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ABSTRACT

Estimating conditional average treatment effects (CATE) from observational data is
an important problem and is of high practical relevance for many domains. Despite
the great efforts of recent studies to accurately estimate CATE, most methods
require complete observation of all covariates of an individual. However, in real-
world scenarios, the acquisition of covariate information is usually done in a active
manner, which motivates us to develop methods to minimize the total measurement
cost by actively selecting the most appropriate covariates to measure while guaran-
teeing the CATE estimation accuracy. To this end, in this paper, we first extend the
existing methods for estimating CATE to allow accurate estimation in the presence
of unmeasured covariates. Next, we theoretically show the advantage of dynami-
cally adjusting the sampling strategy based on an evolving understanding of the
information measured in the covariates. Then, we formulate the dynamic sampling
strategy learning as a partially observed Markov decision process (POMDP) and
further develop a policy gradient method to solve the optimal dynamic policy.
Extensive experiments conducted on three real-world datasets demonstrate the
effectiveness of our proposed methods.

1 INTRODUCTION

Treatment effect estimation using observational data plays a crucial role in a broad range of domains
such as precision medicine (Alaa & Van Der Schaar, 2017), digital markering (Chernozhukov et al.,
2013), and policy making (Athey, 2015). For example, in healthcare, a doctor could use covariate
information about a patient to estimate the conditional average treatment effect (CATE), defined as
the difference between the patient’s expected potential outcomes under different treatment conditions,
which can be used to help determine which treatment leads to a more desired outcome. The basic
challenge for accurately estimating CATE is that, since each individual can be only assigned one
treatment, we always observe the corresponding potential outcome, but not both, which is also known
as the fundamental problem of causal inference (Holland, 1986).

Many methods have been proposed to accurately estimate CATE. Specifically, most methods strive to
balance covariates to estimate CATE accurately, such as matching, stratification, outcome regression,
weighting, and doubly robust methods (Rosenbaum & Rubin, 1983; Rosenbaum, 1987; Hainmueller,
2012; Li et al., 2016). Benefiting from recent advances in deep learning, representation learning
methods propose to learn a covariate representation that is independent of the treatment to overcome
the covariate shift between the treatment and control groups (Johansson et al., 2016; Shalit et al.,
2017b), which can be further enhanced by exploiting the local similarity presevation (Yao et al.,
2018), simultaneously modeling the propensity and the potential outcomes (van der Laan & Rose,
2011; Shi et al., 2019), and disentangling the covariates Hassanpour & Greiner (2020). In addition,
by exploiting the generative models, CEVAE (Louizos et al., 2017) and GANITE (Yoon et al., 2018)
generate counterfactual outcomes for CATE estimation.

Despite the great efforts of recent studies to accurately estimate CATE, most methods require
complete observation of all covariates of an individual. However, we believe that this is not practical
in real-world scenarios–instead, the measurement of covariates should be active and well-designed.
Moving back to the illustrated example in healthcare, when a doctor initially meets a new patient,
it is hardly possible for the doctor to have all the covariate information about the patient. Instead,
the doctor might ask the patient to take some medical tests, such as drawing blood or taking medical
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images. By taking such medical tests, the doctor can collect more, but not all, of the patient’s covariate
information. Based on the collected covariate information, the doctor can either (1) collect more
covariates by letting the patient take more medical tests or (2) stop collecting extra covariates by
recognizing that the already collected covariates are sufficient for accurately estimating CATE and
making the treatment decisions for that patient. In addition, it is reasonable to assume that there
is a cost associated with the measurement of each covariate. Therefore, it is necessary to develop
methods to minimize the total measurement cost by actively selecting the most appropriate covariates
to measure while guaranteeing the CATE estimation accuracy.

To fill this gap, this paper studies the active covariate measurement for treatment effect estimation.
The main contributions are summarized below:

•We extend the existing representation learning methods for estimating CATE to allow accurate
estimation in the presence of unmeasured covariates. Specifically, we introduce a learnable embed-
ding lookup table for each covariate, and design a uniform sampling approach to make the CATE
estimation robust to different numbers of measured covariates as inputs.
•We consider how to select the covariates to be observed, making it possible to maximize the estima-
tion accuracy while minimizing the associated costs. Through theoretical analysis, we demonstrate
the superiority of dynamic policy over static policy, where the latter employs a fixed set of covariates
for all instances, whereas the former dynamically adjusts its sampling strategy based on an evolving
understanding of the information measured in the covariates.
•We formulate the dynamic sampling strategy learning as a Partially Observed Markov Decision
Process (POMDP) and develop a policy gradient method to solve the optimal dynamic policy. This
allows us to model the dynamic sampling process as a sequence of decisions made under uncertainty,
with the aim of maximizing the expected sum of rewards over time.
• Experiments on real-world datasets show our method can effectively achieve active covariate
measurement, ensuring the accuracy of CATE estimation while minimizing the measurement cost.

2 RELATED WORK

Dynamic Sampling. Dynamic sampling strategy adaptively collects measurements based on informa-
tion from previous measurements. Recent works have effectively framed these challenges as Markov
decision processes (MDPs) and have approached solutions using reinforcement learning (RL) (Li,
2017). Examples abound in various domains, including the Travelling Salesman Problem (Bello et al.,
2016), Vehicle Routing Problem (Kool et al., 2018), and Influence Maximization (Manchanda et al.,
2019). These studies have consistently demonstrated that RL-based policies can outperform static or
greedy approaches in terms of efficiency and effectiveness. In our work, by formulating the active
covariate measurement problem as a POMDP (Sondik, 1971; Kaelbling et al., 1998), we extend the
above methods to minimize the total measurement cost by actively selecting the most appropriate
covariates to measure while guaranteeing the CATE estimation accuracy.

CATE Estimation. Benefiting from recent advances in machine learning, many methods have been
proposed for estimating CATE, including matching methods (Rosenbaum & Rubin, 1983; Schwab
et al., 2018; Yao et al., 2018), tree-based methods (Chipman et al., 2010; Wager & Athey, 2018),
representation learning methods (Johansson et al., 2016; Shalit et al., 2017b; Shi et al., 2019; Wu
et al., 2022; Wang et al., 2023), and generative methods (Louizos et al., 2017; Yoon et al., 2018; Wu
& Fukumizu, 2021). Unlike the existing work devoted to estimating CATE with complete observation
of all covariates of an individual, our work focuses on a more practical setting, in which the covariates
is measured from a active manner with varying costs.

3 PRELIMINARIES

We consider the case of binary treatment. Suppose a simple random sampling of n units from
a super population P, for each unit i, the covariates and the assigned treatment are denoted as
Xi = (Xi,1, . . . , Xi,p) ∈ Rm and Wi ∈ {0, 1}, respectively, where Wi = 1 and Wi = 0 means
receiving and not receiving the treatment, respectively. Let Yi ∈ R be the outcome of interest. To
study CATE estimation, we adopt the potential outcome framework (Rubin, 1974; Neyman, 1990)
in causal inference. Specifically, let Yi(0) and Yi(1) be the outcome of unit i had this unit receive
treatment Wi = 0 and Wi = 1, respectively. Since each unit can be only assigned with one treatment,
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we can only observe the corresponding outcome to be either Yi(0) or Yi(1), but not both, which is
the well-known fundamental problem of causal inference (Holland, 1986; Morgan & Winship, 2015).

