
Exploiting Human-AI Dependence for Learning to Defer

Zixi Wei 1 Yuzhou Cao 2 Lei Feng 3

Abstract
The learning to defer (L2D) framework allows
models to defer their decisions to human experts.
For L2D, the Bayes optimality is the basic re-
quirement of theoretical guarantees for the de-
sign of consistent surrogate loss functions, which
requires the minimizer (i.e., learned classifier)
by the surrogate loss to be the Bayes optimality.
However, we find that the original form of Bayes
optimality fails to consider the dependence be-
tween the model and the expert, and such a depen-
dence could be further exploited to design a better
consistent loss for L2D. In this paper, we provide
a new formulation for the Bayes optimality called
dependent Bayes optimality, which reveals the
dependence pattern in determining whether to de-
fer. Based on the dependent Bayes optimality, we
further present a deferral principle for L2D. Fol-
lowing the guidance of the deferral principle, we
propose a novel consistent surrogate loss. Com-
prehensive experimental results on both synthetic
and real-world datasets demonstrate the superior-
ity of our proposed method.

1. Introduction
With the increasing deployment of machine learning models
in risk-critical domains such as medical diagnosis (Zoabi
et al., 2021), criminal justice (Chalkidis et al., 2019), and
autonomous driving (Grigorescu et al., 2020), the reliability
and safety issues of these models are getting crucially im-
portant. These risk-critical domains heighten the urgency to
prevent critical mispredictions of models. To address this
challenge, one approach is to incorporate a mechanism that
allows models to defer to human experts when confronted
with challenging or high-stakes decisions.
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Learning to Defer (L2D) (Madras et al., 2018; Charusaie
et al., 2022; Mozannar et al., 2022; 2023; Straitouri et al.,
2022; De et al., 2021; Narasimhan et al., 2022; Mao et al.,
2024; Hemmer et al., 2023; Joshi et al., 2021; Liu et al.,
2024; Alves et al., 2024; Lykouris & Weng, 2024) aims to
avoid critical mispredictions of models by facilitating the
collaboration between human experts and machine learning
models. Specifically, L2D aims to defer the prediction to
an expert when the expert is more likely to be correct than
the model. For medical diagnosis, a CT image may involve
complex anatomical structures or potential abnormalities.
Such complexity could lead to a lack of confidence in the di-
agnostic prediction of a model. Then the model could defer
the prediction and transfer the CT images to a radiologist.
When faced with straightforward cases, the model can make
diagnostic predictions by itself without a radiologist.

L2D can be formulated as a risk-minimization problem,
where the 0-1-deferral risk (Mozannar & Sontag, 2020)
needs to be minimized. The 0-1-deferral loss involves a cost
of 1 when the model makes an incorrect decision without
an expert or defers to a wrong decision made by an expert
and involves a cost of 0 otherwise. Due to the discontinuous
and non-convex properties of the 0-1-deferral loss, the risk-
minimization problem is NP-hard even in simple settings
(Mozannar et al., 2023). To make the optimization problem
solvable, one commonly used strategy is to design a continu-
ous surrogate loss that holds statistical consistency w.r.t. the
0-1-deferral loss. Concretely, we say a surrogate loss holds
consistency if and only if the minimizer of the surrogate
risk is the minimizer of the 0-1-deferral risk. This implies
that a model trained with the surrogate loss is expected to
converge to the optimal model for the 0-1-deferral loss.

Mozannar & Sontag (2020) showed the Bayes optimality
for the 0-1-deferral risk (we provide a detailed description
in Section 2), which states that the model should defer to
an expert if the expert has a larger confidence in making
the right decision than the optimal model, otherwise we
should accept the decision made by the model. The Bayes
optimality plays a crucial role in the design of surrogate
losses, influencing the formulation of many consistent sur-
rogate loss functions, where the consistency means that the
optimal model for the surrogate risk meets the Bayes opti-
mality. Thus a well-formulated Bayes optimality can guide
the design of a superior consistent surrogate loss.
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Guided by the Bayes optimality (Mozannar & Sontag, 2020),
many consistent surrogate losses were properly designed to
meet the requirement of the Bayes optimality. Mozannar
& Sontag (2020) proposed a statistically consistent surro-
gate loss based on the softmax parameterization. However,
the method proposed by Mozannar & Sontag (2020) would
incur an unbounded confidence estimator for the expert.
Verma & Nalisnick (2022) states that this problem is caused
by the intrinsic property of the softmax parameterization.
To alleviate this problem, the authors designed two estima-
tors based on the One-versus-All (OvA) strategy (Zhang,
2004b) and induced a surrogate loss that holds statistical
consistency. In defense of utilizing the softmax parametriza-
tion for a bounded confidence estimator, Cao et al. (2023)
demonstrated that the unbounded estimator arises from the
symmetric nature of surrogate losses and proposed an asym-
metric softmax parameterization to obtain a bounded confi-
dence estimator for the expert.

To summarize, previous methods determine whether to de-
fer by first using training data to estimate confidence and
then deciding whether to defer based on the estimated confi-
dence. However, estimating the confidence of the model and
the expert needs massive training data, which would cause
significant difficulties in accurately estimating confidence,
especially when deep neural networks are used (Guo et al.,
2017; Wang et al., 2021; Wei et al., 2022). Such a complex-
ity raises an important question: Is it possible to directly
use the training data to make deferral decisions, without the
confidence estimation step?

To answer this question, we propose to use the human-model
dependence pattern observed in the training data to directly
make the deferral decision, thereby bypassing the need for
confidence estimation. However, the original form of Bayes
optimality shown in Proposition 2.1 fails to consider this
human-model dependence pattern. Therefore, we introduce
a new formulation of the Bayes optimality, called dependent
Bayes optimality. Unlike the original Bayes optimality that
treats the confidence of the model and the expert individu-
ally, the dependent Bayes optimality can reflect the impact
of the human-model dependence pattern in the deferral deci-
sion. This dependence pattern helps us to design a deferral
principle for the L2D problem, which enables us to deter-
mine whether to defer only based on the dependence pattern
in training data. Concretely, the deferral principle suggests
the following strategy to treat each instance:

1. Accept the prediction made by the model when the expert
makes a wrong prediction.

2. Defer the prediction to the expert when the expert makes
the right prediction and the model makes a wrong prediction.

3. Do not determine whether to defer when both the expert
and the model make the right prediction.

Following the deferral principle, we further propose a de-
pendent cross-entropy (DCE) loss, which is a consistent
surrogate loss for L2D.

The contributions of this paper can be summarized below:

• We provide a new Bayes optimality formulation for
L2D (i.e., dependent Bayes optimality). This new
formulation underscores the influence of the human-
model dependence in the deferral process for the L2D
problem. (Section 3.2)

• We present a deferral principle that enables us to decide
whether to defer each instance solely based on the
human-model dependence pattern observed in training
data. (Section 3.3)

• We propose a novel loss called dependent cross-entropy
(DCE) loss for L2D based on the dependent Bayes
optimality. We show that the DCE loss is a consistent
surrogate loss for L2D and it can induce a bounded
confidence estimator for the expert. (Section 4)

• Experimental results on both synthetic experts and real-
world experts demonstrate the superiority of our pro-
posed method. (Section 5)

2. Preliminaries
In this section, we review the problem setting of Learning
to Defer (L2D) and provide a succinct overview of previous
studies in the field.

