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Abstract001

Crowdsourced sign datasets collected with the002
involvement of deaf communities, such as the003
ASL Citizen dataset, represent an important004
step towards improved accessibility and docu-005
mentation of signed languages. However, it is006
important to ensure that these resources benefit007
people in an equitable manner. Thus, there is008
a need to understand the potential biases that009
may result from models trained on sign lan-010
guage datasets. In this work, we utilize the011
rich information about participant demograph-012
ics and lexical features present in the ASL Cit-013
izen dataset to study and document the biases014
that may result from models trained on crowd-015
sourced sign datasets. Further, we apply several016
bias mitigation techniques during model train-017
ing, and discuss the results and relative success018
of these techniques. In addition to our anal-019
yses and machine learning experiments, with020
the publication of this work we release the de-021
mographic information about the participants022
in the ASL Citizen dataset to encourage future023
work in this space.024

1 Introduction025

The field of natural language processing (NLP) has026

historically been skewed towards spoken languages.027

Before 2021, NLP research output in the space of028

sign language processing (SLP) research was in029

the minority, with computer vision increasingly030

dominating this space (Yin et al., 2021). Follow-031

ing works such as Yin et al. (2021), signed lan-032

guages have received more attention from the NLP033

community. However, the comparative lack of re-034

sources for signed languages compared to spoken035

languages heightens the difficulty of SLP, and is036

compounded by the fact that most accessible infor-037

mation (e.g. online resources and social media) is038

written in a spoken language (Desai et al., 2024).039

The ASL Citizen dataset (Desai et al., 2024) was040

released to help address this resource gap, with041

the goal of improving video-based dictionary re- 042

trieval for sign language, where signers demon- 043

strate a particular sign and the system returns a list 044

of similar signs, ranked from most to least simi- 045

lar. Video-based dictionary retrieval systems can 046

help language learners understand the meaning of 047

a sign, and allow signers to access dictionary re- 048

sources using signed languages (Desai et al., 2024). 049

As a crowd-sourced dataset with videos of individ- 050

ual signs, the ASL Citizen dataset also serves to 051

improve documentation of signed languages. This 052

dataset is the first crowdsourced dataset of videos 053

for isolated signs, and members of deaf commu- 054

nities were involved and compensated for this ef- 055

fort. This dataset is licensed by Microsoft Research 056

and is bound by the Microsoft Research Licensing 057

Terms1. 058

Resources such as the ASL Citizen dataset, that 059

improve accessibility and contribute to the docu- 060

mentation of low-resource languages, are critical. 061

However, it is also important to critically analyze 062

these datasets, in order to understand in what con- 063

ditions (and for what users) these datasets, and 064

models trained on them, are most beneficial. Cur- 065

rently, there is a limited amount of prior work in 066

this space. 067

To help address this problem, we explore how 068

signer demographics and more latent sources of 069

bias may impact modeling performance. To do 070

this, we analyze demographics in the ASL Citizen 071

dataset, which presents a diversity of signers and 072

vocabulary, and examine how these demographic 073

features, along with lexical and video-level fea- 074

tures, may impact model results. Specifically, we 075

present a detailed analysis of the distributions of dif- 076

ferent demographics, and feature prevalence among 077

demographics. We also present a linguistic analysis 078

of the dataset based on the ASL-Lex annotations for 079

1Terms of use at https://www.microsoft.com/en-us/
research/project/asl-citizen/dataset-license/.
We are using this dataset in accordance with its intended use.
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each sign. Further, we study how these features im-080