For unit i, the individual treatment effect (ITE) is defined as ITEi = Yi(1)− Yi(0), which indicates
that whether the treatment Wi = 1 is beneficial for individual i. The conditional average treatment
effect (CATE) is defined as

τ(x) = E[ITEi|Xi = x] = E[Yi(1)− Yi(0)|Xi = x], (1)
which is the difference in the conditional mean of potential outcomes given fully measured covariates.

To identify CATE, we assume that the observation for unit i is Yi = (1−Wi)Yi(0) +WiYi(1). In
other words, the observed outcome is the potential outcome corresponding to the assigned treatment,
which is also known as the consistency assumption in the causal literature. We assume that the stable
unit treatment value assumption (STUVA) assumption holds, i.e., there should be no alternative
form of treatment and interference between units. Furthermore, we require the strong ignorability
assumption (Yi(0), Yi(1)) ⊥⊥Wi|Xi and the positivity assumption η < P(Wi = 1|Xi = x) < 1−η,
where η is a constant between 0 and 1/2.

4 PROPOSED METHOD

In many real-world settings (e.g. healthcare), the covariates should be partially observed, which leads
to the first question: how to estimate the treatment effect, in the absence of some variable? In this work,
we are concerned with the CATE based on an arbitrary subset of covariates. Formally, given a binary
mask vector M , its measured index set is denoted as A (M) := {a|M(a) = 1} ⊂ {1, 2, . . . , p}, and
its measured covariates set is denotes as X (X,M) := {Xa|a ∈ A (M)}. Then, we seek to estimate
the CATE conditional on the partially measured covariates X (X,M) defined as:

τM (x̃) = E(Yi(1)− Yi(0)|Xi|M = x̃). (2)

Furthermore, the active process of measuring covariates enlightens our second question: what order of
measurements and stopping criterion would provide the best balance between measurement cost and
estimation accuracy? In this work, we consider a dynamic sampling policy that can adaptively decide
to either measure which covariate or stop sampling according to the partially observed covariates
at each acquisition step. Formally, we want to learn a policy π, which takes X (X,M) as input,
and predicts from {1, · · · , p} as the next measuring index or 0 as the stop signal. As the process
continues according to the policy’s guidelines, a mask vector M is eventually obtained. Given a cost
function c : {1, · · · , p} → R, the policy π aims to minimize a trade-off between the accumulative
costs

∑
a∈A(M) c(a) and the estimation accuracy Equation (2).

Methodology Overview. In Section 4.1, we design a method for estimating causal effects in the
partially absence of covariates. In Section 4.2, we consider a dynamic sampling policy that decides
which covariate to observe next by the covariates that have already been observed and gives a theoretic
guarantee that the optimal dynamic sampling policy is better than the static one. In Section 4.3, we
formulate the dynamic sampling problem as a Partially Observed Markov Decision Process (POMDP)
and solve it via a modified Proximal Policy Optimization (PPO) algorithm.

4.1 COUNTERFACTUAL REGRESSION WITH MASKED COVARIATES

We commence by tackling the estimation of causal effects under covariate absence. Previous
treatment effect estimation methods typically rely on complete observations of covariates, which use
two estimation models f0(X) and f1(X) to estimate Y (0) and Y (1) respectively. We extend these
methods by considering a mask vector M as part of the input of f0 and f1, which indicates that two
estimation models only can make predict with measured covariates X (X,M).

The core of our method lies in the optimization of two these two estimation models, f0(X (X,M))
and f1(X (X,M)) designed to predict outcomes for control and treatment groups. respectively. We
use TARNet for illustrative purposes, and our approach can also be used for other CATE estimation
methods. Under the condition of missing covariates, the optimization objective is formulated as the
prediction error between the estimated outcomes and the observed outcomes:

min
{f0,f1}

1

|D|
∑

(X,W,Y )∈D

∥fW (X (X,M))− Y (W )∥2.
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Table 1: Notation summary table.
Terminology Notation
dataset D = {X,W, Y }
covariates Xi = (Xi,1, Xi,2, · · · , Xi,p)
mask vector M ∈ {0, 1}p
a-th dimension of M M(a) ∈ {0, 1}
measured index A (M) := {a|M(a) = 1}
measured covariates X (X,M) := {Xa|a ∈ A (M)}
estimation model fw : fw(X (X,M)) to estimate Y (w)

estimated outcome Ŷ (T ) := fw(X (X,1))
policy π : π(X (X,M)) to predict action
cost function c : {1, 2, · · · p} → R

In particular, both f0 and f1 are
inspired by the architecture of
TARNet, with modifications to
accommodate masked covariates.
A mask vector M is integrated
into the data preprocessing layer
Φ(X,M). It regularises contin-
uous covariates to [0, 1] and is
set to −1 if the covariate is un-
measured. A categorical covari-
ate (assuming m classes), on the
other hand, is projected onto (m+
1) learnable embedding vectors,
where the extra one is used to in-
dicate that the covariate is missing. Covariates that have been processed by the data preprocessing
layer are concatenated together as inputs to the following two regression layers h0 and h1 which con-
nect to estimate Y (0) and Y (1), respectively. Therefore, we denote f := (f0, f1) = (h0 ◦Φ, h1 ◦Φ).
The sampling method for the mask vector M is designed to ensure robust learning across different
levels of covariate observability. In practice, we employ a uniform distribution to decide |M |0 from
1 to p, i.e., the total number of measured covariates. We then randomly generate mask vectors that
conform to this pre-determined number. As opposed to simply sampling uniformly from {0, 1}p,
this strategy guarantees that our models are adept at learning from scenarios with both sparse and
abundant covariate information.

4.2 COVARIATE MEASUREMENT POLICY EVALUATION

Given trained estimation models with masked covariates f , our next consideration is how to select the
covariates to be observed, making it possible to maximize the estimation accuracy while minimizing
the associated accumulative costs. In the real world, measurements of covariates are usually step
by step, which leads us to get more information after each observation. Inspired by this, a superior
policy π should be adaptive: it should dynamically adjust its sampling strategy based on an evolving
understanding of the information measured in the covariates.

Motivated by the above, we propose a novel dynamic sampling methodology. It commits to adaptively
selecting covariates within the dynamically evolving landscape of data, optimizing the weighted
accumulative costs of covariate measurement, and accuracy of CATE estimation. In particular, we
develop a policy model π, which is tasked to make sequential decisions, that is, dynamic sampling of
covariates over time. Formally, the goal of policy learning can be encapsulated by the following:

min
π

1

|D|
∑

(X,W,Y )∈D

[
p∑

t=1

c(at) + λL̂f (X,Mp,W, Y )

]
s.t. at ∼ π(X (X,Mt−1)), t = 1, · · · , p,

Mt = 1(Mt−1 + eat), t = 1, · · · , p, (3)
where c(a) represents the cost function for selecting the covariate at a-th dimension, λ is a balancing
weight parameter, M0 is an all-zero vector 0. The policy satisfies that {0, 1, · · · , p} ∼ π(X (X,M)),
where 0 ∼ π(X (X,MT )) indicates that policy predicts to stop generation and sets T as the terminal
time. Furthermore, we extend c(0) = 0 and e0 = 0. After the terminal time T , the policy will always
give 0, and thus Mt remains constant for t ≥ T . The estimation error is defined as

L̂f (X,M,W, Y ) =
{
[fw(X (X,M))− f1−w(X (X,M))]− [Y (w)− Ŷ (1− w))

}2

.

