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Abstract
Conformal prediction methods have become increasingly common for accurately capturing uncertainty with
machine learning models. However, conformal prediction typically recalibrates an existing model, making it
heavily reliant on the quality of the uncalibrated model. Moreover, they either enforce marginal calibration strictly,
yielding potentially coarse predictive intervals, or attempt to strike a balance between interval coarseness and
calibration. Motivated by these shortcomings, we present CaliPSo a neural network model that is marginally
calibrated out-of-the-box and stays so throughout training. This property is achieved by adding a model-dependent
constant to the model prediction that shifts it in a way that ensures calibration. During training, we then leverage
this to focus exclusively on sharpness - the property of returning tight predictive intervals - rendering the model
more useful at test time. We show thorough experimental results, where our method exhibits superior performance
compared to several state-of-the-art approaches.

1. Introduction
Though conformal prediction has seen increasing interest in recent years (Zhan et al., 2022; Ren et al., 2023; Sun et al.,
2024), the underlying methods present several drawbacks. Conformal prediction methods recalibrate an existing model
by relabeling the quantiles according to their actual coverage on a holdout dataset (Kuleshov et al., 2018). Although this
yields a calibrated model, it comes at the expense of poorer sharpness, meaning that the model is potentially less informative
in certain regions of the input space. To address these shortcomings, an increasing amount of algorithms have attempted
to trade off calibration and sharpness during training. These include minimizing a weighted sum of sharpness and calibration
terms (Chung et al., 2021), considering alternative losses with weaker calibration guarantees but better sharpness (Song
et al., 2019; Kuleshov & Deshpande, 2022), and backpropagating through a differentiable recalibration procedure during
training (Dheur & Ben taieb, 2024). However, while some of these methods do not enforce calibration, none optimize
sharpness directly.

Motivated by the shortcomings mentioned above, we present calibrated predictions using sharpness as a loss function
(CaliPSo). Our method guarantees marginal calibration on the training data at all times, allowing us to optimize exclusively
for sharpness during training. Our approach relies on two novel paradigms for training quantiles. Our approach is easy to
implement and can extend any conventional regression approach to obtain sharply calibrated quantiles. Firstly, we employ
additive terms to enforce calibration during training. This contrasts with conventional recalibration techniques, which relabel
quantiles based on their coverage. Secondly, we use a different subset of the data to train each quantile, where each subset is
computed sequentially using quantiles corresponding to diminishing coverage intervals.

2. Preliminaries and Problem Statement
This section introduces the regression problem considered in this paper along with a formal definition of calibration for
regression models.

We consider a regression setting, where the inputs X and targets Y are random variables taking values x ∈ X ⊂ Rd and
y ∈ Y ⊂ R. We use FX : X → [0, 1], FY |x : Y → [0, 1] and FY : Y → [0, 1] to denote the cumulative density function
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Figure 1. Data partition and quantile generation procedure. The 0 and 1 quantiles are trained by minimizing sharpness while containing
the full data set (a). Given ∆1 = q0 − q1, we then compute the differences αL∆1 and αU∆1 by which we must move inward from q0
and q1 until 1 − 2δ1 of the data is contained (b). The remaining data is used to train tight bounding functions by minimizing the L1

loss while guaranteeing coverage (c). At test time, we apply minimum and maximum operations to the models optimized for sharpness,
guaranteeing calibration (d). This operation is repeated for an arbitrary number of quantile pairs.

(CDF) of X , the CDF of Y conditioned on X = x, and the marginal CDF of Y , respectively.

We aim to obtain a model of the conditional CDF FY |x, which we denote as F̂Y |x. For any given δ ∈ [0, 1], we denote
the corresponding modeled quantile function by qδ(x) := F̂−1

Y |x(δ). To derive a model, we assume to have an iid data set
D = {xi, yi}i=1,...,N , where xi ∼ FX and yi ∼ FY |xi

.

2.1. Model Calibration

Marginal calibration measures the accuracy of probabilistic models. Intuitively, we say that a model is marginally calibrated
if a model of a conditional δ-quantile covers δ of the observed data.

Definition 2.1 (Marginal calibration). The model F̂ is said to be marginally calibrated if the corresponding quantile function
q̂ satisfies

Px∼FX , y∼FY |x (qδ(x) ≤ y) = δ, ∀ δ ∈ [0, 1]. (1)

Marginal calibration, commonly known simply as calibration, holds if the model outputs correct marginal quantiles. This
notion of calibration implies that the conditional quantiles are correct on average, and can be approximately obtained
by recalibrating any existing model (Kuleshov et al., 2018). Note that it is possible to have a marginally calibrated yet
uninformative model, e.g., if a model always outputs the marginal quantiles, independently of the input x. For this reason, it
is desirable to obtain marginally calibrated models that produce concentrated (low-entropy) conditional distributions. This
property is typically known as sharpness (Gneiting et al., 2007), and corresponds to having the shortest possible distance
between quantiles. Sharpness is measured in terms of the average covariance of the conditional distribution, but heuristics
are also frequently used, e.g., the average length of centered 95% confidence intervals (Kuleshov et al., 2018).