pact model performance. What characteristics of a081

sign video may improve dictionary retrieval results,082

and are there any disparities in performance among083

different demographics? Finally, we experiment084

with different debiasing techniques in order to re-085

duce performance gaps without sacrificing overall086

model accuracy. In addition to publishing our find-087

ings, we release the demographic data for the ASL088

Citizen dataset, so future researchers can continue089

to work toward the goal of developing equitable090

sign language processing systems.091

In summary, we address the following three re-092

search questions:093

RQ1 How is the ASL Citizen data distributed, de-094

mographically and linguistically?095

RQ2 Which demographic and linguistic factors im-096

pact dictionary retrieval results in the ASL097

Citizen dataset?098

RQ3 Can we use debiasing strategies to mitigate099

disparate impacts while maintaining high per-100

formance for dictionary retrieval models?101

2 Related102

Most readily-available information (i.e. online re-103

sources and social media) is written, which may104

limit accessibility for signers. Sign language pro-105

cessing tasks, such as dictionary retrieval, are de-106

signed to improve the accessibility of existing107

systems/resources for Deaf and Hard-of-Hearing108

(DHH) people. Desai et al. (2024) created the ASL109

Citizen dataset for the purpose of improving dictio-110

nary retrieval.111

The ASL Citizen dataset is composed of videos112

of individual signs for isolated sign language recog-113

nition (ISLR). Other ISLR datasets with videos of114

individual signs have been released, including WL-115

ASL (Li et al., 2020), Purdue RVL-SLL (Wilbur116

and Kak, 2006), BOSTON-ASLLVD (Athitsos117

et al., 2008), and RWTH BOSTON-50 (Zahedi118

et al., 2005). However, the ASL Citizen dataset119

is the first large-scale ISLR dataset to be crowd-120

sourced. The dataset is made up of crowdsourced121

videos from ASL signers, where each video cor-122

responds to a particular sign. The corpus is made123

up of videos for 2731 unique signs, all of which124

are contained in the ASL-Lex dataset Caselli et al.125

(2017), a lexical database of signs with annota-126

tions including the relative frequency, iconicity,127

grammatical class, English translations, and phono-128

logical properties of the sign. Thus, researchers129

studying this dataset can also take advantage of the 130

ASL-Lex annotations. 131

As part of the original data collection effort, de- 132

mographic information about each participant was 133

collected, but it was not released. With the publi- 134

cation of this work, we release the demographic 135

data in this set, and provide a detailed analysis 136

of this data. Further, using the ASL-Lex features, 137

we analyze the properties of the signs depicted 138

in this dataset, and study how these features, in 139

combination with participant demographics impact 140

model performance. Finally, we qualitatively an- 141

alyze these videos, and identify some video-level 142

features that may increase or decrease performance. 143

Motivating our work are previous works indicat- 144

ing that demographics of the signer may impact 145

their signing. For instance, characteristics of partic- 146

ular spoken languages or dialects have been shown 147

to influence gestures, and in turn sign production 148

(Cormier et al., 2010). One example of an ASL 149

dialect is Black ASL, which scholarly evidence 150

has shown to be its own dialect (Toliver-Smith and 151

Gentry, 2017), and for which documentation of 152

dialectical differences dates back to 1965 (Stokoe 153

et al., 1965). Whether an individual speaks Black 154

ASL is likely heavily influenced on their race or 155

ethnicity. An example of geographical differences 156

is Martha’s Vineyard, an island off the coast of 157

the United States, where an entire signed language 158

emerged due to the high prevalence of deaf indi- 159

viduals in this community. Hearing and deaf peo- 160

ple alike used this language to communicate until 161

the mid-1900s (Kusters, 2010). There is also a 162

distinct Canadian ASL dialect used by signers in 163

English-speaking areas of Canada (Padden, 2010), 164

which is documented in a dictionary (Bailey et al., 165

2002). Age of language acquisition also impacts 166

ASL production; delayed first-language acquisi- 167

tion affects syntactic knowledge for ASL signers 168

(Boudreault and Mayberry, 2006) and late acqui- 169

sition (compared to native acquisition) was found 170

to impact sensitivity to verb agreement (Emmorey 171

et al., 1995). 172

Previous work also indicates the impact of cer- 173

tain features on sign language modeling; for in- 174

stance, training an ISLR model to predict phonolog- 175

ical characteristics of a sign in addition to the sign 176

itself was found to improve model performance by 177

almost 9% (Kezar et al., 2023). (Sarhan et al., 2023) 178

find improved performance when using attention to 179

focus on hand movements in sign videos. However, 180

to our knowledge, there are no existing works that 181
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extensively study various sources of model bias182

on a crowdsourced dataset of sign videos with col-183

lected participant demographics. With this work,184

we aim to address this gap with a systematic analy-185

sis of the impact of various participant-level, sign-186

level, and video-level features, and results from187

deploying different debiasing techniques.188

3 How is the ASL Citizen data189

distributed, demographically and190

linguistically?191

The ASL Citizen dataset is a crowdsourced dataset192

containing 83,399 videos of individual signs in193

ASL from 52 different participants. The dataset194

contains 2731 unique signs that are included in the195

ASL-Lex (Caselli et al., 2017) dataset, a dataset196

with detailed lexical annotations for each sign. The197

authors of the original work report some demo-198

graphic statistics, but the demographics of indi-199

vidual (de-identified) participants have not been200

released. Here, we answer our first research ques-201

tion: how is the ASL Citizen data distributed, de-202

mographically and linguistically? We provide a203

detailed report that includes demographics break-204

downs and analyses of various linguistic and video205

features in the dataset, including the breakdown206

of these features by gender. We will release the207

demographics of participants upon publication of208

this paper.209

3.1 Demographic Distributions210

In total, the ASL Citizen dataset is comprised of 32211

(61.5%) women and 20 (38.5%) men. 21 women212

are in the training set (60%), 5 are in the validation213

set (83%), and 6 are in the test set (55%). The vast214

majority of participants report an ASL level of 6215

or 7, and the full distribution of ASL levels can be216

seen in Figure 4. The participants also list their217

U.S. states. Using this information, we divide them218

into four regions as defined by the U.S. Census219
2: Northeast, Midwest, South, and West. We find220

