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ABSTRACT

Active learning (AL) is a principled strategy to reduce annotation cost in data-
hungry deep learning. However, existing AL algorithms focus almost exclusively
on single-modality data, overlooking the substantial annotation burden in multi-
modal learning. We introduce the first framework for multimodal active learning
with unaligned data, where the learner must actively acquire cross-modal align-
ments rather than labels on pre-aligned pairs. This setting captures the practical
bottleneck in modern multimodal pipelines such as CLIP and SigLIP, where uni-
modal features are easy to obtain but high-quality alignment is costly. We develop
a new algorithm that combines uncertainty and diversity principles in a modality-
aware design, achieves linear-time acquisition, and applies seamlessly to both
pool-based and streaming-based settings. Extensive experiments on benchmark
datasets demonstrate that our approach consistently reduces multimodal annota-
tion cost while preserving performance; for instance, on the ColorSwap dataset it
cuts annotation requirements by up to 40% without loss in accuracy.

1 INTRODUCTION

Deep learning has achieved remarkable success across a wide range of applications, but its effec-
tiveness often hinges on access to large amounts of annotated training data. Active learning (AL)
has long been viewed as a promising approach to reduce annotation cost by selectively querying the
most informative instances for labeling (Settles, 2009). Theoretically, AL can exponentially reduce
the amount of labeled data required (Zhu & Nowak, 2022a), and empirically, it has delivered con-
sistent gains in data efficiency for deep models (Sener & Savarese, 2017; Ash et al., 2019; Citovsky
et al., 2021; Saran et al., 2023; Zhang et al., 2024a), as well as more recently for large language
models (Margatina et al., 2023; Bhatt et al., 2024; Yuan et al., 2025).

Despite this progress, most existing AL methods focus on the unimodal setting with unidirectional
annotation: given unlabeled features, the learner queries class labels from a small, fixed set. The
most closely related multimodal extension is the pre-aligned multimodal AL setting introduced in
Shen et al. (2023), which assumes that vision-language pairs are already aligned and simply queries
labels on these pairs. Since the alignment is free, the problem effectively reduces to unimodal
AL on composite inputs rather than addressing the harder challenge of discovering cross-modal
correspondences. Other applications of AL to multimodal tasks, such as video captioning (Zhang
et al., 2024b), follow a similar pattern: one modality (e.g., video) is treated as unlabeled input and
the other (e.g., text) directly as annotation, making the process unimodal in nature.

In this paper, we introduce the first setting of multimodal active learning with unaligned data, where
the learner begins with independent vision and language features and must actively acquire cross-
modal alignments. Unlike unimodal AL or pre-aligned multimodal AL, our setting requires deciding
both which modality to query from and how to align instances across modalities. This formulation
raises two qualitatively new challenges: (i) bidirectional alignment, since annotation can begin from
either vision-to-language or language-to-vision, and different choices lead to distinct annotation sets
and learning trajectories; and (ii) a large cross-modal candidate space, since evaluating the utility of
an instance requires reasoning over potential matches across the entire other modality, which may
contain millions of unique candidates (Gadre et al., 2024). Naively scoring all image–text pairs
scales quadratically, making classical AL strategies computationally infeasible.
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Our setting is directly motivated by modern multimodal pipelines such as CLIP (Radford et al.,
2021) and SigLIP (Zhai et al., 2023), where raw modality-specific features can be obtained cheaply
at scale, but high-quality alignment is expensive, domain-specific, and often the true bottleneck
(Gadre et al., 2024; Bai et al., 2024). This challenge is especially acute in specialized domains
such as medical imaging (Chen & Hong, 2024) and autonomous driving (Ge et al., 2023), where
multimodal annotation is both costly and critical.

Our contributions. Our main contributions are as follows:

(i) We introduce the problem of multimodal active learning with unaligned data, clarifying
how it differs fundamentally from unimodal AL and existing multimodal AL with pre-
aligned data.

(ii) We develop a new algorithm that integrates uncertainty and diversity principles in a
modality-aware design, achieves linear-time complexity in the number of unaligned in-
stances, and applies seamlessly to both pool-based and streaming-based scenarios.

(iii) We conduct extensive experiments on benchmark datasets, demonstrating consistent anno-
tation savings (up to 40% on ColorSwap) while maintaining competitive performance.

Paper organization. Section 2 introduces our problem formulation and highlights the unique chal-
lenges of multimodal AL with unaligned data. Section 3 presents our algorithm, its complexity
analysis, and extensions. Section 4 reports the main experimental results, and Section 5 provides
additional analysis. We conclude in Section 6. Related work and additional details are deferred to
the Appendix due to space constraints.

2 PROBLEM SETTING

We study multimodal learning with a dataset D = (Dv,Dl), where Dv = {xv
i }ni=1 denotes the

collection of raw vision features and Dl = {xl
i}ni=1 denotes the collection of raw textual/language

features.1 Unlike standard multimodal setups, the vision and language features are initially un-
aligned. The learner may query a subset of instances to obtain their aligned pairs at an annotation
cost. Specifically, for any data point xk

i ∈ {xv
i , x

l
i}, the learner can spend one unit of annotation cost

to reveal its aligned pair xi := (xv
i , x

l
i). We use S = {(xv

i , x
l
i)}mi=1 to denote the set of annotated

pairs obtained with a total of m units of cost.