In contrast to the proposed dynamic approach, another traditional sampling process is a static policy
that employs a fixed set of covariates for all instances, determined a priori. The optimization problem
for a static policy is defined as:

min
M

1

|D|
∑

(X,W,Y )∈D

 ∑
a∈A (M)

c(a) + λL̂f (X,M,W, Y )

 . (4)

4
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Our approach is anchored in a theoretical foundation that highlights its superiority over conventional
static methods in variable selection. The theoretical cornerstone of our dynamic sampling method-
ology lies in its ability to adaptively refine the covariate selection process. The dynamic policy’s
advantage over its static counterpart is formalized below.

Theorem 4.1. Given the estimation models f and weight parameter λ, the optimal value of Equa-
tion (3) for dynamic policy is no less than that of Equation (4) for static policy.

Proof of Theorem 4.1. For the optimization problem Equation (4), the feasible region of the optimiza-
tion objective M is finite. Therefore, there must exist an optimal solution, denoted as M∗. We define
the same pattern policy πM∗

(X (X,M)) = Uniform(A(M∗) \A(M)) whenA(M∗) \A(M) ̸= ∅,
and πM∗

(X (X,M)) = 0 otherwise. For each dataset D, at the terminal state, we have πM∗
with

mask vector M∗. Therefore, the objective function of Equation (3) is equal to the optimal value
of Equation (4) when π = πM∗

. Moreover, πM∗
is also in the feasible region of the optimization

problem Equation (3). Therefore, the optimal value of Equation (3) is no less than the value of the
objective function of Equation (3) when π = πM∗

, as well as the optimal value of Equation (4).

This theorem claims that our dynamic sampling policy is at least as strong as a static sampling policy.
This is because our dynamic method continuously adjusts the selection of covariates in response to
evolving data patterns, a feature starkly missing in static approaches. However, static methods, which
fix covariates based on initial data insights, may fail to capture subsequent data variations, potentially
leading to suboptimal CATE estimations. Furthermore, we will demonstrate empirically that a static
sampling policy is generally less effective than our dynamic sampling policy.

4.3 DYNAMIC COVARIATE MEASUREMENT POLICY LEARNING

Building upon the dynamic sampling optimization problems, we now turn our focus to solving the
sequential decision optimization problem in Equation (3).

A sequential decision problem can be formulated as a Partially Observed Markov Decision Process
(POMDP), which is a tuple (S,O,A, γ,P, r) that consists of the state space S , the observation space
O, the action space A, the discount factor γ, the deterministic transition function of the environment
P : S × O ×A → S ×O and the reward r : S × O ×A → R. A policy π in RL is a probability
distribution on the action A over O: π : O ×A → [0, 1]. Denote the interactions between the agent
and the environment as a trajectory τ = (s0, o0, a1, r1, ...). The return of τ is the discounted sum of
all its future rewards G(τ) :=

∑∞
t=1 γ

t−1rt. Given an MDP, the goal of a reinforcement learning
algorithm is to find a policy π that maximizes the discounted accumulated rewards in this MDP:

max
π

Es0∼ρ(s)Eτ [G(τ)|τ(s0) = s, τ ∼ π],

where ρ(s) is an initial state distribution. In our study, we formulate the proposed dynamic sampling
problem as a POMDP, where the objective is to make sequential decisions on covariate selection
under uncertainty. The POMDP framework is formulated in below:

• State:st. We define the state st = (X,W, Y,Mt), where (X,W, Y ) is invisible to the policy and
invariant over time, and mask vector Mt controls which covariates are visible.

• Observation: ot. We define the observation ot = X (X,Mt) as the measured covariates which is
derived from the current state and represents the information available to the policy. In POMDP, at
each time step, the RL agent can only observe ot.

• Action: at+1. We define the action as the consist of the selected index of covariants and the stopping
criteria at each time step. In the RL process, at+1 ∈ {0, 1, · · · , p} samples from π(X (X,Mt)),
which is a (n + 1)-dimensional discrete probability distribution. When at+1 ̸= 0, it indicates the
selected index, otherwise it releases the signal for this process to stop.

• Transition: P . After the action at is chosen, the state st−1 = (X,W, Y,Mt−1) transitions to
st = (X,W, Y,Mt), i.e., the mask vector Mt−1 transitions to Mt. We update it as:

Mt = 1(Mt−1 + eat
), if 1 ≤ at ≤ p,

where 1(·) is the indicator function, or set current as the terminal time T = t, if the policy returns a
null action at = 0 or the time reaches the terminal t = p.
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Algorithm 1 Dynamic Covariate Measurement with π

Require: covariates X , weight parameter λ and policy π
1: Initialize t← 0, T ← p and M0 ← 0;
2: while t < T do
3: Sample action at+1 ∼ π(X (X,Mt));
4: Update timestep t← t+ 1;
5: if 1 ≤ at ≤ p then
6: Update the mask vector Mt = 1(Mt−1 + eat);
7: else
8: Stop the trajectory T ← t;
9: end if

10: end while
Output: trajectory τ = (X (X,M0), a1,X (X,M1), ...).

• Reward: rt. The reward rt = rt(st, at) represents how much benefit an action performed in the
current state would bring in the current state. We make sure it quantifies the value of Equation (3)
decreasing by select at-th covariate

−c(at)− λ(L̂f (X,Mt,W, Y )− λL̂f (X,Mt−1,W, Y )).

When at = 0, the RL process stops and the agent does not need a reward.

• Discount factor: γ ∈ [0, 1]. It determines how much the RL agent cares about rewards in the distant
future relative to those in the immediate future, which is a hyper-parameter.

This formulation allows us to model the dynamic sampling process as a sequence of decisions made
under uncertainty. The goal is to develop a policy maximizing the expected sum of rewards over time:

−
T∑

t=1

c(at)− λ(L̂f (X,MT ,W, Y )− L̂f (X,M0,W, Y )).

Since the last component L̂f (X,M0,W, Y ) is independent with π, we can solve Equation (3) based
on the POMDP. We summarize the decision-making loop of the POMDP in Algorithm 1. Given a
policy π, first, we initialize the t = 0, T = p and M0 = 0 (line 1). Next, we iteratively do sequential
decision-making until the sampling process is completed (lines 2-10). In each iteration, the policy
samples an action from the policy π based on the current observation (line 3), and decides either to
update the current state (line 6) or stop the trajectory (line 8) according to the action.