that more participants in the dataset are from the221

Northeast than any other region, as shown in Figure222

4. We also find that the age range of participants is223

skewed: participants in their 20s and 30s make up224

32 of the 52 participants (see Figure 5).225

Participants did not note their ethnicity or race226

for this dataset. As such, to uncover potential biases227

related to the participants’ perceived skin tone in228

2https://www2.census.gov/geo/pdfs/maps-data/
maps/reference/us_regdiv.pdf

their videos, we ran the skin-tone-classifier 229

Python package from Rejón Pina and Ma on the 230

frame with the first detected face in each video. 231

We found that when we did not specify that the 232

videos were in color, the classifier most often de- 233

tected them as black and white. When we specified 234

that the videos were in color, the most common 235

skin tone detected (out of the default color palette 236

used in Rejón Pina and Ma) was #81654f. Because 237

the classifier most commonly detected images as 238

black and white, we also tried specifying the video 239

frames as being black and white. When we did this, 240

the most common skin tone detected was #b0b0b0, 241

and the distribution was somewhat different from 242

when the images were specified as being in color. 243

Thus, there may be some errors in the skin tone 244

classification. We plot these results in Figure 6. 245

3.2 Sign and Video Features 246

Because the ASL Citizen dataset is composed of 247

signs from ASL-Lex (Caselli et al., 2017), we have 248

access to ASL-Lex’s annotated lexical features of 249

each sign for analysis. No works have, to date, stud- 250

ied these features in-depth on the ASL Citizen sign 251

videos. Further, we conduct additional analyses on 252

the video lengths, similarities and differences from 253

the model, and other notable features in the dataset. 254

Video Length We analyze the distribution of 255

video lengths, in order to study length variation 256

between submitted videos and identify patterns that 257

may explain performance discrepancies between 258

individuals or members of certain demographics. 259

We find that the distribution of video lengths (s) 260

is skewed left, with a longer tail on the right, as 261

shown in Figure 7. 262

We also study relative video lengths for par- 263

ticipants of different ages and genders. To ac- 264

count for differences between which signs were 265

depicted (since participants did not all record the 266

same signs), for each video, we calculate the num- 267

ber of standard deviations the video length is away 268

from the mean for all videos of that sign - in other 269

words, we calculate standard deviations from the 270

mean at the sign level. We find that, while men 271

on average record videos over .3 standard devi- 272

ations longer than the mean, women on average 273

record videos over 2 standard deviations shorter 274

than the mean. Thus, compared to other videos 275

with the same sign, women record shorter videos 276

than men. We show these results in Figure 8. We 277

also found that, in general, older participants, par- 278
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ticularly those in their 70s, tend to record longer279

videos on average (again, relative to other videos280

of the same sign) than younger participants. Upon281

manual inspection, we found that older participants282

were more likely to have longer pauses before or283

after signing than younger participants, which may284

explain this gap. We also show these results in285

Figure 8.286

Sign Frequency The ASL Citizen dataset is com-287

prised of 2731 signs from the ASL-Lex dataset288

Caselli et al. (2017), a dataset with expert annota-289

tions about properties of each sign including fre-290

quency of use, iconicity, and varying phonological291

properties. To collect sign frequency labels, deaf292

signers who use ASL were asked to rate signs from293

1 to 7 in terms of how often they appear in everyday294

conversations, where 1 was “very infrequently" and295

7 was “very frequently". We plot and compare the296

distributions for the ASL Citizen dataset and the297

ASL-Lex dataset in Figure 9, and find that they are298

very similar.299

We also find that there is little variation in sign300

frequency for participants of different genders. For301

male participants, the average sign frequency was302

4.1592, while the average sign frequency for female303

participants was 4.1395, indicating that female par-304

ticipants chose slightly less frequently-occurring305

signs than men.306

Sign Iconicity The ASL-Lex dataset also con-307

tains crowdsourced annotations for sign iconicity,308

where non-signing hearing annotators watch videos309

of a sign and evaluated how much they look like310

the sign’s meaning from 1 (not iconic) to 7 (very311

iconic). The ASL-Lex signs have an average iconic-312

ity of XX, and the signs in the ASL-Citizen dataset313

have an average iconicity of 3.379. We plot these314

distributions in Figure 10, and again find that they315

are very similar.316

We find average iconicity to be 3.378 for women317

and 3.381 for men. This indicates that, as with fre-318

quency, average sign iconicity exhibits only a slight319

difference between male and female participants.320

4 Methods321

4.1 Baselines322

For our experiments, unless otherwise stated, we323

use the baseline I3D and ST-GCN models which324

were trained on the ASL Citizen dataset and re-325

Figure 1: ST-GCN top 1 accuracy scores by detected
skin tone. We find that, despite being less represented
in the dataset, videos with lighter detected skin tones
have higher accuracy scores on average.

leased along with the dataset.3. Thus, when we 326

refer to the I3D model, we mean the 3D convo- 327

lutional network referred to as such in the ASL 328

Citizen paper, and is trained on preprocessed video 329

frames from the sign videos. When we refer to 330

the ST-GCN model, we are again referring to the 331

baseline of the same name in the paper, which is 332

trained on representations of the participants’ poses 333

that are created by extracting key points. 334

5 Which factors impact dictionary 335

retrieval results in the ASL Citizen 336

dataset? 337

5.1 Participant-level differences 338

Baseline models perform over 10 percentage 339

points better for male vs. female participants 340

We ran the baseline I3D and ST-GCN models 341

trained on the ASL Citizen dataset (Desai et al., 342

2024), and, for both models, found an accuracy 343

disparity between participants of different genders. 344

For the I3D model, the overall Top-1 accuracy was 345

0.6306, while for females it was 0.5914 and for 346

males it was 0.6776; in other words, a gap of over 347

10 points in favor of male participants was observed. 348

The ST-GCN model saw an even bigger gap; the 349

overall Top-1 accuracy was 0.5944, while the Top- 350

1 accuracy was 0.6838 for males and 0.52 for fe- 351

males. 352

There is high variation in model accuracy be- 353

tween participants One possible contributor to 354

the above disparities in performance for different 355

genders is the participant-level model accuracy 356

scores. There are 11 participants whose videos are 357

in the test set for the ASL Citizen dataset. Of these 358

11 participants, 6 are female and 5 are male. When 359

we examine the accuracy scores for each partici- 360

pant, we find high variation between participants 361

3https://github.com/microsoft/
ASL-citizen-code
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for both models, with over 15-point differences be-362

