R√
µT

ϑ2∗
θd3

ρr1

)
. (17)

We want the above expression to be bounded by ε. First, choose T =
(

6GR√
µε

)2
and r1 = O

(
ε

Gϑ

)
.

Then, the first and the fourth terms are bounded by ε/3. We want the middle terms to be bounded
by ε/3 as well; before doing so, we first choose the failure probability ρ such that the all T calls of
quantum subgradient estimation in Lemma A.1 succeed with (overall) probability ≥ 2/3. Observe
that, if we choose ρ = 1/(3T ), then the probability that none of the T subroutines fail is:(

1− 1

3T

)T

≥ 1− T

3T
=

2

3
.

Note that the above bound holds even when each call of the quantum subgradient estimation is
dependent; indeed, by union bound, at least one call of the quantum subgradient estimation fails is at
most T · 1/(3T ) ≤ 1/3, or equivalently, the probability that none of the T subroutines fails is ≥ 2/3.

With our choice T =
(

6GR√
µε

)2
, we have ρ = O

(
µε2

G2R2

)
.

Given these choices, the precision requirement on the evaluation oracle θ is determined by the middle
two terms in (17), giving

θ = O
(

µε5

G4R2K2ϑ2∗ϑd
3

)
.

We now review some common setups for the mirror descent framework that are relevant to the
sequel, following a discussion from [16, Chapter 4.3]. When one takes Φ(x) = 1

2 ∥x∥
2
2 on P = Rd,

the mirror map is strongly convex with respect to ∥ · ∥2 and the associated Bregman divergence is
DΦ(x, x̄) =

1
2 ∥x− x̄∥

2
2. In other words, mirror descent reduces to the projected subgradient method

described in Theorem B.3.

For the simplex ∆d = {x ∈ Rd
≥0 :

∑
i∈[d] xi = 1}, one can take the mirror map to be the negative

entropy
Φ(x) =

∑
i∈[d]

xi log xi

on P = Rd
+, which is 1-strongly convex with respect to ∥ · ∥1. This setting is relevant for linear

programming and zero-sum games. When X = ∆d, one has x1 = (1/d, . . . , 1/d), R2 = log(d) and
projection is simply defined as renormalization by the ℓ1-norm, i.e., for any x̄ ∈ P

ΠΦ
∆d : x̄ 7→ x̄

∥x̄∥1
.
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As a consequence, the iterates also admit a simple closed form expression:

xt+1,i =
xt,ie

−ηgt,i∑
i∈[d] xt,ie

−ηgt,i
, gt ∈ ∂f(xt), i ∈ [d], (18)

and the associated Bregman divergence is the Kullback-Leibler (KL) divergence

DΦ(x, x̄) =
∑
i∈[d]

xi log(xi/x̄i).

Mirror descent can also be applied to solve semidefinite programs by casting the problem into the
form of minimizing a convex function f over the spectraplex

Sd := {X ∈ Rd×d : tr(X) = 1, X ⪰ 0}.

Here, the relevant mirror map is the negative von Neumann entropy

Φ(X) := tr (X log(X)) ,

which is 1
2 -strongly convex with respect to the trace norm ∥ · ∥tr (i.e., the ℓ1-norm of the singular

values). The associated Bregman divergence is the quantum relative entropy

DΦ(X,X) = S(X∥X) := tr
(
X
(
log(X)− log(X

))
,

and the Bregman projection is simply renormalization with respect to trace:

ΠΦ
Sd : X 7→ X

tr(X)
.

In fine, the iterates take the form

Xt+1 =
exp(log(Xt)− ηgt)

tr (exp(log(Xt)− ηgt))
. (19)

For X = Sd, one can choose the starting point X = 1
dI , which gives R2 = log(d).

Observe that for functions f that are 1-Lipschitz with respect to ∥·∥1, mirror descent with the negative

entropy mirror map enjoys a O
(√

log(d)
T

)
rate of convergence, whereas the projected subgradient

method in Theorem B.3 only achieves a rate of O
(√

d
T

)
. Moreover, the rate of convergence for the

spectraplex is the same as that for the simplex.

As noted in [16, Chapter 4.2], one can re-write mirror descent iterates as

xs+1 = argmin
x∈X∩P

DΦ(x, x̄s+1)

= argmin
x∈X∩P

Φ(x)− ⟨∇Φ(x̄s+1), x⟩ (20)

= argmin
x∈X∩P

Φ(x)− ⟨∇Φ(xs)− ηgs, x⟩

= argmin
x∈X∩P

η ⟨gs, x⟩+DΦ(x, xs). (21)

Next, we will see how (20) is used to motivate Nesterov’s dual averaging [63], while (21) yields
the so-called mirror prox perspective [9, 60]. The former can be more efficient than the prototypical
mirror descent scheme in some settings, whereas mirror prox will allow us to work with functions
whose gradients are Lipschitz in arbitrary norms.