By framing the dynamic sampling challenge as a POMDP, we lay the groundwork for employing
advanced Reinforcement Learning (RL) techniques, to derive an optimal policy for covariate selection.
We solve Equation (3) based on our formulated POMDP via the Proximal Policy Optimization (PPO)
algorithm (Schulman et al., 2017). We summarize the whole training process in Algorithm 2.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP AND EVALUATION METRICS

Datasets. We explore our dynamic sampling strategy on two semi-synthetic datasets, i.e., IHDP
and ACIC, and a real-world dataset, i.e., Jobs. The IHDP dataset (Hill, 2011) is constructed from
the Infant Health and Development Program, which contains 747 samples and 25 covariates in total.
The ACIC dataset is constructed from the Atlantic Causal Inference Conference competitions (Dorie
et al., 2017), which includes 4,802 samples with 82 covariates. The JOBS dataset (LaLonde, 1986) is
based on the National Supported Work program with 2,570 units (237 treated, 2,333 control) and 17
covariates from non-randomized observational studies. For all datasets, we randomly split the data
into training set / testing set with ratios 9/1.

CATE Estimation. The goal of our dynamic sampling is to learn a policy that balances the cost
of covariate selection and the accuracy of CATE estimation. In the training phase, we estimate
fw(X (X,1)) using widely used causal methods, namely TARNet (Shalit et al., 2017a), DESCN

6
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Algorithm 2 Counterfactual and Dynamic Policy Learning
Require: Dataset D, weight parameter λ;

1: Divide the observed dataset D into D0 and D1;
2: for i← 1 to max iteration step do
3: Sample Dbatch

0 and Dbatch
1 from D0 and D1;

4: Compute the gradients w.r.t f0 and f1;
5: Upgrade f0 and f1 via stochastic gradient descent;
6: end for
7: for (X,W, Y ) ∈ D do
8: Compute Ŷ (1− w) = fw(X (X,1));
9: end for

10: Initialize policy πθ and old policy πθold ← π;
11: for i← 1 to max iteration step do
12: Run πθold (Algorithm 1) to sample a series state and action pairs (X (X,Mt), a) from trajec-

tories;
13: Update θ via PPO’s loss;
14: end for
Output: estimation models f0 and f1 and policy π.

Table 2: Performance comparison of the cost, causal effect (
√
ϵPEHE or RPol) and Total under λ = 1

on three dataset IHDP, ACIC and Jobs. The best results are bolded.
IHDP (λ = 1) ACIC (λ = 1) Jobs (λ = 100)

Cost (↓) √
ϵPEHE (↓) Total (↓) Cost (↓) √

ϵPEHE (↓) Total (↓) Cost (↓) RPol(↓) Total (↓)
Random 15.51±9.27 7.58±0.51 73.23±7.74 52.36±23.18 9.90±1.68 153.20±32.04 12.13±5.40 0.15±0.01 27.44±1.15

Static (TARNet) 3.12±1.69 7.81±0.45 64.32±6.86 42.86±1.64 5.57±1.23 75.40±14.45 4.00±0.00 0.21±0.06 25.59±5.51
Greedy (TARNet) 5.37±1.58 7.73±0.70 65.57±11.15 1.88±0.63 5.82±2.32 41.07±32.61 1.44±0.60 0.18±0.05 19.68±4.26
Ours (TARNet) 9.96±1.30 6.90±0.60 57.97±7.71 0.96±0.41 4.94±1.69 28.26±19.11 0.85±0.85 0.18±0.08 18.98±5.77
Oracle (TARNet) 9.64±0.91 5.96±0.55 45.43±6.21 1.47±0.25 5.11±1.39 29.54±11.25 1.51±0.37 0.11±0.07 13.23±5.26

Static (DESCN) 2.75±1.09 7.83±0.52 64.29±7.73 42.57±1.92 5.32±0.94 71.81±10.65 0.12±0.33 0.22±0.05 22.90±4.67
Greedy (DESCN) 5.03±2.46 7.84±0.77 67.07±10.67 1.93±0.60 5.19±2.22 33.77±31.76 1.05±0.13 0.18±0.05 18.57±4.30
Ours (DESCN) 9.64±1.83 6.86±0.54 56.97±6.88 0.65±0.55 4.85±1.54 26.58±17.73 0.64±0.50 0.17±0.07 17.77±5.65
Oracle (DESCN) 9.15±0.88 6.00±0.54 45.50±6.27 1.50±0.26 5.05±1.39 28.99±11.02 1.00±0.01 0.11±0.02 12.05±1.31

Static (ESCFR) 3.12±1.05 7.82±0.48 64.56±7.59 41.86±2.17 5.13±0.85 68.89±9.45 3.75±1.56 0.18±0.06 21.47±4.00
Greedy (ESCFR) 4.03±1.65 7.87±0.68 66.44±10.25 1.89±0.49 5.45±2.42 37.47±34.69 1.71±0.46 0.14±0.05 15.80±3.56
Ours (ESCFR) 9.38±1.32 6.78±0.61 56.60±6.72 0.94±0.41 4.49±0.90 21.93±8.58 1.39±0.82 0.13±0.08 15.13±5.86
Oracle (ESCFR) 9.73±0.99 5.94±0.57 45.35±6.28 1.37±0.19 4.93±1.20 27.10±9.97 1.69±0.51 0.08±0.03 9.68±1.58

Static (C. Forest) 2.25±1.39 7.91±0.57 65.19±8.20 41.86±0.64 5.07±0.66 68.00±6.61 4.00±0.00 0.23±0.08 27.31±8.43
Greedy (C. Forest) 3.30±1.89 7.97±0.70 67.37±10.86 1.80±0.49 4.88±1.11 26.87±10.96 1.37±0.43 0.20±0.06 21.82±6.07
Ours (C. Forest) 9.79±1.66 6.99±0.55 58.93±7.20 1.30±0.89 4.35±0.96 21.12±8.03 0.49±0.60 0.20±0.07 20.74±6.46
Oracle (C. Forest) 9.32±0.88 5.94±0.58 44.93±6.80 1.56±0.37 2.37±0.39 7.32±2.15 1.57±0.47 0.14±0.02 15.17±1.32

Static (DeRCFR) 2.00±1.94 8.01±0.55 66.5±7.25 42.14±0.64 5.29±0.85 70.87±9.23 3.75±0.66 0.23±0.06 26.92±6.24
Greedy (DeRCFR) 4.40±1.69 7.80±0.64 65.70±9.19 1.98±0.38 4.63±0.91 24.23±9.66 1.28±0.42 0.18±0.05 19.73±4.92
Ours (DeRCFR) 10.25±1.72 6.94±0.58 58.72±7.35 1.69±0.60 4.2±0.39 19.45±3.77 0.82±0.69 0.18±0.07 19.29±6.14
Oracle (DeRCFR) 9.88±0.89 5.88±0.60 44.85±6.87 1.58±0.37 2.53±0.56 8.31±3.38 1.43±0.45 0.15±0.07 16.65±6.89

Static (DN) 1.88±1.27 7.95±0.65 65.44±8.91 42.29±1.03 5.46±0.96 73.00±10.85 3.75±0.66 0.21±0.06 24.65±6.43
Greedy (DN) 4.06±2.97 7.89±0.71 66.78±9.24 1.80±0.45 4.67±1.01 24.59±10.89 1.39±0.44 0.17±0.04 17.96±3.89
Ours (DN) 9.81±1.93 7.01±0.60 59.26±7.71 1.09±0.78 4.39±0.69 21.31±8.56 0.87±1.07 0.17±0.07 17.62±6.01
Oracle (DN) 9.40±1.10 5.94±0.56 45.00±6.68 1.52±0.35 2.01±0.28 5.65±1.47 1.61±0.55 0.15±0.06 16.16±5.52

(Zhong et al., 2022), ESCFR (Wang et al., 2023), Causal Forest (Wager & Athey, 2018), DeRCFR (Wu
et al., 2020), and DragonNet (Shi et al., 2019).