tween the highest and lowest accuracy scores for363

each model (see Table 5. Thus, the large gender364

gap may partially be explained by this variation, as365

there are only a few participants of each gender in366

the test set.367

Upon manual inspection, we find several charac-368

teristics of user videos that seem to vary between369

participants. Different participants have different370

background or lighting quality, and some partic-371

ipants mouth the word being signed while other372

participants do not. We also found instances of373

repetition, where the sign is repeated in the video,374

from P15, who is a female participant. There were375

also some instances of fingerspelling, where partici-376

pants fingerspelled the sign before signing it. These377

and other individual differences may be contribu-378

tors towards the gender disparity in performance.379

The models tended to perform better on lighter380

skin tones than darker skin tones Despite381

darker skin tones making up most of the detected382

skin tones for videos in this dataset (see Figure 6),383

we found that models averaged better performance384

when the detected skin tone was lighter. We illus-385

trate this phenomenon for the ST-GCN model in386

Figure 1. Although we found variations in accu-387

racy between participants in the previous section,388

the skin tones were categorized at the video level.389

Thus, these results may not be impacted by the low390

sample size to the degree that the above results on391

gender are. However, it is possible that poor light-392

ing in a video may make a participant’s detected393

skin color darker than it actually is. Thus, lighting394

quality is a potential confounder for these results.395

The model performed best on participants in396

their 20s and 60s The ASL Citizen test set was397

made up of 11 individuals in their 20s, 30s, 50s, and398

60s. We found that, as with gender, model accuracy399

varied for different age ranges; the highest accuracy400

scores were achieved for participants in their 20s401

and 60s. This could be influenced by the proportion402

of participants in their 20s in the dataset.403

5.2 Video-level differences404

Performance decreases as the video length di-405

verges from the average For each sign video in406

the ASL Citizen dataset, we calculated the number407

of standard deviations (SDs) from the mean for the408

video length compared to other videos of the same409

sign. We then placed these values into buckets:410

less than -2, -2 to -1, -1 to 0, 0 to 1, 1 to 2, and411

Std. devs from mean I3D Top-1 ST-GCN Top-1

n < −2 0.38462 0.3846
−2 ≤ n < −1 0.5551 0.4862
−1 ≤ n < 0 0.648 0.5888
0 ≤ n < 1 0.6704 0.6449
1 ≤ n < 2 0.5727 0.5878

n > 2 0.3846 0.4668

Table 1: Top-1 accuracy scores for videos within a cer-
tain number of SDs away from the mean for videos of
the same sign. For both models, videos with lengths
closer to the mean yield better model performance.

Figure 2: Association between BRISQUE image quality
scores and accuracy. Higher BRISQUE scores indicate
lower image quality, and vice versa. Thus, higher im-
age quality appears to be associated with better model
performance.

more than 2 SDs from the mean. We find that, on 412

average, the videos farther away from the mean 413

see decreased model performance compared to the 414

videos closest to the mean. The results in full are 415

in Table 1. 416

Performance decreases when video quality de- 417

grades In addition to video length, we studied 418

the impact of video quality on model accuracy. 419

Given that we were studying the quality of indi- 420

vidual video frames without a reference image, 421

we used the BRISQUE score (Mittal et al., 2012) 422

to measure image quality of individual frames. 423

Higher BRISQUE scores indicate lower quality, 424

while lower BRISQUE scores indicate higher qual- 425

ity. We found that higher BRISQUE scores cor- 426

related negatively with Top-1 model performance 427

for the I3D model, with a Spearman correlation 428

of ρ = −0.0367 and a p-value of p = 1.53x10−8. 429

We show a scatterplot of these results in Figure 2, 430

along with a linear regression line. 431

Dissimilarity between participant and seed 432

signer signs negatively impacts model accuracy 433

for the ST-GCN pose model The Frechét dis- 434

tance is often used as an evaluation metric for sign 435

language generation, to study the similarity be- 436

tween generated signs and references (Hwang et al., 437
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2024; Dong et al., 2024) (see § D for more details).438

In the ASL Citizen dataset, one of the participants439

is a paid ASL model who records videos for every440

sign, referred to as the “seed signer".441

We studied whether dissimilarity between the442

participant and seed signer may have a negative im-443

pact on model accuracy. To do so, we used the pose444

models used as input to the ST-GCN model. Every445

.25 seconds, we measured the distance between446

the model pose and the participant’s pose at that447

frame, studying the distance between left hands448

and right hands separately. We found no signifi-449

cant relationship between right hand or left hand450

distance from the seed signer for the I3D model,451

and for the ST-GCN model we found a significant452

negative Spearman correlation between distance453

from the seed signer and accuracy for the right454

hand (ρ = −.0289, p = 0.001). We plot these455

results, along with lines of best fit, in Figure 11.456

When the average signing “speed" is closer to457

the sign-level average, performance is better In458

addition to video length, we were interested in459

studying the average distance between poses over460

consistent time intervals. We wanted to study how461

much movement on average occurred within these462

increments, i.e. the “speed" of sign production. We463

study this by calculating the pairwise Frechet dis-464

tance between poses at each 0.25 second interval,465

with distance calculated between a pose and the466

pose .25s after, starting from the first frame. We467

again took this distance for the participants’ right468

hand and left hand. We find that, on average, the far-469

ther away a participant’s average signing speed is470

from the mean for that sign, the worse performance471

is, with especially high performance degradations 2472

SDs or more from the mean. We show these results473

in Table 2.474

5.3 Sign-level lexical features475

The ASL-Lex annotations on this dataset allow us476

to not only conduct a dataset analysis, but also477

analyze model performance, and how sign-level478

features may impact model performance. Below,479

we present results for four sign-level features an-480

notated in the ASL-Lex dataset: sign frequency,481

iconicity, phonological complexity, and neighbor-482

hood density. We find that several of these fea-483

tures are significantly correlated with model perfor-484

mance, which we discuss below.485

Sign frequency, phonological complexity, and486

neighborhood density are negatively correlated487

I3D ST-GCN I3D ST-GCN
SD from mean (LH) (LH) (RH) (RH)

n < −2 .4627 .2139 .5 .2375
−2 ≤ n < −1 .6041 .5804 .6121 .5174
−1 ≤ n < 0 .6503 .6426 .6438 .6351
0 ≤ n < 1 .6244 .5813 .6423 .6145
1 ≤ n < 2 .6164 .5261 .616 .5744

n > 2 .5711 0.4739 .5619 .5107

Table 2: Number of SDs away from the mean of the sign
(in buckets) for the “speed" of signing, i.e. the average
Frechet distance between poses every 0.25 seconds, for
right hand and left hand. We find that, for both right
hand and left hand, the performance degrades as the
average “speed" of the sign production in a sign video
deviates from the average for that particular sign.