The goal, under a fixed annotation budget, is to actively and strategically select an informative subset
S to maximize the quality of a multimodal model ϕ := (ϕv, ϕl), where ϕv, ϕl : Rd′ → Rd are
encoders that map raw features into a shared representation space. We adopt CLIP-style contrastive
training for multimodal models (Radford et al., 2021), and, following standard practice (Zhai et al.,
2022; 2023), evaluate model quality on downstream tasks.

We refer to this setup as multimodal active learning with unaligned data, which not only extends
classical unimodal active learning (Sener & Savarese, 2017; Ash et al., 2019; Citovsky et al., 2021;
Saran et al., 2023) but also departs fundamentally from prior multimodal active learning frame-
works that assume pre-aligned data (Shen et al., 2023). The active learning algorithm proceeds
over T ∈ Z+ iterations. At iteration t, the learner selects and annotates a batch of B data points
{(xv

ti , x
l
ti)}

B
i=1, and updates the annotation set as St ← St−1 ∪ {(xv

ti , x
l
ti)}

B
i=1. The multimodal

model ϕt = (ϕv
t , ϕ

l
t) is trained on St and then used to guide data selection in the next iteration. This

iterative process enables the learner, under a fixed budget, to build a high-quality multimodal model
from strategically chosen alignments.

Depending on how the learner accesses the unaligned pool, we study two regimes:

• Pool-based multimodal active learning. The learner has full access toD = (Dv,Dl) throughout
the process and can query any instances at any t ∈ [T ] (Ash et al., 2019).

• Streaming-based multimodal active learning. The pool arrives as disjoint subsetsD = {Dt}Tt=1
with ∪Tt=1Dt = D and Dti ∩ Dtj = ∅. At iteration t, the learner only observes Dt = (Dv

t ,Dl
t)

1For simplicity, we focus on the vision-language case. Our setting and algorithms naturally extend to general
multimodal learning with more than two modalities; see Section 3.2.
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and must select and annotate data within this batch. Unqueried data from Dt cannot be revisited
in future iterations (Saran et al., 2023).

Additional notation. For any N ∈ Z+, we denote [N ] := {1, · · · , N}. For multimodal sets D =
{Dv,Dl} and S = {Sv,Sl}, we write D \ S := {Dv \ Sv,Dl \ Sl}. For any modality k ∈ {v, l},
we denote ϕk

t (Skt ) := {ϕk
t (x

k) : xk ∈ Skt }. When clear, we use the shorthand ϕt(Skt ) = ϕk
t (Skt ) or

ϕ(Skt ) = ϕk
t (Skt ).

2.1 UNIQUE CHALLENGES WITH UNALIGNED MULTIMODAL DATA

Compared to unimodal active learning (Sener & Savarese, 2017; Ash et al., 2019) and multimodal
active learning with pre-aligned data (Shen et al., 2023), our setting—multimodal active learning
with unaligned data—poses qualitatively new challenges.

In unimodal active learning, each instance x has a single feature vector and annotation assigns
a class label from a small predefined set. In multimodal active learning with pre-aligned data, the
learner selects from pre-aligned pairs {(xv

i , x
l
i)}ni=1 for label queries. Because modalities are already

aligned, this effectively reduces to unimodal active learning on composite inputs.

By contrast, in our unaligned setting with vision features {xv
i }ni=1 and language features {xl

i}ni=1,
the learner must simultaneously decide which modality to query from and how to align instances
across modalities. This creates two distinctive challenges:

• Bidirectional alignment. With unaligned data, annotation may begin from either vision-to-
language or language-to-vision. Crucially, the learner does not know in advance which instance
from the other modality will be paired. Different alignment directions can lead to entirely different
annotation sets, adding an extra decision layer absent in unimodal or pre-aligned multimodal AL.

• Large cross-modal candidate space. Even after choosing a modality to query, the utility of a
candidate must be evaluated against the entire other modality. For instance, querying an image
requires scoring potential matches across all texts, which effectively serves as an enormous
candidate label space. Unlike conventional class labels, these candidates are instance-specific
and extremely numerous (e.g., 12.8M unique texts in DataComp (Gadre et al., 2024)). Naively
evaluating all pairs scales quadratically with dataset size, quickly becoming infeasible.

Thus, multimodal active learning with unaligned data requires acquisition algorithms that handle
both bidirectional alignment and the large cross-modal search space efficiently. We present our
approach to these challenges in Section 3.

3 METHODS

We present our approaches to address the unique challenges mentioned in Section 2.1. We first
introduce our multimodal active learning algorithm for the pool-based setting in Section 3.1, which
is further extended to the streaming-based setting and to settings beyond vision-language models in
Section 3.2.

3.1 MUTLIMODAL ACTIVE LEARNING

We present our multimodal active learning algorithm in Algorithm 1, which proceeds iteratively for
T iterations. At each iteration t ∈ [T ], Algorithm 1 selects a batch of B data points for annotation,
based on the multimodal model ