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ABSTRACT

The human brain is a complex, dynamic network, which is commonly studied
using functional magnetic resonance imaging (fMRI) and modeled as network
of Regions of interest (ROIs) for understanding various brain functions. Recent
studies predominantly utilize Graph Neural Networks (GNNs) to learn the brain
network representation based on the functional connectivity (FC) profile, typically
falling into two main categories. The Fixed-FC approaches, utilize the FC profile
which represents the linear temporal relation within the brain network, is lim-
ited by failing to capture the informative temporal dynamics of brain activity. On
the other hand, the Dynamic-FC approaches, modeling the evolving FC profile
over time, often exhibit less satisfactory performance due to challenges in han-
dling the inherent noisy nature of fMRI data. In this study, to address these chal-
lenges, we propose Brain Masked Auto-Encoder (BrainMAE) for learning repre-
sentations directly from fMRI time-series data. Our approach incorporates two
essential components—an embedding-informed graph attention mechanism and
a self-supervised masked autoencoding framework. These components empower
our model to capture the rich temporal dynamics of brain activity while maintain-
ing resilience to the inherent noise in fMRI data. Our experiments demonstrate
that BrainMAE consistently outperforms several established baseline models by
a significant margin in three distinct downstream tasks. Finally, leveraging the
model’s inherent interpretability, our analysis of model-generated representations
reveals intriguing findings that resonate with ongoing research in the field of neu-
roscience.

1 INTRODUCTION

Functional magnetic resonance imaging (fMRI) is a non-invasive neuroimaging technique used to
measure brain activity. Due to its high spatial and temporal resolution, fMRI has become a corner-
stone of neuroscience research, enabling the study of brain functions (Bullmore & Sporns, 2009;
Bassett & Sporns, 2017). A general practice is to extract some brain region-of-interests (ROIs) and
conceptualize the brain as a network composed of these ROIs. The connectivity between these ROIs
is defined based on their linear temporal relationships, i.e. the correlation between the ROI signals.
This profile of functional connectivity (FC) serves as a valuable biomarker, offering insights into
the study of brain diseases (Greicius, 2008; Wang et al., 2007), aging (Ferreira & Busatto, 2013;
Dennis & Thompson, 2014), and behaviors (Smith et al., 2015), and has emerged as a key tool for
understanding brain function.

Recent advances have sought to leverage the rich information contained in fMRI data by applying
deep learning techniques, capitalizing on their capacity for high-level representation learning. The
prevalent approach in this domain involves employing Graph Neural Networks (GNNs) to extract
intricate brain network representations, which can then be applied to tasks such as decoding human
traits or diagnosing diseases (Kan et al., 2022b; Kawahara et al., 2017; Kim et al., 2021). These GNN
models can be broadly classified into two categories based on their treatment of temporal dynamics
within the data. The first category, referred to as Fixed-FC models, relies on FC matrices computed
from the entire time series of fMRI data. In contrast, the second category, known as Dynamic-FC
models, takes into account the temporal evolution of brain networks. These models compute FC
within temporal windows using a sliding-window approach or directly learn FC patterns from the
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time-series data (Kan et al., 2022a). However, both types of models exhibit certain limitations,
primarily due to the unique characteristics of fMRI data.

For Fixed-FC models, depending solely on the FC profile can limit their representational capacity,
as it overlooks the valuable temporal dynamics inherent in brain activities. These dynamics are
often considered essential for capturing the brain’s evolving states, and failing to account for them
results in suboptimal brain network representations (Hutchison et al., 2013; Preti et al., 2017; Liu
et al., 2018). However, current Dynamic-FC models that consider dynamic properties, often un-
derperform Fixed-FC models (Kim et al., 2021). This discrepancy can be attributed to the intrinsic
noisy nature of fMRI signals, as modeling temporal dynamics may amplify noise to some extent,
whereas Fixed-FC approaches tend to mitigate noise by summarizing FC matrices using the entire
time series. Furthermore, FC has been shown to be sensitive to denoising preprocessing pipelines in
neuroscience studies, potentially limiting the generalizability of model representations to differently
preprocessed fMRI data (Parkes et al., 2018; Li et al., 2019; Van Dijk et al., 2012).

In response to these challenges, we propose Brain Masked Auto-Encoder (BrainMAE), a novel ap-
proach for learning representations from fMRI data. Our approach effectively captures the rich
temporal dynamics present in fMRI data and mitigates the impact of inherent noise through two
essential components. First, drawing inspiration from the practice of word embeddings in natural
language processing (NLP) (Devlin et al., 2018), we maintain an embedding vector for each ROI.
These ROI embeddings are learned globally using fMRI data from all individuals in the dataset,
enabling us to obtain rich representations of each ROI. We introduce an embedding-informed atten-
tion mechanism, adhering to the functionally constrained nature of brain networks, thus providing a
valuable constraint in feature learning. Second, we fully leverage the information contained within
the fMRI data by introducing a novel pretraining framework inspired by the concept of masked au-
toencoding in NLP and computer vision research (Brown et al., 2020; He et al., 2022). This masked
autoencoding approach empowers our model to acquire genuine and transferable representations of
fMRI time-series data. By integrating these two components, our model consistently outperforms
existing models by a significant margin across several distinct downstream tasks. Furthermore,
owing to its transformer-based design and inclusion of temporal components, our model provides
interpretable results, shedding light on the insights it learns from the data. Lastly, we evaluate the
model-generated representations, revealing intriguing findings that align with ongoing research in
the field of neuroscience.

2 APPROACH

Our approach aims for learning the representation of fMRI data, incorporating two essential compo-
nents: an embedding-informed graph attention mechanism and a masked autoencoding pretraining
framework.

2.1 EMBEDDING-INFORMED GRAPH ATTENTION

We motivate our embedding-informed attention module based on the inherent characteristics of brain
ROIs.

• Functional Specificity. The brain is fundamentally organized as a distributed system, with each
distinct brain region serving a specific and well-defined role in the overall functioning of the brain
(Power et al., 2011).

• Functional Connectivity. Different brain regions often are interconnected and collaborate to
facilitate complex cognitive functions (Bassett & Sporns, 2017).

• Inter-Individual Consistency. Brain regions are known to exhibit a relatively consistent func-
tional profile across different individuals. For instance, the primary visual cortex consistently
processes visual information in nearly all individuals (Kliemann et al., 2019).

ROI Embeddings. There is a notable similarity in the representation properties between brain
ROIs and words in natural language. Both ROIs and words possess specific functional meanings,
and when combined into brain networks or sentences, they represent more complicated concepts.
Furthermore, the functions of ROIs and words typically exhibit relative stability among different
individuals or across sentences.
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Figure 1: Schematic Overview of the Proposed BrainMAE Method. (A). Overall pre-training pro-
cedures for BrainMAE. The fMRI ROI signals are temporally segmented and, within each segment,
signals of a random subset of ROIs are masked out. Masked fMRI segments are individually en-
coded with Transient State Encoder (TSE) and fed into a Transformer-based encoder-decoder for
reconstruction. (B). ROI Embeddings-Informed Graph Attention. (C). Architecture of proposed
TSE modules.

Therefore, motivated by language modeling research, we assign a learnable d-dimensional vector,
referred to as ROI embedding, to each brain ROI. Then N ROIs that cover the entire brain cortical
regions form an embedding matrix denoted as E ∈ RN×d.

Embedding-Informed Graph Attention Module. Brain functions as a network, with brain ROIs
are essentially interconnected to form a functional graph. Within this graph, each ROI is considered
a node, with its node feature represented by the ROI’s time-series signal of length τ or x ∈ Rτ . The
set of nodes in the graph is denoted as V .

Brain ROI activities are intrinsically governed by both structural and functional networks. ROIs
that are functionally confined tend to collaborate and exhibit synchronized activities (Bassett &
Sporns, 2017). Drawing from these biological insights, and considering that functional relevance
between ROIs can be quantified by the similarity in embeddings, we define the embedding-based
graph adjacency matrix A ∈ RN×N . As illustrated in Figure 1B, each entry contains the edge
weight between nodes i, j ∈ V:

Aij = s(Wqei,Wkej). (1)

In this equation, s : Rd × Rd −→ R is the similarity measurement of two vectors, e.g., scaled
dot-product and ei, ej are the embedding vectors for node i and j respectively. The weight matrices
Wq,Wk ∈ Rd×d are learnable and introduce asymmetry into A, representing the asymmetric infor-
mation flow between two ROIs. Then, adopting the idea of graph attention mechanism, we derive
the attention weight between node i and node j ∈ V\{i} as:

αij = softmaxj(Ai) =
exp(Aij)∑

k∈V\{i} exp(Aik)
. (2)

Grounded in the synchronized nature among functionally relevant ROIs, self-loops are removed
from the attention. This design prevents the attention from favoring its own node, enhancing the
reliability of the learned node features by reducing their susceptibility to input noise. Hence the
feature generated by the attention module for node i is

x′
i =

∑
j∈V\{i}

αijxj (3)
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where xj stands for the input node feature for node j.