with model accuracy As mentioned in § 3.2, 488

sign frequency annotations were collected from 489

ASL signers, who indicated the frequency of each 490

sign in everyday conversation from 1 (least fre- 491

quent) to 7 (most frequent). The ASL-Lex 2.0 492

dataset (Sehyr et al., 2021) also contains a new 493

phonological complexity metric. Using 7 different 494

categories of complexity, scores were calculated 495

by assigning a 0 or 1 to each category (depending 496

on whether that category was present) and adding 497

them together, for a maximum possible scores of 7 498

(most complex) and a minimum possible score of 0. 499

The highest complexity score in the dataset was a 500

6. Neighborhood density was calculated based on 501

the number of signs that shared all, or all but one, 502

phonological features with the sign. Intuitively, we 503

expected negative associations with phonological 504

complexity and accuracy as well as neighborhood 505

density and accuracy, and indeed found significant 506

negative correlations (ρ = −0.0618, p = 0.005 507

for phonological complexity and rho = −0.0584, 508

p = 0.01 for neighborhood density). However, 509

we also found a significant negative association 510

between sign frequency and model accuracy, with 511

a correlation of ρ = −0.057 and p = 0.011. We 512

are unsure of the cause of this negative association, 513

and encourage future researchers to explore this 514

relationship further. 515

There is no significant correlation between 516

iconicity and model accuracy As mentioned in 517

§ 3.2, sign iconicity ratings were also collected 518

for the ASL-Lex dataset, using hearing individu- 519

als’ judgments regarding how much the sign looks 520

like its English meaning. The hearing individu- 521

als assigned ratings from 1 (not iconic at all) to 522

7 (very iconic). We found a very slight positive 523
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Figure 3: The relationships between sign frequency (left), sign iconicity (center left), phonological complexity
(center right), and neighborhood density (right) and top 1 accuracy for the ST-GCN model. We find that sign
frequency, phonological complexity, and neighborhood density are all significantly negatively correlated with model
accuracy (p < 0.05) when calculating Spearman’s rank correlation. However, despite a slight positive correlation
between iconicity and accuracy, the p-value is not significant.

correlation between sign iconicity and model ac-524

curacy (ρ = 0.044), which was not significant525

(p = 0.8424). Thus, we conclude that visual simi-526

larity to the English word appears not to affect the527

model’s ability to recognize a sign.528

5.4 Which features have the greatest impact529

on model accuracy?530

After looking at the impacts of lexical, demo-531

graphic, and video features on model accuracy, we532

were interested in studying which features are the533

most impactful. As such, we study the mutual534

information between each feature and the Top-1535

accuracy for the I3D and ST-GCN models. We536

study a total of 19 features, where some relate to537

participant demographics (e.g. age and gender),538

others relate to the sign lexical features (e.g. sign539

iconicity), and the rest are characteristics of indi-540

vidual videos (e.g. BRISQUE score and Frechet541

distances). We find that the five most impactful fea-542

tures are characteristics of the videos themselves543

(BRISQUE, Frechet from seed signer, and absolute544

SD of “signing speed"), with BRISQUE video qual-545

ity scores showing the highest mutual information546

scores. Out of the lexical features, sign iconicity547

has the highest mutual information, and out of the548

demographic features, ASL level has the highest549

mutual information. The results in full are in Table550

6 in Appendix H.551

6 Can we mitigate disparate impacts552

while maintaining higher performance553

for dictionary retrieval?554

6.1 Training on single-gender subsets555

We first try to address the gender gap by training on556

participants of each gender in isolation, and testing557

performance on male and female participants sepa-558

rately and together. When doing this, we do find a559

slight difference between the performance gaps for 560

model trained on male-only and female-only sub- 561

sets. For the model trained on the male-only subset, 562

the Top-1 accuracy for male subjects was .292, and 563

the Top-1 accuracy was .168. For the model trained 564

on the female-only subset, the Top-1 accuracy for 565

male subjects was .291, and the Top-1 accuracy for 566

female subjects was .206. Thus, the model trained 567

only on female subjects had a smaller gap, and 568

higher accuracy parity, between male and female 569

subjects than the model trained on only male sub- 570

jects. However, both models had low performance 571

overall, so the Top-1 accuracy parity for subjects of 572

different genders (calculated by dividing the female 573

accuracy by the male accuracy) comes out to .7571 574

for the model trained on all subjects compared to 575

.7079 for the model trained on only female subjects. 576

The model trained on only male subjects has the 577

lowest accuracy parity, at .5746. We show these 578

results in full in Table 7 in Appendix I. 579

6.2 Training label shift 580

In addition to training on single-gender subsets, we 581

experiment with a label-shift approach to debias- 582

ing. Because ISLR is a multiclass problem, we 583

experiment with the reduction-to-binary approach 584

for debiasing multi-class classification tasks pro- 585

posed by Alabdulmohsin et al. (2022). We run the 586

label-shift algorithm and train the ST-GCN model 587

on the debiased labels for 25 epochs, and compare 588

the performance of the debiased model to the ST- 589

GCN model without debiasing, which we also train 590

for 25 epochs. We find that the model trained on 591

regular labels actually has a higher ratio for female 592

to male accuracy than the debiased model: .7476 593

for the baseline model, and .7052 for the debiased 594

model. We show these results in full in Table 8 in 595

Appendix J. 596
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Overall Female participants Male participants Parity (Top-1)
Model Top-1 Top-5 Top-10 Top-1 Top-5 Top-10 Top-1 Top-5 Top-10

