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Abstract

We introduce ThinknCheck, a reasoning-
optimized claim verification model that ex-
plicitly generates explanation chains before
making verification decisions. This Gemma3-
based 1B parameter model, fine-tuned on our
new LLMAggreFact-Think dataset, achieves
78.1% balanced accuracy on the LLMAg-
greFact benchmark, outperforming the 7B
MiniCheck model (current SOTA) while re-
quiring substantially less computational re-
sources. Explicit reasoning significantly en-
hances verification accuracy (+20.6 points over
non-reasoning ablation) and improves out-of-
domain generalization (+14.7 points on sci-
entific claims). Qualitative analysis of rea-
soning traces revealed distinct patterns, with
surface-level evidence matching dominating
current datasets; complex synthesis in claim
verification remains underrepresented. To eval-
uate numerical reasoning, we contribute GSM-
Claims, a dataset reformulating grade school
math problems as verification tasks. Error anal-
ysis identified domain-specific patterns, inform-
ing our specialized ThinknCheck-Science vari-
ant with substantial performance gains across
all benchmarks. Reasoning-first approaches
are a promising direction for more accurate,
edge-device friendly, interpretable, and general-
izable claim verification systems across diverse
domains.

1 Introduction

Large Language Models (LLMs) are increasingly
pivotal in modern Al-driven workflows involv-
ing natural language claim verification (Thorne
et al., 2018), yet their propensity for hallucinations
(Zhang et al., 2023), reasoning errors (Chen et al.,
2023), and their opaque nature limit broader de-
ployment, particularly in high-stakes domains like
healthcare and scientific innovation.

Current claim verification approaches, while
evolving, often face challenges. Some methods

Claim: Water boils at 100C.
Document: The temperature at which water
boils is 212F.

MiniCheck-7B verification result:
DOES NOT SUPPORT

ThinknCheck-Science-1B result:

SUPPORTS

ThinknCheck-Science-1B reasoning:

The document states that the temperature at which water
boils is 212F. The claim states that water boils at 100C,
which is equivalent to 100F. To determine if the claim
is true, I need to convert 100C to Fahrenheit. 100C is
equal to 212F, which is the same as the boiling point of
water. Thus, the claim is supported by the information

in the document.

Figure 1: Framing claim verification as a natural lan-
guage entailment problem falls short on many prob-
lems requiring additional reasoning effort. This sim-
ple example illustrates how a state-of-the-art model
Bespoke-MiniCheck-7B (Tang et al., 2024) fails to rec-
ognize that 100°C' is equivalent to 212° F'. Performing
this sort of reasoning is essential for scientific and other
complex claim verification. Our work, ThinknCheck,
and particularly ThinknCheck-Science, explicitly gener-
ates reasoning prior to verification leading to accurate
results in such problems. For a complex example, see
Figure 7.

can be computationally intensive, requiring multi-
ple LLM calls for a single verification (Malaviya
et al., 2024; Jacovi et al., 2024a). Verification using
large, closed-source models also raises concerns re-
garding cost, privacy, and data security. While the
trend in general reasoning models has seen the de-
velopment of very large systems, such as OpenAl’s
o-series and DeepSeek’s R1 (DeepSeek-Al et al.,
2025), which aim for broad reasoning capabilities,
there is a concurrent need for smaller, more special-
ized models (Tang et al., 2024) that can perform
robustly on specific tasks like claim verification, es-



Atmospheric methane, Methane as a greenhouse gas:
Methane in the Earth's atmosphere is a strong
greenhouse gas with a global warming potential
(GWP) 84 times greater than CO2 in a 2@-year time
frame; methane is not as persistent a gas as C02
(assuming no change in carbon sequestration rates)
and tails off to about GWP of 28 for a 10@-year
time frame. [...] Methane has a large effect but
for a relatively brief period, having an estimated
mean half-life of 9.1 years in the atmosphere,
whereas carbon dioxide is currently given an
estimated mean lifetime of over 100 years.

Document

Carbon dioxide is a more potent greenhouse gas than
methane.

Claim

The document specifically states that
methane has a global warming potential
(GWP) that is 84 times greater than that of
carbon dioxide (C02) in a 2@-year time
frame, and 28 times greater over a 100-year
period. This indicates that methane is
actually more potent than carbon dioxide as
a greenhouse gas in both short and long
terms. Therefore, the claim that carbon
dioxide is a more potent greenhouse gas
than methane contradicts the information
provided in the document.

Reasoning

=

NO

Verification

Figure 2: A sample from the LLMAggreFact-Think dataset, which also illustrates our formulation of the claim
verification task: Given a pair of claim and document, our goal is to produce cogent reasoning in addition to the
verification label. The [. . .] represents parts of the reasoning tokens that we elided to accommodate the example

in this figure.

pecially in resource-constrained environments. Our
work aligns with this latter direction, focusing on
creating efficient yet powerful verification models.

To address these challenges, we introduce
ThinknCheck, a suite of novel low-footprint claim
verification models that explicitly generate struc-
tured reasoning chains before rendering a veri-
fication decision. Specifically ThinknCheck is
a 4-bit quantized 1B parameter Gemma3 (Gem-
maTeam et al., 2025) model, fine-tuned on our
newly createdLLMAggreFact-Think dataset—a
version of theLL.MAggreFact benchmark (Tang
et al., 2024) that we augmented with explicit rea-
soning traces. As illustrated in Figure 1, explic-
itly generating reasoning allows ThinknCheck to
handle claims that require multi-step inference, a
common scenario where prior models falter. Our
contributions are as follows:

* Introduce ThinknCheck, a reasoning-
optimized model that improves claim
verification accuracy and interpretability by
first generating explicit explanation chains.

* Demonstrate ThinknCheck’s explicit reason-
ing significantly boosts verification accuracy
(+20.6 points over non-reasoning ablation)
and substantially improves out-of-domain gen-
eralization (+14.7 points on scientific claims).

¢ Create and release GSMClaims, a novel
benchmark from reformulated grade school
math problems, to evaluate arithmetic reason-
ing capabilities in claim verification systems.

* Develop ThinknCheck-Science, a specialized
variant optimized for scientific and mathemat-
ical verification, achieving significant perfor-
mance improvements across relevant bench-
marks.

* Reveal domain-specific verification strategies,
current dataset limitations, and future research
insights through a comprehensive analysis of
reasoning traces from LLMAggreFact-Think.

* Release all created datasets and models under
an Apache 2.0 license! to facilitate further
research in this critical area.

These contributions establish reasoning-first ap-
proaches as a promising path towards more ac-
curate, efficient, interpretable, and broadly gen-
eralizable claim verification systems, offering an
alternative to sheer model scaling.

2 Related Work

Our work intersects with several research areas:
claim verification and fact-checking, the integra-
tion of reasoning into language models, the de-
velopment of lightweight verification models, the
creation of benchmark datasets, and strategies for
reasoning supervision.

Claim Verification and Fact-Checking: Claim
verification, spurred by datasets like FEVER
(Thorne et al., 2018) and SciFact (Wadden et al.,
2020), typically involves classification models pre-
dicting a claim’s validity against a document (Tang
et al., 2024). The opacity and hallucination risks
in LLMs (Chen et al., 2023; Zhang et al., 2023)
necessitate verifiers ensuring accuracy and inter-
pretability.

Reasoning-Augmented Verification Models:
Explicit reasoning enhances verification. Chain-
of-Thought (CoT) prompting (Wei et al., 2022) im-
proves reasoning via rationales, adapted by meth-
ods like verifiable CoT (Jacovi et al., 2024b) and
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the ReAct framework (Yao et al., 2023) which
interleaves reasoning with actions. While large
models like OpenAl’s o-series and DeepSeek R1
(DeepSeek-Al et al., 2025) advance general reason-
ing, our ThinknCheck fine-tunes a compact model
for structured, pre-decision reasoning specific to
claim verification.