Metrics. Our evaluation also consists of accumulative costs and the accuracy of causal effects. For
cost, we calculate the sum of all costs of measured index C =

∑
a∈A(M) c(a) for each test data.

For causal effects, we calculate
√
ϵPEHE =

√
1

|D|
∑

(X,Y (0),Y (1))∼D((f1 − f0)− (Y (1)− Y (0)))2

for the IHDP and the ACIC dataset (which can access to the ground truth potential outcomes) to
measure the accuracy of the estimated CATE based on the partially observed covariates, where
fw = fw(X (Xi,M)) for w = 0, 1. For the Jobs (which can not access to the Y (1 −W )), we
calculate RPol = 1− (E[Y (1) | f1− f0 > 0, T = 1] ·P(f1− f0 > 0)+E[Y (0) | f̂1− f0 ≤ 0, T =
0] · P(f1 − f0 ≤ 0)), where T is the treatment indicator. To comprehensively evaluate a sampling
policy, we sum the cost and the inaccuracy of the CATE estimation as in Equation (3), called Total,
representing the cost-accuracy trade-off.

Cost function. We consider two types of cost functions. The one is all-one cost that c ≡ 1, a basic
setting where the costs of each covariate are the same. The other is relative cost, which is more
practical where the covariate more correlated with the outcome will have a higher observed cost. In
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Table 3: Performance comparison on the IHDP, ACIC, and Jobs datasets. The cost function is
positively correlated with the correlation coefficients of covariates and outcome (α = 1).

IHDP (λ = 1) ACIC (λ = 1) Jobs (λ = 100)

Cost (↓) √
ϵPEHE (↓) Total (↓) Cost (↓) √

ϵPEHE (↓) Total (↓) Cost (↓) RPol(↓) Total (↓)
Random 2.37±1.42 7.59±0.49 60.27±7.47 3.18±1.80 9.90±1.68 104.03±32.05 2.48±1.39 0.15±0.01 17.80±0.76

Static (TARNet) 2.22±0.46 7.39±0.62 57.16±9.08 2.56±0.65 5.66±0.92 35.39±10.27 0.79±0.24 0.18±0.05 19.25±4.42
Greedy (TARNet) 1.26±0.32 7.70±0.72 61.05±11.74 0.37±0.35 5.15±1.69 29.76±20.41 0.16±0.08 0.17±0.05 17.20±4.16
Ours (TARNet) 2.63±0.60 6.84±0.63 49.67±8.47 0.14±0.10 4.64±0.81 22.38±7.61 0.11±0.10 0.17±0.07 16.24±5.23
Oracle (TARNet) 2.17±0.38 5.72±0.59 35.24±6.47 0.31±0.22 5.08±1.39 28.07±10.92 0.24±0.09 0.10±0.05 9.97±2.90

Static (DESCN) 2.10±0.52 7.42±0.58 57.46±8.64 2.64±0.50 5.72±0.77 35.90±8.71 0.31±0.17 0.18±0.07 19.21±6.01
Greedy (DESCN) 1.21±0.65 7.67±0.73 60.65±11.43 0.39±0.36 4.73±1.37 24.38±16.61 0.15±0.06 0.15±0.04 15.36±3.06
Ours (DESCN) 2.66±0.58 6.83±0.62 49.62±8.49 0.15±0.08 4.60±0.79 21.89±7.28 0.08±0.07 0.15±0.03 15.28±2.05
Oracle (DESCN) 2.14±0.39 5.72±0.60 35.17±6.56 0.29±0.22 4.87±1.20 25.47±9.70 0.13±0.04 0.09±0.02 9.34±0.95

Static (ESCFR) 1.89±0.60 7.36±0.53 56.33±7.78 2.55±0.74 5.65±1.02 35.84±11.66 0.87±0.28 0.16±0.04 17.17±3.06
Greedy (ESCFR) 0.97±0.42 7.85±0.72 63.13±11.78 0.35±0.31 4.65±1.30 23.63±14.82 0.25±0.06 0.14±0.04 13.98±2.96
Ours (ESCFR) 2.47±0.60 6.80±0.58 49.50±8.39 0.21±0.17 4.57±0.72 21.57±6.71 0.21±0.14 0.13±0.07 13.94±5.47
Oracle (ESCFR) 2.18±0.38 5.71±0.60 35.18±6.54 0.32±0.23 5.02±1.38 27.42±10.65 0.28±0.11 0.08±0.03 7.92±1.44

Static (C. Forest) 1.98±0.55 7.52±0.59 58.81±8.95 2.65±0.63 5.14±0.76 29.60±7.71 0.56±0.23 0.22±0.06 22.26±6.10
Greedy (C. Forest) 0.76±0.52 7.94±0.72 64.35±11.62 0.29±0.28 4.44±1.15 21.36±11.26 0.21±0.12 0.20±0.05 20.05±5.22
Ours (C. Forest) 2.15±0.60 6.93±0.61 50.55±8.44 0.42±0.43 4.38±1.02 20.67±10.19 0.25±0.14 0.16±0.06 16.41±6.14
Oracle (C. Forest) 2.11±0.39 5.68±0.64 34.81±7.00 0.30±0.27 1.92±0.20 4.04±1.00 0.25±0.09 0.12±0.03 12.57±2.87

Static (DeRCFR) 1.97±0.56 7.52±0.57 58.85±8.65 2.58±0.52 5.38±0.78 32.19±8.14 0.69±0.26 0.24±0.07 24.79±6.87
Greedy (DeRCFR) 1.05±0.38 7.75±0.68 61.58±10.64 0.46±0.43 4.88±1.60 26.88±17.29 0.18±0.11 0.17±0.05 17.36±4.85
Ours (DeRCFR) 2.27±0.44 6.78±0.49 48.43±6.60 0.48±0.43 4.19±0.73 18.43±5.26 0.18±0.08 0.17±0.07 17.30±6.61
Oracle (DeRCFR) 2.17±0.38 5.67±0.65 34.78±7.04 0.31±0.28 2.46±0.59 6.69±3.46 0.26±0.13 0.14±0.07 13.97±6.90

Static (DN) 2.00±0.54 7.51±0.59 58.75±8.90 2.65±0.44 5.62±0.90 35.03±9.48 0.64±0.27 0.22±0.05 22.25±5.20
Greedy (DN) 0.84±0.57 7.85±0.69 62.98±10.45 0.43±0.42 4.87±1.54 26.53±16.79 0.21±0.10 0.16±0.05 16.65±4.74
Ours (DN) 2.35±0.49 6.86±0.52 49.67±7.07 0.48±0.31 4.09±0.53 17.49±3.96 0.3±0.31 0.15±0.05 16.53±4.36
Oracle (DN) 2.11±0.40 5.69±0.63 34.86±6.92 0.30±0.27 2.29±0.39 5.69±2.03
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Figure 1: Performance of four baseline methods and our PCMP on the IHDP with varying α.

particular, we calculate the absolute value of the correlation coefficients of each covariate and the
outcome and sort them. According to the correlation coefficients from large to small, we assign the
cost to 1, 1/2α, · · · , 1/pα. Note when α = 0, it degenerates into all-one cost.