ST-GCN .5238 .7665 .8295 .4406 .6886 .7665 .6236 .8601 .9374 .7065
ST-GCN (VL) .5488 .7923 .8515 .4666 .7200 .7941 .6476 .8791 .9205 .7205
ST-GCN (VL, fem.) .5395 .7926 .8538 .4621 .7202 .7974 .63 .8795 .9216 .7334

Table 3: Performance of ST-GCN baseline against models that use the resampling strategies discussed in 6.3. We
find that both resampling strategies improve accuracy and gender parity over the baseline, and resampling based on
video length from only female participants improves gender parity the most.

6.3 Weighted resampling597

Although there are large performance discrepan-598

cies, on average, between videos from partici-599

pants of different demographics, particularly gen-600

der, based on the results from Table 6, other fea-601

tures are much more heavily tied to model accu-602

racy. Thus, it is likely that these features (in par-603

ticular, features at the video level) may influence604

results. But what happens if the impact of videos605

with potentially-noisy features is reduced during606

training? We experiment with weighted resam-607

pling, where certain features are more likely to be608

resampled during model training if they have val-609

ues shown to produce good results. For instance,610

we show in Table 1 that video lengths closer to the611

mean for each sign produce higher accuracy scores612

for both baselines. Thus, we experiment with as-613

signing probabilities for resampling videos in the614

training set, where the probability of resampling a615

video is calculated as follows based on the number616

of SDs from the mean. We explain how we calcu-617

late this probability, and present results, for each618

variable we study in the paragraphs below.619

Video length We first experiment with calcu-620

lating the resampling probability based on video621

length. Given that videos closer to the mean pro-622

duced higher accuracy scores, we wanted to resam-623

ple these videos at a higher rate to reduce training624

noise. We calculate the probability of resampling625

as follows, where li(s) refers to the length of video626

i for sign s, mus refers to the mean video length627

of videos depicting sign s, and σs refers to the SD628

for video lengths of videos depicting sign s:629

P (resample) =
1

2
li(s)−µs

σs

(1)630

We show the results for this approach in Table631

3, represented by the ST-GCN (VL) model. We632

find that this approach improves upon the baseline633

ST-GCN model by at least 2 percentage points for634

all accuracy metrics, and improves gender parity635

for Top-1 accuracy by 1.4%.636

Video length for female participants We then 637

experiment with the exact same resampling process 638

described above, based on number of standard de- 639

viations from the mean for video length, but only 640

resample videos from female participants. Because 641

training on an all-female subset yielded a higher 642

test accuracy for female subjects than an all-male 643

subset (Table 7), we wanted to investigate whether 644

restricting our resampled data to female partici- 645

pants improves the gender performance gap. We 646

show these results in Table 3, under the baseline 647

STGCN (VL, fem.). We find that this approach 648

exceeds calculating the resampling probability us- 649

ing video length for participants of all genders for 650

Top-5 and Top-10 accuracy. We also find that this 651

baseline achieves the highest gender parity of all 652

of the baselines, at 2.69% higher than the baseline. 653

Thus, we find evidence that resampling based on 654

video length standard deviations, but only videos 655

from female participants (the group with the lower 656

model accuracy scores), improves gender parity the 657

most over the baseline model. 658

7 Conclusion 659

In this work, we address a gap in sign language 660

processing research by studying the biases and per- 661

formance gaps in sign language resources, and ex- 662

perimenting with strategies to mitigate these biases. 663

We specifically focus on the ASL Citizen dataset, 664

which is the only large-scale crowdsourced ISR 665

dataset. We find performance gaps related to skin 666

tone, participant age, and gender. However, we 667

find that video level features, such as the video 668

quality, signing “speed", and video length, appear 669

to be the most influential features for determining 670

model accuracy. We find that selectively resam- 671

pling data with video lengths closer to the mean 672

improves overall performance. We also find that do- 673

ing this resampling strategy for only the group with 674

lower model performance (female, when compar- 675

ing genders) appears to improve the gender parity 676

for model performance. 677
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8 Limitations678

While in this work we find and document perfor-679

mance gaps between participants of different de-680

mographics such as age and gender, because of681

the differences between individual participants that682

we detail above (see Table 5), and the number of683

participants in the test set (11), it is unclear how684

much of these differences are due to age or to other685

underlying factors.686

Another limitation is that we focus on a single687

dataset. This is due in part to the fact that this is the688

only large-scale crowdsourced dataset for isolated689

sign language recognition with demographic labels.690

However, as more crowdsourced sign language re-691

sources become available, it is critical that these692

analyses are repeated on these datasets to assess693

the generalizability of our results.694

9 Ethical Implications695

In our analysis of participant demographics, and ac-696

companying features, for the ASL Citizen dataset,697

we present some characteristics of the dataset that698

vary between demographics. For instance, we dis-699

cuss our findings that male participants and older700

participants typically record longer videos. It is701

important to emphasize that these findings should702

not be generalized to all ASL signers, and that they703

should instead be used to study the characteristics704

of this dataset in particular.705

We also note that participants who chose to de-706

note their demographic information (which was op-707

tional) consented for this information to be anony-708

mously released as part of the dataset. No iden-709

tifiable information about the participants will be710

released with the publication of this paper; rather,711

anonymous participant IDs will be accompanied712

with their demographics.713
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Figure 4: Distribution of ASL levels (left) and regions
(right) of participants for the ASL Citizen dataset.