Lightweight and Specialized Verification Mod-
els: Interest in smaller, efficient, specialized mod-
els for broader deployment is growing (Allal et al.,
2025). MiniCheck exemplified this for claim veri-
fication; this 7B parameter model, trained on syn-
thetic data, outperformed AlignScore (Zha et al.,
2023) onLLMAggreFact. Yet, MiniCheck falters
on multi-step reasoning (Figure 1), lacks explana-
tions vital for trust and collaboration (Bansal et al.,
2020; Fan et al., 2021; Javaid and Estivill-Castro,
2021), and their best model is still resource-heavy.
ThinknCheck (1B parameters) addresses this by
outperforming MiniCheck-7B with explicit, effi-
cient reasoning.

Benchmark Datasets for Verification: Compre-
hensive benchmarks are vital. LLMAggreFact ag-
gregates nine datasets (Tang et al., 2022; Nallapati
et al., 2016; Narayan et al., 2018; Zhu et al., 2021;
Hu et al., 2023; Liu et al., 2023; Malaviya et al.,
2023; Wang et al., 2023; Kamoi et al., 2023) for
diverse claim verification scenarios. While domain-
specific benchmarks like SciFact address scientific
claims, and GSM8K (Cobbe et al., 2021) is used
for math reasoning, we introduce GSMClaims by
reformulating GSM8K problems to directly test
numerical reasoning in verification.

Reasoning Supervision and Data Augmentation
Strategies: Supervised fine-tuning (SFT) on syn-
thetic reasoning traces, a form of knowledge dis-
tillation (Xu et al., 2024), trains smaller models to
emulate larger ones. Reinforcement learning (RL)
techniques, e.g. GRPO (Shao et al., 2024), also
optimize reasoning. We chose SFT due to suffi-
cient supervised data, acknowledging preference
optimization methods like GRPO as an alternative.

3 Problem Formulation

The standard formulation of evidence-backed claim
verification, as used by Tang et al. (2024) and pre-
decessors, is a classification task: a discriminator
M maps a claim (from space C) and document
(from space D) to a discrete label in {0, 1} (1 for

supported, 0 otherwise).
M:CxD—{0,1}

Our work extends this by incorporating explicit
reasoning. We define this task with a reasoner
‘R that maps the input claim-document pair to a
reasoning trace 7 and a boolean verification label:

R:CxD—T x{0,1}

This richer output format enhances interpretabil-
ity and aims to improve accuracy by requiring
the model to articulate its reasoning. We adopt
the binary labels SUPPORTED (1) and NOTSUP-
PORTED (0) from prior work, treating “REFUTES”
and “NOTSUPPORTED” identically?.

4 Dataset and Model Development

This section details the creation of our training
dataset LLMAggreFact-Think and the model train-
ing procedures for ThinknCheck.

4.1 LLMAggreFact-Think Dataset
Construction

To train our reasoning-based verifier, we created
LLMAggreFact-Think by augmenting the 30.4K
examples in the LLMAggreFact development set
with reasoning chains. Using zero-shot prompting,
GPT-40-mini® generated a step-by-step reasoning
process and a YES/NO verification label for each
(document, claim) pair — see Figure 2; prompt in
Appendix A.

For high-quality reasoning, we filtered instances
where GPT-40-mini’s generated label mismatched
the original LLMAggreFact label, reducing the
dataset from 30.4K to 24.1K examples*. This fil-
tered set, LLMAggreFact-Think, contains 4-tuples:
(claim, document, verification label, reasoning).
We opted against using reasoning traces from
Deepseek R1 (DeepSeek-Al et al., 2025) due to
their verbosity and token inefficiency (See Figure
3). To ensure quality, we randomly sampled 100
samples across all 9 datasets in LLMAggreFact
and manually inspected the reasoning traces de-
rived from GPT-40 and found them to be accurate.

2We concur with Tang et al. (2024) that “REFUTES”, com-
mon in general NLI problems, is rare in claim verification.

3Accessed on March 4, 2025. We did not use the o-series
models for this as it does not provide access to raw reasoning
tokens.

*Notably, ~21% of LLMAggreFact dev set labels differed
from GPT-40-mini’s predictions; analyzing this discrepancy

is beyond this paper’s scope. Hence we chose to only train on
examples with agreement.
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Figure 3: Comparing reasoning traces derived from
Deepseek R1 vs. gpt-4o with the same prompt (c.f.
Appendix A) on claim verification problems in LLAg-
greFact. These metrics showed high variance (which
we didn’t plot here for legibility) for R1 and low vari-
ance for GPT-40. GPT-4o is significantly token efficient
compared to R1, making it our choice for harvesting
reasoning traces.

4.2 ThinknCheck-1B Model Training

We implemented ThinknCheck-1B by fine-tuning
a 4-bit quantized Gemma3 1B model on
LLMAggreFact-Think (training details in Ap-
pendix B). Our choice of Gemma3 was inspired
by its recency and also by its overall performance
across diverse LLM benchmarks (GemmaTeam
et al., 2025). The fine-tuning prompt (Appendix C)
mirrored the LLMAggreFact-Think data structure,
constraining the model to output both reasoning
and the final verification solution.’

4.3 Ablation Model:
ThinknCheck-nothink-1B

To isolate the reasoning step’s impact, we trained
an ablation model, ThinknCheck-nothink-1B. It
shares ThinknCheck-1B’s architecture, data, and
hyperparameters but was trained with a prompt
(Appendix D) requesting only the final solution,
omitting reasoning generation. This ablation en-
sures that observed performance gains are not
solely due to our choice of Gemma3 as the back-
bone.

5 Uncovering Reasoning Methods
Stressed by Current Claim Verification
Datasets

The LLMAggrefact benchmark aggregates 9 claim
verification datasets. These datasets (see 2) are
highly cited in claim verification literature, yet
there is poor understanding about the complex-
ity of the claim verification challenges posed by
these datasets. ThinknCheck’s reasoning traces pro-
vide us an opportunity to understand the reasoning

SInference uses parameters recommended by the Gemma3
paper: temperature=1.0, top_p=0.95, and top_k=64.

demands exercised by current claim verification
datasets, and hence the complexity of the datasets
themselves. To do so, we conducted a qualitative
analysis of reasoning traces.

5.1 Methodology

We sampled 1,000 examples from the
LLMAggreFact-Think dataset along with
their generated reasoning traces, using stratified
sampling based on the ‘dataset’ column. Our
analysis involved a systematic manual review
of reasoning outputs for these document-claim
pairs. For each entry, we determined the primary
strategy employed to justify the verification label
(support or refute). Through an iterative process,
we categorized these strategies, identified recurring
patterns, and selected representative examples
to illustrate the diverse reasoning approaches
observed.

5.2 Identifying Reasoning Patterns in
LLMAggreFact-Think

Our analysis revealed several distinct reasoning
patterns. In this section, we detail these patterns.
For illustrative examples of each pattern, please
refer to Appendix F.

Direct Evidence Extraction & Matching: The
most prevalent strategy involves identifying and of-
ten directly quoting or closely paraphrasing specific
text segments from the document that explicitly
support or contradict the claim. This demonstrates
a reliance on surface-level textual matching.
Absence of Evidence Identification: A substan-
tial portion of reasoning concludes that a claim
cannot be verified due to insufficient relevant in-
formation in the document. These justifications
explicitly state that the document does not address
the topic or specific details asserted in the claim.

Synthesis of Multiple Information Points:
Some reasoning requires integrating information
from multiple sentences or sections within the doc-
ument. This approach is particularly common for
claims that summarize findings (e.g., from multiple
reviews) or when evidence is distributed through-
out the text.

