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Abstract

Crowdsourced sign datasets collected with the
involvement of deaf communities, such as the
ASL Citizen dataset, represent an important
step towards improved accessibility and docu-
mentation of signed languages. However, it is
important to ensure that these resources benefit
people in an equitable manner. Thus, there is
a need to understand the potential biases that
may result from models trained on sign lan-
guage datasets. In this work, we utilize the
rich information about participant demograph-
ics and lexical features present in the ASL Cit-
izen dataset to study and document the biases
that may result from models trained on crowd-
sourced sign datasets. Further, we apply several
bias mitigation techniques during model train-
ing, and discuss the results and relative success
of these techniques. In addition to our anal-
yses and machine learning experiments, with
the publication of this work we release the de-
mographic information about the participants
in the ASL Citizen dataset to encourage future
work in this space.

1 Introduction

The field of natural language processing (NLP) has
historically been skewed towards spoken languages.
Before 2021, NLP research output in the space of
sign language processing (SLP) research was in
the minority, with computer vision increasingly
dominating this space (Yin et al., 2021). Follow-
ing works such as Yin et al. (2021), signed lan-
guages have received more attention from the NLP
community. However, the comparative lack of re-
sources for signed languages compared to spoken
languages heightens the difficulty of SLP, and is
compounded by the fact that most accessible infor-
mation (e.g. online resources and social media) is
written in a spoken language (Desai et al., 2024).
The ASL Citizen dataset (Desai et al., 2024) was
released to help address this resource gap, with

the goal of improving video-based dictionary re-
trieval for sign language, where signers demon-
strate a particular sign and the system returns a list
of similar signs, ranked from most to least simi-
lar. Video-based dictionary retrieval systems can
help language learners understand the meaning of
a sign, and allow signers to access dictionary re-
sources using signed languages (Desai et al., 2024).
As a crowd-sourced dataset with videos of individ-
ual signs, the ASL Citizen dataset also serves to
improve documentation of signed languages. This
dataset is the first crowdsourced dataset of videos
for isolated signs, and members of deaf commu-
nities were involved and compensated for this ef-
fort. This dataset is licensed by Microsoft Research
and is bound by the Microsoft Research Licensing
Terms'.

Resources such as the ASL Citizen dataset, that
improve accessibility and contribute to the docu-
mentation of low-resource languages, are critical.
However, it is also important to critically analyze
these datasets, in order to understand in what con-
ditions (and for what users) these datasets, and
models trained on them, are most beneficial. Cur-
rently, there is a limited amount of prior work in
this space.

To help address this problem, we explore how
signer demographics and more latent sources of
bias may impact modeling performance. To do
this, we analyze demographics in the ASL Citizen
dataset, which presents a diversity of signers and
vocabulary, and examine how these demographic
features, along with lexical and video-level fea-
tures, may impact model results. Specifically, we
present a detailed analysis of the distributions of dif-
ferent demographics, and feature prevalence among
demographics. We also present a linguistic analysis
of the dataset based on the ASL-Lex annotations for

"Terms of use at https://www.microsoft.com/en-us/
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https://www.microsoft.com/en-us/research/project/asl-citizen/dataset-license/
https://www.microsoft.com/en-us/research/project/asl-citizen/dataset-license/

each sign. Further, we study how these features im-
pact model performance. What characteristics of a
sign video may improve dictionary retrieval results,
and are there any disparities in performance among
different demographics? Finally, we experiment
with different debiasing techniques in order to re-
duce performance gaps without sacrificing overall
model accuracy. In addition to publishing our find-
ings, we release the demographic data for the ASL
Citizen dataset, so future researchers can continue
to work toward the goal of developing equitable
sign language processing systems.

In summary, we address the following three re-
search questions:

RQ1 How is the ASL Citizen data distributed, de-
mographically and linguistically?

RQ2 Which demographic and linguistic factors im-
pact dictionary retrieval results in the ASL
Citizen dataset?

RQ3 Can we use debiasing strategies to mitigate
disparate impacts while maintaining high per-
formance for dictionary retrieval models?

2 Related

Most readily-available information (i.e. online re-
sources and social media) is written, which may
limit accessibility for signers. Sign language pro-
cessing tasks, such as dictionary retrieval, are de-
signed to improve the accessibility of existing
systems/resources for Deaf and Hard-of-Hearing
(DHH) people. Desai et al. (2024) created the ASL
Citizen dataset for the purpose of improving dictio-
nary retrieval.

The ASL Citizen dataset is composed of videos
of individual signs for isolated sign language recog-
nition (ISLR). Other ISLR datasets with videos of
individual signs have been released, including WL-
ASL (Li et al., 2020), Purdue RVL-SLL (Wilbur
and Kak, 2006), BOSTON-ASLLVD (Athitsos
et al., 2008), and RWTH BOSTON-50 (Zahedi
et al., 2005). However, the ASL Citizen dataset
is the first large-scale ISLR dataset to be crowd-
sourced. The dataset is made up of crowdsourced
videos from ASL signers, where each video cor-
responds to a particular sign. The corpus is made
up of videos for 2731 unique signs, all of which
are contained in the ASL-Lex dataset Caselli et al.
(2017), a lexical database of signs with annota-
tions including the relative frequency, iconicity,
grammatical class, English translations, and phono-
logical properties of the sign. Thus, researchers

studying this dataset can also take advantage of the
ASL-Lex annotations.