In this work, we design a model that guarantees marginal calibration on the training data throughout training. This allows us
to optimize it for sharpness.

3. Sharp Marginally Calibrated Model
We now introduce our model and describe how it is trained. Our method sequentially computes shrinking confidence
intervals, starting with the zero and one quantiles. We begin by describing how they are obtained, then introduce the
computation rule for quantiles for smaller confidence intervals.

3.1. Sharply Calibrated Zero and One Quantiles

We first model sharp and well-calibrated zero and one quantiles of the ground truth CDF F . For an arbitrary pair of
regression models q̂uncal

0 , q̂uncal
1 : X → Y , we obtain marginally calibrated quantile models q̂0, q̂1 by shifting the output such
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that they cover the full dataset, i.e.,

q̂0(x) = min
xi,yi∈D

(yi − q̂uncal
0 (xi)) + q̂uncal

0 (x), q̂1(x) = max
xi,yi∈D

(yi − q̂uncal
1 (xi)) + q̂uncal

1 (x).

However, though q̂0 and q̂1 produce valid zero and one quantiles, they will likely be very coarse, i.e., the corresponding
conditional intervals will be unnecessarily large. To avoid this, we can train the models to maximize sharpness - the average
interval length produced by the quantile model pair. This is achieved by minimizing the average errors

Exi,yi∼D (∥q̂0(xi)− yi∥1) Exi,yi∼D (∥q̂1(xi)− yi∥1) .

This modeling procedure has the advantage that the resulting quantiles are perfectly calibrated on the training data throughout
training, allowing us to focus exclusively on sharpness.

3.2. Sharply Calibrated δ and 1− δ Quantiles

We now consider quantiles q̂δ and q̂1−δ, where 0 < δ < 0.5. We obtain sharp calibrated models by computing the
maximum/minimum over two models for each quantile:

q̂δ(x) = max
(
q̂cal
δ (x), q̂sharp

δ (x)
)
, q̂1−δ = min

(
q̂cal
1−δ(x), q̂

sharp
1−δ (x)

)
, (2)

where the superscripts cal and sharp denote models aimed at enforcing calibration and sharpness, respectively. We describe
how each term is obtained in the following.

We compute the calibrated but potentially coarse components q̂cal
δ (x) and q̂cal

1−δ(x) by appropriately interpolating between
q̂0(x) and q̂1(x):

q̂cal
δ (x) = q̂0(x) + αL(q̂1(x)− q̂0(x)), q̂cal

1−δ(x) = q̂0(x) + αU (q̂1(x)− q̂0(x)), (3)

where αL and αU satisfy

αL = quantile
(
δ,

y − q̂0(x))

q̂1(x))− q̂0(x))

)
, αU = quantile

(
1− δ,

y − q̂0(x))

q̂1(x))− q̂0(x))

)
.

This results in a model that is calibrated but not necessarily sharp. To obtain the sharp components q̂sharp
δ and q̂sharp

1−δ , we
employ a procedure similar to that used for the ones and zero quantiles. First, we use the coarse quantiles q̂cal

δ and q̂cal
1−δ to

obtain the subset of the data D2δ within the corresponding confidence intervals:

D2δ =
{
(xi, yi) ∈ D

∣∣∣ q̂cal
δ (xi) ≤ yi ≤ q̂cal

1−δ(xi)
}
. (4)

We then compute sharp quantiles, calibrated on D2δ , using the same procedure as for the zero and one quantiles:

q̂sharp
δ (x) = min

xi,yi∈D2δ

(yi − q̂uncal
δ (xi)) + q̂uncal

δ (x), q̂sharp
1−δ (x) = max

xi,yi∈D2δ

(yi − q̂uncal
1−δ (xi)) + q̂uncal

1−δ (x),

where q̂uncal
δ and q̂uncal

1−δ are neural networks. We train these models by minimizing the average errors on D2δ:

Exi,yi∼D2δ

(
∥q̂sharp

δ (xi)− yi∥1
)

Exi,yi∼D2δ

(
∥q̂sharp

1−δ (xi)− yi∥1
)
.

This procedure is illustrated in Figure 1.

When retraining the zero and one quantiles, D2δ may change. However, this is not reflected in the gradients of q̂sharp
δ

and q̂sharp
1−δ . In practice, we did not observe this to be a concern, since convergence of the zero and one quantiles implies

convergence of D2δ , allowing for stable joint training. This procedure can be repeated arbitrarily frequently for increasing
values of δ, where we use q̂δ and q̂1−δ to obtain calibrated components for subsequent models, allowing for more refined
models.