C.3 Dual averaging

Now we discuss an alternative instantiation of the mirror descent algorithm, commonly referred to
as Nesterov’s dual averaging or lazy mirror descent. The basic idea is to replace the mirror descent
update (MD) with

∇Φ(yt+1) = ∇Φ(xt)− ηgt, (DA)
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with yt+1 ∈ P , and x1 is chosen such that ∇Φ(x1) = 0. If asked to return a primal point, we project
the current dual point using

xt ∈ argmin
x∈X∩P

{
η

t−1∑
s=1

⟨g̃s, x⟩+Φ(x)

}
. (DA-Project)

Theorem C.2 (Quantum Dual Averaging). Let X ⊆ Rd be a closed and bounded, convex set
equipped with a given p-norm ∥ · ∥ with p ≥ 1. Denote K := diam(X ) = supx,y∈X ∥x − y∥.
Suppose f : Rd → R is a convex function that is G-Lipschitz with respect to ∥ · ∥ and attains its
minimum at x⋆ ∈ X ∩ P . Let Φ be a mirror map that is µ-strongly convex on X ∩ P with respect to
∥ · ∥. Assume one has access to an θ-precise evaluation oracle for f , with

θ = O
(

µε5

G4R2K2ϑ2∗ϑd
3

)
,

and access to a starting point x1 ∈ X ∩ P such that ∇Φ(x1) = 0, then define R2 = DΦ(x
⋆, x1).

Consider the zeroth-order quantum lazy mirror descent method (DA) with η = R
G

√
µ
T , that outputs

the average 1
T

∑T
t=1 xt (using Equation (DA-Project)) after running T iterations, where the g̃t is

an approximate element of ∂f(xt) estimated via the quantum subgradient estimation in Lemma A.1
at each iterate. Then, with probability at least 2/3, one can obtain an ε-approximate solution with

Õ
((

GR√
µε

)2)
queries to θ-approximate binary oracle of f and Õ

(
d
(

GR√
µε

)2)
gates.

Proof. As usual, let g̃t be the output of the quantum subgradient algorithm for xt. Let s ∈ {1, . . . , T}
and define

ψs(x) := η

s∑
t=1

⟨g̃t, x⟩+Φ(x)

Also define

xs ∈ argmin
x∈X∩P

{
η

s−1∑
t=1

⟨g̃t, x⟩+Φ(x)

}
= argmin

x∈X∩P
{ψs−1(x)} . (22)

Since Φ is µ-strongly convex, one has that ψs is also µ-strongly convex for all s. Therefore,

ψs(xs+1)− ψs(xs) ≤ ⟨∇ψs(xs+1), xs+1 − xs⟩ −
µ

2
∥xs+1 − xs∥2

≤ −µ
2
∥xs+1 − xs∥2 , (23)

where the second inequality follows from the first-order optimality condition. We also have

ψs(xs+1)− ψs(xs) = ψs−1(xs+1)− ψs−1(xs) + η ⟨g̃s, xs+1 − xs⟩
≥ η ⟨g̃s, xs+1 − xs⟩ . (24)

Combining (23) and (24), one obtains
µ

2
∥xs+1 − xs∥2 ≤ η ⟨g̃s, xs − xs+1⟩ ≤ η∥g̃s∥∗ ∥xs+1 − xs∥

≤ η ((∥g̃t − g∥∗ +G) ∥xs+1 − xs∥) ,
so following the derivation of (15), we have

η ⟨g̃s, xs − xs+1⟩ ≤ η∥g̃s∥∗ ∥xs+1 − xs∥

≤ η ((∥g̃s − g∥∗ +G) ∥xs+1 − xs∥)−
µ

2
∥xs+1 − xs∥2

≤ η2G2

µ
+
η2Ξ2

2

µ
, (25)

with Ξ2 as in Equation (16). Next, we claim that for any x ∈ X ∩ P and any r ≥ 0.
r∑

s=1

⟨g̃s, xs − x⟩ ≤
r∑

s=1

⟨g̃s, xs − xs+1⟩+
DΦ(x, x1)

η
, (26)
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which using the definition of Bregman divergence and the fact that∇Φ(x1) = 0, this amounts to
r∑

s=1

⟨g̃s, xs − x⟩ ≤
r∑

s=1

⟨g̃s, xs − xs+1⟩+
Φ(x)− Φ(x1)

η
. (27)

By rearranging, Equation (27) can be equivalently expressed as
r∑

s=1

⟨g̃s, xs+1⟩+
Φ(x1)

η
≤

r∑
s=1

⟨g̃s, x⟩+
Φ(x)

η
. (28)

We prove (28) by induction on r, and hence prove Equation (26). Note that the result trivially holds
at r = 0 since x1 ∈ argminx∈X∩P Φ(x). Assuming by induction the statement holds for r − 1, it
follows that at r, we have

r∑
s=1

⟨g̃s, xs+1⟩+
Φ(x1)

η
≤ ⟨g̃r, xr+1⟩+

r−1∑
s=1

⟨g̃s, xs+1⟩+
Φ(x1)