5.2 BASELINE SAMPLING POLICES.

We compare our dynamic sampling policy with the following four baseline sampling policies.
Random, a non-data-driven sampling policy that randomly chooses to stop or continue sampling,
and if to continue, randomly measures a covariate in each acquisition step.
Static, a data-driven sampling policy that uses a fixed mask vector M∗ to act on each data without
randomness. In practice, we get M∗ by solving Equation (4) via grid search.
Greedy, a data-driven and adaptive sampling policy. In practice, we find out the k-nearest neighbor-
hood of the measured covariates in the training dataset and then select the unmeasured covariate that
leads to the greatest average Total decreasing within these k neighbors. We stop when no unmeasured
covariate will lead to the average Total decrease.
Oracle Greedy, a theoretical benchmark sampling policy that provides a lower bound on the Total.
In practice, We select the unmeasured covariate that leads to the greatest Total decrease in each
acquisition step for each test data. We stop when no unmeasured covariate will lead to the Total
decrease. It’s important to reiterate that this policy is not a feasible method in practical scenarios due
to its reliance on foresight, and also unfair to compare it with other policies.
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Figure 2: Performance of cost and
√
ϵPEHE with varying weight λ on the IHDP under α = 1.
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Figure 3: Visualizations of test data from the IHDP dataset under α = 1 across the acquisition steps.

5.3 PERFORMANCE COMPARISON

We compare our dynamic sampling policy and baseline method in the IHDP, ACIC, and Jobs datasets
under all-one cost setting. The results are shown in Table 2. The PCMP obtains a lower Total than
other baselines and even outperforms oracle’s method in some cases.

Effects of Cost Function. We further explore the effects of cost function c. We show the results of
α = 1 in Table 3. Our proposed PCMP outperforms other fair baseline methods in the case where the
measurement cost is positively correlated with the correlation between covariates and the outcome.
Furthermore, we show the cost,

√
ϵPEHE and the Total over α = 0, 0.5, 1, 1.5, 2 in Figure 1. These

results illustrate that the proposed PCMP can achieve optimal performance by adaptively choosing
the measurement order and combination according to the different cost functions.

Effects of Weight Parameter. We further study the effects of weight parameter λ on our dynamic
policy. We show the accumulative cost and

√
ϵPEHE over λ = 0.03, 0.1, 0.3, 1, 3 on IHDP under α =

1, and the results are shown in Figure 2. It shows that as lambda increases, the cost gradually increases
while

√
ϵPEHE gradually decreases. The results are consistent with our intuitive understanding of the

optimisation objective Total and provide guidance for reality. In practice, we can tune the weight
parameter λ to the preference of our policy–lower cost or higher accuracy.

5.4 IN-DEPTH ANALYSIS

We visualize the cost, PEHE, and Total per acquisition step for the random, greedy, and our dynamic
sampling policy on test data from the IHDP, and the results are shown in Figure 3. The Total of
the random policy decreases slowly with slight oscillations as the acquisition step increases, while
the Total of the greedy policy decreases the most rapidly but stops sampling early. Unlike the two
baseline methods above, the Total of our proposed PCMP declines smoothly and quite rapidly and
allows for a longer sampling process, eventually reaching the lowest Total. This demonstrates that
our dynamic sampling policy is a fore-sighted policy.

6 CONCLUSION

In this work, we discuss a novel treatment effect estimation problem, i.e., how to balance measurement
cost and accuracy in the case of incomplete observation of all covariates. We extend previous
methodologies for estimating treatment effects, introducing the capability to handle scenarios where
covariates are partially observed. Then, we introduce the dynamic covariate measurement policy
which adaptively decides which covariate to measure or stop sampling at each acquisition step
according to the observed covariates. We further show that our dynamic sampling policy is superior
to other baseline policies theoretically and empirically.
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IMPACT STATEMENT

This paper introduces the Active Causal Learning (ACL) framework for heterogeneous treatment
effect estimation, a significant step forward in the application of machine learning for causal inference.
The technique is particularly beneficial in the healthcare sector, where it can aid in discerning the
causal determinants of diseases from sub-sampled series data, facilitating the creation of more
effective treatment plans. The PCMP allows for a dynamic and systematic approach to modeling,
which can lead to better-informed medical decisions and personalized patient care. However, its
effectiveness is contingent upon the quality and structure of the data; if the underlying data fails to
capture the true complexity of causal relationships or exhibits inconsistencies, the model’s capacity to
accurately identify these relationships may be compromised. Despite these limitations, the potential
impact of this research in improving the balance of measurement cost and health outcomes through
more nuanced data analysis is substantial.

A MORE EXPERIMENTAL DETAILS

A.1 OUR METHODS

The Estimation Model is designed for causal inference, processing input data through a customizable
data preprocessing layer followed by a Multi-Layer Perceptron (MLP) architecture. The data
preprocessing layer, which can be selected from multiple versions, handles both numerical and
categorical data, incorporating embeddings for categorical variables and accounting for missing data.
The processed data is then fed into two separate MLPs based on the treatment variable. Each MLP,
consisting of an input layer, a hidden layer with LeakyReLU activation and dropout, and an output
layer, predicts potential outcomes y(0) or y(1) for the respective subsets of the data. This architecture
allows for efficient and specialized processing of data for causal inference applications.

We train the estimation model by minimizing the MSE loss via Adam optimizer. The learning rate is
set to 0.001, the weight decay is set to 0.00001, and the embedding size is set to 2. We train is for 50
epochs. The choice of mask vector is quite tricky. We provide the mask vector sampling strategy
called uniform, which indicates that we first uniformly sample the number of 1 in the mask vector,
and then uniformly sample a mask vector M that M⊤ · 1 equals to the number.

The Policy Model in this setup utilizes the data preprocessing layer from the Estimation Model
for feature extraction. This extractor processes input observations and passes them through a fully
connected neural network, which consists of three layers with LeakyReLU activations behind the
beginning two linear layers, to generate features for policy decisions. Additionally, the Policy Model
includes an Action Network that modifies these features based on the presence of missing data,
indicated by a mask. This network emphasizes relevant features and diminishes the impact of missing
data, ultimately producing an output that informs policy decisions in a context-sensitive manner.