3
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Table 1. Expected calibration error and sharpness of different methods over 5 repetitions per experiment. We report the expected calibration
error (ECE) and 95% confidence interval width (95% CI) obtained with our approach, CaliPSo, along with Model Agnostic Quantile
Regression (Chung et al., 2021) (MAQR), QRTC (Dheur & Ben taieb, 2024). Lower is better for all metrics. The results are presented as
the mean over 5 trials ± 1 standard error. The best mean result across the methods is highlighted in bold for each metric and dataset. If a
method achieves the best performance on both metrics for a dataset, it is additionally highlighted in green, and if it fails to achieve the best
in either metric for a dataset it is highlighted red. Our method is always the best in at least one metric.

DATA SET METRIC CALIPSO MAQR QRTC

ECE 0.0975 ± 0.0035 0.0926 ± 0.0147 0.0723 ± 0.0074
BOSTON SHARPNESS 0.1222 ± 0.0062 0.1603 ± 0.0143 0.2882 ± 0.0052

ECE 0.1248 ± 0.0165 0.1233 ± 0.0086 0.0879 ± 0.0145
YACHT SHARPNESS 0.0213 ± 0.0025 0.0216 ± 0.0027 0.3267 ± 0.0347

ECE 0.0473 ± 0.0088 0.0419 ± 0.0040 0.0329 ± 0.0082
WINE SHARPNESS 0.3152 ± 0.0345 0.3976 ± 0.0099 0.3774 ± 0.0039

ECE 0.0534 ± 0.0096 0.0963 ± 0.0062 0.0544 ± 0.0027
CONCRETE SHARPNESS 0.1469 ± 0.0106 0.1507 ± 0.0100 0.3274 ± 0.0045

ECE 0.0290 ± 0.0033 0.0484 ± 0.0038 0.0340 ± 0.0031
KIN8NM SHARPNESS 0.1499 ± 0.0051 0.1483 ± 0.0013 0.2068 ± 0.0060

ECE 0.0736 ± 0.0075 0.1279 ± 0.0092 0.0748 ± 0.0055
ENERGY SHARPNESS 0.0469 ± 0.0068 0.0336 ± 0.0022 0.1737 ± 0.0014

ECE 0.0144 ± 0.0017 0.0226 ± 0.0019 0.0100 ± 0.0010
POWER SHARPNESS 0.1508 ± 0.0021 0.1797 ± 0.0029 0.2016 ± 0.0011

ECE 0.0096 ± 0.0021 0.0194 ± 0.0049 0.0139 ± 0.0030
NAVAL SHARPNESS 0.0185 ± 0.0010 0.0134 ± 0.0007 0.2025 ± 0.0020

3.3. Early stopping

Although the proposed method enforces calibration on the training data, it risks overfitting if we do not define an adequate
early-stopping criterion. To this end, we keep a heldout validation data set Dval, such that Dval ∩ D = ∅, which we use
to estimate calibration at test time. Specifically, we only consider models where the expected calibration error Dval does
not exceed a pre-specified hyperparameter ϵ > 0. The expected calibration error (ECE), which measures calibration, is
computed as (Kuleshov et al., 2018)

lece =
1

np

np∑
j=1

|pj − p̂j |, p̂j =
1

|Dval|

Nval∑
i=1

I
(
q̂pj

(xi) ≤ yi

)
, (5)

where (xi, yi) ∈ Dval.

4. Experiments
Here we report experimental results on benchmark data sets from the UCI repository. We compare against two state-of-the-art
methods: Model Agnostic Quantile Regression (MAQR) (Chung et al., 2021), QRTC (Dheur & Ben taieb, 2024). To assess
the performance of each method using the expected calibration error (Kuleshov et al., 2018) and average length of the
centered 95% intervals, a proxy metric for sharpness (Gneiting et al., 2007). The results are shown in Table 1.

We use 10 models in our method to predict the following quantiles: 0, 0.025, 0.05, 0.1, 0.2, 0.8, 0.9, 0.95, 0.975 and 1. We
run 5 seeds for each experiment and use a train/validation/test split of 72%/18%/10%.

5. Conclusion
We have presented CaliPSo, a regression modeling approach that outputs marginally calibrated models, allowing us to
train them exclusively by maximizing sharpness. Our approach is competitive with different state-of-the-art approaches on
various UCI datasets, achieving the best performance on the concrete dataset.
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A. Related Work
A.1. Uncalibrated probabilistic models

The need to accurately quantify uncertainty has motivated the use and development of various probabilistic models for
regression. Gaussian processes have been extensively used to quantify uncertainty due to their ability to differentiate between
epistemic and aleatoric uncertainty (Rasmussen & Williams, 2006; Deisenroth & Rasmussen, 2011). Similarly, Bayesian
neural networks (MacKay, 1995) aim to capture epistemic and aleatoric uncertainty by placing an appropriate prior over
network parameters. More recently, other techniques have been developed for obtaining probabilistic deep neural networks,
such as ensembles Lakshminarayanan et al. (2017) and dropout Gal et al. (2017).