η

≤ ⟨g̃r, xr+1⟩+
r−1∑
s=1

⟨g̃s, xr+1⟩+
Φ(xr+1)

η

≤
r∑

s=1

⟨g̃s, x⟩+
Φ(x)

η
,

Thus, by induction the statement holds for all r. The second-to-last inequality follows from the
induction hypothesis, and the last inequality holds by the definition of xr+1 (Equation (22)). Hence
combining Equation (26) with Equation (25), we have for any optimizer x⋆ and r = T

T∑
s=1

⟨g̃s, xs − x⋆⟩ ≤
ηG2T

µ
+
R2

η
+
ηΞ2

2T

µ
,

where by definition R2 = DΦ(x
⋆, x1). Continuing like in the proof of Theorem C.1 with Ξ1 as in

Equation (14)

f

(
1

T

T∑
s=1

xs

)
− f(x⋆) ≤ 1

T

∑
s∈[T ]

(f(xs)− f(x⋆))

≤ 1

T

∑
s∈[T ]

⟨g̃s, xs − x⋆⟩+ Ξ1

≤ R2

Tη
+
ηG2

µ
+
ηΞ2

2

µ
+ Ξ1.

One will note that the last line is exactly Equation (15) from the proof of Theorem C.1 but divided by
T . Hence, the same T , r1, ρ, η and θ from the proof Theorem C.1 suffice to ensure the sub-optimality
is ε.

C.4 Mirror prox

Mirror prox is a variant of mirror descent that enables one to achieve a rate 1/T for smooth functions,
and is described by the following set of equations:

∇Φ(z̄t+1) = ∇Φ(xt)− η∇f(xt)
zt+1 ∈ argmin

x∈X∩P
DΦ(x, z̄t+1) and

∇Φ(x̄t+1) = ∇Φ(xt)− η∇f(zt+1)

xt+1 ∈ argmin
x∈X∩P

DΦ(x, x̄t+1). (MP)

Theorem C.3 (Quantum Mirror Prox). Let X ⊆ Rd be a closed and bounded, convex set equipped
with a given p-norm ∥ · ∥ with p ≥ 1. Denote K := diam(X ) = supx,y∈X ∥x − y∥. Suppose
f : Rd → R is a convex function that is G-Lipschitz and L-smooth with respect to ∥ · ∥ and attains
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ΠΦ
X

Figure 3: Dual averaging.

its minimum at x⋆ ∈ X ∩ P . Let Φ be a mirror map that is µ-strongly convex on X ∩ P with respect
to ∥ · ∥. Suppose we are given a point x1 ∈ X ∩ P and define R2 = DΦ(x

⋆, x1). Assume one has
access to an θ-precise binary evaluation oracle for f , with

θ = O

(
µ4ε4

L5ϑ2ϑ4∗G
2K4 log

(√
dϑ∗LKG/µε)

)2
)
,

Consider the zeroth-order quantum mirror prox (MP), with η = µ
L , that outputs the running average

1
T

∑T−1
s=0 zs+1 after T iterations. Then, with probability at least 2/3, one can obtain an ε-approximate

solution with Õ
(

LR2

µε

)
queries to θ-approximate binary oracle of f and Õ

(
(d + Tnext)

(
GR√
µε

)2)
gates, where Tnext is the time to carry out the operations necessary to progress to the next iterate.

Proof. Let gy be the estimate of the gradient∇f(y) returned by quantum gradient estimation. Let
x⋆ ∈ X ∩ P be a minimizer. Then,

f(zt+1)− f(x⋆)
≤ ⟨∇f(zt+1), zt+1 − x⋆⟩
=
〈
gzt+1

, zt+1 − x⋆
〉
+
〈
∇f(zt+1)− gzt+1

, zt+1 − x⋆
〉

=
〈
gzt+1 , xt+1 − x⋆

〉
+ ⟨gxt , zt+1 − xt+1⟩+

〈
gzt+1 − gxt , zt+1 − xt+1

〉
+
〈
∇f(zt+1)− gzt+1

, zt+1 − x⋆
〉
.

We start by bounding the first three terms in the above expression.

For the first term, we have

η
〈
gzt+1

, xt+1 − x⋆
〉 Eq. (MP)

= ⟨∇Φ(xt)−∇Φ(x̄t+1), xt+1 − x⋆⟩
Lem. C.1
≤ ⟨∇Φ(xt)−∇Φ(xt+1), xt+1 − x⋆⟩

Eq. (13)
= DΦ(x

⋆, xt)−DΦ(x
⋆, xt+1)−DΦ(xt+1, xt).