Inspired by the PPO algorithm, we solve the dynamic sampling optimization problem based on our
formulated POMDP via policy gradient. Specifically, given a parameterized policy πθ, its value
function is defined as

Vπθ
(X (X,Mt)) = Eτ

[
T∑

u=t

G(τ) | st = X (X,Mu), τ ∼ πθ

]
,

which is the expected sum of rewards of all the trajectories when the agent starts at an intermediate
state X (X,Mt) and then follows π; its Q function is defined as

Qπθ
(X (X,Mt), a) = Eτ

[
T∑

u=t

G(τ) | st = X (X,Mu), at+1 = a, τ ∼ πθ

]
.

which is the expected sum of rewards of all the trajectories when the agent starts at an intermediate
state X (X,Mt), takes action a, and then follows π. Then, we define its advantage function as

Aπθ
(X (X,Mt), a) = Qπθ

(X (X,Mt), a)− Vπθ
(X (X,Mt)).

to quantify how good it is if we take action a other than other actions at X (X,Mt). Furthermore, to
penalise the selected covariates that do not perform well while rewarding the one that gets a high sum
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of rewards, we keep updating an old policy πθold and define the baseline reward as

bθ(X (X,Mt), a) =
πθ(a |X (X,Mt))

πθold(a |X (X,Mt))
.

We follow policy gradient methods (Sutton et al., 1999; Silver et al., 2014) to optimize πθ with
respect to the following surrogate objective:

J(θ) = E(X (X,Mt),a)∼πθold

[
min{bθ ·Aπθold

, clip(bθ, 1− ϵ, 1 + ϵ)} ·Aπθold

]
(5)

where clip(x, a, b) = max{min{x, b}, a}, ϵ is a hyperparameter controlling the clipping extent, and
the input of bθ and Aπθold

is (X (X,Mt), a). This training process iteratively refines the policy πθ,
while the old policy πθold is synchronized with the current policy πθ after a specified number of
iterations.

We implement the PPO algorithm based on the stable-baselines3 (Raffin et al., 2021) which is a
popular framework for reliable implementations of RL algorithms. The learning rate is set to 0.001,
the discount factor γ is set to 0.99, and the other hyperparameters are the default values. We train our
policy for 50,000 steps. The initialization of the policy is quite tricky. When the weight parameter λ
is quite small, which indicates that the optimal sampling trajectory will be short, we add a learnable
parameter to increase the probability of 0 ∼ πθ.

We refer you to our official code for more details.

A.2 BASELINE METHODS

A.2.1 RANDOM POLICY

The Random Policy is implemented as a baseline strategy for variable selection in a non-deterministic
and non-adaptive manner. At each acquisition step, the policy randomly decides whether to stop
sampling or continue. The decision to stop or continue is made using a random generator with a
uniform distribution. If the decision is to continue, it randomly selects an unmeasured covariate from
the available set. The process iterates until a predefined stopping criterion.

We summarize the process of random policy in Algorithm 3.

Algorithm 3 Random Policy for Variable Selection
Require: test data X and a threshold µ

1: Initialize the mask vector M = 0;
2: while True do
3: Decide randomly to stop or continue p ∼ Uniform[0, 1];
4: if p < µ then
5: break
6: else
7: Randomly sample a ∼ Uniform({1, 2, · · · , n} \ A(M));
8: Update the mask vector M ←M + ea;
9: end if

10: end while
11: Output the measured covariates X (X,M).

We choose µ = 1/p.

A.2.2 OPTIMAL STATIC

The Static Policy is also a baseline strategy for variable selection in a deterministic, data-driven, and
non-adaptive manner. It is a two-stage approach designed for variable selection, focusing on the
generation and application of an optimal mask vector. This method diverges from dynamic selection
strategies by employing a static, uniform approach to variable sampling across all test instances.

The first stage involves training on a given dataset to derive an optimal mask vector by solving
Equation (4). This vector represents a fixed pattern of variable selection, determined based on the
dataset’s characteristics and the target objective.

14
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Since the objective function of Equation (4) is non-differentiable to M , we leverage the grid search
algorithm, a derivative-free optimization method to solve the optimization problem. This is achieved
by iteratively testing different combinations of variables, represented by a mask vector, and evaluating
their performance based on a Total computed by the environment. The Total is calculated for each
possible mask vector by turning one of the dimensions on or off in the mask and observing the effect
on the model’s output. The search for the optimal mask involves computing Totals for all variables
and updating the current mask based on which variable leads to the minimum Total. If the addition of
a new mask vector does not improve the minimum Total by a significant margin, the search terminates,
and the current mask is considered optimal.

The second stage is the inference stage. Once the optimal mask vector is obtained, it is applied
uniformly across all test data instances. This means that every test instance is evaluated using the
same set of variables, as dictated by the mask vector.

We summarize the two-stage process in Algorithm 4.

Algorithm 4 Static Policy for Variable Selection
Require: Training dataset D

1: Randomly initialize the mask vector M , initialize Sopt ←∞;
2: for step = 1 to Max Number of Step do
3: Initialize an empty list Totals;
4: for a = 1 to p do
5: M(a)← 1−M(a);
6: Sample a mini-batch from D, denoted as Dbatch;
7: Calculate the average Total;
8: Append the average Total to Totals;
9: M(a)← 1−M(a);

10: end for
11: Find index a of the minimum average Total in Totals;
12: if Sopt > Totals[a] then
13: Update the current mask M(a)← 1−M(a);
14: Update the optimal Total Sopt ← Totals[a];
15: else
16: break
17: end if
18: end for
19: Output the measured covariates X (X,M).

A.2.3 GREEDY POLICY

The Greedy Policy is designed as a heuristic approach for variable selection in a data-driven manner.
It selects variables by integrating the k-nearest neighbors (KNN) approach with a greedy selection
mechanism.

Initially, for each test instance, the algorithm identifies its k-nearest neighbors within the training
dataset. In particular, for quantitative variables, we first standardize the value of the dimension in the
data set to [0, 1], and then define the distance as the absolute value of the difference; for categorical
variables, we define the distance of different categories as 1 and the distance of the same category as
0. This identification is based on the Euclidean distance metric. The number of neighbors, denoted as
k, is a critical parameter and its optimal value is determined through experimental tuning.

Once the nearest neighbors are identified, the algorithm enters an iterative covariate evaluation phase.
In each iteration, it assesses the impact of each unmeasured covariate on the predictive model’s
performance. This is achieved by temporarily including each covariate in the model and calculating
the resulting average Total change across the k-nearest neighbors.

The core of the Greedy Policy lies in its selection criterion. In every iteration, the algorithm selects
the unmeasured covariate that yields the highest average Total decrease. This covariate is then
permanently added to the set of selected variables, and the sampling pattern is updated accordingly.
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This process of evaluating and adding covariates continues iteratively. After each iteration, the
algorithm re-evaluates the remaining unmeasured covariates, as the inclusion of a new covariate
can change the dynamics of the model’s performance. The algorithm halts when there are no more
covariates that significantly improve the model’s Total, indicating that the addition of further variables
would likely not provide substantial benefits.

We summarize the whole process of greedy policy for specific test data in Appendix A.2.3.

Algorithm 5 Greedy Policy for Variable Selection
Require: Training data set D, a test data (X,W, Y ), a scoring function S, number of neighbors k,

and an improvement threshold β
1: Initialize the mask vector M ← 0 and the optimal Total Sopt ←∞;
2: while True do
3: Initialize the selected variable aselected ← null;
4: Determine the k-nearest neighbors of the test data in D, denoted as Dneighbor;
5: for each unmeasured index a in {1, 2, · · · , n} \ A(M) do
6: Update the mask vector Ma ←M + ea;
7: Calculate the average Total improvement of Dneighbor;
8: if Sopt·β>Sa then
9: Update Sopt ← Sa;

10: Update aselected ← a;
11: end if
12: end for
13: if aselected is null then
14: break
15: end if
16: Update the mask vector M ←M + easelected ;
17: end while
18: Output the measured covariates X (X,M).