In our implementation, we incorporate the embedding-informed graph attention mechanism into the
standard transformer block (Vaswani et al., 2017) by simply utilizing ROI embeddings as both key
and query, while the input node feature is treated as the value.

2.2 BRAIN MASKED AUTOENCODER

In order to effectively capture the temporal dynamics and extract the genuine representation from
fMRI signals, we utilize a transformer-based encoder-decoder architecture and design a nontrivial
self-supervised task for pretraining, as shown in Figure 1A.

Temporal Segmentation. Similar to previous studies on vision transformers, where 2D images are
divided into non-overlapping patches (He et al., 2022), in this context, we temporally segment the
fMRI signals. Each segment has the shape of N × τ , where τ represents the length of each time
window. Such segmentation allows transformer-like models to be seamlessly applied, as each fMRI
segment can be viewed as a token, and thus the original fMRI data can be represented as a sequence
of tokens. Throughout our study, the length of the segment τ is set to 15 seconds aligning with the
typical duration of transient events in fMRI data (Shine et al., 2016; Bolt et al., 2022).

Transient State Encoders (TSEs). We embed each fMRI segment denoted as Xk ∈ RN×τ using
Transient State Encoders (TSEs), the architectural details of which are illustrated in Figure 1C. We
introduce two types of TSEs, namely Static-Graph TSE (SG-TSE) and Adaptive-Graph TSE (AG-
TSE), which indicate how node features are learned.

Both TSEs consist of three transformer blocks but differ in the attention mechanisms applied within
these layers. For SG-TSE, all three transformer blocks exclusively employ embedding-informed
graph attention mechanism, assuming “static” connectivity among brain regions. On the other hand,
AG-TSE incorporates two self-attention blocks stacked on top of an embedding-informed attention
block, allowing the attention to be “adaptive” to the node input signal, enabling the model to capture
the transient reorganization of brain connectivity. The output from the transformer blocks forms a
matrix Xo ∈ RN×d, where each row represents the feature learned for each ROI. We employ a
linear projection g : RN×d −→ Rd to aggregate all of the ROI features into a single vector sk ∈ Rd.
This vector, as the output of TSE, represents the transient state of fMRI segment k.

Segment-wise ROI Masking. Different from the masked autoencoding commonly used in image
or language modeling studies (He et al., 2022; Devlin et al., 2018), where tokens or image patches
are typically masked out, we employ a segment-wise ROI masking approach. Specifically, for each
fMRI segment, we randomly choose a subset of the ROIs, such as 70% of the ROIs, and then mask
out all of the signals within that segment from those selected ROIs. The masked ROI segments are
replaced with a masked token which is a shared and learnable d-dimensional vector that indicates
the presence of a missing ROI signal. This masking scheme introduces a nontrivial reconstruction
task, effectively guiding the model to learn the functional relationships between ROIs.

Autoencoder. We employ a transformer-based autoencoder to capture both the temporal relation-
ships between fMRI segments and the overall fMRI representation. The encoder maps the input
sequence of transient state embeddings generated by the TSE (s1, s2. . . , sn) to a sequence of hid-
den representations (h1,h2, . . . ,hn). Subsequently, the decoder reconstructs the fMRI segments
(X̂1, X̂2, ..., X̂n) based on these hidden representations. Both the encoder and decoder consist of
two standard transformer blocks and position embeddings are added for all tokens in both the en-
coder and decoder. The decoder is only used in pre-training phase and omitted from downstream
task fine-tuning.

Reconstruction Loss. We compute Mean Squared Error (MSE) loss to evaluate the reconstruction
error for masked ROI segments and unmasked ROI segments separately:

Lmask =

n∑
k=1

1

nτ |Ωk|
∑
i∈Ωk

∥X̂k,i −Xk,i∥2 (4)

Lunmask =

n∑
k=1

1

nτ |V\Ωk|
∑

i∈V\Ωk

∥X̂k,i −Xk,i∥2 (5)
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Figure 2: fMRI signal reconstruction from trained MAE on unseen HCP-7T dataset 
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Figure 2: Reconstruction results on HCP-7T using HCP-3T pretrained model. (A) Example results.
(B) Reconstruction error across mask ratios for SG-, AG-, and vanilla-BrainMAEs.

where n is total number of fMRI segments, Ωk is the set of masked ROI in the k-th segments, Xk,i

is the k-th fMRI segment of the i-th ROI and X̂k,i is the reconstructed one. The total reconstruction
loss for pretraining the model is the weighted sum of the two:

L = λLmask + (1− λ)Lunmask (6)

where λ is a hyperparameter, and in our study, we set λ to a fixed value of 0.75.

BrainMAEs. Based on the choice of TSE, we introduce two variants of BrainMAE: SG-BrainMAE
and AG-BrainMAE, incorporating SG-TSE and AG-TSE for transient state encoding, respectively.

3 EXPERIMENTS

3.1 DATASETS

We mainly use the following datasets to evaluate our approach. HCP-3T dataset (Van Essen et al.,
2013) is a large-scale publicly available dataset that includes 3T fMRI data from 897 healthy adults
aged between 22 and 35. We use the resting-state sessions as well as the behavior measurements in
our study. HCP-7T dataset is a subset of the HCP S1200 release, consisting of 7T fMRI data from
184 subjects within the age range of 22 to 35. Our analysis focused on the resting-state sessions
of this dataset. HCP-Aging dataset (Harms et al., 2018), designed for aging studies, contains 725
subjects aged 36 to 100+. Age, gender information as well as the resting-state fMRI data are used
in our study. NSD dataset (Allen et al., 2022) is a massive 7T fMRI dataset, featuring 8 human
participants, each with 30-40 scan sessions conducted over the course of a year. For our study, we
incorporated both task fMRI data and task performance metrics, including task scores and response
times (RT). Detailed information regarding each of the datasets can be found in Appendix C.

3.2 PRE-TRAINING EVALUATION

3.2.1 IMPLEMENTATION DETAILS

During the pretraining phase, each time we randomly select 300 seconds of fixed-length fMRI sig-
nals from the original sample and divide this signal into 20 segments, with each segment containing
15 seconds of fMRI data. We use a variable mask ratio for each mini-batch during training. The
mask ratio for each mini-batch is drawn from a range of (0, 0.8), where 0 indicates no masking is
applied. For each pretrained dataset, we train the model using all available samples for 1000 epochs.
Additional training settings are available in A.1.

3.2.2 MASKED SIGNAL RECONSTRUCTION

In this section, we assess the reconstruction performance of the HCP-3T pretrained model on un-
seen HCP-7T dataset. Example reconstruction results are shown in Figure 2A and Appendix H.
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Figure 3: Evaluation of pretrained ROI embeddings. (A) A t-SNE plot of the HCP-3T pretrained ROI
embeddings. Yeo-17 network (Left) and cortical hierarchy (Right) can be identified. (B) Consistency
of ROI embedding similarity matrix across different datasets.

Furthermore, in Figure 2B, we conduct a comparison of the reconstruction error between the pro-
posed models and a variant employing only self-attention within the TSE model, which we term
vanilla-BrainMAE (further details in B.1). Both SG-BrainMAE and AG-BrainMAE consistently
achieve lower reconstruction errors across all mask ratios. This suggests that the incorporation of
the embedding-informed graph attention module is advantageous for acquiring more generalized
representations.

3.2.3 ROI EMBEDDINGS

It is crucial to validate whether the ROI embeddings pretrained with the proposed approach truly
satisfy the aforementioned ROI characteristics.

Functional Specificity. We visualize t-SNE transformed ROI embeddings in Figure 3A (Van der
Maaten & Hinton, 2008). In the projected 2D space, the ROIs exhibit discernible clustering that
aligns with the Yeo-17 networks’ definitions in neuroscience studies Yeo et al. (2011). This align-
ment suggests that ROIs with similar functional roles display similar embeddings. In other words,
region functions can be inferred from these embeddings.

Functional Connectivity. Interestingly, the arrangement of the ROI in the projected 2D space also
reflects the cortical hierarchy, as indicated by principal gradient (PG) values (Margulies et al., 2016;
Gu et al., 2021; Raut et al., 2021). Low PG values correspond to cortical low-order regions, such as
visual and somatosensory regions, while high PG values correspond to cortical high-order regions,
including the default mode network and limbic system. The interconnectivity between different
brain networks thus can also be informed by the ROI embeddings.

Inter-Individual Consistency. We separately pretrain the SG-BrainMAE on the HCP-3T, HCP-7T,
and NSD task datasets. Notably, both HCP-3T and HCP-7T datasets have two different preprocess-
ing pipelines, namely minimal preprocessing and FIX-ICA. Consequently, we pretrained models for
each combination. In total, we obtained five independently pretrained models. For each pretrained
model, we generated an embedding similarity matrix by computing pairwise cosine similarities be-
tween ROIs, as illustrated in Figure 3B. Importantly, these similarity matrices consistently exhibit
similar patterns across different datasets, regardless of preprocessing pipelines or fMRI task types
(resting or task), suggesting the converging ROI representations. More ROI analysis is shown in D.