2.1. Poblem Setting

The goal of the L2D problem is to train an augmented clas-
sifier with a deferral option in the K-class classification
scenario. In this paper, we define X ⊆ Rd and Y = [K]
as the feature space and label space respectively, where
[K] = {1, 2, . . . ,K}. Let x ∈ X and y ∈ Y denote
the feature vector and label respectively. Let us denote
X×Y ×M ∈ X ×Y×Y as the triplet of random variables
of feature, label, and expert prediction. We use x× y ×m
to represent the realization of X × Y ×M ∈ X × Y × Y ,
which obeys an underlying joint distribution p(x, y,m). We
have access to the dataset {(xi, yi,mi)}ni=1 that is collected
independently and identically from the joint distribution
p(x, y,m). We use f : X → Y⊥ to denote the classifier
with a deferral option, where ⊥ is used to denote the deferral
option and Y⊥ = [K] ∪ {⊥}. Concretely, when f(x) ̸=⊥,
we accept the prediction produced by the classifier, when
f(x) =⊥ the classifier defers the prediction to the expert,
and the expert prediction is used as the prediction result.

The performance of L2D can be formulated as the 0-1-
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deferral loss defined below:

L⊥
01(f(x), y,m) = If(x)̸=yIf(x)̸=⊥ + Im ̸=yIf(x)=⊥,

where I takes the value 1 if the statement in the subscript
is true otherwise it takes the value 0. As observed, the loss
function assigns a value of 1 if we accept a wrong prediction
produced by the classifier or the expert provides a wrong
prediction when the prediction is deferred to the expert.
Otherwise, the loss function assigns a value of 0. In order
to learn an effective classifier for L2D, we aim to minimize
the following target risk w.r.t. to L⊥

01:

R⊥
01(f) = Ep(x,y,m)[L

⊥
01((f(x), y,m))],

We denote by f∗ the minimizer (Bayes optimality) of the
target risk R⊥

01(f), i.e., f∗ = argminf R
⊥
01(f). By further

introducing ηy(x) = P(Y = y|x) as the posterior probabil-
ity, an important property of f∗ was shown (Mozannar &
Sontag, 2020) as follows:

Proposition 2.1 (Bayes optimality of L2D). The minimizer
of R⊥

01(f) can be expressed as:

f∗(x) =


⊥, P(Y =M |x) > max

y∈Y
ηy(x),

argmax
y∈Y

ηy(x), otherwise.

The Bayes optimality indicates that the classifier should
defer the prediction to the expert if the expert has a higher
confidence to predict correctly; otherwise, we take the label
with the largest posterior probability as the final prediction.

Proposition 2.1 can be considered as a generalized version
of Chow’s rule (Chow, 1970) in classification with rejection
(CwR) (Bartlett & Wegkamp, 2008; Yuan & Wegkamp,
2010a; Ramaswamy et al., 2018; Ni et al., 2019a), where
the rejection cost c(x) is replaced by a probability function
1− P(Y =M |x).

2.2. Consistent Surrogate Losses for L2D

Although L2D can be formulated as a risk-minimization
problem w.r.t. the 0-1-deferral risk. However, due to the dis-
continuous and non-convex of properties of the 0-1-deferral
loss L⊥

01, the minimization of R⊥
01 is an NP-hard problem

(Mozannar et al., 2023). A common strategy is to design
continuous surrogate losses that can induce a classifier to
meet the Bayes optimality. This strategy has been widely
employed in many areas including ordinary multi-class clas-
sification (Zhang, 2004a; Bartlett et al., 2006; Finocchiaro
et al., 2019), multi-label classification (Gao & Zhou, 2013;
Koyejo et al., 2015; Zhang et al., 2020), cost-sensitive learn-
ing (Scott, 2011; 2012), and learning to reject (Cortes et al.,
2016; Yuan & Wegkamp, 2010b; Ni et al., 2019b; Charoen-
phakdee et al., 2020). Concretely, we say a surrogate loss

function is consistent if the minimizer of the surrogate loss
meets the Bayes optimality almost surely. Due to this fact,
the formulation of the Bayes optimality is crucial for de-
riving consistent surrogate losses for the L2D problem. A
well-formulated Bayes optimality could convey more useful
information that can be exploited for the design of consistent
surrogate losses.

In this paper, we define s = g(x) the score vector outputted
by the scoring function g : X → Rk+1, and we define s⊥ =
sk+1 the score value for deferral. The scoring function g can
induce the decision function f : X → Y⊥ (i.e., the classifier
with a deferral option) with the following transformation
φ : Rk+1 → Y⊥:

φ(g(x)) =


⊥, g⊥(x) > max

y∈Y
gy(x)

argmax
y∈Y

gy(x), otherwise.

In this paper, we consider a continuous surrogate loss func-
tion L⊥ : R × Y × Y → R+, which takes a score vector,
label, expert prediction as input and outputs a positive value.

The early consistent surrogate loss for L2D is proposed
by Mozannar & Sontag (2020). The authors generalized
the cross entropy loss to L2D loss based on cost-sensitive
learning:

LCE(g(x), y,m) = − logψy
Y⊥(g(x))

− Iy=m logψ⊥
Y⊥(g(x)),

where we define ψi
S(g(x)) =

exp(gi(x))∑
j∈S exp(gj(x))

as the softmax

transformation and S ⊆ Y⊥ denotes a class set. In the
context of LCE, S = Y⊥. However, LCE would lead to
an unbounded confidence estimator P̂CE(Y = M |x) ∈
[0,+∞] formulated as:

P̂CE(Y =M |x) = ψ⊥
Y⊥(x)/(1− ψ⊥

Y⊥(x)).

When ψ⊥
Y⊥(x) >

1
2 , the estimator P̂CE(Y =M |x) would

output an invalid estimated expert accuracy larger than 1.

Verma & Nalisnick (2022) stated that this unbounded confi-
dence estimator is caused by the softmax parameterization.
The authors addressed this problem by the one-versus-all
(OvA) strategy (Zhang, 2004a) and proposed an OvA-based
surrogate loss. This OvA-based loss induces a bounded
confidence estimator for P(Y =M |x) and still holds con-
sistency. The OvA-based surrogate loss can be formulated
as:

LOvA(g(x), y,m) = ξ(gy(x))

+
∑

y′∈Y⊥,y′ ̸=y

ξ(−gy′(x)) + Iy=m(ξ(g⊥(x))− ξ(−g⊥(x))),

where ξ denotes a binary proper composite loss (Reid &
Williamson, 2009). LOvA can induce a bounded confidence
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estimator P̂OvA(Y =M |x) ∈ [0, 1] formulated as:

P̂OvA(Y =M |x) = ψξ(g⊥(x)),

where ψξ : R → [0, 1] is a mapping function induced from
the binary loss ξ.

In defense of the softmax parametrization for a bounded
confidence estimator, Cao et al. (2023) showed that the
unbounded confidence estimator is caused by the symmetric
nature of the surrogate losses. The authors proposed an
asymmetric softmax-based surrogate loss, which could be
formulated as:

LA−SM(g(x), y,m) = − logψy
Y(g(x))

− Iy=m logψ⊥
Y⊥/q(g(x))− Im ̸=y log(1− ψ⊥

Y/qg(x)),

where q = argmaxi∈Y gi(x) and Y⊥/q is used to denote
the class set excluding q from Y⊥, and we use q to represent
the model’s prediction in the rest of this paper. A bounded
confidence estimator could be induced from LA−SM, which
could be formulated as:

P̂A−SM(Y =M |x) = ψ⊥
Y⊥/q.

3. A New Formulation of the Bayes Optimality
In this section, we first discuss the limitation of the existing
Bayes optimality, and then introduce a new formulation
called dependent Bayes optimality.