Addressing Scope and Specificity Mismatches:
Reasoning frequently addresses discrepancies in
scope between the claim and the document. This
includes cases where the claim is broader, narrower,
or introduces elements not discussed in the source
text.
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Figure 4: Distribution of reasoning patterns across
LLMAggreFact-Think. Direct evidence extraction (A)
dominates the verification strategies (27,988 instances),
followed by other reasoning strategies. See Section 5.3
for a detailed discussion.

Handling Nuance and Implication: More so-
phisticated reasoning involves interpreting implica-
tions or nuances in the text, even without explicit
statements. This may include inferring support
based on context or acknowledging partial agree-
ment with the claim.

Step-by-Step Verification: For claims related to
processes, instructions, or sequences (e.g., recipes),
the reasoning often involves methodically verify-
ing each step mentioned in the claim against the
procedures described in the document.

5.3 Insights from Analysis of Generated
Reasoning

Our analysis (see Figure 4) reveals that the primary
reasoning demand across all datasets for claim ver-
ification is that information retrieval and textual
entailment capabilities, enabling precise matching
between claims and supporting evidence. The dis-
tribution of reasoning patterns across 9 datasets
(see Figure 8) reveals several significant implica-
tions for claim verification systems:

1. Pattern Dominance Hierarchy: Direct evi-
dence extraction dominates across all datasets
(75-100%), followed by nuance handling (10-
50%), and absence identification (1-70%), in-
dicating a clear preference gradient in verifi-
cation strategies employed by these datasets.

2. Dataset-Specific Biases: Certain datasets
heavily favor particular reasoning patterns.
AggreFact-CNN, for instance, demands in-
formation synthesis in approximately 50%
of cases, creating a substantial bias to-

ward this reasoning pattern. In con-
trast, even RAGTruth—the dataset with the
highest prevalence of multi-step verifica-
tion—requires this complex reasoning in
merely 0.9% of instances, highlighting a criti-
cal gap in current benchmarking resources.

3. Complementary Pattern Distribution:
Datasets with high rates of direct extraction
(pattern A) tend to have lower rates of
synthesis (pattern D), suggesting these
approaches may be complementary rather
than co-occurring.

4. Verification Complexity Indicators: The
prevalence of scope mismatch handling (E)
and nuance interpretation (B) in datasets like
FactCheck-GPT and Wice points to the chal-
lenging nature of claims requiring contextual
understanding beyond literal matching.

5. Task Formulation Effects: The stark vari-
ation in absence identification (C) across
datasets (from <1% in AggreFact-CNN to
>70% in FactCheck-GPT) suggests that task
formulation significantly influences how sys-
tems approach verification when evidence is
lacking.

These findings suggest that 1) Comprehensive
claim verification systems should balance multi-
ple reasoning strategies rather than optimizing for
direct evidence matching alone, with particular
attention to the underrepresented but critical ca-
pabilities of handling missing evidence and syn-
thesizing distributed information., and 2) Current
claim-verification datasets, as represented by the
LLMAggreFact benchmark, dominantly test direct
evidence matching and high-scoring systems on
these datasets will likely not generalize well on
complex claim verification that require reasoning
beyond evidence matching.

6 Probing Complex Reasoning
Capabilities of Claim Verification
Models

Current fact verification systems often struggle
with claims requiring multi-step reasoning pro-
cesses, particularly those involving numerical cal-
culations (as demonstrated in Figure 1). While the
LLMAggreFact benchmark effectively evaluates
core verification capabilities and generalization, it
inadequately tests these more complex reasoning
scenarios. To address this limitation, we developed
both a specialized benchmark and a model variant
specifically designed to tackle such challenges.



User

Problem: Haley grows at the rate of 3 inches every year. If she is currently 20
inches tall, what will be her height after 10 years?

Solution: After 10 years, growing at the rate of 3 inches every year, Haley will

have grown by 310 = <<310=30>>30 inches. If she is currently 20 inches tall,

her height after 10 years will be 20+30 = <<20+30=50>>50 inches. #### 50

—>

LLM call

“document”: “Haley...She is currently 20 inches tall.”
“claim”: “Haley will be 60 inches tall in 10 years.”
“label”: “NO”

{
“document”: “Haley...She is currently 20 inches tall.”
“claim”: “Haley will be 50 inches tall in 10 years.”
“label”: “YES”

}

Figure 5: To build GSMClaims, we reframe GSM8K (Cobbe et al., 2021) problems as claim verification problems
requiring arithmetic processing. See Appendix E for the prompt used in the LLM call.

6.1 GSMClaims Dataset for Arithmetic
Reasoning

We created the GSMClaims dataset to rigorously
evaluate arithmetic reasoning in claim verification,
an area not covered by current claim verification
datasets. Using the GSMSK test set (Cobbe et al.,
2021), which features multi-step grade school math
problems, we transformed each problem into two
claim verification instances using GPT-40. This
three-step process (Figure 5) involved: 1) reformat-
ting the problem context into a reference document;
2) generating a "positive" claim with the correct,
calculated answer; and 3) creating a "negative"
claim with a plausible, incorrect answer stemming
from common calculation errors. This resulted in
2,634 balanced instances where successful verifica-
tion hinges on the model’s arithmetic calculation
ability based on the document. The GPT-40 prompt
template is in Appendix E. We manually inspected
a subset of 100 positive and negative claims and
found them to be near-perfect accurate.

6.2 ThinknCheck-Science: Specializing for
Complex Claims

The challenges posed by complex scientific and
quantitative claims led us to the development of
ThinknCheck-Science, a specialized variant of
our base verification model. This model variant
aims to enhance the reasoning capabilities of the
ThinknCheck-1B model through targeted domain
adaptation. To accomplish this, we augmented the
LLMAggreFact-Think training dataset with addi-
tional reasoning-enhanced examples from domains
requiring specialized knowledge and calculation
abilities. Specifically, we incorporated 614 exam-
ples from the SciFact training set, which focuses
on scientific claims, and 398 examples from our
newly created GSMClaims dataset, which empha-
sizes arithmetic reasoning. ThinknCheck-Science
was subsequently fine-tuned using this enriched
dataset while maintaining the same architecture
and training procedure as the base ThinknCheck-

1B model.
7 Experiments: Evaluating ThinknCheck

We conducted extensive experiments to assess
ThinknCheck’s effectiveness across multiple di-
mensions, comparing against competitive baselines
and analyzing the impact of our architectural de-
cisions. All improvements reported in this section
were tested for statistical significance using the
Friedman test, followed by the Nemenyi post-hoc
test where applicable.

7.1 Evaluation Metrics

Following prior work (Tang et al., 2022; Fabbri
et al., 2021; Laban et al., 2022; Tang et al., 2024),
we adopt Balanced Accuracy (BAcc) as our pri-
mary metric for evaluating potentially imbalanced
datasets like LLMAggreFact and SciFact. ¢ For
the balanced GSMClaims dataset, we report stan-
dard accuracy, so our results are interpretable with
previous works.

7.2 Baselines

We compare ThinknCheck against three categories
of baselines: (1) closed LLMs in zero-shot settings
(GPT-4, GPT-40, Claude-Sonnet-3.5) as reported
by Tang et al. (2024). Our goal is not to compete
with these private and massive foundation mod-
els, but to provide context., (2) specialized verifi-
cation models (AlignScore, MiniCheck-7B), and
(3) ThinknCheck variants (ThinknCheck-nothink,
ThinknCheck, ThinknCheck-Science) to isolate the
impact of reasoning and data augmentation compo-
nents.

®Balanced Accuracy (BAcc) is defined as:
1 TP TN

BAcc = -
“T3 <TP+FN+TN+FP>’

where TP, TN, FP, and FN represent true positives, true nega-
tives, false positives, and false negatives, respectively.