A.2. Calibrated Classification

Most predictive models are not calibrated after training and need to undergo recalibration. Calibration was initially developed
in the context of classification. To achieve calibration, tools from conformal prediction were commonly used, notably
Platt scaling (Platt et al., 1999) and isotonic regression (Niculescu-Mizil & Caruana, 2005). There has been extensive
work on obtaining calibrated models in the domain of classification. While there are many methods that do not employ
post-processing, we only focus here on methods that employ some form of post-processing. Most forms of post-processing-
based calibration for classification fall into the category of conformal methods (Vovk et al., 2005), which, given an input,
aim to produce sets of labels that contain the true label with a pre-specified probability. Arguably the two most common
forms of calibration are isotonic regression (Niculescu-Mizil & Caruana, 2005) and Platt scaling (Platt et al., 1999). In
Niculescu-Mizil & Caruana (2005), Platt scaling and isotonic regression are analyzed extensively for different types of
predictive models. In Guo et al. (2017), a modified form of Platt scaling for modern classification neural networks is
proposed.

A.3. Calibrated Regression

More recently, conformal calibration techniques have been proposed to recalibrate machine learning models for regression
(Kuleshov et al., 2018). A general overview of basic recalibration methods plus theoretical guarantees is provided in Marx
et al. (2022). While these methods have been shown to yield well-calibrated models, the resulting predictive quantiles
are potentially much too crude, resulting in predictions that perform poorly in terms of sharpness, i.e., the corresponding
confidence intervals will overestimate the model error by a very large margin. As an alternative to purely achieving
calibration, there have been works that explicitly attempt to balance calibration and sharpness. The works of Song et al.
(2019); Kuleshov & Deshpande (2022) attempt to achieve distribution calibration, corresponding to minimizing the average
pinball loss. However, while Song et al. (2019) relies on complex approximations and provides no theoretical guarantees,
Kuleshov & Deshpande (2022) does not allow for optimizing for sharpness directly, and calibration is only guaranteed
asymptotically as the number of data points grows. In Chung et al. (2021), the authors propose different losses to approximate
the conditional distribution of the data, which is generally more challenging to achieve than marginal calibration. In Dheur
& Ben taieb (2024), the authors propose a differentiable recalibration approach, which allows them to enforce calibration
during training. Though this approach is similar to CaliPSo in some respects, the way calibration is enforced does not
allow optimizing for sharpness. Hence, the authors minimize the negative log-likelihood. In a similar vein, (Capone et al.,
2024) exploit properties of kernel models to formulate a flexible calibration approach that can be optimized for sharpness.
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However, the model employed therein is very rigid and highly dependent on a potentially poorly trained base model. A
large-scale survey of calibrated regression methods is given in Dheur & Ben taieb (2023).

B. Discussion
B.1. Limitations

Since the marginally calibrating elements are computed by applying the quantile function to a vector-valued difference
function, their derivative is not well-defined whenever a switch between entries occurs, potentially exhibiting strong changes
over small changes in the input space. Though we did not observe this issue during our experiments, it could pose problems,
particularly if the learning rate is too high.

The proposed method trains a separate model to predict each quantile, which may pose a challenge should the models be
resource-intensive to train, or if many quantiles need to be modeled. To reduce the number of models, it may be possible to
adapt the method to work with a single model which predicts multiple quantile levels as output.

B.2. Selecting the Number of Quantiles m

A potentially important quantity when employing CaliPSo is the number of quantiles m used to design the model. Arguably
the most important factor to consider here is the computational cost, as it potentially becomes large as m increases. In our
experiments, we observed that the results only improved marginally beyond m = 5 quantiles. However, this may well be
due to characteristics of the datasets considered here.

B.3. Theoretical Guarantees

Much like any other regression method, the proposed approach allows for recalibration, yielding typical conformal prediction
guarantees, which state that the calibration error is inversely proportional to the amount of training data (Marx et al., 2022).
However, this theoretical guarantee requires the model to be recalibrated using data that allows an interchangeability
assumption. Since we use the observation data both to train the model and discard poorly calibrated parameters, it does not
satisfy this assumption. Hence, strictly speaking, we would have to employ a randomly sampled subset of the data, which
is only used for calibration at the end of training. However, we observe that recalibrating the model on the training and
validation data does not significantly deteriorate calibration performance compared to calibrating on a holdout data set,
which is consistent with remarks from other works (Kuleshov et al., 2018).
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