3.1. Limitation of The Existing Bayes Optimality

In this paper, we find an important limitation of the exist-
ing Bayes optimality. As demonstrated by Proposition 2.1,
the Bayes optimality fails to consider the dependence be-
tween M and Y . Thus, most previous methods estimate the
confidence P(Y = r|x) and P(Y = M |x) independently,
treating them as uncorrelated. In practice, these methods
empirically estimate P(Y = M |x) and P(Y = r|x) for
each instance, and then determine whether to defer for each
instance based on the estimated values.

However, using neural networks to estimate confidence
could cause various issues (i.e., overconfidence (Wei et al.,
2022)). This motivates us to skip the step of estimating
confidence when deciding whether to defer each instance.
In our paper, we give a positive answer to this question by
introducing a new formulation of the Bayes Optimality and
providing a new deferral principle for L2D.

3.2. Dependent Bayes Optimality

To overcome the limitation of the original Bayes optimality
in Proposition 2.1, we provide a new formulation called
dependent Bayes optimality as follows:

Figure 1. Venn diagram of P(Y = r|x) and P(Y =M |x).

Proposition 3.1 (Dependent Bayes optimality of L2D). The
minimizer of R⊥

01(f) can be expressed as:

f∗(x) =

{ ⊥,P(Y ̸= r, Y =M |x) > P(Y = r,M ̸= Y |x),
argmax

y∈Y
ηy(x), otherwise,

where r = argmaxy∈Y ηy(x).

Proposition 3.1 can be derived from Proposition 2.1 by
subtracting P(Y = M,Y = r|x) from P(Y = M |x) and
P(Y = r|x)1. As illustrated in Figure 1, by subtracting
the intersection (Y = M,Y = r) from (Y = M) and
(Y = r), we obtain two contrary events (Y = M,Y ̸= r)
and (Y ̸=M,Y = r) in Proposition 3.1. This subtraction is
intuitive since deferring the prediction when (Y =M = r)
is meaningless since this deferring would not change the
final prediction of an L2D system.

Mathematically, the optimality conditions presented in
Propositions 2.1 and Propositions 3.1 are completely equiv-
alent, i.e., if a classifier satisfies the conditions in one propo-
sition, then it also satisfies the conditions in the other one.
However, compared with Proposition 2.1, Proposition 3.1
characterizes the dependence pattern between M and Y
based on a joint distribution in the deferring decision. The
classifier is suggested to defer the prediction to the expert
when the classifier is likely to make a wrong prediction and
the expert is likely to predict correctly. This dependence
pattern helps us to design the following deferral principle
for the L2D problem.

3.3. The Deferral Principle for L2D Problem

Let q = argmaxy∈Y gy(x) be the predicted class with the
largest score value and r = argmaxy∈Y P(Y = y|x) be
the class with the largest posterior probability.

Given an instance-label-expert triplet (x, y,m) sampled
from p(x, y,m) and the prediction q made by the model.
By considering the human-model dependence pattern, we
can obtain 4 possible combinations for y and m: 1) (y ̸=
q, y = m), 2) (y = q, y = m), 3) (y = q, y ̸= m), 4)
(y ̸= q, y ̸= m).

For Case 1) (y ̸= q, y = m), the model produces a wrong
prediction and the expert makes the right prediction. We

1P(Y = M |x) − P(Y = M,Y = r|x) = P(Y = M,Y ̸=
r|x) and P(Y = r|x) − P(Y = M,Y = r|x) = P(Y ̸=
M,Y = r|x).
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can consider this case as the occurrence of the event (Y ̸=
r, Y = M). In this case, we prefer to trust P(Y ̸= r, Y =
M |x) > P(Y = r,M ̸= Y |x), and thus we prefer to defer
the instance x to the expert in this case.

For Case 2) (y = q, y = m), the model and the expert both
produce the right prediction. We can consider this case as
the occurrence of the event (Y = r, Y =M). It cannot help
us to determine whether P(Y ̸= r, Y = M |x) > P(Y =
r,M ̸= Y |x) or not, and thus we do not need to decide
whether to defer in this case.

For Cases 3) and 4), y ̸= m means that the expert makes a
wrong prediction. In the two cases, we should accept the
model prediction, since there is no need to defer to an expert
with a wrong prediction.

By considering all the four cases above, our proposed de-
pendent Bayes optimality (Proposition 3.1) suggests the fol-
lowing deferral principle for different combinations among
y,m, and q in the training set:

1. Accept the model prediction made when y ̸= m.

2. Defer the prediction to the expert when y ̸= q, y = m.

3. Do not determine whether to defer when y = q, y = m.

This deferral principle enables us to determine whether to
defer each instance only based on the human-model depen-
dence pattern observed in the triplet (y,m, q). In the next
section, we propose a novel consistent surrogate loss based
on this deferral principle.

4. Proposed Dependent Surrogate Loss
In this section, we propose a consistent surrogate loss based
on the deferral principle we presented in Section 3. We
also demonstrate its statistical consistency. In addition, we
also show that the proposed surrogate loss could induce a
bounded confidence estimator for the expert.

4.1. Formulation of The Proposed Loss

Motivated by the dependent Bayes optimality in Proposition
3.1, we propose a novel Dependent Cross-Entropy (DCE)
Loss, L⊥

DCE(g(x), y,m) : Rk+1 × Y × Y → R+, defined
as follows:

L⊥
DCE(g(x), y,m) = −Iy ̸=m log(ψy

Y⊥(g(x)))

− Iy=m

(
log(ψy

Y(g(x))) + log(ψ⊥
Y⊥/q(g(x)))

)
,

where q = argmaxy∈Y gy(x) and Y⊥/q is used to repre-
sent the class set obtained by removing q from Y⊥.

Here, we explain how the DCE loss addresses the L2D prob-
lem. As is commonly understood, An ideal surrogate loss
should complete two tasks: (1) Ensuring that the model
makes the right prediction (i.e., q = r). (2) Properly estab-

lishing the magnitude ordering between gq(x) and g⊥(x):
a) making gq(x) > g⊥(x) when we accept the prediction
made by the model; b) making gq(x) < g⊥(x) when we
defer the prediction to the expert; c) not influencing the
magnitude ordering between gq(x) and g⊥(x) when we do
not know whether to defer or not. For task (1), our proposed
DCE loss ensures q = r by making gr(x) > gi(x) for
all i ̸= r, i ∈ Y . For task (2), our DCE loss establishes
the magnitude ordering between gq(x) and g⊥(x) based on
the deferral principle. Now we describe how the proposed
DCE loss accomplishes task (2) for different combinations
of (y,m, q).

For Case 1) (y ̸= q, y = m), we should defer the predic-
tion. Our proposed DCE loss would make gy(x) > gq(x)
(the first term for y = m in our DCE loss) and make
g⊥(x) > gy(x) (the last term for y = m in our DCE
loss), which further makes g⊥(x) > gq(x), and thus the
DCE loss accomplishes the task to defer the instance x. It
is noteworthy that the value of q may be changed during the
training process. If the predicted label q becomes the true
label y in the training process, then Case 1) would become
Case 2), which we describe below.

For Case 2) (y = q, y = m), we do not determine whether
to defer. The DCE loss treats gy(x) and g⊥(x) identically
during training. Since the surrogate loss needs to make
gy(x) > gi(x), ∀i ̸= y, i ∈ Y to ensure the model makes
the right prediction (the first term for y = m in our DCE
loss), our proposed loss also makes g⊥ > gi(x), ∀i ̸= y, i ∈
Y (the last term for y = m in our DCE loss). Thus the DCE
loss refrains from influencing the relative ordering between
gq(x) and g⊥(x).