7.3 Core Verification Performance
(LLMAggreFact)

Table 1 presents the performance of ThinknCheck
and baselines on the LLMAggreFact benchmark.

Model BAcc
GPT-4 (zero-shot) 75.3
GPT-40 (zero-shot) 75.9
Claude-Sonnet-3.5 (zero-shot) 77.2
AlignScore (355M/fp16) 70.4
MiniCheck (7B/fp16) 71.4

ThinknCheck-nothink (1B/fp4)  57.5
ThinknCheck (1B/fp4) 78.1

Table 1: Performance on LLMAggreFact test set (29.3K
examples). ThinknCheck-1B surpasses the larger
MiniCheck-7B, and the large gap to ThinknCheck-
nothink highlights the benefit of reasoning.

Our results reveal several key findings. First,
ThinknCheck-1B outperforms MiniCheck-7B de-
spite using 7 x fewer parameters and 4-bit quanti-
zation. Second, the reasoning component is criti-
cal—removing it (ThinknCheck-nothink) leads to
a dramatic 20.6 point drop in performance. Third,
our compact 1B model matches or exceeds state-of-
the-art LLMs like GPT-40 and Claude, demonstrat-
ing that specialized, reasoning-based architectures
can achieve competitive performance at a fraction
of the computational cost.

7.4 Robustness and Generalization:
Evaluation on SciFact

Beyond core performance, we investigated
ThinknCheck’s robustness to distribution shifts.
Scientific claims in the SciFact benchmark often re-
quire implicit reasoning or conceptual understand-
ing beyond simple lexical overlap (as illustrated in
Figure 1). We hypothesized that ThinknCheck’s
explicit reasoning process would enhance out-of-
domain generalization compared to models focused
solely on classification.

Table 2 strongly supports this hypothesis.
ThinknCheck-1B achieves 64.7 BAcc on the Sci-
Fact development set, a substantial 14.7 abso-
lute point improvement (29.4% relative gain) over
MiniCheck-7B (50.0 BAcc). The ThinknCheck-
nothink ablation performs poorly (21.7 BAcc), con-
firming that the reasoning capability drives this
enhanced generalization. These results demon-
strate that ThinknCheck handles claims requiring
deeper understanding more effectively, suggesting

important implications for practical deployment in
domain-shifting scenarios.

Model BAcc
MiniCheck-7B 50.0
ThinknCheck-nothink-1B 21.7
ThinknCheck-1B 64.7

Table 2: Performance on the SciFact development set.
The reasoning mechanism in ThinknCheck-1B leads to
vastly superior out-of-domain generalization compared
to MiniCheck-7B and the non-reasoning ablation.

7.5 Performance on Complex Reasoning:
GSMClaims & ThinknCheck-Science

We used the GSMClaims dataset introduced in Sec-
tion 6.1 to evaluate performance on claims requir-
ing arithmetic reasoning. Table 4 shows the zero-
shot performance across models. As expected, both
ThinknCheck-1B (52.1% Acc) and MiniCheck-7B
(51.3% Acc) find this task challenging, particularly
struggling to verify correct positive claims. This
confirms that standard training on text entailment
is insufficient for reliable numerical reasoning.

Model Positive Negative Overall
Uniform Baseline 50.0 50.0 50.0
MiniCheck-7B 14.4 88.1 51.3
ThinknCheck-nothink-1B 1.0 97.8 494
ThinknCheck-1B 14.6 89.8 52.2

Table 3: Zero-shot performance on GSMClaims (Accu-
racy %). Both ThinknCheck and MiniCheck struggle
with arithmetic reasoning, particularly verifying posi-
tive (correct) claims.

To address this limitation, we evaluated
ThinknCheck-Science, our model specifically
trained with additional scientific and arithmetic
data (introduced in Section 4.2). Table 4 com-
pares its performance against other models across
all benchmarks and Figure 7 shows ThinknCheck-
Science in action with a highly non-trivial claim
verification example requiring complex reason-
ing. ThinknCheck-Science achieves the best per-
formance on GSMClaims (61.0% Acc), demon-
strating that the ThinknCheck architecture can be
effectively specialized through targeted training to
significantly improve quantitative reasoning capa-
bilities. Importantly, it also shows improvements
on LLMAggreFact and SciFact, indicating that the
specialized training enhances rather than compro-
mises its general verification abilities.

These results demonstrate that ThinknCheck-
Science offers comprehensive improvements across
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Figure 6: Subfigures (a), (b), and (c) show the distribution of key error types on LLMAggreFact, SciFact, and
GSMClaims, respectively revealed during our error analysis. For further discussion of these error types see Section 8.

Model LLMAggre SciFact GSM
Fact (dev)  Claims
MiniCheck-7B 774 50.0 51.3
ThinknCheck-nothink-1B 57.5 21.7 494
ThinknCheck-1B 78.1 64.7 52.2
ThinknCheck-Science-1B 79.2 66.4 61.0

Table 4: Performance of ThinknCheck-Science across
datasets. Targeted training significantly improves per-
formance not only on arithmetic (GSMClaims) and sci-
entific (SciFact) verification, but also on general claim
verification (LLMAggreFact).

all evaluation benchmarks, with 17% relative im-
provement over the base model on GSMClaims.

8 Error Analysis

A comprehensive error analysis of ThinknCheck-
1B on LLMAggreFact, SciFact, and GSMClaims
datasets, using a unified error taxonomy (Figure 6),
revealed varied error profiles. Lexical Overlap
Bias was most prevalent in LLMaggreFact (5.3%)
but lower in GSMClaims (3.9%). In GSMClaims,
mathematical claims led to dominant Arithmetic
Reasoning errors (20.7%). Overcautiousness, the
leading error in SciFact (41.4%), reflects difficulty
confirming complex, ungrounded scientific asser-
tions. Negation/Temporal errors were significant
in SciFact (32.7%) and LLMaggreFact (3.3%) but
rare in GSMClaims (0.4%), highlighting domain-
specific reasoning issues. Insufficient Aggrega-
tion occurred across datasets, critically in LLMag-
greFact (4.6%) where multi-hop synthesis is key.
These patterns show significant domain-specific
error profile variations, underscoring the need for
dataset-specific claim verification strategies.

Our findings show domain-specific error pat-
terns: general-domain verification was most af-
fected by lexical overlap bias and insufficient ag-
gregation (Appendix I); scientific claims by a high

rate of overcautious false negatives and negation
errors (Appendix J); and mathematical claims by
arithmetic reasoning failures and multi-step aggre-
gation issues (Appendix K). These insights suggest
targeted mitigations like adversarial data mining
and domain-specific prompting. Detailed examples
and further recommendations are in the respective
appendices

9 Conclusion

ThinknCheck, a novel claim verification model,
achieves state-of-the-art performance by explicitly
generating structured reasoning chains before ver-
ification decisions. This reasoning-first paradigm
offers significant, multi-dimensional advantages.
ThinknCheck-1B outperforms larger models like
MiniCheck-7B with fewer parameters and shows
remarkable out-of-domain generalization, achiev-
ing a 29.4% relative gain on scientific claims. Com-
prehensive error analysis across general, scien-
tific, and mathematical claim verification identified
domain-specific challenges and informed targeted
mitigation strategies. The LLMAggreFact-Think
and GSMClaims datasets offer valuable resources
for future reasoning-augmented verification re-
search. Moreover, the specialized ThinknCheck-
Science variant shows targeted domain adaptation
yields substantial improvements without compro-
mising general verification. Our success suggests
robust Al verification may stem from architectures
leveraging structured reasoning, not just model
scaling. With automated verification’s growing im-
portance across diverse domains (news, science, ed-
ucation), ThinknCheck establishes reasoning-first
approaches as a promising foundation for more ac-
curate, resource-efficient, interpretable, and adapt-
able systems.