As part of the original data collection effort, de-
mographic information about each participant was
collected, but it was not released. With the publi-
cation of this work, we release the demographic
data in this set, and provide a detailed analysis
of this data. Further, using the ASL-Lex features,
we analyze the properties of the signs depicted
in this dataset, and study how these features, in
combination with participant demographics impact
model performance. Finally, we qualitatively an-
alyze these videos, and identify some video-level
features that may increase or decrease performance.

Motivating our work are previous works indicat-
ing that demographics of the signer may impact
their signing. For instance, characteristics of partic-
ular spoken languages or dialects have been shown
to influence gestures, and in turn sign production
(Cormier et al., 2010). One example of an ASL
dialect is Black ASL, which scholarly evidence
has shown to be its own dialect (Toliver-Smith and
Gentry, 2017), and for which documentation of
dialectical differences dates back to 1965 (Stokoe
et al., 1965). Whether an individual speaks Black
ASL is likely heavily influenced on their race or
ethnicity. An example of geographical differences
is Martha’s Vineyard, an island off the coast of
the United States, where an entire signed language
emerged due to the high prevalence of deaf indi-
viduals in this community. Hearing and deaf peo-
ple alike used this language to communicate until
the mid-1900s (Kusters, 2010). There is also a
distinct Canadian ASL dialect used by signers in
English-speaking areas of Canada (Padden, 2010),
which is documented in a dictionary (Bailey et al.,
2002). Age of language acquisition also impacts
ASL production; delayed first-language acquisi-
tion affects syntactic knowledge for ASL signers
(Boudreault and Mayberry, 2006) and late acqui-
sition (compared to native acquisition) was found
to impact sensitivity to verb agreement (Emmorey
et al., 1995).

Previous work also indicates the impact of cer-
tain features on sign language modeling; for in-
stance, training an ISLR model to predict phonolog-
ical characteristics of a sign in addition to the sign
itself was found to improve model performance by
almost 9% (Kezar et al., 2023). (Sarhan et al., 2023)
find improved performance when using attention to
focus on hand movements in sign videos. However,
to our knowledge, there are no existing works that



extensively study various sources of model bias
on a crowdsourced dataset of sign videos with col-
lected participant demographics. With this work,
we aim to address this gap with a systematic analy-
sis of the impact of various participant-level, sign-
level, and video-level features, and results from
deploying different debiasing techniques.

3 How is the ASL Citizen data
distributed, demographically and
linguistically?

The ASL Citizen dataset is a crowdsourced dataset
containing 83,399 videos of individual signs in
ASL from 52 different participants. The dataset
contains 2731 unique signs that are included in the
ASL-Lex (Caselli et al., 2017) dataset, a dataset
with detailed lexical annotations for each sign. The
authors of the original work report some demo-
graphic statistics, but the demographics of indi-
vidual (de-identified) participants have not been
released. Here, we answer our first research ques-
tion: how is the ASL Citizen data distributed, de-
mographically and linguistically? We provide a
detailed report that includes demographics break-
downs and analyses of various linguistic and video
features in the dataset, including the breakdown
of these features by gender. We will release the
demographics of participants upon publication of
this paper.

3.1 Demographic Distributions

In total, the ASL Citizen dataset is comprised of 32
(61.5%) women and 20 (38.5%) men. 21 women
are in the training set (60%), S are in the validation
set (83%), and 6 are in the test set (55%). The vast
majority of participants report an ASL level of 6
or 7, and the full distribution of ASL levels can be
seen in Figure 4. The participants also list their
U.S. states. Using this information, we divide them
into four regions as defined by the U.S. Census
2. Northeast, Midwest, South, and West. We find
that more participants in the dataset are from the
Northeast than any other region, as shown in Figure
4. We also find that the age range of participants is
skewed: participants in their 20s and 30s make up
32 of the 52 participants (see Figure 5).
Participants did not note their ethnicity or race
for this dataset. As such, to uncover potential biases
related to the participants’ perceived skin tone in
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their videos, we ran the skin-tone-classifier
Python package from Rejon Pina and Ma on the
frame with the first detected face in each video.
We found that when we did not specify that the
videos were in color, the classifier most often de-
tected them as black and white. When we specified
that the videos were in color, the most common
skin tone detected (out of the default color palette
used in Rejon Pina and Ma) was ZJIREIN Because
the classifier most commonly detected images as
black and white, we also tried specifying the video
frames as being black and white. When we did this,
the most common skin tone detected was #bOb0b0,
and the distribution was somewhat different from
when the images were specified as being in color.
Thus, there may be some errors in the skin tone
classification. We plot these results in Figure 6.

3.2 Sign and Video Features

Because the ASL Citizen dataset is composed of
signs from ASL-Lex (Caselli et al., 2017), we have
access to ASL-Lex’s annotated lexical features of
each sign for analysis. No works have, to date, stud-
ied these features in-depth on the ASL Citizen sign
videos. Further, we conduct additional analyses on
the video lengths, similarities and differences from
the model, and other notable features in the dataset.