For Cases 3) and 4) (y = q,m ̸= y) or (y ̸= q,m ̸= y),
we should accept the prediction made by the model. The
DCE loss makes gy(x) ≥ gi(x), ∀i ∈ Y⊥ (the term for
y ̸= m in our DCE loss). Thus the DCE loss ensures y = q
and gq(x) > g⊥(x), thereby accomplishing the task of
accepting the model prediction.

Unlike previous methods that independently estimate the
confidences P(Y = r|x) and P(Y = M |x), the DCE loss
determines whether to defer each instance by directly estab-
lishing the relative ordering between gr(x) and g⊥(x), and
thus the DCE loss could bypass the confidence estimation
step. In line with the Ockham’s Razor principle, this simpler
method often leads to a better solution.

4.2. Consistency of The Proposed Loss

Here, we show that the proposed surrogate loss L⊥
DCE is

consistent. Let R⊥
DCE(g) = Ep(x,y,m)L

⊥
DCE(g(x), y,m)

be the surrogate risk by taking the expectation over the joint
distribution p(x, y,m), by using our proposed surrogate
loss L⊥

DCE.
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Theorem 4.1 (Consistency of the proposed surrogate loss
L⊥
DCE). Let us denote by g∗ ∈ argming(x)R

⊥
DCE(g) the

optimal scoring function by using our proposed surrogate
loss L⊥

DCE. Then the classifier φ(g∗(x)) is the (dependent)
Bayes optimality in Proposition 3.1, which means thatL⊥

DCE

is a consistent loss.

The proof of Theorem 4.1 is provided in Appendix A. Ac-
cording to Theorem 4.1, our proposed DCE loss is demon-
strated to be a consistent surrogate loss with respect to the
0-1-deferral loss. However, we cannot construct our con-
sistency proof in the same manner as previous methods
(Mozannar & Sontag, 2020; Verma & Nalisnick, 2022; Cao
et al., 2023). The previous methods complete the proof
based on two confidence estimators (i.e. one for P(Y = r|x)
and the other for P(Y =M |x)). Then consistency can be
obtained directly by the estimated confidence estimators,
which makes these methods fail to utilize the humane-model
dependence pattern observed in the triplet (y,m, q).

Here we provide a nutshell of our proof. We prove the con-
sistency by contradiction. We show that if g∗⊥(x) > g∗r (x)
when P(Y = r, Y ̸= M |x) > P(Y ̸= r, Y = M |x).
There must exist another scoring function g′ with lower
R⊥

DCE(g
′) compared with R⊥

DCE(g
∗), where g′⊥(x) <

g′r(x). And the proof g∗⊥(x) < g∗r (x) when P(Y = r, Y ̸=
M |x) < P(Y ̸= r, Y = M |x) can be accomplished in
a similarly manner. Therefore, the DCE loss can directly
establish the relative ordering between gr(x) and g⊥(x)
during the training process based on the comparison be-
tween P(Y = r, Y ̸= M |x) and P(Y ̸= r, Y = M |x),
which utilize the human-model dependence pattern between
Y = r and Y =M .

4.3. Confidence Estimation via Our Proposed Loss

In some safety-critical scenarios such as Medical Diagnosis
Systems, the accuracy of the L2D system is not the only
concern. We are also interested in the uncertainties of the
classifier and the expert since the classifier may mislead
the expert to provide incorrect predictions even when the
expert can make correct predictions initially (Madras et al.,
2018; Tschandl et al., 2020). To prevent such a mislead-
ing issue, we hope that an L2D system could be a good
forecaster, which means that we expect the L2D system to
have the ability to recover the confidence about the degree
that the classifier and the expert are right. This confidence
information can subsequently offer the expert more insight
into whether to trust the model predictions or not in critical
decision-making scenarios. Therefore, a question naturally
arises here: can we still induce a confidence estimator from
our proposed DCE loss? We give an affirmative answer to
this question. We show that we can induce confidence esti-
mators for the model and the expert based on our proposed
DCE loss by the following proposition:

Proposition 4.2. Let λ(x) =
∑

i∈Y exp(gi(x)), q =
argmaxi∈Y gi(x) and µ(x) = λ(x) − exp(gq(x)). Let
us define ρ(x) = µ(x)(λ(x)+exp(g⊥(x)))

exp(g⊥(x))(µ(x)+exp(g⊥(x))) . Then confi-
dence estimators induced from LDCE can be written as:

P̂(Y = y|x) = exp(gy(x))/λ(x)

P̂(Y =M |x) = 1/(1 + ρ(x)),

Where we use P̂ to denote the confidence function estimated
by the scoring function.

The proof of Proposition 4.2 is provided in Appendix B.
We could observe that the estimator for P̂(Y = y|x) takes
a standard softmax formulation. The expert’s estimator
P̂(Y = M |x) shares a similar formulation with the sig-
moid which is a commonly employed estimator in binary
classification scenarios. g⊥(x) shows a positive correla-
tion with P̂(Y = M |x), when g⊥(x) is sufficiently large,
P̂(Y = M |x) approaches 1. Conversely, when g⊥(x) is
sufficiently small, P̂(Y =M |x) approaches 0. Since ρ(x)
is larger than 0, we could obtain that 1/(1 + ρ(x)) ∈ (0, 1)
directly, which demonstrates that the DCE loss could induce
a bounded confidence estimator.

5. Experiments
In this section, we perform comprehensive experiments on
both synthetic experts and real-world experts to empirically
demonstrate the effectiveness of the proposed DCE loss and
verify the importance of dependence in the L2D problem. In
addition to validating the accuracy of L2D systems trained
by each method, we also verify the performance of each
method under deferral budget requirements. Furthermore,
we report the Expected Calibration Error (ECE) and cover-
age of the L2D system trained by each method, providing a
comprehensive evaluation of the L2D system.

Datasets and Models. We conduct experiments for the
proposed loss and baselines on widely used benchmark
datasets with both synthetic and real-world experts. For
synthetic experts, we perform experiments using CIFAR-
100 datasets (Krizhevsky, 2009) with the standard train-test
split. Similar to the previous studies, the synthetic expert has
a probability of p to predict the label correctly in the first k ∈
{20, 40, 60} classes, and the synthetic expert would predict
the label randomly otherwise. To simulate experts with high
accuracy and medium accuracy, we conduct experiments on
p = 94% following Mozannar & Sontag (2020) for high
accuracy and p = 75% following Verma & Nalisnick (2022)
for medium accuracy. For experiments involving real-world
experts, we leverage the CIFAR-10N and CIFAR-100N
datasets introduced by (Wei et al., 2021), where the expert
prediction is obtained from human annotations on Amazon
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Table 1. Test performance of each method on CIFAR-100 for 5 trials with p = 94%. The mean(%)(standard error(%)) of related metrics
are reported. The best method for the misclassification error and budgeted errors are highlighted in boldface.