The second term is bounded using the same steps as the first, and accounting for strong convexity of
the mirror map:

η ⟨gxt
, zt+1 − xt+1⟩

Eq. (MP)
= ⟨∇Φ(xt)−∇Φ(z̄t+1), zt+1 − xt+1⟩

Lem. C.1
≤ ⟨∇Φ(xt)−∇Φ(zt+1), zt+1 − xt+1⟩

Eq. (13)
= DΦ(xt+1, xt)−DΦ(xt+1, zt+1)−DΦ(zt+1, xt)

≤ DΦ(xt+1, xt)−
µ

2
∥xt+1 − zt+1∥2 −

µ

2
∥zt+1 − xt∥2 .
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For the third term, we have〈
gzt+1

− gxt
, zt+1 − xt+1

〉
≤
〈
gzt+1

−∇f(zt+1), zt+1 − xt+1

〉
+ ⟨gxt

−∇f(xt), zt+1 − xt+1⟩
+ ⟨∇f(zt+1)−∇f(xt), zt+1 − xt+1⟩

≤ ∥∇f(zt+1)−∇f(xt)∥∗∥zt+1 − xt+1∥+ ∥gxt −∇f(xt)∥∗K + ∥gzt+1 −∇f(zt+1)∥∗K
≤ L∥zt+1 − xt∥∥zt+1 − xt+1∥+ ∥gxt

−∇f(xt)∥∗K + ∥gzt+1
−∇f(zt+1)∥∗K

≤ L

2
∥zt+1 − xt∥2 +

L

2
∥zt+1 − xt+1∥2 + ∥gxt

−∇f(xt)∥∗K + ∥gzt+1
−∇f(zt+1)∥∗K,

where we used that K is a bound on the ∥·∥ diameter of X ∩ P and zt+1, xt+1, x
⋆ ∈ X ∩ P .

Summing the above terms and setting η = µ
L gives

f(zt+1)− f(x⋆) ≤
L

µ
[D(x⋆, xt)−D(x⋆, xt+1)] +

LK

µ
∥gxt

−∇f(xt)∥∗

+ 2
LK

µ
∥gzt+1

−∇f(zt+1)∥∗.

Next we take the expectation of the future iterates conditioned on zt+1:

f(zt+1)− f(x) ≤
L

µ
[D(x⋆, xt)− E[D(x⋆, xt+1)|zt+1]] +

LK

µ
∥gxt −∇f(xt)∥∗

+ 2
LK

µ
E[∥gzt+1

−∇f(zt+1)∥∗|zt+1].

Note that given zt+1, gxt
is uniquely determined by the strong convexity of DΦ, and hence xt by

MP, so E[h(xt, gxt
)|zt+1] = h(xt, gxt

) for any deterministic h. Continuing, we have that

E[∥gzt+1 −∇f(zt+1)∥∗|zt+1] ≤ E[∥gzt+1 − E[gzt+1 |zt+1]∥∗|zt+1] + ∥∇f(zt+1)− E[gzt+1 |zt+1]∥∗
≤ ϑ∗E[∥gzt+1

− E[gzt+1
|zt+1]∥∞|zt+1]

+ ϑ∗∥∇f(zt+1)− E[gzt+1
|zt+1]∥∞

≤ 2ϑ∗σ.

Then we condition on xt+1:

E[f(zt+1)|xt]− f(x) ≤
D(x, xt)− E[D(x, xt+1)|xt]

η
+ E[∥gxt −∇f(xt)∥2|xt]K + 4ϑ∗

LK

µ
σ.

Similarly, we have

E[∥gxt −∇f(xt)∥∗|xt] ≤ 2ϑ∗σ.

Taking expectation over everything and using the tower law, we get:

E[f(zt+1)]− f(x⋆) ≤
L

µ
[E[D(x, xt)]− E[D(x⋆, xt+1)]] + 6ϑ∗

LK

µ
σ.

Averaging over and using convexity, we have

E[f

(
T∑

t=1

zt
T

)
− f(x⋆)] ≤ 1

T

T∑
t=1

E[f(zt)− f(x⋆)]

≤ L (D(x⋆, x1)− E[D(x⋆, xT )])

µT
+ 6ϑ∗

LK

µ
σ

≤ L (D(x⋆, x1))

µT
+ 6ϑ∗

LK

µ
σ

≤ LR2

µT
+ 6ϑ∗

LK

µ
σ.
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Now, say we set T = O
(

LR2

µε

)
and σ = O

(
εµ

ϑ∗LK

)
. We can then apply Theorem A.2 to get the

required precision

θ = Θ

(
µ4ε4

L5ϑ2ϑ4∗G
2K4 log

(√
dϑ∗LKG/(µε))

)2
)
.

If use our choice of T and apply Markov’s inequality, then we get

Pr

[
f

(
T−1∑
t=0

zt+1

T

)
− f(x⋆) ≥ ε

]
≤ 1

3
.

D Application to SDPs, LPs and zero-sum games

D.1 From SDP to eigenvalue optimization

Following a discussion found in [81, Chapter 11.1], we will review how the dual problem (D) can be
reformulated as an eigenvalue optimization problem. We are interested in solving the primal and dual
SDPs

sup
X∈Rn×n

{tr(CX) : tr(X) = rp, tr (AiX) ≤ bi for all i ∈ [m], X ⪰ 0} , (P)

and

inf
(y0,y)∈R×Rm

≥0

rpy0 + b⊤y : y0I +
∑
i∈[m]

yiAi − C ⪰ 0

 , (D)

where A0 = I , b0 = rp and ∥A1∥op, . . . , ∥Am∥op, ∥C∥op ≤ 1, ∥b∥∞ ≤ rp.