Video Length We analyze the distribution of
video lengths, in order to study length variation
between submitted videos and identify patterns that
may explain performance discrepancies between
individuals or members of certain demographics.
We find that the distribution of video lengths (s)
is skewed left, with a longer tail on the right, as
shown in Figure 7.

We also study relative video lengths for par-
ticipants of different ages and genders. To ac-
count for differences between which signs were
depicted (since participants did not all record the
same signs), for each video, we calculate the num-
ber of standard deviations the video length is away
from the mean for all videos of that sign - in other
words, we calculate standard deviations from the
mean at the sign level. We find that, while men
on average record videos over .3 standard devi-
ations longer than the mean, women on average
record videos over 2 standard deviations shorter
than the mean. Thus, compared to other videos
with the same sign, women record shorter videos
than men. We show these results in Figure 8. We
also found that, in general, older participants, par-
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ticularly those in their 70s, tend to record longer
videos on average (again, relative to other videos
of the same sign) than younger participants. Upon
manual inspection, we found that older participants
were more likely to have longer pauses before or
after signing than younger participants, which may
explain this gap. We also show these results in
Figure 8.

Sign Frequency The ASL Citizen dataset is com-
prised of 2731 signs from the ASL-Lex dataset
Caselli et al. (2017), a dataset with expert annota-
tions about properties of each sign including fre-
quency of use, iconicity, and varying phonological
properties. To collect sign frequency labels, deaf
signers who use ASL were asked to rate signs from
1 to 7 in terms of how often they appear in everyday
conversations, where 1 was “very infrequently" and
7 was “very frequently". We plot and compare the
distributions for the ASL Citizen dataset and the
ASL-Lex dataset in Figure 9, and find that they are
very similar.

We also find that there is little variation in sign
frequency for participants of different genders. For
male participants, the average sign frequency was
4.1592, while the average sign frequency for female
participants was 4.1395, indicating that female par-
ticipants chose slightly less frequently-occurring
signs than men.

Sign Iconicity The ASL-Lex dataset also con-
tains crowdsourced annotations for sign iconicity,
where non-signing hearing annotators watch videos
of a sign and evaluated how much they look like
the sign’s meaning from 1 (not iconic) to 7 (very
iconic). The ASL-Lex signs have an average iconic-
ity of XX, and the signs in the ASL-Citizen dataset
have an average iconicity of 3.379. We plot these
distributions in Figure 10, and again find that they
are very similar.

We find average iconicity to be 3.378 for women
and 3.381 for men. This indicates that, as with fre-
quency, average sign iconicity exhibits only a slight
difference between male and female participants.

4 Methods

4.1 Baselines

For our experiments, unless otherwise stated, we
use the baseline 13D and ST-GCN models which
were trained on the ASL Citizen dataset and re-
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Figure 1: ST-GCN top 1 accuracy scores by detected
skin tone. We find that, despite being less represented
in the dataset, videos with lighter detected skin tones
have higher accuracy scores on average.

leased along with the dataset.>. Thus, when we
refer to the I3D model, we mean the 3D convo-
lutional network referred to as such in the ASL
Citizen paper, and is trained on preprocessed video
frames from the sign videos. When we refer to
the ST-GCN model, we are again referring to the
baseline of the same name in the paper, which is
trained on representations of the participants’ poses
that are created by extracting key points.

5 Which factors impact dictionary
retrieval results in the ASL Citizen
dataset?

5.1 Participant-level differences

Baseline models perform over 10 percentage
points better for male vs. female participants
We ran the baseline 13D and ST-GCN models
trained on the ASL Citizen dataset (Desai et al.,
2024), and, for both models, found an accuracy
disparity between participants of different genders.
For the I3D model, the overall Top-1 accuracy was
0.6306, while for females it was 0.5914 and for
males it was 0.6776; in other words, a gap of over
10 points in favor of male participants was observed.
The ST-GCN model saw an even bigger gap; the
overall Top-1 accuracy was 0.5944, while the Top-
1 accuracy was 0.6838 for males and 0.52 for fe-
males.

There is high variation in model accuracy be-
tween participants One possible contributor to
the above disparities in performance for different
genders is the participant-level model accuracy
scores. There are 11 participants whose videos are
in the test set for the ASL Citizen dataset. Of these
11 participants, 6 are female and 5 are male. When
we examine the accuracy scores for each partici-
pant, we find high variation between participants

3https://github.com/microsoft/
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for both models, with over 15-point differences be-
tween the highest and lowest accuracy scores for
each model (see Table 5. Thus, the large gender
gap may partially be explained by this variation, as
there are only a few participants of each gender in
the test set.

Upon manual inspection, we find several charac-
teristics of user videos that seem to vary between
participants. Different participants have different
background or lighting quality, and some partic-
ipants mouth the word being signed while other
participants do not. We also found instances of
repetition, where the sign is repeated in the video,
from P15, who is a female participant. There were
also some instances of fingerspelling, where partici-
pants fingerspelled the sign before signing it. These
and other individual differences may be contribu-
tors towards the gender disparity in performance.