Method Expert Error Budgeted Error Coverage

10% 20% 30% ECE

CE
20 22.31(0.54) 27.64(1.08) 22.44(0.62) 22.31(0.54) 79.21(1.13)

5.45(0.40)

40 20.65(0.98) 36.35(2.24) 29.27(2.34) 22.00(1.55) 66.93(2.83)

9.61(1.28)

60 16.22(0.19) 49.57(1.87) 42.17(1.78) 34.31(1.93) 48.21(2.00)

11.09(0.32)

OvA
20 24.33(2.01) 24.33(2.01) 24.33(2.01) 24.33(2.01) 93.09(0.48)

4.53(0.37)

40 25.82(2.23) 29.00(3.10) 25.82(2.24) 25.82(2.23) 82.90(2.35)

8.36(0.95)

60 19.33(1.86) 28.78(2.87) 21.85(2.63) 19.33(1.86) 74.81(1.78)

7.64(0.60)

A-SM
20 21.94(0.24) 21.94(0.24) 21.94(0.24) 21.94(0.24) 98.35(0.11)

4.17(0.21)

40 21.22(0.77) 21.34(0.90) 21.22(0.77) 21.22(0.77) 90.64(0.99)

5.57(0.50)

60 18.40(0.74) 22.20(1.31) 18.40(0.74) 18.40(0.74) 83.95(0.91)

5.11(0.23)

DCE
(Proposed)

20 21.21(0.23) 21.44(0.22) 21.21(0.23) 21.21(0.23) 88.15(0.21)

1.68(0.27)

40 19.09(0.37) 22.71(0.40) 19.10(0.38) 19.09(0.37) 80.95(0.86)

4.59(0.35)

60 15.81(0.31) 24.89(0.62) 18.20(0.57) 15.81(0.31) 74.59(0.70)

5.57(0.23)

Mechanical Turk. We randomly partition the data into 80%
training data and 20% test data for each trial.

We also conduct experiments on ImageNet-16H (Kerrigan
et al., 2021) with real-world experts for noise type “110”
and “125”, using an 80-20 train-test split for each trial. The
experimental results are reported in Table 6 in Appendix C.

Following the previous works (Mozannar & Sontag, 2020;
Verma & Nalisnick, 2022; Cao et al., 2023), we employ a
wide residual network (Zagoruyko & Komodakis, 2016) to
parameterize the scoring function g(x) and SGD is used for
optimization. We train the model on each dataset for 400
epochs on 8 NVIDIA GeForce 3090 GPUs. The learning
rate is chosen from {3e − 1, 1e − 1, 3e − 2, 1e − 2} and
the batch size is chosen from {512, 1024}, i.e., {64, 128}
on each GPU. The weight decay is set as 5e− 4.

Metric. To better evaluate the performance of the L2D
system, we recorded metrics across multiple dimensions
during our experiments. We report the misclassification
error for the L2D system and the error with deferral budget
for each method on each dataset, where the misclassification
error denotes the misclassification error rate for the L2D
systems, i.e., the average 0-1-deferral loss on the test data.
The budget represents the maximum allowable proportion
of instances that the L2D system can defer to the expert.
Concretely, if we use b% to denote the budget. We only

defer the instance with the top b% P̂(Y = M |x) to the
expert when the coverage is below 1 − b%. For the other
instances, we accept the prediction made by the model.

We also report the coverage, and expected calibration error
(ECE) in experimental results, and coverage stands for the
proportion of instances the L2D system has not deferred.
The ECE in L2D could be defined as:

ECE(P̂(Y =M |·)) =

Ep(x)[|P(Y =M |P̂(Y =M |x) = c)− c|].

Concretely, this ECE could measure how well the estimated
confidence aligns with the true likelihood of the experts mak-
ing the right prediction, providing insights into the model’s
reliability and accuracy of its uncertainty estimates.

Baselines. We compared our proposed Dependent Cross-
Entropy Loss with the previous surrogate loss including
Cross-Entropy (CE) based loss (Mozannar & Sontag, 2020),
One-versus-All (OvA) based loss (Verma & Nalisnick,
2022) and Asymmetric SoftMax (A-SM) parametrization
based method (Cao et al., 2023). Since the confidence esti-
mator induced from CE is unbounded, we clip the estimates
to fall within the range of [0, 1] to ensure the validity.

Experimental Results. We run 5 trials on each dataset for
each method. The best results in terms of the misclassifica-
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Table 2. Test performance of each method on CIFAR-100 for 5 trials with p = 75%. The mean(%)(standard error(%)) of related metrics
are reported. The best method for the misclassification error and budgeted errors are highlighted in boldface.

Method Expert Error Budgeted Error Coverage

10% 20% 30% ECE

CE
20 23.57(0.38) 24.50(0.40) 23.57(0.38) 23.57(0.38) 85.07(0.38)

6.12(0.13)

40 23.21(0.80) 29.47(1.48) 24.39(1.16) 23.21(0.80) 76.58(3.28)

11.88(0.59)

60 21.18(0.18) 32.08(0.43) 26.25(0.30) 21.19(0.19) 70.47(0.42)

15.97(0.12)

OvA
20 23.63(0.35) 24.54(0.35) 23.63(0.35) 23.63(0.35) 85.05(0.32)

5.91(0.38)

40 22.73(0.42) 28.86(1.05) 23.78(0.79) 22.73(0.42) 76.38(1.53)

12.00(0.77)

60 21.18(0.27) 32.40(0.48) 26.53(0.56) 21.24(0.28) 70.09(0.66)

16.06(0.34)

A-SM
20 22.21(0.16) 22.21(0.16) 22.21(0.16) 22.21(0.16) 99.50(0.07)

3.85(0.32)

40 22.49(0.47) 22.49(0.47) 22.49(0.47) 22.49(0.47) 96.42(0.37)

5.06(0.10)

60 21.06(0.54) 21.06(0.54) 21.06(0.54) 21.06(0.54) 92.54(0.22)

5.20(0.45)

DCE
(Proposed)

20 22.12(0.27) 22.13(0.26) 22.12(0.27) 22.12(0.27) 90.08(0.29)

1.70(0.15)

40 21.28(0.48) 22.91(0.61) 21.28(0.48) 21.28(0.48) 84.19(0.47)

6.88(0.65)

60 19.81(0.85) 24.08(1.14) 19.84(0.89) 19.81(0.85) 80.27(0.59)

11.43(1.81)

Table 3. Test performance of each method on CIFAR-100N for 5 trials. The mean(%)(standard error(%)) of related metrics are reported.
The best method for the misclassification error and budgeted errors are highlighted in boldface.

Method Error Budgeted Error Coverage

10% 20% 30% ECE

CE 25.61(0.52) 31.97(0.60) 25.94(0.54) 25.61(0.52) 79.69(1.13)

27.29(0.50)

OvA 32.07(0.53) 54.32(1.31) 46.97(1.33) 40.24(1.17) 55.35(2.07)

32.23(0.25)

A-SM 28.50(0.34) 49.06(1.12) 41.66(1.06) 34.91(0.99) 58.38(1.53)

31.73(0.37)

DCE 21.34(0.34) 26.94(0.41) 21.88(0.48) 21.34(0.34) 78.74(0.63)

21.94(0.42)

tion error and the budgeted errors are highlighted in boldface.
The experimental results on synthetic experts using CIFAR-
100 with p = 94% and p = 75% are meticulously presented
in Tables 1 and 2 respectively. As illustrated by these 2
tables, our proposed DCE loss consistently outperforms all
baselines across different expert levels of misclassification
error, empirically validating the superiority of our proposed
DCE loss.

All methods demonstrate lower error rates as k or p in-
creases, with more instances being deferred to the expert.
This demonstrates the effective utilization of human expert
capabilities by existing methods.

Furthermore, we observe that as k increases, the DCE loss
outperforms baseline models by larger gaps in misclassi-
fication error. This improvement indicates that with more
classes accurately predicted by the expert, the L2D system
trained with the DCE loss can collaborate more effectively
with the expert, achieving better performance.