10 Limitations

ThinknCheck advances claim verification, and we
identify several promising directions for future
development. To enhance applicability to very
large documents or multi-document scenarios, ar-
chitectures supporting longer contexts could be ex-
plored (Poli et al., 2023; Waleffe et al., 2024), mov-
ing beyond the current 4558-token (6000 words)
window. The fixed 512-token reasoning output,
while encouraging succinctness, could be made
dynamic to better handle complex claims needing
extensive explanation. Furthermore, performance
on tasks like GSMClaims suggests that integrating
external tools (e.g., calculators) (Patil et al., 2024)
is a key step for complex arithmetic reasoning. Fi-
nally, aligning with challenges in prior work (Tang
etal., 2024; Zha et al., 2023), calibrating output log-
its to serve as reliable confidence scores (Liu et al.,
2025) remains an important area for ongoing inves-
tigation and future refinement of ThinknCheck.

11 Ethical Considerations and Broader
Impact

Please see Appendix L for a detailed discussion of
broader impact of this work and its ethical ramifi-
cations.

12 Reproducibility Statement

We are committed to ensuring the reproducibility
of our research. To this end, we provide details
regarding our datasets, models, and experimental
setup in Appendix M.
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Chenguang Zhu, Yang Liu, Jie Mei, and Michael Zeng. document is enclosed between <DOCUMENT>

2021. Med%asum: A large-.scak medla' 1nterv1§W and </DOCUMENT>. The claim is between
dataset for dialogue summarization. arXiv preprint

arXiv:2103.06410. <CLAIM> and </CLAIM>. Determine if the
claim is entailed by the document. Think
A Prompt for generating about the problem and provide your reasoning.
LLMAggreFact-Think Place the reasoning between <REASONING>
- fact checker with and </REASONING>. Then, provide your en-
ou are(iexplert :;th ecker wit lahstr;)pgf atten- tailment solution between <SOLUTION> and
el t((’}. e zn access togwela . Od 1ntorma- </SOLUTION>. The entailment should be ei-
FIOH. iven a ocurpent and a claim, determine ther a YES or a NO.
if the claim is entailed by the document, only
. . <DOCUMENT>
using the facts in the document. e
Respond in the following format: </DOCUMENT>
. <CLAIM>
<reason1ng> {claim}
. // clear, but short description of your
</CLAIM>
step by step : <REASONING>
// thinking to arrive at the entailment {reasoning}
// keep the reasoning sentences separated </REASONI§G>
by a newline. <SOLUTION>
</reasoning> oot
<entailment>
. // This is always a single word, either Sl 2
"WES” or "NO”
</entailment>
D Finetuning Prompt for

B ThinknCheck finetuning: ThinknCheck-nothink

hyperparameter details You are given a document and a claim. The
For fine-tuning, we used LoRA (Hu et al., 2021) document is enclosed between <DOCUMENT>
with rank=64, lora_alpha=64, and a learning rate of and </DOCUMENT>. The claim is between
2e-4 scheduled linearly. We updated the query, key, <CLAIM> and </CLAIM>. Determine if the
value, and output projection layers, as well as MLP claim is entailed by the document. Provide
gate, up, and down projections. The fine-tuning your entailment solution between <SOLUTION>
was performed on an A100 GPU for 1 epoch, with 5 and </SOLUTION>. The entailment should be
warmup steps, a batch size of 4 with 4 accumulated either a YES or a NO.
steps, and an 8bit-AdamW optimizer with a weight <DOCUMENT>
decay of 0.01. {document}
</DOCUMENT>
. N . CLAIM
C Finetuning Prompt for ThinknCheck zcl aim;
</CLAIM>
You are given a document and a claim. The <SOLUTION>
{solution}
</SOLUTION>

E Prompt to generate GSMClaims

Given an arithmetic problem and a solution,
rewrite them as a document and a a pair of
positive and negative claims such the positive
claim is entailed by the document (after solv-
ing some arithmetic) and the negative claim
is not entailed by the document (after solving
some arithmetic). Produce your answer only
as a JSON. Do not add anything before and
after the JSON.
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F Examples of Reasoning Patterns in
LLMAggreFact-Think

Direct Evidence Extraction & Matching:

Claim: "Proper clean-up prior to insertion of the
vaginoscope is essential."

Reasoning: "The document contains a sentence that
explicitly states 'Proper clean-up prior to insertion of
the vaginoscope is essential.” This directly matches the
claim made..."

Absence of Evidence Identification:

Claim: "A star’s temperature is determined by the
amount of mass and energy it has."

Reasoning: "The document discusses determining the
effective temperature of a star from its spectrum but
does not mention the relationship between a star’s mass,
energy, and temperature... Therefore, the claim is not
backed by the facts in the document..."

Synthesis of Multiple Information Points:

Claim: "However, according to customer reviews, the
quality of the food served at the restaurant is subpar."
Reasoning: "The document contains multiple customer
reviews expressing dissatisfaction... One review explic-
itly states that the food was ’horrible,’... Another review
criticizes the broth as ’least flavorful’... Together, these
reviews confirm that the quality of food... is indeed
regarded as subpar by customers."

Addressing Scope and Specificity Mismatches:

Claim: "Thermodynamics provides the fundamental
laws of energy conservation, mass conservation, and
chemical equilibrium that govern the behavior of chemi-
cal systems."

Reasoning: "The document discusses the first law of
thermodynamics, which addresses energy conservation,
aligning with part of the claim. However, it does not sup-
port the components of mass conservation and chemical
equilibrium... Therefore, the claim goes beyond what is
explicitly stated... and is only partially supported.”

Handling Nuance and Implication:

Claim: "The restaurant’s use of fresh and high-quality
ingredients, such as shrimp and pork belly, has also been
commended by reviewers."

Reasoning: "...One review even states that ’the shrimp
you could really sink your teeth into,” suggesting that
the shrimp is fresh and of high quality. The combination
of positive comments about these specific ingredients
supports the claim."

12

Step-by-Step Verification:

Claim: "Return beef and any accumulated juices to the
pan, along with tomato sauce, liver spread, and bay
leaves."

Reasoning: "...passage 3 explicitly states to *Return beef
and accumulated juices to pan’ and also adds * Add water,
tomato sauce, liver spread and bay leaf.” Therefore, all
elements of the claim are present in the passage..."

G Non-trivial Example of Claim

Verification with ThinknCheck-Science

Claim: Momentum P ~ 10.0 £1.1 kg - m/s
Document: Mass M = 5.0 0.1 kg. Velocity
V=20 £0.2 m/s.

MiniCheck-7B verification result:
DOES NOT SUPPORT

ThinknCheck-Science verification result:
SUPPORTS

ThinknCheck-Science reasoning:

The momentum is calculated by multiplying the mass
and the velocity: 5.0 kg X2.0 m/s = 10.0 kg - m/s. The
relative uncertainty in the mass is 0.1/5.0 = 2% and
in the velocity is 0.2/2.0 = 10%. When uncertainties
are combined for multiplication, they add in quadrature:
V((2%)° + (10%)*) = +/(0.0004 + 0.01) = +/(0.0104)
=2 10.2%. This results in an uncertainty of about 10.2%
X10.0 kg - m/s =~ 1.0 kg - m/s. A better calculation
using maximum and minimum values yields Ppqz =
5.1 kg X2.2m/s =11.22 kg - m/s and Pyin = 4.9 kg
X 1.8 m/s = 8.82 kg - m/s. The range between Py
and Prin is 11.22 8.82 = 2.4 kg - m/s, implying an
uncertainty of approximately T 1.2 kg - m/s. Since both
approaches yield an uncertainty around T 1.0 to * 1.2
kg - m/s, the claim of 10.0 £ 1.1 kg - m/s is consistent

with the uncertainties derived from the document.