3.3 TRANSFER LEARNING EVALUATION

3.3.1 IMPLEMENTATION DETAILS

We pretrain the model using HCP-3T ICA-FIX preprocessed data and fine-tune the whole network
except for the ROI embeddings for each downstream task. Similar to previous studies (He et al.,
2022; Devlin et al., 2018), we use the CLS token from the encoder and append a task-specific linear
head for prediction. Cross-entropy loss and mean squared error (MSE) loss are used for classification
and regression fine-tuning tasks respectively. For fair comparisons, we use 5-fold cross-validation
for model evaluation. Detailed information regarding the architecture and training settings can be
found in A.2.
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Table 1: Results for behavior prediction.

Model
Gender Behaviors (measured in MAE)

Accuracy (%) AUROC (%) PicSeq PMT CR PMT SI PicVocab IWRD ListSort LifeSatisf PSQI
Fixed-FC
BrainNetTF-OCR 94.11±0.98 94.39±0.90 7.11±0.22 2.28±0.11 1.72±0.12 4.70±0.10 1.56±0.03 5.96±0.07 4.96±0.22 1.49±0.05
BrainNetTF-Vanilla 90.00±1.05 89.93±0.94 8.19±0.46 2.73±0.07 2.13±0.07 5.93±0.14 1.81±0.08 6.91±0.21 5.71±0.08 1.68±0.05
BrainNetCNN 90.68±1.80 90.89±1.55 10.21±0.22 3.25±0.13 2.64±0.14 6.65±0.27 2.26±0.05 8.51±0.20 7.12±0.24 1.68±0.05
Dynamic-FC
STAGIN-SERO 88.73±1.36 88.69±1.41 10.22±0.15 3.49±0.05 2.70±0.06 6.78±0.20 2.26±0.05 8.51±0.20 7.12±0.24 2.12±0.04
STAGIN-GARO 88.34±0.94 88.33±0.91 10.26±0.18 3.44±0.10 2.69±0.09 6.92±0.30 2.25±0.04 8.52±0.26 7.09±0.35 2.08±0.04
FBNETGNN 88.05±0.15 87.93±0.97 8.62±0.21 2.93±0.11 2.34±0.11 5.83±0.15 1.96±0.04 7.31±0.10 6.09±0.10 1.81±0.03
Ours
SG-BrainMAE 97.49±0.15 97.46±0.18 5.06±0.21 1.63±0.08 1.24±0.04 3.40±0.14 1.11±0.04 4.35±0.12 3.64±0.27 1.05±0.06
AG-BrainMAE 97.13±0.56 97.17±0.61 5.09±0.05 1.67±0.10 1.28±0.06 3.34±0.11 1.13±0.03 4.37±0.06 3.58±0.17 1.07±0.05

Table 2: Results for age prediction.

Model
Gender

Age (MAE)
Accuracy (%) AUROC (%)

FIX-FC
BrainNetTF-OCR 90.21±3.81 90.73±2.85 6.15±0.71
BrainNetTF-Vanilla 88.96±2.16 88.76±2.21 6.78±0.56
BrainNetCNN 88.83±1.52 88.74±1.58 8.71±0.62
Dynamic-FC
STAGIN-SERO 82.37±1.66 82.57±1.36 8.96±0.47
STAGIN-GARO 80.67±0.81 80.58±1.03 8.65±0.28
FBNETGNN 89.50±3.58 89.34±3.49 6.68±1.00
Ours
SG-BrainMAE 92.67±1.07 92.51±1.07 5.78±0.44
AG-BrainMAE 91.12±1.99 91.15±2.03 6.49±1.00

Table 3: Results for task performance prediction.

Model Task score (MAE) RT (MAE in ms)

FIX-FC
BrainNetTF-OCR 0.070±0.003 92.344±2.343
BrainNetTF-Vanilla 0.075±0.004 96.252±2.133
BrainNetCNN 0.078±0.004 102.911±2.225
Dynamic-FC
STAGIN-SERO 0.089±0.003 116.635±2.197
STAGIN-GARO 0.091±0.002 116.130±2.099
FBNETGNN 0.074±0.005 95.349±2.320
Ours
SG-BrainMAE 0.069±0.004 90.678±1.767
AG-BrainMAE 0.070±0.003 92.154±2.265

3.3.2 BASELINES

In our evaluation, we benchmark our approach against two categories of baseline neural network
models designed for brain network analysis.

Models based on fixed brain network (Fixed-FC). BrainNetTF-OCR (Kan et al., 2022b) is
transformer-based model with Orthonormal Clustering Readout (OCR), representing the state-of-
the-art method for brain network analysis. BrainNetTF-Vanilla is a variant of BrainNetTF with
CONCAT-based readout. BrainNetCNN (Kawahara et al., 2017) follows the CNN paradigm by
modeling the functional connectivity matrices similarly as 2D images.

Models based on dynamic brain network (Dynamic-FC). STAGIN (Kim et al., 2021) is a
transformer-based model that learns dynamic graph representation with spatial-temporal attention.
Two variants of the models, STAGIN-GARO and STAGIN-SERO that use different readout methods
are included for comparison. FBNETGEN (Kan et al., 2022a) is a GNN-based model that learns the
brain network from the fMRI time-series signals.

3.3.3 PERFORMANCE COMPARISON

We compare our model against baseline methods across three distinct downstream tasks.

HCP-3T dataset: Behaviors prediction. In this task, the models are required to simultaneously
perform gender classification as well as predict 8 behavior measurements corresponding to various
cognitive functions. Definitions of these behavior measurements can be found in Table 9. The
models are trained/fine-tuned using HCP-3T dataset with ICA-FIX preprocessed fMRI data.

HCP-Aging dataset: Age prediction. For this task, the models are required to simultaneously
perform gender classification and age prediction from fMRI data.

NSD dataset: Task performance prediction. For this task, the models are required to predict the
averaged memory task score as well as the response time for each fMRI run.

7



Under review as a conference paper at ICLR 2024

Table 4: Results for age prediction

Model
Gender

Aging (MAE)
Accuracy (%) AUROC (%)

SG-BrainMAE 92.67±1.07 92.51±1.07 5.75±0.44
AG-BrainMAE 91.12±1.99 91.15±2.03 6.49±1.00
vanilla-BrainMAE 88.54±2.50 88.53±2.37 7.26±0.95
vanilla-BrainAE 80.92±2.40 81.03±2.52 8.33±0.49

Table 5: Results for task performance prediction

Model Task Score (MAE) RT (MAE in ms)

SG-BrainMAE 0.069±0.004 90.678±1.767
AG-BrainMAE 0.070±0.004 92.154±2.265
vanilla-BrainMAE 0.083±0.004 108.215±3.458
vanilla-BrainAE 0.091±0.004 118.965±3.047

The results for the three downstream tasks are shown in Table 1, 2, and 3 and reported as mean
± std. from 5-fold cross-validation. Our proposed methods consistently demonstrate superior per-
formance across all these tasks. To assess the model’s ability to extract genuine information that
is generalizable across different fMRI preprocessing pipelines, we evaluate the model trained with
HCP-3T ICA-FIX data on HCP-3T minimal preprocessed data. As results reported in Table 20, our
approach outperforms other methods, indicating better generalizability in representation learning.

Notably, despite the informative nature of temporal features, the three baseline models that leverage
dynamic FC or learn the FC from the fMRI time series consistently underperform compared to mod-
els that utilize fixed FC. One plausible explanation could be attributed to the inherent noise present
in fMRI data. In contrast, even though our model encodes the complete temporal information of
fMRI, our models still achieve the highest level of performance. This achievement can be attributed
to the static-graph attention module employed in our model design.

3.3.4 ABLATION STUDY

We conduct ablation studies on the aforementioned three downstream tasks to elucidate the advan-
tage of incorporating the embedding-informed graph attention module and masked autoencoding in
our approach. We compare four model variants: (1) SG-BrainMAE, (2) AG-BrainMAE, (3) vanilla-
BrainMAE (BrainMAE without the embedding-informed attention modules, see B.1 for details),
and (4) vanilla-BrainAE (sharing the same architecture as vanilla-BrainMAE but pretrained with
standard autoencoding, see B.2 for details). The differences between these variants are detailed in
Table 22. The results, which are presented in Table 4, 5, and 21, indicate a degradation in per-
formance when the embedding-informed attention is removed, and a further significant decrease in
performance when masked pretraining is excluded. This underscores the advantage of incorporating
both components in BrainMAE framework.

3.3.5 REPRESENTATION AND INTERPRETATION ANALYSIS

We evaluate the learned representation of our model fine-tuned on HCP-3T behaviors task. The
fMRI representation (the features used by the task-specific head) is extracted for each individual
and combined to perform principal component analysis (PCA). As shown in Figure 4A-C, we find
that, despite the model is trained to predict multiple variables, two components explain a significant
amount of the variance (approximately 55%). As expected, the first component predominantly rep-
resents gender, but surprisingly, the second component exhibits a strong correlation with the CCA
mode (Smith et al., 2015), which resembles a ’positive-negative’ axis linking lifestyle, demographic,
and psychometric measures. This intriguing result suggests that the model is able to extract higher-
level abstract representation that reflects individual’s general behaviors and lifestyles.