We say that (X, y0, y) ∈ Rn×n × R × Rm
≥0 is a primal-dual feasible solution if

tr(X) = rp, tr (AiX) ≤ bi for all i ∈ [m], X ⪰ 0, y0I +
∑
i∈[m]

yiAi − C ⪰ 0.

A primal-dual feasible solution (X, y0, y) is strictly feasible when X and y0I +
∑

i∈[m] yiAi − C
are positive definite.

The primal problem (P) is strictly feasible by assumption. The dual problem (D) is also strictly
feasible since ∥C∥op ≤ 1 and A0 = I , so strong duality holds. Consequently, any primal-dual
optimal solution (X⋆, y⋆0 , y

⋆) to (P)-(D) has zero duality gap:

tr(CX⋆)− rpy⋆0 − b⊤y⋆ = 0,

and the optimal objective value OPT := tr(CX⋆) = rpy
⋆
0 + b⊤y⋆ is finite and attained. By Hölder’s

inequality, one has
|OPT| = |tr(CX⋆)| ≤ ∥C∥op∥X⋆∥tr ≤ rp,

since ∥C∥op ≤ 1, tr (X⋆) = rp and X⋆ ⪰ 0. We may thus assume without loss of generality
that there exists a finite value rd ≥ 1 such that ∥(y0, y⋆)∥1 ≤ rd for any dual optimal solution
(y⋆0 , y

⋆) ∈ R × Rm
≥0.

Upon normalizing (b0, b)
⊤ ∈ Rm+1 with respect to its ℓ∞-norm (1, b̃)⊤ 7→ 1/rp(b0, b)

⊤, it is easy
to see that the set of primal-feasible solutions is a subset of the spectraplex

Sn := {X ∈ Rn×n : tr(X) = 1, X ⪰ 0}.

Hence, the primal and dual SDPs (P)-(D) may be written as

max
X∈Sn

{
tr(CX) : tr (AiX) ≤ b̃i for all i ∈ [m]

}
, (P̃)
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and

min
(y0,y)∈R×Rm

≥0

y0 + b̃⊤y : y0I +
∑
i∈[m]

yiAi − C ⪰ 0

 . (D̃)

The optimal objective value of the normalized pair (P̃)-(D̃) is OPT/rp ∈ [−1, 1], and the sets of
optimal solutions to these problems are equivalent up to a constant scaling: if (X⋆, y⋆0 , y

⋆) is optimal
for (P̃)-(D̃), then (RX⋆, y⋆0 , y

⋆) is optimal for (P)-(D).

The Karush-Kuhn-Tucker (KKT) optimality conditions for (P̃)-(D̃) (and hence, (P)-(D)) stipulate that
a primal-dual feasible solution (X⋆, y⋆0 , y

⋆) is optimal if and only if
X⋆Z⋆ = Z⋆X⋆ = 0,

where Z⋆ := y⋆0I+
∑

i∈[m] y
⋆
iAi−C. As a consequence, any optimalX⋆ and Z⋆ are simultaneously

diagonalizable. Letting P ∈ Rn×n be an orthonormal matrix, we may write

X⋆ = PΛX⋆P⊤, Z⋆ = PΛZ⋆P⊤,

where ΛX⋆ and ΛZ⋆ are diagonal matrices whose entries are the nonnegative eigenvalues of X⋆ and
Z⋆, respectively. Since X⋆ ̸= 0 (as tr(X⋆) ̸= 0) and ΛX⋆ΛZ⋆ = 0, it follows

0 = λmin(ΛZ⋆) = λmin

y⋆0I + ∑
i∈[m]

y⋆iAi − C

 = y⋆0 + λmin

∑
i∈[m]

y⋆iAi − C

 .

Rearranging terms, we obtain

y⋆0 = −λmin

∑
i∈[m]

y⋆iAi − C

 = λmax

C − ∑
i∈[m]

y⋆iAi

 , (29)

and thus solving (D̃) is equivalent to solving miny∈Rm
≥0
f(y), where

f(y) := λmax

C − ∑
i∈[m]

yiAi

+ b̃⊤y. (SDP-eig)

Note that this reduction is valid for any nontrivial SDP with a bounded feasible set [42, 81]. The
linear term b̃⊤y may also be incorporated into the λmax(·) term by replacing each Ai with Ai − b̃iI ,
see [70, Section 6.3].

Problem (SDP-eig) is a nonsmooth convex optimization problem and is well-studied in the literature,
see e.g., [52] and the references therein. Before proceeding further, we recite a few important facts to
keep the paper self-contained.