Figure 7: An example of non-trivial reasoning in
ThinknCheck-Science that involves thinking through
quantitative uncertainty.



H Distribution of the Reasoning Methods across datasets
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Figure 8: Comparative distribution of reasoning strategies employed for claim verification across various source
datasets within LLMAggreFact-Think. Each subplot (A-F) corresponds to a distinct reasoning method identified in
Section 5: (A) Direct evidence extraction & matching, (B) Handling nuance & implication, (C) Absence of evidence
identification, (D) Synthesis of multiple information points, (E) Addressing scope & specificity of mismatches, and

(F) Step-by-step verification. The figure highlights how different datasets predominantly elicit different reasoning
patterns.
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I Comprehensive Error Analysis and
Mitigation Strategies: LLMAggreFact

L1 Error Taxonomy and Case Counts

Through systematic analysis of model predictions,
we identified five distinct error categories that cap-
ture the primary failure modes in claim verification:

Lexical Overlap Bias occurs when the model
incorrectly predicts YES based on surface-level
lexical similarity between the claim and context,
without proper semantic entailment assessment. In-
sufficient Aggregation manifests as the model’s
failure to synthesize information distributed across
multiple sentences or paragraphs—a critical re-
quirement for complex, multi-hop claims. Nega-
tion/Temporal Confusion involves mishandling
negations or temporal relationships, often resulting
in incorrect entailment decisions. Overcautious-
ness is observed when the model requires complete
and explicit evidence for all components of a com-
posite claim, defaulting to NO even when most
sub-claims are well-supported. Finally, Halluci-
nated Justification errors arise when the model
generates confident reasoning unsupported by the
document, particularly prevalent when input is trun-
cated.

Our quantitative analysis of the development set
reveals the following distribution of these error

types:

Error Type Case Count
Lexical Overlap Bias 1,543
Insufficient Aggregation 1,350
Negation/Temporal 959
Overcautiousness 837
Hallucinated/Truncation 29

Table 5: Counts of each error type in the analysis set.

I.2 Representative Error Snippets

We present characteristic examples of each error
type, illustrating the specific patterns and reasoning
failures observed:

Lexical Overlap Bias:

Claim: Roberto Martinez felt Seamus
Coleman should have been awarded a
free-kick before the defender conceded
the penalty that allowed Swansea to
pinch a 1-1 draw at the Liberty Stadium.
Ground Truth: NO
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Lexical Overlap

Bias BazH

Insufficient
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Negation/

Temporal Snei

Error Type

Overcautiousness 2.9%

Hallucinated/
Truncation

0.1%
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No. of Error Cases in LLMAggreFact

Figure 9: This figure shows the percentage of errors in
the development set attributed to each major error type
identified during our analysis of the ThinknCheck claim
verification model. The most prevalent error is Lexi-
cal Overlap Bias (5.3%), where the model incorrectly
predicts support for a claim based primarily on surface-
level phrase overlap between the claim and document,
rather than true entailment. Insufficient Aggregation
(4.6%) represents failures to synthesize evidence across
multiple sentences or paragraphs—often required for
complex, multi-hop claims. Negation/Temporal errors
(3.3%) arise when the model fails to correctly handle
negation or temporal relationships, frequently confus-
ing past, future, or negated statements. Overcautious-
ness (2.9%) is observed when the model predicts "NO"
unless every aspect of a composite claim is explicitly
supported, leading to false negatives even when most
sub-claims are correct. The least frequent category, Hal-
lucinated/Truncation (0.1%), captures instances where
the model generates unsupported or speculative justifi-
cations, typically due to truncated input context. These
findings highlight key areas for targeted mitigation and
future improvement in LLM-based claim verification
systems.

Predicted: YES

Analysis: The model matches surface
phrases without verifying true entail-
ment.

Negation/Temporal Confusion:

Claim: Lazio beat Napoli 1-0 on
Wednesday to reach the Coppa Italia fi-
nal...

Ground Truth: YES

Predicted: NO

Analysis: The model confuses event
chronology, failing to parse past vs. fu-



ture events.
Hallucinated Justification (Truncation):

Claim: [Claim regarding match details,
with evidence cut off by truncation]
Truncated: True

Predicted: YES

Analysis: The model fills in missing in-
formation with confident, unsupported
rationale.

Insufficient Aggregation (Multi-hop):

Claim: Leicester City are just three
points from safety... have won back-to-
back games against Arsenal and West
Brom...

Ground Truth: YES

Predicted: NO

Analysis: Model fails to aggregate evi-
dence across sentences.

Overcautiousness:

Claim: Maxime Machenaud crossed for
Racing Metro 92 in the first half. Charlie
Hodgson kicked two penalties... Marcelo
Bosch won the match with a last-minute
penalty.

Ground Truth: YES

Predicted: NO

Analysis: Model returns NO unless ev-
ery part is perfectly supported, even if
most are.

I.3 Mitigation Strategies

Based on our error analysis, we propose targeted
mitigation approaches for each error category:

For Lexical Overlap Bias, we recommend in-
corporating adversarial examples with high lexi-
cal overlap but contradictory semantics, multi-task
training with established NLI datasets, and explicit
prompting for evidence-based reasoning that re-
quires justification of entailment decisions.

To address Insufficient Aggregation, enriching
training data with multi-hop claims is essential,
alongside chain-of-thought prompting or structured
claim decomposition techniques. Having the model
explicitly highlight or enumerate relevant evidence
sentences across the document can also enhance
multi-hop reasoning capabilities.

For Negation/Temporal Confusion, augment-
ing training with carefully constructed examples
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highlighting negation and temporal relationships is
critical. Explicit instructions to attend to these lin-
guistic cues, potentially combined with integration
of specialized temporal parsers, could significantly
improve performance.

Overcautiousness might be mitigated by in-
troducing finer-grained labeling schemes such as
"PARTIAL" or "INSUFFICIENT" support, requir-
ing the model to verify each claim component sep-
arately, and calibrating the model to avoid overuse
of NO predictions for partially supported claims.

Finally, Hallucinated Justification errors can
be addressed by training with truncated documents
explicitly labeled as providing "Insufficient Infor-
mation," prompting the model to recognize and flag
missing evidence, and implementing confidence
calibration techniques specific to incomplete in-
puts.

Our findings underscore that claim verification
remains challenging for LLMs, particularly in con-
texts involving high lexical overlap, multi-hop rea-
soning requirements, or truncated evidence. We
contend that structured data augmentation, adver-
sarial example mining, and carefully designed
prompting strategies are essential to addressing
these challenging cases and advancing the state
of LLM-based claim verification.

J Comprehensive Error Analysis and
Mitigation Strategies: SciFact

J.1 Error Taxonomy and Distribution

Our analysis of model errors on the SciFact devel-
opment set identified four primary error categories,
with distinct distributions from the general claim
verification dataset:

Overcautiousness dominates the scientific
claim verification errors, manifesting as the model
predicting NO unless every component of a claim
is directly and explicitly supported, even when the
majority of elements are correct. Negation/Tem-
poral errors involve misinterpretation of negations,
risk factors, associations, or causal and temporal re-
lationships—particularly problematic in scientific
contexts where precise interpretation of these el-
ements is critical. Lexical Overlap Bias occurs
when the model incorrectly predicts YES based on
surface-level terminology matches without proper
scientific entailment. Insufficient Aggregation
errors, while less frequent in SciFact compared
to general news verification, still occur when the
model fails to synthesize distributed evidence for



complex scientific claims.