We interpret our model fine-tuned on NSD task performance dataset. We evaluate self-attention
scores used to generate the CLS representation of the final layers of the encoder transformer. These
attention scores provide insights into which time segments are crucial for the model to make pre-
dictions. As illustrated in Figure 4D, we average the attention scores across different fMRI runs.
Notably, the attention score reveals the NSD task block structure, indicating that the model inher-
ently places more importance on task blocks to infer overall task performance. Interestingly, the
attention score correlates to the behavioral arousal measurements (inverse response time (Makovac
et al., 2019)) across- and within-task blocks, suggesting the model is aware of the change of tran-
sient brain state. Indeed, the learned fMRI representation also highly correlates with brain arousal
index (see E.2). Overall, these results underline the versatility of our model, hinting at its potential
to explore brain mechanisms for neuroscience research in a data-driven manner.
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Figure 4: Model representation and interpretation. (A) The 2D plot of the top-2 principal compo-
nents (PCs) of learned representation. (B) Variance explained by each PCs. (C) Strong correlation
between PC2 and behavior CCA mode score. (D) Model “pays more attention” on task blocks and
the attention score corresponds to brain arousal state change (measured by 1/RT).

4 RELATED WORK

Masked autoencoding. The incorporation of masked autoencoding for self-supervised representa-
tion learning has seen significant interest across various domains. In the realm of NLP, models like
BERT (Devlin et al., 2018) and GPT (Brown et al., 2020; Radford et al., 2018; 2019) employ masked
autoencoding to pretrain language models by predicting the missing components of input sequences.
In computer vision, masked modeling has been integrated with vision transformers, yielding suc-
cessful approaches such as MAE (He et al., 2022), BEiT (Bao et al., 2021), and BEVT (Wang et al.,
2022) for feature learning. Limited studies explore masked autoencoding in the context of fMRI.
Thomas et al. (2022) adapt BERT-like framework by considering each time point as ’word’, which
is suitable for modeling transient states but limited in scaling to fMRI signals of hundreds seconds.
Our approach differs by treating transient state as basic unit for sequence learning, allowing it to
scale effectively and extract representations that reflect individual traits and behaviors.

Brain Network Analysis. GNN-based models have been widely used in the field of brain net-
work analysis. Models like GroupINN (Yan et al., 2019) introduce the concept of node grouping
to enhance interpretability and reduce model size. BrainNetCNN (Kawahara et al., 2017) capital-
izes on the topological locality of structural brain networks for graph-based feature learning. Brain-
NetTF (Kan et al., 2022b), on the other hand, is a transformer-based model that employs orthonormal
clustering readout to facilitate cluster-aware graph embedding learning. STAGIN (Kim et al., 2021)
focuses on learning dynamic graph representations through spatial-temporal attention mechanisms,
while FBNetGen (Kan et al., 2022a) directly learns the brain network from fMRI time-series data.
In contrast to these methods, which predominantly learn representation from functional connectivity
(FC), our approach can effectively incorporate valuable temporal information while mitigating the
impact of fMRI’s intrinsic noise through specifically designed modules.

5 DISCUSSION AND CONCLUSION

Here we propose BrainMAE for effectively learning the representation from fMRI time series data.
Our approach integrates two essential components: an embedding-informed static-graph attention
module and a masked self-supervised pretraining framework. These components are designed to
capture temporal dynamics while mitigating the inherent noise in fMRI data. The alignment of
the learned ROI embeddings with existing neuroscience knowledge, along with the improvement in
transfer learning tasks, confirms the effectiveness of our design.

By providing a task-agnostic representation, our model exhibits promise for applications in the field
of neuroscience. Its interpretability and ability to capture transient representations make it a valuable
tool for uncovering the mechanisms and dynamics of transient state changes within the brain.

Furthermore, our approach can be extended beyond brain fMRI data. It can be applied to various
domains that can be modeled as networks of functionally meaningful nodes. For instance, it could be
applied to traffic network analysis, where the nodes represent either roads or some spatially defined
regions.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Emily J Allen, Ghislain St-Yves, Yihan Wu, Jesse L Breedlove, Jacob S Prince, Logan T Dowdle,
Matthias Nau, Brad Caron, Franco Pestilli, Ian Charest, et al. A massive 7t fmri dataset to bridge
cognitive neuroscience and artificial intelligence. Nature neuroscience, 25(1):116–126, 2022.

Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. Beit: Bert pre-training of image transformers.
arXiv preprint arXiv:2106.08254, 2021.

Danielle S Bassett and Olaf Sporns. Network neuroscience. Nature neuroscience, 20(3):353–364,
2017.

Taylor Bolt, Jason S Nomi, Danilo Bzdok, Jorge A Salas, Catie Chang, BT Thomas Yeo, Lucina Q
Uddin, and Shella D Keilholz. A parsimonious description of global functional brain organization
in three spatiotemporal patterns. Nature neuroscience, 25(8):1093–1103, 2022.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Ed Bullmore and Olaf Sporns. Complex brain networks: graph theoretical analysis of structural and
functional systems. Nature reviews neuroscience, 10(3):186–198, 2009.

Catie Chang, David A Leopold, Marieke Louise Schölvinck, Hendrik Mandelkow, Dante Picchioni,
Xiao Liu, Frank Q Ye, Janita N Turchi, and Jeff H Duyn. Tracking brain arousal fluctuations with
fmri. Proceedings of the National Academy of Sciences, 113(16):4518–4523, 2016.

Emily L Dennis and Paul M Thompson. Functional brain connectivity using fmri in aging and
alzheimer’s disease. Neuropsychology review, 24:49–62, 2014.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Luiz Kobuti Ferreira and Geraldo F Busatto. Resting-state functional connectivity in normal brain
aging. Neuroscience & Biobehavioral Reviews, 37(3):384–400, 2013.

Michael Greicius. Resting-state functional connectivity in neuropsychiatric disorders. Current opin-
ion in neurology, 21(4):424–430, 2008.

Yameng Gu, Feng Han, Lucas E Sainburg, and Xiao Liu. Transient arousal modulations contribute
to resting-state functional connectivity changes associated with head motion parameters. Cerebral
Cortex, 30(10):5242–5256, 2020.

Yameng Gu, Lucas E Sainburg, Sizhe Kuang, Feng Han, Jack W Williams, Yikang Liu, Nanyin
Zhang, Xiang Zhang, David A Leopold, and Xiao Liu. Brain activity fluctuations propagate as
waves traversing the cortical hierarchy. Cerebral cortex, 31(9):3986–4005, 2021.

Michael P Harms, Leah H Somerville, Beau M Ances, Jesper Andersson, Deanna M Barch, Mat-
teo Bastiani, Susan Y Bookheimer, Timothy B Brown, Randy L Buckner, Gregory C Burgess,
et al. Extending the human connectome project across ages: Imaging protocols for the lifespan
development and aging projects. Neuroimage, 183:972–984, 2018.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked au-
toencoders are scalable vision learners. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 16000–16009, 2022.

R Matthew Hutchison, Thilo Womelsdorf, Elena A Allen, Peter A Bandettini, Vince D Calhoun,
Maurizio Corbetta, Stefania Della Penna, Jeff H Duyn, Gary H Glover, Javier Gonzalez-Castillo,
et al. Dynamic functional connectivity: promise, issues, and interpretations. Neuroimage, 80:
360–378, 2013.

Xuan Kan, Hejie Cui, Joshua Lukemire, Ying Guo, and Carl Yang. Fbnetgen: Task-aware gnn-based
fmri analysis via functional brain network generation. In International Conference on Medical
Imaging with Deep Learning, pp. 618–637. PMLR, 2022a.

10



Under review as a conference paper at ICLR 2024

Xuan Kan, Wei Dai, Hejie Cui, Zilong Zhang, Ying Guo, and Carl Yang. Brain network transformer.
Advances in Neural Information Processing Systems, 35:25586–25599, 2022b.

Jeremy Kawahara, Colin J Brown, Steven P Miller, Brian G Booth, Vann Chau, Ruth E Grunau,
Jill G Zwicker, and Ghassan Hamarneh. Brainnetcnn: Convolutional neural networks for brain
networks; towards predicting neurodevelopment. NeuroImage, 146:1038–1049, 2017.

Byung-Hoon Kim, Jong Chul Ye, and Jae-Jin Kim. Learning dynamic graph representation of brain
connectome with spatio-temporal attention. Advances in Neural Information Processing Systems,
34:4314–4327, 2021.