Almost all methods demonstrated superior performance in
terms of ECE when p = 94%. This suggests that higher
expert accuracy (i.e., closer to 1) simplifies confidence esti-
mation, as neural networks are often overconfident in their
confidence estimates. Additionally, the confidence estimator
developed with the DCE loss shows excellent performance
at k = 20. This reveals that when the expert focuses on a
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Table 4. Test performance of each method on CIFAR-10N with “Worse Label” for 5 trials. The mean(%)(standard error(%)) of related
metrics are reported in Table. The best method for the misclassification error and budgeted errors are highlighted in boldface.

Method Error Budgeted Error Coverage

10% 20% 30% ECE

CE 17.83(0.28) 25.62(1.15) 19.75(1.00) 17.83(0.28) 76.67(1.48)

36.03(1.00)

OvA 19.96(0.97) 29.63(1.99) 23.30(2.00) 20.03(1.08) 73.43(2.33)

37.86(0.84)

A-SM 21.20(0.82) 30.70(1.82) 24.82(1.77) 21.21(0.82) 73.11(2.55)

36.92(0.96)

DCE 10.69(0.43) 10.69(0.43) 10.69(0.43) 10.69(0.43) 95.25(0.23)

8.92(1.13)

Table 5. Test performance of each method on CIFAR-10N with “Aggregate Label” for 5 trials. The mean(%)(standard error(%)) of related
metrics are reported. The best method for the misclassification error and budgeted errors are highlighted in boldface.

Method Error Budgeted Error Coverage

10% 20% 30% ECE

CE 8.20(1.43) 33.84(7.42) 24.85(7.36) 16.52(6.73) 61.36(8.76)

6.74(0.45)

OvA 8.52(0.23) 64.15(3.06) 54.59(3.00) 45.23(2.96) 28.55(3.29)

9.83(0.52)

A-SM 8.82(0.31) 64.40(1.68) 54.95(1.67) 45.68(1.67) 28.43(1.85)

9.76(0.45)

DCE 6.34(0.21) 20.82(2.44) 12.32(2.33) 6.38(0.26) 72.62(2.78)

6.81(0.45)

limited number of classes, the L2D system trained with the
DCE loss can more precisely identify these classes.

Table 3, Table 4 and Table 5 present the experimental results
on real-world experts using CIFAR-100N and CIFAR-10N,
respectively. For CIFAR-10N, we conducted experiments on
2 types of experts, i.e., “Worse” and “Aggregate”. Compared
with synthetic experts, the human-model dependence pattern
between Y andM is more complicated in real-world experts.
Despite this complexity, the DCE loss still significantly
outperforms all baselines on real-world experts.

For misclassification errors with a deferral budget, the DCE
loss achieves the best performance across all budgets and
datasets on real-world experts, thus the DCE loss can handle
the scenarios with budget requirements. We can observe that
the coverage of our method is always higher than the base-
lines with real-world experts, which shows that the DCE loss
can induce an ideal model. Moreover, the DCE loss demon-
strates a larger performance gap compared with baselines in
real-world scenarios than in synthetic ones, highlighting its
superior ability to handle complex situations.

6. Conclusion
In the Learning to Defer (L2D) problem, the Bayes opti-
mality serves as the foundational criterion for designing a

consistent surrogate loss, playing a crucial role in the for-
mulation of the consistent surrogate loss. However, the
existing Bayes optimality shown by Mozannar & Sontag
(2020) fails to consider the dependence pattern between
human and model, while this dependence pattern appears
commonly in real-world scenarios since human experts may
achieve better performance on specific classes. To address
this issue, we provided a new formulation of the Bayes opti-
mality called dependent Bayes optimality, and presented a
deferral principle based on the dependent Bayes optimality.
This deferral principle enables us to determine whether to
defer based on the dependence pattern observed in training
data. Following the deferral principle, we further proposed
a dependent cross-entropy (DCE) loss for the L2D problem.
The DCE loss is a consistent surrogate loss and can induce a
bounded confidence estimator for the expert. To empirically
validate our proposed surrogate loss, we conducted exten-
sive experiments on various benchmark datasets, involving
both synthetic and real-world experts. The comprehensive
experimental results demonstrate that our proposed DCE
loss consistently outperforms the baselines, demonstrating
the superiority of our method. In future work, we will fur-
ther explore whether there exist other interesting patterns
that can help design a better consistent surrogate loss, and in-
vestigate the design of more efficient surrogate losses based
on the deferral principle.

9



Exploiting Human-AI Dependence for Learning to Defer

Acknowledgement
This work is supported by the Chongqing Overseas Chinese
Entrepreneurship and Innovation Support Program.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.

References
Alves, J. V., Leitão, D., Jesus, S., Sampaio, M. O., Liébana,
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Traum, D., and Màrquez, L. (eds.), ACL, pp. 4317–4323,
Florence, Italy, July 2019. Association for Computational
Linguistics.

Charoenphakdee, N., Cui, Z., Zhang, Y., and Sugiyama,
M. Classification with rejection based on cost-sensitive
classification. In ICML, 2020.

Charusaie, M.-A., Mozannar, H., Sontag, D., and Samadi, S.
Sample efficient learning of predictors that complement
humans. In ICML, pp. 2972–3005. PMLR, 2022.

Chow, C. On optimum recognition error and reject tradeoff.
IEEE Transactions on information theory, 16(1):41–46,
1970.

Cortes, C., DeSalvo, G., and Mohri, M. Learning with
rejection. In Ortner, R., Simon, H. U., and Zilles, S.
(eds.), Algorithmic Learning Theory, pp. 67–82, Cham,
2016. Springer International Publishing. ISBN 978-3-
319-46379-7.

De, A., Okati, N., Zarezade, A., and Rodriguez, M. G.
Classification under human assistance. In AAAI, pp. 5905–
5913, 2021.

Feng, L., Lv, J., Han, B., Xu, M., Niu, G., Geng, X., An,
B., and Sugiyama, M. Provably consistent partial-label
learning. Advances in neural information processing
systems, 33:10948–10960, 2020.

Finocchiaro, J., Frongillo, R. M., and Waggoner, B. An em-
bedding framework for consistent polyhedral surrogates.
In NeurIPS, 2019.

Gao, W. and Zhou, Z.-H. On the consistency of multi-label
learning. Artif. Intell., 199–200(1):22–44, jun 2013. ISSN
0004-3702.

Grigorescu, S., Trasnea, B., Cocias, T., and Macesanu, G.
A survey of deep learning techniques for autonomous
driving. Journal of Field Robotics, pp. 362–386, Apr
2020.

Guo, C., Pleiss, G., Sun, Y., and Weinberger, K. Q. On
calibration of modern neural networks. In ICML, pp.
1321–1330. PMLR, 2017.
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A. Proof of Theorem 4.1
To begin with proof, let us define

C⊥
DCE(g(x)) =

∑
y∈Y

[
− P(Y = y,M = y|x)

(
log(ψy

Y(g(x))) + log(ψ⊥
Y⊥/q(g(x)))

)
− P(Y = y,M ̸= y|x)ψY log(ψy

Y(g(x)))
]

The conditional surrogate risk w.r.t. x. We first proof that argmax
ỹ∈Y

g∗ỹ(x) = argmaxỹ∈Y ηỹ(x) by contradiction. Let us

use r = argmaxỹ∈Y ηỹ(x), q = argmax
ỹ∈Y

g∗ỹ(x) to denote the index of maximum dimension in posterior distribution and

scoring function respectively. For simplicity in notation, we represent the score vector outputted by the scoring function as
s = g(x), and s∗ = g∗(x)

Suppose r ̸= q, i.e. s∗q > s∗r . Then we show that we could obtain a lower value of conditional surrogate risk by switching the
value between s∗q and s∗r . Let us define s̃ the score vector obtained by switching the value between s∗q and s∗r , i.e. s̃r = s∗q ,
s̃q = s∗r and s̃i = s∗i for i ∈ Y⊥, i ̸= r, q. Thus argmax