First, note that since b0/rp = 1, by (29) one has

f(y⋆) = λmax

C − ∑
i∈[m]

y⋆iAi

+ b̃⊤y⋆ =
1

rp

(
rpy

⋆
0 + b⊤y⋆

)
:=

1

rp
min

{(y0,y)∈R×Rm
≥0

:y0I+
∑

i∈[m] yiAi−C⪰0}
rpy0 + b⊤y = OPT/rp.

Since dual optimal solutions (y⋆0 , y
⋆) to (D̃) satisfy ∥(y⋆0 , y⋆)⊤∥1 ≤ rd, and y⋆ is also an optimal

solution to (SDP-eig), it follows that (SDP-eig) has a global minimizer in the dilated m-dimensional
simplex

rd∆
m :=

y ∈ Rm
≥0 :

∑
i∈[m]

yi = rd

 .

This motivates us to solve (SDP-eig) with mirror descent using the simplex setup described earlier in
Section C.2.

The complexity of our algorithm will scale with the Lipschitz constant of the objective in (SDP-eig).
The upshot of using mirror descent is that we can choose to work with the norm in which f is
well-behaved.
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Lemma D.1. The objective function f : Rm → R in (SDP-eig) is 2-Lipschitz on Rm with respect to
the ℓ1-norm.

Proof. The idea is to consider the two terms defining f separately, and sum their Lipschitz constants.
By Hölder’s inequality, the Lipschitz constant of the linear term b̃⊤y is simply ∥b̃∥∞ ≤ 1.

For the other term, let M(y) = C −
∑

i∈[m] yiAi, which is a Hermitian matrix for all y ∈ Rm. Thus,
for any (y, ȳ) ∈ Rm × Rm, one has

|λmax(M(y))− λmax(M(ȳ))| ≤ ∥M(y)−M(ȳ)∥op =
∑
i∈[m]

|yi − ȳi| ∥Ai∥op

≤ max
i∈[m]

{∥Ai∥op} ∥y − ȳ∥1,

where the first inequality is a consequence of Weyl’s Perturbation Theorem for Hermitiain matrices.
Since ∥A1∥op, . . . , ∥Am∥op ≤ 1, we have that λmax(M(y)) is 1-Lipschitz with respect to the ℓ1-
norm.

The proof is complete upon summing the Lipschitz constants of λmax(M(y)) and b̃⊤y.

We are now in a position to establish the (black-box) complexity of determining an ε-optimal solution
to the dual SDP (D) using a quantum mirror descent method.
Theorem D.1. Let f : Rm → R be the objective function in (SDP-eig), and let rp, rd ≥ 1 be such
that an optimal solution to the SDP (P)-(D) satisfies tr(X⋆) = rp and ∥y⋆∥1 ≤ rd. Suppose that
one has access to an θ-precise binary evaluation oracle to f , with θ = Õ(ε5/r5pr5dm4.5). Then, with
probability at least 2/3, the quantum mirror descent method described in Theorem C.1 solves (P)-(D)
to additive error ε ∈ (0, 1) using at most Õ

(( rprd
ε

)2)
queries to a binary evaluation oracle for f

and Õ
(
m
( rprd

ε

)2)
gates.

The output is a vector ỹ⋆ ∈ Rm
≥0 such that

(y⋆0 , y
⋆) =

−λmin

∑
i∈[m]

(rd · ỹ⋆i )Ai − C

 , rỹ⋆

 ∈ R × Rm
≥0

is a feasible solution to (D) that satisfies

b0y
⋆
0 + b⊤y⋆ ≤ OPT + ε.

In other words, (y⋆0 , y
⋆) ∈ R × Rm

≥0 is an ε-precise solution to (D).

Proof. Let (A1, . . . , Am, b, C) be the input data defining (P)-(D), and denote the optimal objective
value by OPT. We first normalize b̃ 7→ b/rp and re-scale the input space ỹ 7→ y/rd. With these
modifications, the result in Lemma D.1 certifies that f is 2-Lipschitz over Rm with respect to the
ℓ1-norm, and the optimal objective value of the normalized problem is OPT/rprd. Accordingly, if
we seek to approximate the optimal objective value of (P)-(D) to additive error ε ∈ (0, 1), we must
solve

min
ỹ∈∆m

f(ỹ) := λmax

 1

rd
C −

∑
i∈[m]

ỹiAi

+ b̃⊤ỹ

to precision ε′ := ε/rprd.

The basic idea is to utilize the simplex setup for mirror descent, taking the negative entropy function
as the mirror map Φ(ỹ) =

∑
i∈[m] ỹi log ỹi, and choosing the starting point ỹ = m−11m ∈ ∆m

>0.
Recalling that Φ is 1-strongly convex on ∆m, and that our choice of starting point ensures R =
O(log(m)), the result in Theorem C.1 (taking ϑ = 1 since ∥ · ∥∗ = ∥ · ∥∞) establishes that one can
determine ỹ⋆ ∈ ∆m satisfying

f(ỹ⋆) ≤ OPT
rprd

+
ε

rprd
=⇒ rprd · f(ỹ⋆) ≤ OPT + ε, (30)
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using at most

Qf = Õ

((
1

ε′

)2
)

= Õ
((rprd

ε

)2)
queries to the θ-precise binary evaluation oracle for f and Õ

(
(m+ Tnext)

( rprd
ε

)2)
gates, where

Tnext represents the cost to proceed to the next iterate.