Dorit Kliemann, Ralph Adolphs, J Michael Tyszka, Bruce Fischl, BT Thomas Yeo, Remya Nair,
Julien Dubois, and Lynn K Paul. Intrinsic functional connectivity of the brain in adults with a
single cerebral hemisphere. Cell reports, 29(8):2398–2407, 2019.
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Table 6: Pretraining Settings

config value

optimizer AdamW
Training epochs 1000
weight decay 0.05
optim momentum β1, β2 = 0.9, 0.95
Base learning rate 0.001
λ 0.75
batch size 32
batch accumulation 4
learning rate schedule cosine decay
warmup epochs 100

Table 7: Fine-tuning settings

config value

optimizer AdamW
Training epochs 150
Train:Val:Test (each fold) 0.64:0.2:0.16
weight decay 0.05
optim momentum β1, β2 = 0.9, 0.95
Base learning rate 0.001
batch size 64
batch accumulation 2
learning rate schedule cosine decay
textclip grad 5

A EXPERIMENT DETAILS

A.1 PRETRAINING

Table 6 provides a summary of our pretraining configurations, which were employed for training
BrainMAE on various datasets. Our ROIs are extracted based on Schaefer2018 100ROIs Parcels,
which include 100 cortical ROIs (Schaefer et al., 2018). During the training process, we employ a
random selection method to choose a continuous segment of fMRI signals lasting for 300 seconds.
For instance, we randomly select 300 consecutive fMRI signals from the original 864 seconds of
data. This ensures that the signal used for masking and subsequent reconstruction is of equal size,
allowing for the construction of mini-batches for parallelized training.

Additionally, this approach offers the advantage of efficient GPU memory utilization and scalability.
It also introduces a degree of randomness, which, to some extent, serves as data augmentation and
benefits representation learning.

A.2 TRANSFER LEARNING

We fine-tune all BrainMAE models following the parameters outlined in Table 7. During both the
training and testing phases, we utilize the original length of the fMRI data. For example, in the case
of HCP3T with 864 seconds of data, we use the first 855 seconds, dividing it into 57 time segments
that are fed into the model. The decoder is omitted during transfer learning. A task-specific linear
head is appended to the CLS token representation generated by the encoder transformer for task-
specific predictions, as shown in Figure 5A.

B MODEL VARIANTS

B.1 VANILLA-BRAINMAE

The vanilla-BrainMAE shares the exact same architecture as BrainMAE with the only exception
being the use of vanilla-TSE to extract transient state embeddings from the fMRI segments. The
vanilla-TSE, as shown in Figure 5, incorporates three standard transformer blocks that exclusively
utilize self-attention. The vanilla-BrainMAE serves as a model for comparison with both AG-
BrainMAE and SG-BrainMAE, allowing us to evaluate the proposed embedding-based static graph
module.

B.2 VANILLA-BRAINAE

The vanilla-BrainAE employs the exact same architecture as vanilla-BrainMAE, with the only dis-
tinction being the use of traditional autoencoding for fMRI signal reconstruction without signal
masking. vanilla-BrainAE is included as a comparative model to assess the proposed masked au-
toencoding approach in comparison to the other models.
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attention in the transformer blocks.

C DATASETS

HCP-3T/HCP-7T Datasets.

The Human Connectome Project (HCP) is a freely shared dataset from 1200 young adult (ages 22-
35) subjects, using a protocol that includes structural images (T1w and T2w), functional magnetic
resonance imaging (resting-state fMRI, task fMRI), and high angular resolution diffusion imaging
(dMRI) at 3 Tesla (3T) and behavioral and genetic testing. Moreover, 184 subjects also have 7T
MR scan data available (in addition to 3T MR scans), which includes resting-state fMRI, retinotopy
fMRI, movie-watching fMRI, and dMRI. In our study, we focused on the resting-state session of the
dataset as well as 8 behavior measurements (see Table 9 for more information).

HCP-Aging Dataset.

The Human Connectome Project Aging (HCP-Aging) dataset is an extensive and longitudinally
designed neuroimaging resource aimed at comprehensively investigating the aging process within
the human brain. It comprises a wide array of multimodal neuroimaging data, such as structural
MRI (sMRI), resting-state functional MRI (rs-fMRI), task-based fMRI (tfMRI), and diffusion MRI
(dMRI), alongside rich cognitive and behavioral assessments.In our study, we focused on the resting-
state session of the dataset as well as age and gender information.

NSD Dataset.

The Natural Scenes Dataset comprises whole-brain 7T functional magnetic resonance imaging
(fMRI) scans at a high resolution of 1.8 mm. These scans were conducted on eight meticulously
selected human participants, each of whom observed between 9,000 and 10,000 colorful natural
scenes, totaling 22,000 to 30,000 trials, over the span of one year. While viewing these images,
subjects were engaged in a continuous recognition task in which they reported whether they had
seen each given image at any point in the experiment.

Table 8: Dataset Statistics

HCP-3T HCP-7T HCP-Aging NSD

number of subjects 897 184 725 8
number of sessions 3422 720 2400 3120

Number of TRs 1200 1200 478 301
Orignal TR(s) 0.72 1.00 0.80 1.00

Number of TR interpolate to 1s 864 382
type Resting-state Resting-state Resting-state TASK
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Table 9: Behaviors description

Behavior Display Name Description

PicSeq NIH Toolbox Picture Se-
quence Memory Test:
Unadjusted Scale Score

The Picture Sequence Memory Test is a measure devel-
oped for the assessment of episodic memory for ages 3-85
years. Participants are given credit for each adjacent pair
of pictures,the maximum score is 17(because that is the
number of adjacent pairs of pictures that exist).

PMT CR Penn Progressive Ma-
trices: Number of
Correct Responses
(PMAT24 A CR)

Penn Matrix Test: Number of Correct Responses. A mea-
sure of abstraction and mental flexibility. It is a multiple
choice task in which the participant must conceptualize
spatial, design and numerical relations that range in diffi-
culty from very easy to increasingly complex.

PMT SI Penn Progressive Matri-
ces: Total Skipped Items
(PMAT24 A SI)

Penn Matrix Test: Total Skipped Items (items not pre-
sented because maximum errors allowed reached).

PicVocab NIH Toolbox Picture Vo-
cabulary Test: Unad-
justed Scale Score

This measure of receptive vocabulary is administered in
a computerized adaptive format. The respondent is pre-
sented with an audio recording of a word and four pho-
tographic images on the computer screen and is asked to
select the picture that most closely matches the meaning
of the word.

IWRD Penn Word Memory
Test: Total Number
of Correct Responses
(IWRD TOT)

Participants are shown 20 words and asked to remember
them for a subsequent memory test. They are then shown
40 words (the 20 previously presented words and 20 new
words matched on memory related characteristics).

ListSort NIH Toolbox List Sort-
ing Working Memory
Test: Unadjusted Scale
Score

This task assesses working memory and requires the
participant to sequence different visually- and orally-
presented stimuli. Pictures of different foods and animals
are displayed with both a sound clip and written text that
name the item. Participants are required to order a se-
ries of objects (either food or animals) in size order from
smallest to largest.

LifeSatisf NIH Toolbox General
Life Satisfaction Survey:
Unadjusted Scale Score

Life Satisfaction is a concept within the Psychological
Well-Being subdomain of Emotion. Life Satisfaction is
one’s cognitive evaluation of life experiences and is con-
cerned with whether people like their lives or not. This
self-report measure is a 10-item calibrated scale com-
prised of items from the Satisfaction with Life Scale.

PSQI Sleep (Pittsburgh Sleep
Questionnaire) Total
Score

The Pittsburgh Sleep Quality Index (PSQI) is a self-rated
questionnaire which assesses sleep quality and distur-
bances over a 1-month time interval.Scores for each ques-
tion range from 0 to 3, with higher scores indicating more
acute sleep disturbances.

Table 8 provides an overview of the statistical information for each of the datasets employed in our
study.
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Figure 6: Comparison between principal gradient and the first principal component of pretrained
ROI embeddings on different datasets. The color mapped on the brain surface encodes either prin-
cipal gradient value (1st column) or 1st PC value of pretrain embeddings (2-6th columns).
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Figure 7: A. Strong correlation between 1st PC of ROI embedding (HCP-3T pretrained) and princi-
pal gradient. B. This relationship is hightly reproducible across differently pretrianed models but is
not the case for untrained model.

D.1 RELATIONSHIP TO PRINCIPAL GRADIENT

In neuroscience research, the principal gradient characterize the topographical organization of brain
regions, reflecting the between network functional organization (Margulies et al., 2016). Along
this principal direction, one end is associated with regions serving primary sensory/motor functions,
while the other end corresponds to transmodal regions, often referred to as the default-mode network
(DMN).

We have identified a significant relationship between the first principal component of pretrained
ROI embeddings and the principal gradient. This finding suggests that the functional connectivity
between brain networks is inherently encoded in these embeddings. Furthermore, this relationship
is highly reproducible across pretrained models trained on different datasets, as shown in Figure 6
and 7.

D.2 CONSISTENCY ACROSS PRETRAINED MODELS

We analyze the cross-region embedding similarity, or embeddings similarity matrix for each of
the models pretrained on various datasets. We use the cosine distance to measure the similarity
between two ROI embedding vectors. As shown in Figure 8, The embedding similarity matrices
shows converging results on differently pretrained models, suggesting that highly similar embedding
profiles can be identified in different datasets, thereby validating our hypothesis and the proposed
approach.