The models tended to perform better on lighter
skin tones than darker skin tones Despite
darker skin tones making up most of the detected
skin tones for videos in this dataset (see Figure 6),
we found that models averaged better performance
when the detected skin tone was lighter. We illus-
trate this phenomenon for the ST-GCN model in
Figure 1. Although we found variations in accu-
racy between participants in the previous section,
the skin tones were categorized at the video level.
Thus, these results may not be impacted by the low
sample size to the degree that the above results on
gender are. However, it is possible that poor light-
ing in a video may make a participant’s detected
skin color darker than it actually is. Thus, lighting
quality is a potential confounder for these results.

The model performed best on participants in
their 20s and 60s The ASL Citizen test set was
made up of 11 individuals in their 20s, 30s, 50s, and
60s. We found that, as with gender, model accuracy
varied for different age ranges; the highest accuracy
scores were achieved for participants in their 20s
and 60s. This could be influenced by the proportion
of participants in their 20s in the dataset.

5.2 Video-level differences

Performance decreases as the video length di-
verges from the average For each sign video in
the ASL Citizen dataset, we calculated the number
of standard deviations (SDs) from the mean for the
video length compared to other videos of the same
sign. We then placed these values into buckets:
less than -2, -2to -1, -1 t0 0, 0 to 1, 1 to 2, and

Std. devs from mean | I3D Top-1 | ST-GCN Top-1

n < —2 0.38462 0.3846
—2<n<-1 0.5551 0.4862
-1<n<0 0.648 0.5888
0<n<1 0.6704 0.6449
1<n<2 0.5727 0.5878
n>2 0.3846 0.4668

Table 1: Top-1 accuracy scores for videos within a cer-
tain number of SDs away from the mean for videos of
the same sign. For both models, videos with lengths
closer to the mean yield better model performance.

Accuracy
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Figure 2: Association between BRISQUE image quality
scores and accuracy. Higher BRISQUE scores indicate
lower image quality, and vice versa. Thus, higher im-
age quality appears to be associated with better model
performance.

more than 2 SDs from the mean. We find that, on
average, the videos farther away from the mean
see decreased model performance compared to the
videos closest to the mean. The results in full are
in Table 1.

Performance decreases when video quality de-
grades In addition to video length, we studied
the impact of video quality on model accuracy.
Given that we were studying the quality of indi-
vidual video frames without a reference image,
we used the BRISQUE score (Mittal et al., 2012)
to measure image quality of individual frames.
Higher BRISQUE scores indicate lower quality,
while lower BRISQUE scores indicate higher qual-
ity. We found that higher BRISQUE scores cor-
related negatively with Top-1 model performance
for the I3D model, with a Spearman correlation
of p = —0.0367 and a p-value of p = 1.5321075.
We show a scatterplot of these results in Figure 2,
along with a linear regression line.

Dissimilarity between participant and seed
signer signs negatively impacts model accuracy
for the ST-GCN pose model The Frechét dis-
tance is often used as an evaluation metric for sign
language generation, to study the similarity be-
tween generated signs and references (Hwang et al.,



2024; Dong et al., 2024) (see § D for more details).
In the ASL Citizen dataset, one of the participants
is a paid ASL model who records videos for every
sign, referred to as the “seed signer".

We studied whether dissimilarity between the
participant and seed signer may have a negative im-
pact on model accuracy. To do so, we used the pose
models used as input to the ST-GCN model. Every
.25 seconds, we measured the distance between
the model pose and the participant’s pose at that
frame, studying the distance between left hands
and right hands separately. We found no signifi-
cant relationship between right hand or left hand
distance from the seed signer for the I3D model,
and for the ST-GCN model we found a significant
negative Spearman correlation between distance
from the seed signer and accuracy for the right
hand (p = —.0289, p = 0.001). We plot these
results, along with lines of best fit, in Figure 11.

When the average signing ‘“‘speed" is closer to
the sign-level average, performance is better In
addition to video length, we were interested in
studying the average distance between poses over
consistent time intervals. We wanted to study how
much movement on average occurred within these
increments, i.e. the “speed"” of sign production. We
study this by calculating the pairwise Frechet dis-
tance between poses at each 0.25 second interval,
with distance calculated between a pose and the
pose .25s after, starting from the first frame. We
again took this distance for the participants’ right
hand and left hand. We find that, on average, the far-
ther away a participant’s average signing speed is
from the mean for that sign, the worse performance
is, with especially high performance degradations 2
SDs or more from the mean. We show these results
in Table 2.

5.3 Sign-level lexical features

The ASL-Lex annotations on this dataset allow us
to not only conduct a dataset analysis, but also
analyze model performance, and how sign-level
features may impact model performance. Below,
we present results for four sign-level features an-
notated in the ASL-Lex dataset: sign frequency,
iconicity, phonological complexity, and neighbor-
hood density. We find that several of these fea-
tures are significantly correlated with model perfor-
mance, which we discuss below.