ỹ∈Y
s̃ = r Then C⊥

DCE(s
∗)− C⊥

DCE(s̃) could be expressed as:

C⊥
DCE(s

∗)− C⊥
DCE(s̃)

= P(Y = q,M = q|x)
(
log(ψq

Y(s̃))− log(ψq
Y(s

∗)) + log(ψ⊥
Y⊥/r(s̃))− log(ψ⊥

Y⊥/q(s
∗))

)
+ P(Y = q,M ̸= q|x)

(
log(ψq

Y⊥(s̃))− log(ψq
Y⊥(s

∗))
)

+ P(Y = r,M = r|x)
(
log(ψr

Y(s̃))− log(ψr
Y(s

∗)) + log(ψ⊥
Y⊥/(s̃))− log(ψ⊥

Y⊥/q(s
∗))

)
+ P(Y = r,M ̸= r|x)

(
log(ψr

Y⊥(s̃))− log(ψr
Y⊥(s

∗))
)

(a)
= P(Y = q,M = q|x)

(
log(

exp(s∗r)

exp(s∗q)
) + log(

exp(s∗r) +
∑

i ̸=r,q exp(s
∗
i )

exp(s∗r) +
∑

i ̸=r,q exp(s
∗
i ))

)
+ P(Y = q,M ̸= q|x)

(
log(

exp(s∗r)

exp(s∗q)
)
)

+ P(Y = r,M = r|x)
(
log(

exp(s∗q)

exp(s∗r)
) + log(

exp(s∗r) +
∑

i̸=r,q exp(s
∗
i )

exp(s∗r) +
∑

i ̸=r,q exp(s
∗
i )

)
+ P(Y = r,M ̸= r|x)

(
log(

exp(s∗q)

exp(s∗r)
)
)

= (P(Y = r|x)− P(Y = q|x)) log(
exp(s∗q)

exp(s∗r)
)

> 0

The equation (a) holds since
∑

i∈Y exp(s∗i ) =
∑

i∈Y exp(s̃i) and
∑

i∈Y⊥ exp(s∗i ) =
∑

i∈Y⊥ exp(s̃i). Because P(Y =

r|x) > P(Y = q|x) and s∗q > s∗r , then (P(Y = r|x) − P(Y = q|x)) log( exp(s
∗
q)

exp(s∗
r)
) > 0,C⊥

DCE(s
∗) > C⊥

DCE(s̃). This
contradicts to s∗ is the minimizer of C⊥

DCE, thus r = q. Then we can conclude the proof of r = q.

Then we prove that s∗r > s∗⊥ when P(Y = r, Y ̸=M |x) > P(Y ̸= r, Y =M |x). Suppose s∗⊥ > s∗r when Y(Y = r,M ̸=
r)(x) > P(Y ̸= r, Y = M |x) and we use s′ to represent the score vector obtained by switching the value between s∗r
and s∗⊥, i.e. s′r = s∗⊥, s′⊥ = s∗r and s′i = s∗i for all i ∈ Y, i ̸= r. We can directly derive that r = argmax

ỹ∈Y
s′. Then

12
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C⊥
DCE(s

∗)− C⊥
DCE(s

′) could be expressed as:

C⊥
DCE(s

∗)− C⊥
DCE(s

′)

= P(Y = r,M = r|x)
(
log(ψr

Y(s
′))− log(ψr

Y(s
∗)) + log(ψ⊥

Y⊥/r(s
′))− log(ψ⊥

Y⊥/r(s
∗))

)
+ P(Y = r,M ̸= r|x)

(
log(ψr

Y⊥(s
′))− log(ψr

Y⊥(s
∗))

)
+

∑
i∈Y,i̸=r

P(Y = i,M = i|x)
(
log(ψi

Y(s
′))− log(ψi

Y(s
∗)) + log(ψ⊥

Y⊥/r(s
′))− log(ψ⊥

Y⊥/r(s
∗))

)
+

∑
i∈Y,i̸=r

P(Y = i,M ̸= i|x)
(
log(ψi

Y⊥(s
′))− log(ψi

Y⊥(s
∗))

)
= P(Y = r,M ̸= r|x)

(
log(ψr

Y⊥(s
′))− log(ψr

Y⊥(s
∗))

)
+

∑
i∈Y,i̸=r

P(Y = i,M = i|x)
(
log(ψi

Y(s
′))− log(ψi

Y(s
∗)) + log(ψ⊥

Y⊥/r(s
′))− log(ψ⊥

Y⊥/r(s
∗))

)
= P(Y = r,M ̸= r|x) log(exp(s

∗
⊥)

exp(s∗r)
)

+
∑

i∈Y,i̸=r

P(Y = i,M = i|x)
(
log(

∑
j∈Y,j ̸=r exp(s

∗
j ) + exp(s∗r)∑

j∈Y,j ̸=r exp(s
∗
j ) + exp(s∗⊥)

) + log(
exp(s∗r)

exp(s∗⊥)

∑
j∈Y,j ̸=r exp(s

∗
j ) + exp(s∗⊥)∑

j∈Y,j ̸=r exp(s
∗
j ) + exp(s∗r)

)))

= P(Y = r,M ̸= r|x) log(exp(s
∗
⊥)

exp(s∗r)
)

− P(Y ̸= r, Y =M |x) log(exp(s
∗
⊥)

exp(s∗r)
)

=
(
P(Y = r,M ̸= r|x)− P(Y ̸= r, Y =M |x)

)
log(

exp(s∗r)

exp(s∗⊥)
) > 0

Thus C⊥
DCE(s

∗) > C⊥
DCE(s

′), which is contradictory to s∗ is a minimizer of C⊥
DCE, then we conclude the proof that

s∗r > s∗⊥ if P(Y = r, Y ̸=M |x) > P(Y ̸= r, Y =M |x).

Lastly, we prove that s∗⊥ > s∗r when P(Y ̸= r, Y = M |x) > P(Y = r, Y ̸= M |x). Suppose s∗r > s∗⊥ when
P(Y ̸= r, Y = M |x) > P(Y = r, Y ̸= M |x) and we still use s′ to represent the score vector obtained by switching
the value between s∗r and s∗⊥, i.e. s′r = s∗⊥, s′⊥ = s∗r and s′i = s∗i for all i ∈ Y, i ̸= r. Let t = argmax

ỹ∈Y
s′y. We define

ϵ =
∑

i∈Y,i̸=r exp(s
∗) and ϵ′ =

∑
i∈Y,i̸=r exp(s

′). We could derive that ϵ ≥ ϵ′. Then C⊥
DCE(s

∗)− C⊥
DCE(s

′) could be
expressed as:

13
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C⊥
DCE(s

∗)− C⊥
DCE(s

′)

= P(Y = r,M = r|x)
(
log(ψr

Y(s
′))− log(ψr

Y(s
∗)) + log(ψ⊥

Y⊥/t(s
′))− log(ψ⊥

Y⊥/r(s
∗))

)
+ P(Y = r,M ̸= r|x)

(
log(ψr

Y⊥(s
′))− log(ψr

Y⊥(s
∗))

)
+

∑
i∈Y,i̸=r

P(Y = i,M = i|x)
(
log(ψi

Y(s
′))− log(ψi

Y(s
∗)) + log(ψ⊥

Y⊥/t(s
′))− log(ψ⊥

Y⊥/r(s
∗))