16



Under review as a conference paper at ICLR 2024

HCP3T_FIX HCP3T_MIN HCP7T_FIX

HCP7T_MIN NSD

R
O

Is

ROIs
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Figure 9: Age effect on learned ROI embeddings. (A) Age distribution for the three defined age
groups. (B) The modularity of the ROI embedding-based functional network decreases with aging.
For each group, modularity is computed 50 times using the Louvain algorithm, and the whiskers
of the boxplot represent the maximum and minimum of the 50 modularity values. (C) Embedding
similarity matrix of the three age groups.

The ROI embedding faithfully captures the characteristics of brain ROIs within the pre-trained fMRI
dataset. To investigate the impact of aging on the acquired ROI embeddings, we partition the HCP-
Aging dataset into three distinct, non-overlapping age groups (Young: 36-52, Middle: 52-68, Old:
68-100; refer to the Figure 9A for the age distribution in each group). Subsequently, we indepen-
dently pre-train the SG-BrainMAE for each age group. To discern variations in ROI embeddings,
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Figure 10: Representation analysis of fMRI runs using the pretrained SG-BrainMAE on the in-
dependent NSD dataset. (A) t-SNE plot of the extracted representations of fMRI runs. Each dot
represents a fMRI run, and colors indicate subject identity. (B) Within-subject t-SNE plot, with red
indicating task-related fMRI runs and blue representing resting-state runs.

we study the modular structure of the network constructed based on the embedding similarity matrix
specific to each age group. The modularity of a network, serving as a metric in network analysis, de-
lineates how the network can be segmented into nonoverlapping regions or the segregation of brain
ROIs. The results in Figure 9B indicate a reduction in the modularity of ROI embeddings from the
young age group to the old age group. This trend suggests a decline in the segregation of functional
networks during aging, aligning with established findings in the neuroscience literature Sporns &
Betzel (2016); Wig (2017).

E FMRI REPRESENTATION ANALYSIS

E.1 SUBJECT IDENTITY

To investigate the learned representation of fMRI runs, we applied the SG-MAE pre-trained on the
HCP-3T Resting-state dataset to extract fMRI representations (output of CLS token) on an indepen-
dent NSD task dataset. Surprisingly, as shown in Figure 10A, we observed that the representations
of fMRI runs are well separated across different subjects in the t-SNE plot. This result suggests
that the pre-trained model can generalize effectively to other datasets, distinguishing individuals and
encoding their traits based on their fMRI scans.
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E.2 BRAIN STATES

E.2.1 TASK VS. REST

Taking a step further, we aimed to analyze the representation of fMRI scans within each subject.
In the NSD dataset, each subject performed multiple task sessions (image-memory task) as well
as a few resting-state sessions (spontaneous rest). The Figure 10B shows the within-subject t-SNE
analysis of the representation extracted by the SG-MAE pretrained with HCP3T. Remarkably, in
most cases, the resting-state fMRI runs are well separated from task fMRI runs and exhibit distinct
representations. This result further suggests that within individuals, the pre-trained representation
carries meaningful information reflecting one’s brain state.

E.2.2 BRAIN AROUSAL STATE

Figure 11: Strong correlation between the second principal component (PC) of the learned fMRI
representation and drowsiness index (DI). Each column displays the result of each fold in the 5-fold
cross-validation.

In interpreting the representations extracted by the model fine-tuned on the NSD dataset for down-
stream task performance prediction, we conducted PCA analysis on the fMRI representations (out-
put of CLS token). Intriguingly, as shown in Figure 11, we observed a close relationship between the
second principal component and the drowsiness index, a metric for measuring the brain arousal level
Chang et al. (2016); Gu et al. (2020). This finding suggests a convergence between our data-driven
approach and traditional neuroscience studies that quantify brain states with multimodal equipment.
It implies that the proposed method could serve as a valuable tool to sufficiently identify brain states
using fMRI alone, obviating the need for additional modalities such as EEG.

F HCP TRANSIENT MENTAL STATE DECODING

Table 10: Results for transient mental state decoding

Model Accuracy(%) macro F1-score
Self-supervised learning-based model
CSM 94.8±0.35 92.0
Seq-BERT 89.2±0.35 84.5
Net-BERT 89.8±0.48 85.2
Ours
SG-BrainMAE 95.4±1.2 94.7
AG-BrainMAE 95.5±1.5 94.8

In addition to the downstream tasks performed in section 3.3, where pretrained models are fine-tuned
to predict traits or task performance from hundreds of seconds of fMRI signal, we here aim to further
extend our study and evaluate whether BrainMAEs can effectively decode transient brain states of
tens of seconds. We compare its performance with current state-of-the-art methods specifically
designed for this purpose.
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Table 11: Results of each mental state from transient mental state decoding.

Task
Mental States Model F1-score(%)

Name Duration(second) SG-BrainMAE AG-BrainMAE

Working Memory

body 27.5 92.45±2.83 93.81±2.62
faces 27.5 93.54±2.53 93.70±0.83
places 27.5 97.18±1.37 97.39±1.30
tools 27.5 92.75±2.84 92.79±2.25

Gambling
win 28.0 82.74±4.00 82.59±5.53
loss 28.0 82.62±3.89 85.10±3.59

Motor

left finger 12.0 97.61±1.47 98.04±1.58
right finger 12.0 97.65±1.15 97.79±1.81
left toe 12.0 98.82±1.12 99.12±0.81
right toe 12.0 97.64±2.29 97.62±1.87
tongue 12.0 99.10±1.63 98.37±1.78

Language
story 25.9 97.87±0.86 97.26±1.94
math 16.0 98.31±1.24 98.84±0.90

Social
interaction 23.0 98.23±0.73 98.20±1.21
no interaction 23.0 97.98±1.51 97.41±1.79

Relational
relational 16.0 92.06±2.17 92.94±2.63
matching 16.0 93.16±2.69 92.98±2.55

Emotion
fear 18.0 97.73±1.61 96.37±1.92
neutral 18.0 97.60±1.70 97.85±0.57

Rest Rest 864.0 89.11±7.02 87.92±5.47

Dataset and Downstream Task. Following the same experimental setup as in (Thomas et al., 2022),
we use publicly available HCP-3T task datasets (Van Essen et al., 2013) and identify 20 mental states
across experimental tasks. The models are fine-tuned to classify brain state from 20 mental states
using fMRI signals lasting tens of seconds.

Baselines. We compare our methods with current state-of-the-art transformer-based self-supervised
learning techniques tailored for fMRI transient state modeling. In these methods, each time point of
signal is treated as a word, leveraging recent successes in NLP pre-training techniques to model
fMRI transient states. Causal Sequence Modeling (CSM) is pretrained based on the principle
of causal language modeling, predicting the next signal based on historical context. Sequence-
BERT performs self-supervised learning by solving masked-language-modeling and next-sentence-
prediction tasks. Network-BERT, a variant to Sequence-BERT, is designed to infer the entire time
series of a masked network of Regions of Interest (ROIs).

Transfer Learning. We fine-tune the BrainMAEs similarly to other downstream tasks in section
3.3 with minor adjustments. We use BrainMAEs pretrained on the independent NSD dataset. To
make the model suitable for transient state decoding, we input fixed lengths of 30 seconds of fMRI
signals. For mental states with a duration of less than 30 seconds, we use the fMRI signal from the
mental task block center, expanding it both left and right to achieve a total duration of 30 seconds.
Resting-state samples are randomly drawn from 864-second fMRI run for a length of 30 seconds.

Performance Comparison. The results on the test set are shown in Table 10 and reported as mean
± std. from 5-fold cross-validation. Our proposed methods outperform other self-supervised tech-
niques that are designed for decoding the transient fMRI signal. It’s important to note that we only
use 100 cortical ROIs, in contrast to baseline methods utilizing 1024 Dictionary Learning Func-
tional Modes (DiFuMo) ROIs including subcortical areas. This comparison leads to two principal
insights: firstly, cortical region activity alone might suffice for decoding mental states; secondly,
given the highly correlated nature of fMRI signals, a small set of ROIs can effectively represent brain
activity, potentially enabling the development of more efficient models for future research. Further-
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more, AG-BrainMAE exhibits marginally enhanced performance relative to SG-BrainMAE, indi-
cating that integrating an adaptive component is advantageous for capturing transient state changes
in fMRI data. Table 11 presents detailed results for each mental state from the multi-class decoding
task, demonstrating consistently high decoding accuracy that appears to be insensitive to variations
in state duration.

G ADDITIONAL RESULTS

G.1 ABLATION STUDY ON ROI EMBEDDING

Given that the position of the ROIs is static, there exists a possibility that the learned ROI embed-
ding may predominantly encode information about the absolute position rather than the functional
characteristics of the ROI. This hypothesis was investigated with two analyses from different per-
spectives.
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Figure 12: A. Position embedding used as ROI embeddings. B. The PosSG-BrainMAE, utilizing
position embeddings, exhibited inferior reconstruction results compared to SG-BrainMAE with in-
formative ROI embeddings.

Table 12: More Ablation analysis: HCP 3T downstream task results.