To make the gate complexity explicit, note that Õ (m) work is required to proceed to the next iterate.
After estimating g̃t ∈ Rm at iterate t, we compute the entries of ỹt+1 ∈ ∆m according to (18), setting

ỹt+1,i =
ỹt,ie

−ηgt,i∑
i∈[m] ỹt,ie

−ηgt,i
,

which clearly requires Õ(m) operations. One can also reduce storage requirements by recursively
maintaining the running average as the convex combination:

1

t+ 1

∑
s∈[t+1]

ỹs =
t

t+ 1
ỹt +

1

t+ 1
ỹt+1.

Finally, we show that our output ỹ⋆ encodes an ε-precise solution to the dual SDP (D). Define
y⋆ := rdỹ

⋆ ∈ Rm
≥0 and set

y⋆0 = −λmin

∑
i∈[m]

y⋆iAi − C

 ∈ R.

Then, y⋆0I +
∑

i∈[m] y
⋆
iAi − C ⪰ 0 (in fact, λmin(y

⋆
0I +

∑
i∈[m] y

⋆
iAi − C) = 0), so (y⋆0 , y

⋆) ∈
R × Rm

≥0 is a feasible solution to (D). Applying (30), one can also observe

rpy
⋆
0 + b⊤y⋆ = rp

(
y⋆0 + b̃⊤y⋆

)
= rprd

λmax

 1

rd
C −

∑
i∈[m]

ỹ⋆iAi

+ b̃⊤ỹ⋆

 = rprd · f(ỹ⋆)

≤ OPT + ε.

Thus far we have established the query complexity of our algorithm applied to solving SDPs. However,
these queries are to a black-box evaluation oracle for the objective function f . In order to make our
results comparable to other SDP solvers found in the literature, we need to open the black-box and
establish the cost of each of these evaluations in terms of queries to the input data defining (P)-(D).
This is what we do next.

D.2 Complexity

D.2.1 Semidefinite programs

Theorem D.2 (SDP Solver). Suppose that the SDP problem data (A1, . . . , Am, b, C) is stored in a
sparse-access data structure. Choose ε ∈ (0, 1). Then, with probability 2/3, the quantum mirror
descent method described in Theorem C.1 solves (P)-(D) to additive error ε using

O
(
(mns+ nω) (rprd/ε)

2 · polylog (m,n, (rprd/ε))
)

queries and gates. The output is an ε-precise solution (y⋆0 , y
⋆) ∈ R × Rm

≥0 to the dual SDP (D).

Proof. We first discuss the cost of implementing the evaluation oracle.

To compute the inner product b⊤y, we need O(m log(1/θ)) queries to the elements of b. To see this,
note that O(m log(1/θ)) queries are necessary to implement the unitary

Ub |z⟩ 7→ |z ⊕ b⟩ .
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With access to Ub, one can compute the inner product as

|0⟩ |yi⟩ |0⟩
Ub7→ |b⟩ |yi⟩ |0⟩

Õ(m) gates7→ |b⟩ |yi⟩
∣∣b⊤y〉 U†

b7→ |yi⟩
∣∣b⊤y〉 .

Since U†
b = Ub, the above circuit requires 2 applications of Ub, and hence, O(m log(1/θ)) queries to

the elements of b in total. Note that the total number of gates is also O(m log(1/θ)).

Implementing the matrix M = C −
∑

i∈[m] yiAi from y requires O(mns) gates, and from here we
can perform an eigendecomposition on M to find the top eigenvalue using O(nω log(1/θ)) gates.
Hence, in the high-precision regime, we can implement an θ-precise evaluation oracle for f using

O((mns+ nω) log(1/θ))

queries and gates.

Setting θ = Õ(ε5/r5pr5dm4.5) and applying Theorem D.1, the total number of queries can be bounded
as

Õ
(
(mns+ nω)

(rprd
ε

)2)
= O

(
(mns+ nω)

(rprd
ε

)2
· polylog

(
m,n,

rprd
ε

))
and the number of gates is

Õ
(
(mns+ nω +m)

(rprd
ε

)2)
= O

(
(mns+ nω)

(rprd
ε

)2
· polylog

(
m,n,

rprd
ε

))
.

The theorem statement is obtained upon noting that, given ỹ⋆, one can compute

(y⋆0 , y
⋆) =

−λmin

∑
i∈[m]

(rỹ⋆i )Ai − C

 , rỹ⋆

 ∈ R × Rm
≥0

using at most Õ (mns+ nω) operations.