Overcautiousness 41.4%

Negation/
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Lexical Overlap
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Figure 10: This bar chart shows the percentage of errors
attributable to each major error type. The most frequent
is Overcautiousness (41.4%), where the model predicts
"NO" unless every component of a scientific claim is
directly supported by the abstract. Negation/Temporal
errors (32.8%) arise from failure to correctly process
negations or temporal/causal relations, often leading to
mistakes about risk, association, or event directionality.
Lexical Overlap Bias (24.1%) refers to errors where the
model incorrectly predicts "YES" based on surface word
overlap, without true scientific entailment. Insufficient
Aggregation (1.7%) captures failures in synthesizing
multi-hop or compositional evidence, a rare but notable
error on SciFact. This distribution highlights the unique
challenges of scientific claim verification for LLMs.

J.2 Representative Error Examples

The following examples illustrate characteristic in-
stances of each error type on scientific claims:

Overcautiousness:

Claim: 1,000 genomes project enables
mapping of genetic sequence variation

consisting of rare variants with larger
penetrance effects than common vari-
ants.

Ground Truth: YES

Predicted: NO

Analysis: The document discusses the
identification of common variants and
the implications of synthetic associations
arising from rare variants... but does not
provide any information about the spe-
cific number of genomes being mapped...

Negation/Temporal:

Claim: APOE4 expression in iPSC-
derived neurons increases AlphaBeta
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production and tau phosphorylation caus-
ing GABA neuron degeneration.
Ground Truth: YES

Predicted: NO

Analysis: ...ApoE4 resulted in higher
levels of tau phosphorylation and in-
creased A /3 production, but these effects
were not observed in mouse neurons...

Lexical Overlap Bias:

Claim: ALDHI1 expression is associated
with better breast cancer outcomes.
Ground Truth: NO

Predicted: YES

Analysis: The document states that
ALDHI expression is correlated with
poor prognosis in breast cancers... which
is directly supported by the information
provided in the document.

Insufficient Aggregation:

Claim: The YAP1 and TEAD complex
translocates into the nucleus where it
interacts with transcription factors and
DNA-binding proteins that modulate tar-
get gene transcription.

Ground Truth: YES

Predicted: NO

Analysis: ...discusses the regulation of
the Hippo pathway and mentions YAP/-
TAZ are co-activators that interact with
TEAD, but does not explicitly state that
YAP1 and TEAD complex translocates
and interacts as claimed...

J.3 Mitigation Strategies

To address the specific challenges of scientific
claim verification, we propose several targeted mit-
igation strategies:

For Overcautiousness, implementing more nu-
anced verification labels such as "PARTIAL" or
"INSUFFICIENT" support could capture the vary-
ing degrees of evidence often found in scientific
literature. Additionally, prompting the model to
explicitly assess each component of a complex sci-
entific claim independently may mitigate the ten-
dency toward global rejection of partially supported
claims.

To address Negation/Temporal errors, which
are particularly problematic in scientific contexts,



targeted data augmentation with examples empha-
sizing negation, risk factors, and causal relation-
ships is essential. Specialized instruction to attend
to these linguistic features, possibly combined with
domain-specific pre-training on scientific literature
with these relations, could improve performance.

For Lexical Overlap Bias, incorporating chal-
lenging negative examples with high domain-
specific terminology overlap but contradictory se-
mantics is crucial. Training the model to articulate
precise scientific evidence for its predictions, rather
than relying on terminology matches, may reduce
this error type.

Finally, while less frequent, Insufficient Aggre-
gation errors could be addressed by including more
complex multi-hop scientific claims in training
and employing claim decomposition or structured
chain-of-thought prompting to facilitate evidence
synthesis across abstracts.

These domain-specific approaches, tailored to
the unique challenges of scientific text, are essen-
tial for improving the robustness of LLM-based
scientific claim verification systems.

K GSMClaims Error Analysis and
Mitigation

K.1 Error Taxonomy and Distribution

Our analysis of mathematical claim verification
errors revealed distinct patterns requiring tailored
mitigation strategies. We extended our general er-
ror taxonomy with an additional category specific
to mathematical reasoning:

Arithmetic Reasoning errors occur when the
model fails to execute the correct computation or
misapplies a mathematical operation, despite cor-
rectly understanding the problem structure. Over-
cautiousness manifests as the model predicting
NO unless every calculation step is made fully
explicit, even when the reasoning is largely cor-
rect. Insufficient Aggregation errors arise when
the model struggles to combine multiple steps or
facts required for a multi-hop calculation. Lexical
Overlap Bias involves incorrectly predicting YES
due to matching numbers or mathematical terms,
rather than validating computational correctness.
Negation/Temporal errors, while rare in this do-
main, occur when the model mishandles negation
or temporal aspects of mathematical problems.

17

Error Type Percentage (%)
Arithmetic Reasoning 43.2
Overcautiousness 25.0
Insufficient Aggregation 22.7
Lexical Overlap Bias 8.2
Negation/Temporal 0.9

Table 6: Distribution of error types in the GSMClaims
test set.

Arithmetic
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Figure 11: This histogram shows the percentage of er-
rors attributed to each major error type. The most com-
mon are Arithmetic Reasoning errors (43.2%), where
the model fails to perform the correct computation or
makes mistakes in multi-step math. Overcautiousness
(25.0%) and Insufficient Aggregation (22.7%) indicate,
respectively, that the model tends to say "NO" unless
every calculation is explicit, or struggles to combine
multiple facts or operations across the scenario. Lexical
Overlap Bias (8.2%) arises when the model is fooled by
matching numbers or phrases even if the math is wrong.
Negation/Temporal errors are rare (0.9%), reflecting oc-
casional mishandling of negatives or time-dependent
claims. This distribution highlights the special chal-
lenges of claim verification in math word problems,
especially around robust arithmetic reasoning.

K.2 Representative Error Examples

The following examples illustrate characteristic in-
stances of each error type in mathematical claim
verification:

Arithmetic Reasoning:

Claim: Janet makes $18 every day at the
farmers’ market.

Ground Truth: YES

Predicted: NO



Analysis: The document states that Janet
sells the remainder of her eggs at the
farmers’ market for $2 per egg... To de-
termine the total earnings, we need to
calculate the total revenue... [model fails
in calculation].

Overcautiousness:

Claim: Josh made a profit of $70,000.
Ground Truth: YES

Predicted: NO

Analysis: The document states that Josh
buys a house for $80,000 and invests
$50,000 in repairs, resulting in an in-
crease in value by 150%... Therefore,
the claim... is not directly supported...

Insufficient Aggregation:

Claim: The robe takes 2 bolts of fabric
in total.

Ground Truth: NO

Predicted: YES

Analysis: The document states a robe
takes 2 bolts of blue fiber and half that
much white fiber... total is 2 bolts + 1
bolt, not 2...

Lexical Overlap Bias:

Claim: Cynthia will spend $24.00 on ice
cream after 60 days.

Ground Truth: NO

Predicted: YES

Analysis: ... calculates surface numbers
but matches claim even if the computa-
tion is wrong.

Negation/Temporal:

Claim: 120 pounds of carrots will not
be used.

Ground Truth: YES

Predicted: NO

Analysis:* ... Model misreads the nega-
tion, misinterpreting the distribution and
what’s left unused.

K.3 Mitigation Strategies

The unique challenges of mathematical claim veri-
fication require domain-specific mitigation strate-
gies:
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For Arithmetic Reasoning errors, which consti-
tute the largest error category, we propose augment-
ing training with intermediate calculation supervi-
sion to improve computational accuracy. Prompt-
ing for step-by-step computation with explicit re-
quirements to output and verify intermediate values
could substantially improve performance. Integra-
tion with symbolic calculators or specialized nu-
merical modules may also enhance computation
reliability.

To address Overcautiousness, implementing
partial credit mechanisms for nearly correct an-
swers and encouraging model self-correction
through additional verification steps could be bene-
ficial. Training on intentionally ambiguous or un-
derspecified mathematical claims may also reduce
the tendency toward rejecting claims that require
implicit calculation steps.