Model
Gender Behaviors (measured in MAE)

Accuracy(%) AUROC PicSeq PMT CR PMT SI PicVocab IWRD ListSort LifeSatisf PSQI

SG-BrainMAE 97.49±0.15 97.46±0.18 5.06±0.21 1.63±0.08 1.24±0.04 3.40±0.14 1.11±0.04 4.35±0.12 3.64±0.27 1.05±0.06
PosSG-BrainMAE 95.74±1.08 95.98±0.96 5.99±0.30 1.83±0.09 1.41±0.08 3.80±0.08 1.28±0.05 4.83±0.20 4.02±0.08 1.22±0.08
SG-BrainMAE(SL) 96.63±1.56 96.62±1.55 5.53±0.15 1.72±0.06 1.32±0.07 3.61±0.10 1.15±0.03 4.64±0.06 3.87±0.10 1.14±0.04

Table 13: More Ablation analysis: HCP-Aging.

Model
Gender

Aging(MAE)
Accuracy(%) AUROC

SG-BrainMAE 92.67±1.07 92.51±1.07 5.75±0.44
PosSG-BrainMAE 88.38±2.93 88.28±3.19 6.66±0.71
SG-BrainMAE(SL) 91.29±1.34 91.45±1.33 5.68±0.31

Table 14: More Ablation analysis: NSD.

Model Task Accuracy RT(ms)

SG-BrainMAE 0.069±0.004 90.678±1.767
PosSG-BrainMAE 0.080±0.004 100.064±4.439
SG-BrainMAE(SL) 0.078±0.003 98.469±1.675

Analysis 1. We substitute ROI embedding in the SG-BrainMAE model with position embedding,
which is then frozen throughout the pretraining phase on the HCP-3T dataset while keeping other
model components unchanged. This adapted model is named PosSG-BrainMAE. Evaluations in-
volving both the reconstruction of masked signals on an independent HCP-7T dataset (see Fig-
ure 12) and performance in downstream tasks (see Tabel 12, 13, and 14) reveal a decreased efficacy
compared to SG-BrainMAE. This decline in performance justifies the valuable ROI information
contained in learned ROI embeddings, extending beyond mere positional information.

Analysis 2. We cyclic shift each ROI’s fMRI signal by random time steps. By doing this, the shifted
fMRI signal exihibit two properties: 1. each fMRI signal itself is merely changed; 2. elimination of
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ROI Embedding Pretrained with Cyclic-radom-shifted fMRI Signals
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Figure 13: Ablation analysis 2: evaluation of pre-trained ROI embeddings with cyclic-random-
shifted fMRI signals. (A) A t-SNE plot of ROI embeddings with ROI colored based on Yeo-17 net-
work (Left) and cortical hierarchy (Right). (B) ROI embedding similarity matrix with indiscernible
inter-network relationship.

the inter-relationship between pairs of ROIs. We then follow the same pre-training procedure using
this modified dataset. The ROI embeddings learned from this dataset did not exhibit functional
specificity and inter-regional connectivity (see Figure 3), in contrast to those learned from the actual
dataset (see Figure 13). These findings provide additional evidence that the proposed method learns
meaningful ROI information from the dataset, including its relationship to other ROIs.

G.2 ABLATION STUDY ON SELF-LOOP REMOVAL

Removing self-loops in our model avoids the attention mechanism favoring its own node, encour-
aging it to aggregate signals from other relevant nodes. This approach is akin to a group voting
system and helps reduce sensitivity to input noise. To validate this design choice, we conducted
a comparative analysis for downstream tasks between SG-BrainMAE and a similar model that in-
cludes self-loops, named SG-BrainMAE(SL). The results, presented in Tables 12, 13, and 14, show
a slight decrease in performance for SG-BrainMAE(SL), indicating the effectiveness of excluding
self-loops in our model.

G.3 COMPARISON WITH SELF-SUPERVISED LEARNING ON GENDER CLASSIFICATION ON
HCP-3T DATASET

Table 15: HCP, Gender Prediction

Model Accuracy(%)
TFF 94.09
Ours
SG-BrainMAE 97.49±0.15
AG-BrainMAE 97.13±0.56

We conducted comparative analysis between our method and another recent self-supervised learning
approach, named TFF, which employs 3D Convolutional Neural Networks (CNNs) and transformer
to extract volumetric representations of fMRI data at each time point, with pre-training via auto-
encoding. The results, as shown in Table 15, demonstrate that our model outperforms TFF in the
HCP gender prediction downstream task.

G.4 COMPARISON WITH TRADITIONAL MACHINE LEARNING MODELS

22



Under review as a conference paper at ICLR 2024

Given the effectiveness and prevalence of traditional machine learning (ML) models in neuroimag-
ing communities, this section focuses on assessing the added performance benefits of utilizing com-
plex deep learning-based methods in comparison to these simpler ML models.

For regression tasks, we consider a suite of linear models, including ordinary linear regression, ridge
regression, and elastic net. In the context of classification tasks, we explore the use of logistic re-
gression, linear Support Vector Machine (SVM), and Random Forest models. Each of these models
is trained to make predictions based on the flattened upper-triangle of the Functional Connectivity
(FC) connectivity matrix.

We employ cross-validated grid search approach, with specific ranges and increments for each model
for hyperparameter selection of each ML model:

• Support Vector Machine (SVM): We vary the L2 regularization coefficient from 0.1 to 10, with
an increment of 0.5.

• Logistic Regression: The L2 regularization coefficient is tuned from 0.1 to 10, with an increment
of 0.5.

• Random Forest: Three key parameters are tuned: a. Number of trees, ranging from 1 to 250
with increments of 50. b. Maximum depth of each tree, from 5 to 50 with increments of 10. c.
Minimum samples required to split a node, from 5 to 100 with increments of 20.

• Ordinary Linear Regression: This model did not require hyperparameter tuning.
• Ridge Regression: The L2 regularization coefficient is tuned from 0 to 10, with an increment of

0.5.
• Elastic Net Regression: a. The coefficient of the L2 penalty (ridge regression component) is

tuned from 0 to 10, with increments of 0.5. b. The coefficient of the L1 penalty (lasso regression
component) is adjusted from 0 to 1, with increments of 0.2.

For models requiring multiple hyperparameters, we train for each possible combination. The best-
performing model is selected based on its performance on the validation set, using Mean Squared
Error (MSE) for regression tasks and accuracy for classification tasks.

The results of this comparative analysis across three different downstream tasks are shown in Ta-
ble 16, 17, 18 and 19. It reveals that for classification tasks, traditional ML methods demonstrate
performance levels comparable to those of baseline deep learning methods. This observation can
be attributed to the well-established understanding that the functional connectivity matrix harbors
significant information pertinent to human traits and age. However, for more complex regression
tasks, such as task performance prediction, which necessitate inferring intricate brain states from
the dynamics of fMRI signals, ML models often exhibit less satisfactory performance. In such sce-
narios, deep learning methods, endowed with their robust capability for representation learning, are
able to achieve markedly superior results.
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Table 16: HCP 3T Dataset (FIX-ICA), Gender Classification

Model
Gender

Accuracy(%) AUROC specificity(%) sensitivity(%) F1 Score(%)
FIX-FC
BrainNetTF 94.11±0.98 94.39±0.90 95.36±0.70 93.24±2.08 93.69±1.01
VanillaTF 90.00±1.05 89.93±0.94 91.36±1.25 88.32±2.51 88.71±1.10
BrainNetCNN 90.68±1.80 90.89±1.55 93.82±1.64 87.40±3.80 89.56±1.44
Dynamic-FC
STAGIN-SERO 88.73±1.36 88.69±1.41 89.99±1.71 86.29±1.74 86.80±0.90
STAGIN-GARO 88.34±0.94 88.33±0.91 89.50±2.90 86.76±4.73 97.18±0.13
FBNETGNN 88.05±0.15 87.93±0.97 89.60±1.21 86.11±1.32 86.51±0.89
Machine Learning Model
SVM 87.55±1.79 87.53±1.91 90.16±2.31 84.31±2.05 85.76±2.07
Logistic Regression 92.16±0.77 92.10±0.71 93.18±1.17 90.91±2.04 91.16±0.84
Forest 77.16±2.63 77.42±2.64 85.23±2.05 67.09±4.21 72.29±3.43
Ours
SG-BrainMAE 97.49±0.15 97.46±0.18 97.66±0.91 97.28±1.19 97.18±0.13
AG-BrainMAE 97.13±0.56 97.17±0.61 97.62±0.95 96.14±0.76 96.76±0.61

Table 17: HCP 3T Dataset (FIX-ICA), Behavior Regression

Model
Behaviors (measured in MAE)