)
+

∑
i∈Y,i̸=r

P(Y = i,M ̸= i|x)
(
log(ψi

Y⊥(s
′))− log(ψi

Y⊥(s
∗))

)
= P(Y = r,M = r|x)

(
log(

exp(s∗⊥)

ϵ+ exp(s∗⊥)
)− log(

exp(s∗r)

ϵ+ exp(s∗r)
) + log(

exp(s∗r)

ϵ′ + exp(s∗r)
)− log(

exp(s∗⊥)

ϵ+ exp(s∗⊥)
)
)

+ P(Y = r,M ̸= r|x) log(exp(s
∗
⊥)

exp(s∗r)
)

+
∑

i∈Y,i̸=r

P(Y = i,M = i|x)
(
log(

exp(s∗i )

ϵ+ exp(s∗⊥)
)− log(

exp(s∗i )

ϵ+ exp(s∗r)
) + log(

exp(s∗r)

ϵ′ + exp(s∗r)
)− log(

exp(s∗⊥)

ϵ+ exp(s∗⊥)
)
)

= P(Y = r,M = r|x)
(
log(

ϵ+ exp(s∗r)

ϵ′ + exp(s∗r)
)
)

+ P(Y = r,M ̸= r|x) log(exp(s
∗
⊥)

exp(s∗r)
)

+ P(Y ̸= r, Y =M |x)
(
log(

exp(s∗r)

exp(s∗⊥)
) + log(

ϵ+ exp(s∗r)

ϵ′ + exp(s∗r)
)
)

= P(Y = r,M = r|x)
(
log(

ϵ+ exp(s∗r)

ϵ′ + exp(s∗r)
)
)

+
(
P(Y ̸= r, Y =M |x)− P(Y = r,M ̸= r|x)

)
log(

exp(s∗r)

exp(s∗⊥)
)

+ P(Y = r,M ̸= r|x) log( ϵ+ exp(s∗r)

ϵ′ + exp(s∗r)
) > 0

Which conclude the proof s∗⊥ > s∗r when P(Y ̸= r, Y =M |x) > P(Y = r, Y ̸=M |x) by contradiction.

B. Proof of Proposition 4.2
The formulation of DCE could be rewritten as:

L⊥
DCE(g(x), y,m) =



− log(ψy
Y(g(x)))− log(ψ⊥

Y⊥/q(g(x)))

(y = m)

− log(ψy
Y(g(x)))− log(

λ(x)

λ(x) + exp(g⊥(x))
)

(y ̸= m)

Thus L⊥
DCE could be expressed as:

L⊥
DCE(g(x), y,m) = − log(

exp(gy(x))

λ(x)
)− Iy=m log(

exp(g⊥(x)

µ(x) + exp(g⊥(x))
)− Im ̸=y log(

λ(x)

λ(x) + exp(g⊥(x))
)

14
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Then the conditional surrogate risk can be expressed as:

C⊥
DCE(g(x))

= −
∑
i∈Y

P(Y = i|x) log(exp(gi(x))
λ(x)

)

− P(Y =M |x) log( exp(g⊥(x)

µ(x) + exp(g⊥(x))
)− P(M ̸= Y |x) log( λ(x)

λ(x) + exp(g⊥(x))
)

To minimize −
∑

i∈Y P(Y = i|x) log( exp(gi(x))λ(x) ), we could directly obtained that P(Y = ỹ|x) = ψỹ
Y(g

∗(x)) due to the
calibration of Cross-Entropy (Lemma 2 in Feng et al. (2020)).

Now we focus on deriving the minimizer w.r.t. −P(Y =M |x) log( exp(g⊥(x)
µ(x)+exp(g⊥(x)) )−P(M ̸= Y |x) log( λ(x)

λ(x)+exp(g⊥(x)) ).

The derivative of −P(Y =M |x) log( exp(g⊥(x)
µ(x)+exp(g⊥(x)) )− P(M ̸= Y |x) log( λ(x)

λ(x)+exp(g⊥(x)) ) w.r.t. exp(g⊥(x)) is:

∂ − P(Y =M |x) log( exp(g⊥(x)
µ(x)+exp(g⊥(x)) )− P(M ̸= Y |x) log( λ(x)

λ(x)+exp(g⊥(x)) )

∂ exp(g⊥x)

= P(Y =M |x)µ(x) + exp(g⊥(x))

exp(g⊥(x))
· µ(x) + exp(g⊥(x))− exp(g⊥(x))

(µ(x) + exp(g⊥(x)))2

+ P(Y ̸=M |x)λ(x) + exp(g⊥(x))

λ(x)
· λ(x)

(λ(x) + exp(g⊥(x)))2

= P(Y =M |x) µ(x)

exp(g⊥(x)) · (µ(x) + exp(g⊥(x)))

+ P(Y ̸=M |x) 1

λ(x) + exp(g⊥(x))

By setting this derivative to 0. We obtain that:

P(Y =M |x) µ∗(x)

exp(g∗⊥(x)) · (µ∗(x) + exp(g∗⊥(x)))
= P(Y ̸=M |x) 1

λ∗(x) + exp(g∗⊥(x))

P(Y =M |x) µ∗(x)

µ∗(x) + exp(g∗⊥(x))
= P(Y ̸=M |x) exp(g∗⊥(x))

λ∗(x) + exp(g∗⊥(x))

P(Y =M |x) µ∗(x)

µ∗(x) + exp(g∗⊥(x))
= (1− P(Y =M |x)) exp(g∗⊥(x))

λ∗(x) + exp(g∗⊥(x))

P(Y =M |x) = exp(g∗⊥(x)) · (µ∗(x) + exp(g∗⊥(x))

exp(g∗⊥(x)) · (µ∗(x) + exp(g∗⊥(x))) + µ∗(x) · (λ∗(x) + exp(g∗⊥(x)))

P(Y =M |x) = 1

1 +
µ∗(x)·(λ∗(x)+exp(g∗⊥(x)))

exp(g∗⊥(x))·(µ(x)+exp(g∗⊥(x))

Where we use µ∗(x) and λ(x) to represent the summation w.r.t. the optimal scoring function g∗. Then we conclude the
proof.

C. Additional Experiments Results

15
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Table 6. Test performance of each method on ImageNet-16H with for 5 trials. The mean(%)(standard error(%)) of related metrics are
reported in Table. The best and comparable methods for the misclassification error are highlighted in boldface.

Method Error Budgeted Error Coverage

10% 20% 30% ECE

Image Noise Type=“110”

CE 22.59(0.49) 68.08(3.66) 60.58(3.00) 52.50(2.84) 30.42(5.12)

30.28(1.78)

OvA 22.67(2.02) 59.83(4.84) 51.42(4.72) 43.67(4.32) 38.92(4.62)

19.72(1.73)

A-SM 22.42(1.59) 50.83(4.51) 43.00(4.66) 35.58(3.94) 49.83(3.40)

10.99(2.07)

DCE 21.33(1.50) 60.58(3.98) 52.67(3.55) 45.17(3.30) 36.33(3.97)

20.96(1.71)

Image Noise Type=“125”

CE 33.00(3.20) 59.25(2.41) 53.25(2.88) 46.83(2.07) 44.50(2.29)

33.54(3.18)

OvA 33.00(2.53) 50.17(2.64) 43.75(2.50) 38.92(1.91) 54.17(2.25)

21.39(3.06)

A-SM 31.92(2.02) 39.33(0.68) 34.58(0.79) 31.92(2.02) 73.75(2.06)

15.36(2.02)

DCE 32.58(2.26) 51.92(1.84) 46.25(1.37) 41.08(1.25) 50.92(3.00)

22.88(3.47)
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