D.2.2 Linear programs

Recall that LPs are a special case of SDPs in which each of the input matrices A1, . . . , Am, C is a
diagonal matrix. In this case, the dual slack matrix Z is also a diagonal matrix. Thus for LPs, we
may write the objective function in (SDP-eig) as

f(y) = λmax

C − ∑
i∈[m]

yiAi

+ b̃⊤y = max
j∈[n]


C − ∑

i∈[m]

yiAi


jj

+ b̃⊤y.

One can leverage the simplified structure of the objective for LPs to obtain an attractive running time,
as we show next.
Theorem D.3 (LP solver). Let (A, b, c) be the input data for an LP with m constraints and n
variables. Suppose that the columns of A and c are stored in a quantum read-only memory. Then,
with probability 2/3, the quantum mirror descent method described in Theorem C.1 solves the
primal-dual LP pair in (LP) to additive error ε using

O
(
m
√
n (rprd/ε)

2 · polylog (m,n, rprd/ε)
)

queries and gates. The output is an ε-precise solution to the dual LP problem.

Proof. As discussed earlier in the proof of Theorem D.2, we can compute the linear term b̃⊤y using
Õ(m) gates.

For the other term, recall that in LP we need to evaluate

max
j∈[n]


C − ∑

i∈[m]

yiAi


jj

 = min
j∈[n]


∑

i∈[m]

yiAi − C


jj

 .
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To do so, we proceed as follows. Letting j ∈ [n], we implement UM , which acts as

|j⟩ |y⟩ |0⟩ |0⟩ |0⟩ Õ(1) QROM queries7→ |j⟩ |y⟩ |Aj⟩ |cj⟩ |0⟩
Õ(m) gates7→ |j⟩ |y⟩ |⟨Aj , y⟩ − cj⟩ |cj⟩ |0⟩ ,

The above requires Õ(m) gates. With this construction, we can apply generalized minimum finding
[76, Theorem 49] to compute to smallest entry with O(

√
n) applications of UM and its inverse.

From here, setting θ = Õ(ε5/r5pr5dm4.5) and applying Theorem D.1 as we did in the proof of
Theorem D.2 suffices to bound the query and gate complexity of determining ỹ⋆ using the mirror
descent method. To complete the proof note that we can construct an ε-precise solution (y⋆0 , y

⋆) ∈
R × Rm

≥0 to the dual LP from ỹ⋆ ∈ Rm
≥0 with cost Õ(m

√
n). Clearly, computing y⋆ = rd · ỹ⋆ takes

O(m) operations, and one can compute

y⋆0 = − min
j∈[n]


∑

i∈[m]

y⋆iAi − C


jj


with cost Õ(m

√
n), using the same strategy we employed to evaluate f .

D.2.3 Zero-sum games

Zero-sum games are matrix games in which each player has a finite number of pure strategies. These
problems are well-studied in the game theory literature, and a standard setup concerns two players
Alice and Bob whose action spaces are [m] and [n] respectively. Payoffs from the game are encoded
in the entries of a matrix A ∈ [−1, 1]m×n. If Alice plays action i ∈ [m] and Bob plays j ∈ [n], then
Alice obtains the payoff Aij , while Bob receives a payoff of −Aij . Each player aims to maximize
their expected payoff through randomized strategies (x, y) ∈ ∆n ×∆m, giving rise to the minimax
optimization problem:

min
x∈∆n

max
y∈∆m

y⊤Ax. (ZSG)

Saddle points of (ZSG) are called mixed Nash equilibria, which always exist for zero-sum games due
to von Neumann’s minimax theorem [67].

Zero-sum games can be reformulated as LPs and vise-versa. The general idea follows from the fact
that a linear function over the simplex attains its maximum on a vertex, i.e.,

min
x∈∆n

max
y∈∆m

y⊤Ax = min
x∈∆n

max
i∈[m]

e⊤i Ax,

where ei ∈ Rm denotes the i-th unit vector in the standard orthonormal basis for Rm. Therefore,
upon introducing one additional variable we can equivalently solve the LP:

min
(λp,x)∈[−1,1]×∆n

{λp : Ax ≤ λp1n} ,

where 1n ∈ Rn is the all-ones vector of length n. The dual is similarly formulated as

max
(λd,y)∈[−1,1]×∆m

{
λd : A⊤y ≥ λd1m

}
.

Note that the optimal objective values of these problems are equivalent under strong duality, and so
we call λ∗ the value of the game. We also have rp, rd ≤ 2. These observations motivate the following
corollary of Theorem D.3.
Corollary D.1 (Zero-sum games). Let A ∈ [−1, 1]m×n be the payoff matrix of a zero-sum game.
Suppose that the columns of A and c are stored in a quantum read-only memory. Choose ε ∈ (0, 1).
Then, with probability 2/3, the quantum mirror descent method described in Theorem C.1 solves
(ZSG) to additive error ε using

O
(
m
√
n

ε2
polylog (m,n, 1/ε)

)
queries and gates.
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