We choose β = 1 and k = 5.

A.2.4 ORACLE GREEDY

The Oracle Greedy Policy is an idealized, theoretical approach to variable selection that assumes ac-
cess to perfect, omniscient knowledge about the impact of each covariate on the model’s performance.
Unlike other methods, which relies on data-driven estimations and heuristics, the Oracle Greedy uses
its ’all-knowing’ perspective to make the most optimal choices at each step.

At each iteration of the variable selection process, the Oracle reviews all the unmeasured covariates.
With its perfect foresight, the Oracle predicts the exact change in the score – as defined by the
objective function of Equation (3) – that would result from the inclusion of each covariate. Similar to
the selection criterion of Greedy Policy, it then selects the covariate that offers the most significant
decrement in the score. What’s more, the Oracle reviews can also achieve the ground truth value of
y(0) and y(1), so the score is calculated by the ground truth values, instead of the estimated values
via some causal methods.

The process continues iteratively, with the Oracle selecting the most impactful covariate at each
step. The termination of the algorithm occurs when adding any of the remaining covariates ceases to
significantly improve the model’s score. However, this stopping criterion, like the selection process
itself, is based on the Oracle’s perfect knowledge rather than on empirical data analysis or a significant
improvement threshold.

Notation. It’s important to reiterate that the Oracle Greedy Policy is not a feasible method in practical
scenarios due to its reliance on an unrealistic level of foresight. It serves as a theoretical benchmark,
providing an upper bound on the efficacy of variable selection strategies. This conceptual tool allows
researchers to gauge the potential limits of their data-driven methods and to understand the gap
between practical algorithms and the idealized ‘perfect’ selection strategy.

We summarize the oracle process for specific test data in Appendix A.2.4 with β = 1.
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Algorithm 6 Oracle Greedy Policy for Variable Selection
Require: Test data (X,Y (0), Y (1)), two estimation models f0 and f1, an oracle scoring function S

1: Initialize the mask vector M = 0 and the optimal score Sopt ← −∞
2: while True do
3: Initialize the selected variable aselected ← null
4: for each unmeasured index a in {1, 2, · · · , n} \ A(M) do
5: Update the mask vector Ma = M + ea
6: Calculate the oracle score Sa ← S(x, y(0), y(1),M)
7: if Sa · β > Sopt then
8: Sopt ← Sa

9: aselected ← a
10: end if
11: end for
12: if aselected is null then
13: break
14: end if
15: Update the mask vector M ←M + easelected

16: end while
17: Output the measured covariates X (X,M).
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Figure 4: Comparative analysis of four baseline methods and the proposed PCMP on the IHDP.
We leverage the causal method TARNet. We show the cost,

√
ϵPEHE and Total across α =

0, 0.5, 1.0, 1.5, 2.0.

B FURTHER EXPERIMENTS

B.1 ADDITIONAL EXPERIMENT RESULTS

Effects of Cost Function. We show the cost,
√
ϵPEHE and Total across α = 0, 0.5, 1, 1.5, 2 in

Figure 4 (for TARNet) and Figure 5 (for DESCN). Similar results can be seen. This results reinforce
the fact that our PCMP can adaptively choose the sampling order and combination according to the
different costs, to achieve the optimal performance.

Effects of Weight Parameter. We show the cost and
√
ϵPEHE across λ = 0.1, 0.3, 1, 3, 10 on IHDP

under α = 1, i.e., all-one cost in Figure 6. Similar results can be seen. These results reinforce
the fact that we can tune the weight parameter λ to the preference. On the other hand, policies
almost degenerate at λ = 0.1 into giving action=0 directly, i.e., stopping sampling directly before any
observations are made. This shows that choosing an appropriate weight parameter is crucial to get
the desired policy.

B.2 ADDITIONAL POLICY VISUALIZATION

We visualize the same data in Figure 7. The same policies realize the same phenomenon. What’s
more, the large difference in our method compared to the time when alpha=1 is due to the different
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Figure 5: Comparative analysis of four baseline methods and the proposed PCMP on the IHDP.
We leverage the causal method DESCN. We show the cost,

√
ϵPEHE and Total across α =

0, 0.5, 1.0, 1.5, 2.0.
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Figure 6: Comparative analysis of cost and
√
ϵPEHE across various weight parameter λ on the IHDP

under α = 0, i.e., all-one cost.

cost functions, and our method dynamically chooses different sampling strategies to achieve the
lowest Total. This result highlights the benefits of the forward-looking and dynamic nature of our
policy.
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Figure 7: Visualizations of a test data from the IHDP dataset under α = 0, i.e. all-one cost. For
three policies, Random, Greedy, and PCMP, we show the accumulative costs and the Total across the
acquisition steps.

B.3 VISUALIZATIONS OF RL TRAINING

We randomly choose five datasets and show their training curve in Figure 8, Figure 9 and Figure 10.
Notice that the sum of reward for most methods fluctuates upward and eventually converges gradually
and smoothly. This reflects that our reinforcement learning algorithm learned great policies. However,
there are still some strategies that suffer from crashes, i.e., a sample length of 1 along with a sum
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of the reward of 0, which suggests that the police always gives action directly to 0 thus terminating
the sampling before any observation is made. At this point, we solve this problem by retraining by
replacing the random seed or adjusting the initialization to learn a more reasonable policy for each
dataset.
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(b) DESCN
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Figure 8: Training curves of our policy on the IHDP dataset. We randomly select 5 datasets and plot
the average sampling length over steps (left) and the average sum of reward over steps (right). The
cost function is all-one cost and λ = 1. We set smooth to 0.6 for all curves.
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(a) TARNet
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(b) DESCN
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Figure 9: Training curves of our policy on the ACIC dataset. We randomly select 5 datasets and plot
the average sampling length over steps (left) and the average sum of reward over steps (right). The
cost function is all-one cost and λ = 1. We set smooth to 0.6 for all curves.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

0 20000 40000 60000 80000 100000
Training Steps

2

4

6

8

10

Av
er

ag
e 

Sa
m

pl
in

g 
Le

ng
th

Sampling Length over Steps

0 20000 40000 60000 80000 100000
Training Steps

50

40

30

20

10

0

Av
er

ag
e 

Su
m

 o
f R

ew
ar

d

Sum of Reward over Steps

(a) TARNet

0 20000 40000 60000 80000 100000
Training Steps

2

4

6

8

10

Av
er

ag
e 

Sa
m

pl
in

g 
Le

ng
th

Sampling Length over Steps

0 20000 40000 60000 80000 100000
Training Steps

40

30

20

10

0

Av
er

ag
e 

Su
m

 o
f R

ew
ar

d

Sum of Reward over Steps

(b) DESCN
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(c) ESCFR

Figure 10: Training curves of our policy on the Jobs dataset. We randomly select 5 datasets and plot
the average sampling length over steps (left) and the average sum of reward over steps (right). The
cost function is all-one cost and λ = 100. We set smooth to 0.6 for all curves.
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