PicSeq PMT CR PMT SI PicVocab IWRD ListSort LifeSatisf PSQI
FIX-FC
BrainNetTF 7.11±0.22 2.28±0.11 1.72±0.12 4.70±0.10 1.56±0.03 5.96±0.07 4.96±0.22 1.49±0.05
VanillaTF 8.19±0.46 2.73±0.07 2.13±0.07 5.93±0.14 1.81±0.08 6.91±0.21 5.71±0.08 1.68±0.05
BrainNetCNN 10.21±0.22 3.25±0.13 2.64±0.14 6.65±0.27 2.26±0.05 8.51±0.20 7.12±0.24 1.68±0.05
Dynamic-FC
STAGIN-SERO 10.22±0.15 3.49±0.05 2.70±0.06 6.78±0.20 2.26±0.05 8.51±0.20 7.12±0.24 2.12±0.04
STAGIN-GARO 10.26±0.18 3.44±0.10 2.69±0.09 6.92±0.30 2.25±0.04 8.52±0.26 7.09±0.35 2.08±0.04
FBNETGNN 8.62±0.21 2.93±0.11 2.34±0.11 5.83±0.15 1.96±0.04 7.31±0.10 6.09±0.10 1.81±0.03
ML Model
Oridinary Regression 11.23±0.25 4.05±0.07 3.34±0.07 7.50±0.13 2.58±0.08 9.90±0.26 8.05±0.18 2.50±0.07
Ridge 8.91±0.23 3.18±0.10 2.63±0.10 6.05±0.10 2.05±0.06 7.70±0.23 6.42±0.02 2.01±0.09
ElasticNet 10.83±0.14 4.01±0.03 3.29±0.04 7.44±0.22 2.35±0.05 9.21±0.19 7.29±0.28 2.15±0.07
Ours
SG-BrainMAE 5.06±0.21 1.63±0.08 1.24±0.04 3.40±0.14 1.11±0.04 4.35±0.12 3.64±0.27 1.05±0.06
AG-BrainMAE 5.09±0.05 1.67±0.10 1.28±0.06 3.34±0.11 1.13±0.03 4.37±0.06 3.58±0.17 1.07±0.05
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Table 18: HCP Aging

Model
Gender

Aging(MAE)
Accuracy(%) AUROC(%) specificity(%) sensitivity(%) F1 Score(%)

FIX-FC
BrainNetTF 90.21±3.81 90.73±2.85 87.97±9.26 91.84±6.56 89.35±3.49 6.15±0.71
VanillaTF 88.96±2.16 88.76±2.21 89.22±2.30 88.56±3.01 87.54±2.53 6.78±0.56
BrainNetCNN 88.83±1.52 88.74±1.58 89.87±2.85 87.92±3.18 87.48±1.20 8.71±0.62
Dynamic-FC
STAGIN-SERO 82.37±1.66 82.57±1.36 85.23±4.68 76.00±6.51 77.91±3.14 8.96±0.47
STAGIN-GARO 80.67±0.81 80.58±1.03 84.63±4.05 77.95±4.43 78.81±3.27 8.65±0.28
FBNETGNN 89.50±3.58 89.34±3.49 90.04±1.94 89.05±5.18 88.35±3.45 6.68±1.00
ML Model
SVM 86.04±0.97 86.23±0.98 90.87±0.66 79.84±1.76 83.36±1.48 -
Logistic Regression 89.49±1.27 89.41±1.23 90.92±0.81 87.66±2.17 88.20±1.50 -
Forest 73.75±1.44 74.42±0.94 85.82±1.46 58.35±4.11 66.05±2.47 -
OrdinaryRegression - - - - - 7.63±0.21
Ridge - - - - - 7.08±0.20
ElasticNet - - - - - 9.43±0.61
Ours
SG-BrainMAE 92.67±1.07 92.51±1.07 97.66±0.91 97.28±1.19 97.18±0.13 5.78±0.44
AG-BrainMAE 91.12±1.99 91.15±2.03 97.62±0.95 96.14±0.76 96.76±0.61 6.49±1.00

Table 19: Task Performance Prediction on NSD dataset

Model Task Accuracy RT(ms)

FIX-FC
BrainNetTF 0.070±0.003 92.344±2.343
VanillaTF 0.075±0.004 96.252±2.133
BrainNetCNN 0.078±0.004 102.911±2.225
Dynamic-FC
STAGIN-SERO 0.089±0.003 116.635±2.197
STAGIN-GARO 0.091±0.002 116.130±2.099
FBNETGNN 0.074±0.005 95.349±2.320
ML Model
Ordinary Regression 0.117±0.003 157.460±3.788
Ridge 0.093±0.003 129.609±2.518
ElasticNet 0.110±0.004 174.946±2.585
Ours
SG-BrainMAE 0.069±0.004 90.678±1.767
AG-BrainMAE 0.070±0.004 92.154±2.265
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Table 20: Result for behavior prediction on minimal preprocessed fMRI using model finetuned with
ICA-FIX pipleline

Model
Gender Behaviors (measured in MAE)

Accuracy(%) AUROC PicSeq PMT CR PMT SI PicVocab IWRD ListSort LifeSatisf PSQI
FIX-FC
BrainNetTF-OCR 79.62±1.57 80.15±0.65 9.76±0.38 3.52±0.08 2.76±0.04 6.64±0.18 2.15±0.05 8.21±0.11 6.83±0.20 1.98±0.05
BrainNetTF-Vanilla 75.53±1.58 75.41±1.51 10.56±0.36 3.67±0.03 2.93±0.04 7.54±0.46 2.35±0.06 8.90±0.15 7.47±0.17 2.12±0.07
BrainNetCNN 73.34±3.37 74.85±1.8 11.04±0.13 4.10±0.21 3.42±0.24 7.65±0.24 2.43±0.08 9.46±0.08 7.37±0.30 2.17±0.07
Dynamic-FC
STAGIN-SERO 69.22±3.56 69.98±2.86 11.19±0.35 3.96±0.15 3.11±0.14 7.93±0.38 2.15±0.05 8.21±0.11 6.83±0.20 1.98±0.05
STAGIN-GARO 70.03±1.86 71.11±1.26 11.67±0.21 3.91±0.13 3.07±0.16 8.01±0.31 2.42±0.09 9.60±0.35 7.56±0.15 2.25±0.05
FBNETGNN 72.10±1.80 72.19±1.87 11.41±0.30 3.99±0.25 3.21±0.22 8.02±0.44 2.60±0.06 10.09±0.30 8.03±0.38 2.36±0.09
Ours
SG-BrainMAE 86.05±2.71 86.01±2.73 8.76±0.19 3.11±0.07 2.41±0.05 5.83±0.24 1.92±0.04 7.46±0.2. 6.07±0.22 1.76±0.09
AG-BrainMAE 83.93±1.57 84.06±1.29 8.89±0.23 3.15±0.06 2.46±0.08 5.89±0.19 1.94±0.05 7.48±0.17 6.11±0.24 1.80±0.07

Table 21: Ablation Study on HCP 3T behavior prediction

Model
Gender Behaviors (measured in MAE)

Accuracy(%) AUROC PicSeq PMT CR PMT SI PicVocab IWRD ListSort LifeSatisf PSQI

SG-BrainMAE 97.49±0.15 97.46±0.18 5.06±0.21 1.63±0.08 1.24±0.04 3.40±0.14 1.11±0.04 4.35±0.12 3.64±0.27 1.05±0.06
AG-BrainMAE 97.13±0.56 97.17±0.61 5.07±0.09 1.67±0.10 1.28±0.06 3.34±0.11 1.13±0.03 4.37±0.06 3.58±0.17 1.07±0.05
vanilla-BrainMAE 96.66±0.94 96.85±0.81 4.85±0.16 1.61±0.07 1.25±0.07 3.23±0.08 1.08±0.05 4.12±0.15 3.30±0.16 0.99±0.04
vanilla-BrainAE 94.11±1.02 94.07±1.09 7.63±0.27 2.50±0.12 1.92±0.11 5.01±0.17 1.67±0.04 6.45±0.28 5.40±0.13 1.59±0.05

Table 22: The distinction between different model variants

Model variants Transient state encoder (TSE) Pretraining
Primary
SG-BrainMAE Three ROI embedding informed attention block Masked-

Autoencoding

AG-BrainMAE Two self-attention blocks stacked on top of an ROI
embedding informed attention block

Masked-
Autoencoding

Other
vanilla-BrainMAE Three self-attention blocks Masked-

Autoencoding

vanilla-BrainAE Three self-attention blocks Autoencoding

PosSG-BrainMAE Three absolute position embedding informed at-
tention block

Masked-
Autoencoding

SG-BrainMAE (SL) Three ROI embedding informed attention block
where attention was computed without self-loop
removal

Masked-
Autoencoding
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H ADDITIONAL RECONSTRUCTION RESULTS
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Example reconstruction results on HCP-7T dataset using SG-MAE pretrained on HCP-3T dataset
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Figure 14: Example reconstruction results on HCP-7T using HCP-3T pretrained model.
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Example reconstruction results on NSD dataset using SG-MAE pretrained on HCP-3T dataset
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Figure 15: Example reconstruction results on NSD using HCP-3T pretrained model.
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Example reconstruction results on HCP-Aging dataset using SG-MAE pretrained on HCP-3T dataset
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Figure 16: Example reconstruction results on HCP-Aging dataset using HCP-3T pretrained model.
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