Figure 5: Age ranges of participants in the ASL Citizen
dataset. Participants are skewed mostly towards their
20s and 30s, with a lesser skew towards participants in
their 60s.

A Participant Demographics824

Here, we plot the demographic information dis-825

cussed in 3.1. Note that providing demographic826

information was optional, so these numbers will827

not always add up to the total number of partici-828

pants (52).829

In Figure 4, we plot the distribution of ASL lev-830

els and regions associated with the participants in831

the ASL Citizen dataset. We find that most par-832

ticipants are at an ASL level of 6 of 7, with only833

one participant each at level 3 or 4. A plurality834

of participants are from the Northeast, almost half.835

The West contains the fewest participants.836

In Figure 5, we plot the distribution of partici-837

pants’ ages. We find that participants are mostly838

skewed towards younger adults (20s and 30s) but839

that there is also a slight skew towards contestants840

in their 60s. Contestants in their 20s, 30s, 40s, 50s,841

60s, and 70s are represented in the dataset, but con-842

testants in their 40s and 70s are not represented in843

the test set.844

In Figure 6, we plot the distribution of skin tones845

in the dataset when frames are set as color images846

and black-and-white images. We include black-847

and-white images because we found that, when848

an image type was not set, the model detected the849

Figure 6: Frequency of detected skin tones of partici-
pants in videos when the video frames were set manually
to color images (left) and black and white images (right)

images as black-and-white images in the majority 850

of cases. One notable finding is that the skin color 851

model detected lighter skin tones more frequently 852

when the images were set to black-and-white than 853

when they were set to color images. This indicates 854

possible unreliability of the skin color detection; it 855

is possible, for instance, that when the images are 856

set to color, the system classifies the skin colors as 857

darker than they actually are. 858

B Video Length Distributions 859

In Figure 7, we find that video lengths have 860

a skewed distribution, where the average video 861

length is higher than the median. In other words, 862

video lengths lower than the mean are more com- 863

mon and vice versa, and there is a long tail to the 864

right. After watching participants’ videos, we sus- 865

pect that this difference in video length is a result 866

of some participants having a tendency to pause for 867

multiple seconds at the beginning of end of their 868

recording. This happens especially often with the 869

first couple of videos that people record. 870

We also find that female participants have, on 871

average, shorter videos related to their signs than 872

male participants. For each sign video, we calcu- 873

lated the mean and standard deviation for all videos 874

with that sign. We then calculated how many stan- 875

dard deviations those movies were away from the 876

mean. 877
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Figure 7: Distribution of video lengths for all sign
videos in the ASL Citizen dataset. The distribution
is skewed towards the right, with a long tail on the right.

Figure 8: Average number of standard deviations away
from the mean at the sign level for male and female
participants (left) and participants in their 20s, 30s, 40s,
50s, 60s, and 70s. Relative to other videos of the same
sign, women tend to record shorter videos, and older
participants tend to record longer videos.

C Lexical Feature Distribution878

In addition to getting demographic and video fea-879

tures, we used the ASL-Lex (Caselli et al., 2017)880

annotations to analyze lexical features in the ASL881

Citizen dataset. We found that, for sign frequency882

and iconicity, the distributions are very similar to883

those in the ASL-Lex dataset. The distributions of884

both datasets are plotted side-by-side for frequency885

and iconicity, respectively, in Figures 9 and 10.886

Figure 9: Distributions of labeled sign frequencies for
each of the 2731 signs from the ASL-Lex dataset (left)
and all of the sign videos in the ASL Citizen dataset
(right). The distributions are very similar, indicating that
users chosen signs of certain frequencies at a similar
rate to how they are distributed in the ASL-Lex dataset.

Figure 10: Distribution of sign iconicities in the ASL-
Lex dataset (left) and the sign videos recorded in the
ASL Citizen dataset (right). Like the sign frequencies,
the iconicities in the ASL Citizen videos are distributed
similarly to their distribution in the ASL-Lex dataset.

Age range # in test I3D Top-1 ST-GCN Top-1

20s 2 .6697 .6076
30s 3 .5689 .5336
40s 0 – –
50s 2 .549 .5658
60s 3 .7016 .6421
70s 0 – –

Table 4: Average accuracy scores for participants of
each age range in the test set. There were no participants
in their 40s or 70s in the test set, and one participant did
not specify their age. We find the highest performance
in both models occurs for participants in their 20s and
60s.

D Frechét Distance 887

The Frechét distance, used as a similarity metric 888

between curves, and is commonly described in the 889

following manner: 890

A man is walking a dog on a leash: the 891

man can move on one curve, the dog 892

on the other; both may vary their speed, 893

but backtracking is not allowed. What 894

is the length of the shortest leash that is 895

sufficient for traversing both curves? 896

- (Eiter et al., 1994) 897

E Accuracies for different age ranges 898

In Table 4, we show the Top-1 accuracy scores 899

for the I3D and ST-GCN model for participants of 900

different ages. We find the highest scores occur 901

for participants in their 20s and 30s, with the third 902

highest scores occuring for participants in their 903

60s. Participants in their 40s and 70s were not 904

represented in the test set. 905

F Model accuracies for each participant 906

in the test set 907

In Table 5, we report the accuracy scores for the 908

baseline ST-GCN model on the participants in the 909

12



Participant ID I3D Top-1 ST-GCN Top-1

P6 0.5456 0.4387
P9 0.6586 0.5663

P15 0.4653 0.5757
P17 0.6183 0.4997
P18 0.7065 0.5727
P22 0.5562 0.4671
P35 0.7204 0.7153
P42 0.6041 0.6949
P47 0.7471 0.7886
P48 0.6882 0.6652
P49 0.6327 0.556

Table 5: Model top-1 accuracy scores on the set of
videos recorded by each participant in the test set. For
both models, there is high variation between partici-
pants, with scores ranging from 0.4653 to 0.7204 (I3D)
and 0.4387 to 0.7886 (ST-GCN).