Sign frequency, phonological complexity, and
neighborhood density are negatively correlated

BD ST-GCN | 3D ST-GCN
SD from mean | (LH) (LH) (RH)  (RH)
n<—2| 4627 2139 5 2375
—2<n<—1].6041 5804 | 6121 5174
—1<n<0| .6503 .6426 | 6438  .6351
0<n<1]|.6244 5813 | .6423  .6145
1<n<2]| 6l64 5261 616 5744
n>2| 5711 04739 | 5619 5107

Table 2: Number of SDs away from the mean of the sign
(in buckets) for the “speed” of signing, i.e. the average
Frechet distance between poses every 0.25 seconds, for
right hand and left hand. We find that, for both right
hand and left hand, the performance degrades as the
average “speed” of the sign production in a sign video
deviates from the average for that particular sign.

with model accuracy As mentioned in § 3.2,
sign frequency annotations were collected from
ASL signers, who indicated the frequency of each
sign in everyday conversation from 1 (least fre-
quent) to 7 (most frequent). The ASL-Lex 2.0
dataset (Sehyr et al., 2021) also contains a new
phonological complexity metric. Using 7 different
categories of complexity, scores were calculated
by assigning a 0 or 1 to each category (depending
on whether that category was present) and adding
them together, for a maximum possible scores of 7
(most complex) and a minimum possible score of 0.
The highest complexity score in the dataset was a
6. Neighborhood density was calculated based on
the number of signs that shared all, or all but one,
phonological features with the sign. Intuitively, we
expected negative associations with phonological
complexity and accuracy as well as neighborhood
density and accuracy, and indeed found significant
negative correlations (p = —0.0618, p = 0.005
for phonological complexity and rho = —0.0584,
p = 0.01 for neighborhood density). However,
we also found a significant negative association
between sign frequency and model accuracy, with
a correlation of p = —0.057 and p = 0.011. We
are unsure of the cause of this negative association,
and encourage future researchers to explore this
relationship further.

There is no significant correlation between
iconicity and model accuracy As mentioned in
§ 3.2, sign iconicity ratings were also collected
for the ASL-Lex dataset, using hearing individu-
als’ judgments regarding how much the sign looks
like its English meaning. The hearing individu-
als assigned ratings from 1 (not iconic at all) to
7 (very iconic). We found a very slight positive
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Figure 3: The relationships between sign frequency (left), sign iconicity (center left), phonological complexity
(center right), and neighborhood density (right) and top 1 accuracy for the ST-GCN model. We find that sign
frequency, phonological complexity, and neighborhood density are all significantly negatively correlated with model
accuracy (p < 0.05) when calculating Spearman’s rank correlation. However, despite a slight positive correlation
between iconicity and accuracy, the p-value is not significant.

correlation between sign iconicity and model ac-
curacy (p = 0.044), which was not significant
(p = 0.8424). Thus, we conclude that visual simi-
larity to the English word appears not to affect the
model’s ability to recognize a sign.

5.4 Which features have the greatest impact
on model accuracy?

After looking at the impacts of lexical, demo-
graphic, and video features on model accuracy, we
were interested in studying which features are the
most impactful. As such, we study the mutual
information between each feature and the Top-1
accuracy for the I3D and ST-GCN models. We
study a total of 19 features, where some relate to
participant demographics (e.g. age and gender),
others relate to the sign lexical features (e.g. sign
iconicity), and the rest are characteristics of indi-
vidual videos (e.g. BRISQUE score and Frechet
distances). We find that the five most impactful fea-
tures are characteristics of the videos themselves
(BRISQUIE, Frechet from seed signer, and absolute
SD of “signing speed"), with BRISQUE video qual-
ity scores showing the highest mutual information
scores. Out of the lexical features, sign iconicity
has the highest mutual information, and out of the
demographic features, ASL level has the highest
mutual information. The results in full are in Table
6 in Appendix H.

6 Can we mitigate disparate impacts
while maintaining higher performance
for dictionary retrieval?

6.1 Training on single-gender subsets

We first try to address the gender gap by training on
participants of each gender in isolation, and testing
performance on male and female participants sepa-
rately and together. When doing this, we do find a

slight difference between the performance gaps for
model trained on male-only and female-only sub-
sets. For the model trained on the male-only subset,
the Top-1 accuracy for male subjects was .292, and
the Top-1 accuracy was .168. For the model trained
on the female-only subset, the Top-1 accuracy for
male subjects was .291, and the Top-1 accuracy for
female subjects was .206. Thus, the model trained
only on female subjects had a smaller gap, and
higher accuracy parity, between male and female
subjects than the model trained on only male sub-
jects. However, both models had low performance
overall, so the Top-1 accuracy parity for subjects of
different genders (calculated by dividing the female
accuracy by the male accuracy) comes out to .7571
for the model trained on all subjects compared to
7079 for the model trained on only female subjects.
The model trained on only male subjects has the
lowest accuracy parity, at .5746. We show these
results in full in Table 7 in Appendix I.

6.2 Training label shift

In addition to training on single-gender subsets, we
experiment with a label-shift approach to debias-
ing. Because ISLR is a multiclass problem, we
experiment with the reduction-to-binary approach
for debiasing multi-class classification tasks pro-
posed by Alabdulmohsin et al. (2022). We run the
label-shift algorithm and train the ST-GCN model
on the debiased labels for 25 epochs, and compare
the performance of the debiased model to the ST-
GCN model without debiasing, which we also train
for 25 epochs. We find that the model trained on
regular labels actually has a higher ratio for female
to male accuracy than the debiased model: .7476
for the baseline model, and .7052 for the debiased
model. We show these results in full in Table 8 in
Appendix J.