For Insufficient Aggregation errors, incorporat-
ing more multi-hop mathematical problems in train-
ing data is essential. Enforcing structured multi-
step solution explanations with clearly delineated
sub-problems could enhance the model’s ability to
integrate distributed mathematical information.

Lexical Overlap Bias could be mitigated
through adversarial training with examples contain-
ing similar numerical values but different computa-
tional pathways and outcomes. Requiring explicit
calculation steps rather than allowing the model to
match surface-level numbers would reduce these
errors.

Finally, for the rare Negation/Temporal er-
rors, targeted data augmentation focusing on prob-
lems involving mathematical negation and time-
dependent calculations could improve performance
in these edge cases.

These findings highlight the distinct challenges
of mathematical claim verification in language
models, particularly around arithmetic reasoning
and computational accuracy. While sharing some
error categories with general claim verification,
mathematical verification requires specialized ap-
proaches focusing on computational precision and
structured reasoning.

L Ethical Considerations and Broader
Impact: Details

The development of automated claim verification
systems like ThinknCheck has significant potential
for positive societal impact, but also demands care-
ful consideration of ethical challenges and potential



risks.

L.1 Broader Impact and Potential Benefits

* Combating Misinformation: By providing
tools to assess the factual grounding of claims
against provided evidence, ThinknCheck aims
to contribute to efforts to identify and mitigate
the spread of misinformation. The explicit rea-
soning component is designed to offer trans-
parency, which can be crucial in understand-
ing why a claim is deemed supported or un-
supported.

¢ Enhancing Transparency and Trust in Al:
The generation of structured reasoning along-
side verification decisions is a step towards
more interpretable Al This can foster greater
understanding and appropriate trust from
users, moving beyond "black box" systems.

* Democratizing Fact-Checking Tools: Our
work demonstrates the feasibility of build-
ing state-of-the-art reasoning and verification
models that are considerably smaller (1B pa-
rameters) than many leading systems. This
improved efficiency can make such tools more
accessible for deployment on edge devices or
by organizations with limited computational
resources, broadening their availability.

* Supporting Specialized Domains: Variants
like ThinknCheck-Science, with improved ca-
pabilities in scientific and arithmetic claim
verification, can be valuable in academic, re-
search, or educational settings for verifying
complex information.

* Fostering Research: The introduction
of reasoning-augmented datasets like
LLMAggreFact-Think and the GSMClaims
benchmark for arithmetic reasoning are
intended to spur further research into more
robust, explainable, and nuanced claim
verification systems. Our commitment to
releasing datasets and models openly supports
this goal.

L.2 Potential Risks and Ethical Challenges

* Perpetuation of Biases: ThinknCheck mod-
els are trained on existing benchmarks (LL-

underlying data sources may contain soci-
etal biases (e.g., related to viewpoints, topics,
or demographic representation) which could
be learned and propagated by our models.
While ThinknCheck aims for factual ground-
ing based on provided text, the interpretation
and reasoning patterns learned could inadver-
tently reflect these biases.

Over-reliance and Misplaced Trust: While
explanations are intended to improve trans-
parency, there is a risk that users might overly
rely on the system’s output, especially if the
generated reasoning appears plausible but is
subtly flawed. A "DOES NOT SUPPORT"
label, for instance, might be misinterpreted as
active refutation rather than an absence of evi-
dence in the provided document. The quality
and true faithfulness of explanations remain
an ongoing research challenge.

Dual Use and Adversarial Attacks: So-
phisticated claim verification tools, including
those that generate reasoning, could poten-
tially be exploited by malicious actors. For in-
stance, they might be used to understand how
to craft more convincing misinformation that
can evade detection, or to generate plausible-
sounding but false justifications.

Errors and Their Consequences: Despite
outperforming baselines, ThinknCheck is not
infallible. False negatives (correct claims
marked as unsupported) could lead to the dis-
missal of valid information, while false pos-
itives (incorrect claims marked as supported,
particularly if backed by flawed reasoning)
could contribute to the spread of inaccuracies.
The impact of such errors can vary depending
on the application domain.

Scope of Verification: It is crucial to recog-
nize that ThinknCheck verifies claims only
against the provided document(s). It does
not perform open-world fact-checking against
comprehensive world knowledge unless that
knowledge is present in the input text. This
limitation must be clearly communicated to
users to prevent misinterpretation of its capa-
bilities.

MAggreFact, SciFact) and reasoning traces
generated by large language models (GPT-
4o0-mini for LLMAggreFact-Think). These

We are committed to responsible Al develop-
ment. The open release of our models and datasets
is intended to facilitate scrutiny, further research
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into robustness and fairness, and the development
of better evaluation methodologies. Future work
should include dedicated audits for bias in both the
datasets and model outputs. We also advocate for
the use of systems like ThinknCheck as tools to as-
sist human experts and critical thinking, rather than
as infallible arbiters of truth. Further research into
improving the faithfulness and comprehensibility
of the generated reasoning, and educating users
on the capabilities and limitations of such systems,
will be essential for their responsible deployment.

M Reproducibility Statement: Details

M.1 Datasets

* Core Benchmarks: Our experiments utilize
several publicly available benchmarks:

* LLMAggreFact (Tang et al., 2024),
which aggregates 9 existing datasets de-
tailed in their work.

* SciFact (Wadden et al., 2020) for scien-
tific claim verification.

* GSMSK (Cobbe et al., 2021) was used
as the source for our new GSMClaims
dataset.

* Newly Created Datasets: We introduce two
new datasets:

* LLMAggreFact-Think: This dataset was
created by augmenting the 30.4K exam-
ples in the LLMAggreFact development
set with reasoning chains generated by
GPT-40-mini. After filtering for label
consistency, this resulted in 24.1K exam-
ples. The prompt used for generating
these reasoning traces is provided in Ap-
pendix A.

GSMClaims: This dataset, comprising
2,634 balanced claim verification in-
stances requiring arithmetic reasoning,
was generated from the GSMS8K test set
using GPT-4o to reformat problems and
create positive/negative claims. The gen-
eration prompt is detailed in Appendix
D.

* Availability: As stated in our contributions,
LLMAggreFact-Think and GSMClaims will
be released openly under an Apache 2.0 li-
cense.
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M.2 Models
¢ ThinknCheck Models:

* Our primary model, ThinknCheck-1B,
is a Gemma3 1B parameter model fine-
tuned on LLMAggreFact-Think.

The ablation model, ThinknCheck-
nothink-1B, uses the same Gemma3 1B
architecture and data but is trained with-
out the reasoning generation step.
ThinknCheck-Science-1B
ThinknCheck-1B model
fine-tuned on a combination
LLMAggreFact-Think, SciFact,
GSMClaims data.

the
further
of
and

is

* Baselines: We compare against several mod-
els:

— AlignScore (Zha et al., 2023).

— MiniCheck-7B (Tang et al., 2024),
which is available at https:
//huggingface.co/bespokelabs/
Bespoke-MiniCheck-7B.

* Availability: Our developed models
(ThinknCheck-1B, ThinknCheck-nothink-1B,
and ThinknCheck-Science-1B) and training
code will be released openly under an Apache
2.0 license. We also note a relevant Hugging
Face resource provided in the context of our
problem formulation: URL withheld for
blind review.

N Al Writing/Coding Assistance
Disclosure

In accordance with the ACL Policy on Al Writ-
ing Assistance’, the authors attest that we used
generative Al tools for assistance purely with the
language of the paper, including spell checking,
grammar fixes, and proof reading. Additionally,
we used GPT-4o to fix LaTeX issues, and to gen-
erate LaTeX tables from spreadsheets. In all such
uses, the outputs were verified by the first author
for correctness.

7https: //www.aclweb.org/adminwiki/index.php/
ACL_Policy_on_Publication_Ethics#Guidelines_for_
Generative_Assistance_in_Authorship
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