Figure 11: The Frechet distance from the seed (model)
signer vs. top-1 accuracy for the I3D model (top) and
ST-GCN model (bottom), with the distance between left
hands on the left and the distance between right hands
on the right.

‘

test set of the ASL Citizen dataset. We find differ-910

ences of over 20 points between participant aver-911

ages for both models. P6, P9, P15, P17, P18, and912

P22 disclosed that they are female, while the other913

participants disclosed that they are male.914

G Frechet distance from seed signer915

In Figure 11, we plot the Top-1 accuracies for916

the I3D and ST-GCN model as a function of the917

Frechet distance from the seed signer for each sign918

video (where the seed signer is a recruited ASL919

model for the ASL Citizen dataset). We find a920

significant negative correlation between Frechet921

distance from the seed signer and Top-1 accuracy922

for the ST-GCN pose model, but no significant cor-923

relations for the I3D model.924

Feature Mut. Info Mut. Info
(ST-GCN) (I3D)

BRISQUE 0.6920 0.6617
Avg. Frechet from seed (RH) 0.6444 0.6217
Abs. Avg. Frechet SD (RH) 0.6390 0.6090
Abs. avg. Frechet SD (LH) 0.6285 0.5641
Avg. Frechet from seed (RH) 0.5889 0.5403
Sign Iconicity 0.0757 0.0508
Sign Frequency 0.0619 0.0440
Abs. avg. Video Length SD 0.0293 0.0399
ASL Level 0.0048 0.0020
Region 0.0034 0.0002
Neighborhood Density 0.0032 0.0026
Number Of Morphemes 0.0026 0.0012
Phonological Complexity 0.0013 0.0006
Lexical Class 0.0007 0.0008
Iconicity Type 0.0002 0.0002
Gender 0 0.0034
Age 0 0.01107
Bounding Box Area (RH) 0 0
Bounding Box Area (LH) 0 0

Table 6: Mutual information for each of the features
above and the Top-1 accuracy for the ST-GCN and I3D
models, respectively. For both models, the BRISQUE
score, average Frechet distance from the model (right
hand and left hand) and the absolute value of the number
of SDs of the average Frechet distance between frames
are the top three features, with the other features far be-
hind. This seemingly indicates that video-level features
are the biggest indicator of model accuracy.

H Mutual Information Results 925

In Table 6, we present the mutual information re- 926

sults in full for each studied variable. We study 927

19 variables total, spanning demographics, sign 928

lexical features, and video-level features, and cal- 929

culate the mutual information between each feature 930

and the Top-1 accuracy. We find the highest lev- 931

els of mutual information to occur for video-level 932

features, suggesting features of individual videos 933

are more impactful for model accuracy than demo- 934

graphic characteristics of the participants. Out of 935

the demographic characteristics, the ASL level of 936

the participant appears to be the most influential 937

with respect to accuracy. 938

I Results for models trained on 939

single-gender subsets 940

Here, we report the model results for the ST-GCN 941

model trained on single-gender subsets, comparing 942

models trained on all-male and all-female subsets 943

to the model trained on all of the training data. In 944

Table 7, we report the Top-1, Top-5, and Top-10 945

accuracy scores for each model. 946
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Trained on female subjects Trained on male subjects Trained on all subjects
Top-1 Top-5 Top-10 Top-1 Top-5 Top-10 Top-1 Top-5 Top-10

All .244 .479 .581 .224 .434 .527 .594 .828 .881
Male .291 .548 .653 .292 .538 .639 .684 .902 .939
Female .206 .421 .521 .168 .347 .433 .520 .767 .833

Table 7: Performances for ST-GCN model trained on only male subjects, only female subjects, and all subjects,
respectively. We find that the model trained on only female subjects has the lowest performance gap between male
and female subjects in the test set, but the ratio of female accuracy to male accuracy is highest for the model trained
on all subjects.

J Results for model trained on debiased947

labels948

We report the results for a model trained for 25949

epochs on training labels that were debiased using950

the reduction-to-binary techniques proposed by Al-951

abdulmohsin et al. (2022). We find that the model952

trained on regular labels actually had a higher accu-953

racy parity score (ratio of female accuracy to male954

accuracy) than the model trained on debiased la-955

bels. We show the Top-1, Top-5, and Top-10 results956

for each model in Table 8.957
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ST-GCN ST-GCN (debiased)
Top-1 Top-5 Top-10 Top-1 Top-5 Top-10

All .5323 .7997 .8622 .4821 .7576 .8265
Male .6173 .8781 .9254 .5746 .8493 .9014
Female .4615 .7343 .8096 .4052 .6811 .7641

Table 8: Performances for ST-GCN model trained on regular training labels (left) and debiased training labels
(right). We find that the accuracy parity, calculated as the ratio of female to male accuracy, is higher for the model
trained on regular training labels than the debiased model.
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