Overall Female participants ‘ Male participants ‘ Parity (Top-1)

‘ Top-1 Top-10 ‘

Model Top-5 Top-1 Top-5 Top-10 | Top-1 Top-5 Top-10

ST-GCN 5238 7665  .8295 4406  .6886  .7665 6236 .8601 9374 7065
ST-GCN (VL) 5488 7923 8515 | 4666 7200  .7941 6476  .8791 9205 7205
ST-GCN (VL, fem.) | .5395 .7926  .8538 | 4621 .7202 .7974 .63 8795 9216 7334

Table 3: Performance of ST-GCN baseline against models that use the resampling strategies discussed in 6.3. We
find that both resampling strategies improve accuracy and gender parity over the baseline, and resampling based on
video length from only female participants improves gender parity the most.

6.3 Weighted resampling

Although there are large performance discrepan-
cies, on average, between videos from partici-
pants of different demographics, particularly gen-
der, based on the results from Table 6, other fea-
tures are much more heavily tied to model accu-
racy. Thus, it is likely that these features (in par-
ticular, features at the video level) may influence
results. But what happens if the impact of videos
with potentially-noisy features is reduced during
training? We experiment with weighted resam-
pling, where certain features are more likely to be
resampled during model training if they have val-
ues shown to produce good results. For instance,
we show in Table 1 that video lengths closer to the
mean for each sign produce higher accuracy scores
for both baselines. Thus, we experiment with as-
signing probabilities for resampling videos in the
training set, where the probability of resampling a
video is calculated as follows based on the number
of SDs from the mean. We explain how we calcu-
late this probability, and present results, for each
variable we study in the paragraphs below.

Video length We first experiment with calcu-
lating the resampling probability based on video
length. Given that videos closer to the mean pro-
duced higher accuracy scores, we wanted to resam-
ple these videos at a higher rate to reduce training
noise. We calculate the probability of resampling
as follows, where [;(s) refers to the length of video
1 for sign s, muyg refers to the mean video length
of videos depicting sign s, and o refers to the SD
for video lengths of videos depicting sign s:

1

Li(s)—ps
Ts

We show the results for this approach in Table
3, represented by the ST-GCN (VL) model. We
find that this approach improves upon the baseline
ST-GCN model by at least 2 percentage points for
all accuracy metrics, and improves gender parity
for Top-1 accuracy by 1.4%.

P(resample) = (1)

Video length for female participants We then
experiment with the exact same resampling process
described above, based on number of standard de-
viations from the mean for video length, but only
resample videos from female participants. Because
training on an all-female subset yielded a higher
test accuracy for female subjects than an all-male
subset (Table 7), we wanted to investigate whether
restricting our resampled data to female partici-
pants improves the gender performance gap. We
show these results in Table 3, under the baseline
STGCN (VL, fem.). We find that this approach
exceeds calculating the resampling probability us-
ing video length for participants of all genders for
Top-5 and Top-10 accuracy. We also find that this
baseline achieves the highest gender parity of all
of the baselines, at 2.69% higher than the baseline.
Thus, we find evidence that resampling based on
video length standard deviations, but only videos
from female participants (the group with the lower
model accuracy scores), improves gender parity the
most over the baseline model.

7 Conclusion

In this work, we address a gap in sign language
processing research by studying the biases and per-
formance gaps in sign language resources, and ex-
perimenting with strategies to mitigate these biases.
We specifically focus on the ASL Citizen dataset,
which is the only large-scale crowdsourced ISR
dataset. We find performance gaps related to skin
tone, participant age, and gender. However, we
find that video level features, such as the video
quality, signing “speed", and video length, appear
to be the most influential features for determining
model accuracy. We find that selectively resam-
pling data with video lengths closer to the mean
improves overall performance. We also find that do-
ing this resampling strategy for only the group with
lower model performance (female, when compar-
ing genders) appears to improve the gender parity
for model performance.



8 Limitations

While in this work we find and document perfor-
mance gaps between participants of different de-
mographics such as age and gender, because of
the differences between individual participants that
we detail above (see Table 5), and the number of
participants in the test set (11), it is unclear how
much of these differences are due to age or to other
underlying factors.

Another limitation is that we focus on a single
dataset. This is due in part to the fact that this is the
only large-scale crowdsourced dataset for isolated
sign language recognition with demographic labels.
However, as more crowdsourced sign language re-
sources become available, it is critical that these
analyses are repeated on these datasets to assess
the generalizability of our results.

9 Ethical Implications

In our analysis of participant demographics, and ac-
companying features, for the ASL Citizen dataset,
we present some characteristics of the dataset that
vary between demographics. For instance, we dis-
cuss our findings that male participants and older
participants typically record longer videos. It is
important to emphasize that these findings should
not be generalized to all ASL signers, and that they
should instead be used to study the characteristics
of this dataset in particular.

We also note that participants who chose to de-
note their demographic information (which was op-
tional) consented for this information to be anony-
mously released as part of the dataset. No iden-
tifiable information about the participants will be
released with the publication of this paper; rather,
anonymous participant IDs will be accompanied
with their demographics.
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Figure 4: Distribution of ASL levels (left) and regions
(right) of participants for the ASL Citizen dataset.
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Figure 5: Age ranges of participants in the ASL Citizen
dataset. Participants are skewed mostly towards their
20s and 30s, with a lesser skew towards participants in
their 60s.

A Participant Demographics

Here, we plot the demographic information dis-
cussed in 3.1. Note that providing demographic
information was optional, so these numbers will
not always add up to the total number of partici-
pants (52).

In Figure 4, we plot the distribution of ASL lev-
els and regions associated with the participants in
the ASL Citizen dataset. We find that most par-
ticipants are at an ASL level of 6 of 7, with only
one participant each at level 3 or 4. A plurality
of participants are from the Northeast, almost half.
The West contains the fewest participants.

In Figure 5, we plot the distribution of partici-
pants’ ages. We find that participants are mostly
skewed towards younger adults (20s and 30s) but
that there is also a slight skew towards contestants
in their 60s. Contestants in their 20s, 30s, 40s, 50s,
60s, and 70s are represented in the dataset, but con-
testants in their 40s and 70s are not represented in
the test set.

In Figure 6, we plot the distribution of skin tones
in the dataset when frames are set as color images
and black-and-white images. We include black-
and-white images because we found that, when
an image type was not set, the model detected the
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Figure 6: Frequency of detected skin tones of partici-
pants in videos when the video frames were set manually
to color images (left) and black and white images (right)

images as black-and-white images in the majority
of cases. One notable finding is that the skin color
model detected lighter skin tones more frequently
when the images were set to black-and-white than
when they were set to color images. This indicates
possible unreliability of the skin color detection; it
is possible, for instance, that when the images are
set to color, the system classifies the skin colors as
darker than they actually are.

B Video Length Distributions

In Figure 7, we find that video lengths have
a skewed distribution, where the average video
length is higher than the median. In other words,
video lengths lower than the mean are more com-
mon and vice versa, and there is a long tail to the
right. After watching participants’ videos, we sus-
pect that this difference in video length is a result
of some participants having a tendency to pause for
multiple seconds at the beginning of end of their
recording. This happens especially often with the
first couple of videos that people record.

We also find that female participants have, on
average, shorter videos related to their signs than
male participants. For each sign video, we calcu-
lated the mean and standard deviation for all videos
with that sign. We then calculated how many stan-
dard deviations those movies were away from the
mean.
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Figure 7: Distribution of video lengths for all sign
videos in the ASL Citizen dataset. The distribution
is skewed towards the right, with a long tail on the right.
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Figure 8: Average number of standard deviations away
from the mean at the sign level for male and female
participants (left) and participants in their 20s, 30s, 40s,
50s, 60s, and 70s. Relative to other videos of the same
sign, women tend to record shorter videos, and older
participants tend to record longer videos.

C Lexical Feature Distribution

In addition to getting demographic and video fea-
tures, we used the ASL-Lex (Caselli et al., 2017)
annotations to analyze lexical features in the ASL
Citizen dataset. We found that, for sign frequency
and iconicity, the distributions are very similar to
those in the ASL-Lex dataset. The distributions of
both datasets are plotted side-by-side for frequency
and iconicity, respectively, in Figures 9 and 10.
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Figure 9: Distributions of labeled sign frequencies for
each of the 2731 signs from the ASL-Lex dataset (left)
and all of the sign videos in the ASL Citizen dataset
(right). The distributions are very similar, indicating that
users chosen signs of certain frequencies at a similar
rate to how they are distributed in the ASL-Lex dataset.
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Figure 10: Distribution of sign iconicities in the ASL-
Lex dataset (left) and the sign videos recorded in the
ASL Citizen dataset (right). Like the sign frequencies,
the iconicities in the ASL Citizen videos are distributed
similarly to their distribution in the ASL-Lex dataset.

Agerange | #intest | I3D Top-1 | ST-GCN Top-1

20s 2 .6697 .6076
30s 3 .5689 .5336
40s 0 - -
50s 2 .549 .5658
60s 3 7016 6421
70s 0 - -

Table 4: Average accuracy scores for participants of
each age range in the test set. There were no participants
in their 40s or 70s in the test set, and one participant did
not specify their age. We find the highest performance
in both models occurs for participants in their 20s and
60s.

D Frechét Distance

The Frechét distance, used as a similarity metric
between curves, and is commonly described in the
following manner:

A man is walking a dog on a leash: the
man can move on one curve, the dog
on the other; both may vary their speed,
but backtracking is not allowed. What
is the length of the shortest leash that is
sufficient for traversing both curves?

- (Eiter et al., 1994)

E Accuracies for different age ranges

In Table 4, we show the Top-1 accuracy scores
for the I3D and ST-GCN model for participants of
different ages. We find the highest scores occur
for participants in their 20s and 30s, with the third
highest scores occuring for participants in their
60s. Participants in their 40s and 70s were not
represented in the test set.

F Model accuracies for each participant
in the test set

In Table 5, we report the accuracy scores for the
baseline ST-GCN model on the participants in the



Participant ID | 13D Top-1 | ST-GCN Top-1

P6 0.5456 0.4387
P9 0.6586 0.5663
P15 0.4653 0.5757
P17 0.6183 0.4997
P18 0.7065 0.5727
P22 0.5562 0.4671
P35 0.7204 0.7153
P42 0.6041 0.6949
P47 0.7471 0.7886
P48 0.6882 0.6652
P49 0.6327 0.556

Table 5: Model top-1 accuracy scores on the set of
videos recorded by each participant in the test set. For
both models, there is high variation between partici-
pants, with scores ranging from 0.4653 to 0.7204 (I3D)
and 0.4387 to 0.7886 (ST-GCN).
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Figure 11: The Frechet distance from the seed (model)
signer vs. top-1 accuracy for the I3D model (top) and
ST-GCN model (bottom), with the distance between left
hands on the left and the distance between right hands
on the right.

test set of the ASL Citizen dataset. We find differ-
ences of over 20 points between participant aver-
ages for both models. P6, P9, P15, P17, P18, and
P22 disclosed that they are female, while the other
participants disclosed that they are male.

G Frechet distance from seed signer

In Figure 11, we plot the Top-1 accuracies for
the I3D and ST-GCN model as a function of the
Frechet distance from the seed signer for each sign
video (where the seed signer is a recruited ASL
model for the ASL Citizen dataset). We find a
significant negative correlation between Frechet
distance from the seed signer and Top-1 accuracy
for the ST-GCN pose model, but no significant cor-
relations for the I3D model.
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Feature Mut. Info | Mut. Info
(ST-GCN) (I3D)
BRISQUE 0.6920 0.6617
Avg. Frechet from seed (RH) 0.6444 0.6217
Abs. Avg. Frechet SD (RH) 0.6390 0.6090
Abs. avg. Frechet SD (LH) 0.6285 0.5641
Avg. Frechet from seed (RH) 0.5889 0.5403
Sign Iconicity 0.0757 0.0508
Sign Frequency 0.0619 0.0440
Abs. avg. Video Length SD 0.0293 0.0399
ASL Level 0.0048 0.0020
Region 0.0034 0.0002
Neighborhood Density 0.0032 0.0026
Number Of Morphemes 0.0026 0.0012
Phonological Complexity 0.0013 0.0006
Lexical Class 0.0007 0.0008
Iconicity Type 0.0002 0.0002
Gender 0 0.0034
Age 0 0.01107
Bounding Box Area (RH) 0 0
Bounding Box Area (LH) 0 0

Table 6: Mutual information for each of the features
above and the Top-1 accuracy for the ST-GCN and 13D
models, respectively. For both models, the BRISQUE
score, average Frechet distance from the model (right
hand and left hand) and the absolute value of the number
of SDs of the average Frechet distance between frames
are the top three features, with the other features far be-
hind. This seemingly indicates that video-level features
are the biggest indicator of model accuracy.

H Mutual Information Results

In Table 6, we present the mutual information re-
sults in full for each studied variable. We study
19 variables total, spanning demographics, sign
lexical features, and video-level features, and cal-
culate the mutual information between each feature
and the Top-1 accuracy. We find the highest lev-
els of mutual information to occur for video-level
features, suggesting features of individual videos
are more impactful for model accuracy than demo-
graphic characteristics of the participants. Out of
the demographic characteristics, the ASL level of
the participant appears to be the most influential
with respect to accuracy.

I Results for models trained on
single-gender subsets

Here, we report the model results for the ST-GCN
model trained on single-gender subsets, comparing
models trained on all-male and all-female subsets
to the model trained on all of the training data. In
Table 7, we report the Top-1, Top-5, and Top-10
accuracy scores for each model.



Trained on female subjects
Top-1  Top-5 Top-10

Trained on male subjects
Top-1 Top-5 Top-10

Trained on all subjects
Top-1 Top-5 Top-10

All 244 479 581 224 434 527 594 .828 .881
Male 291 548 .653 292 .538 .639 .684 902 939
Female | .206 421 521 .168 347 433 520 167 .833

Table 7: Performances for ST-GCN model trained on only male subjects, only female subjects, and all subjects,
respectively. We find that the model trained on only female subjects has the lowest performance gap between male
and female subjects in the test set, but the ratio of female accuracy to male accuracy is highest for the model trained
on all subjects.

J Results for model trained on debiased
labels

We report the results for a model trained for 25
epochs on training labels that were debiased using
the reduction-to-binary techniques proposed by Al-
abdulmohsin et al. (2022). We find that the model
trained on regular labels actually had a higher accu-
racy parity score (ratio of female accuracy to male
accuracy) than the model trained on debiased la-
bels. We show the Top-1, Top-5, and Top-10 results
for each model in Table 8.

14



ST-GCN ST-GCN (debiased)
Top-1 Top-5 Top-10 | Top-1 Top-5 Top-10
All 5323 7997 .8622 | 4821 7576 .8265
Male 6173 8781  .9254 | 5746 .8493 9014
Female | 4615 7343  .8096 | 4052 .6811  .7641

Table 8: Performances for ST-GCN model trained on regular training labels (left) and debiased training labels
(right). We find that the accuracy parity, calculated as the ratio of female to male accuracy, is higher for the model
trained on regular training labels than the debiased model.
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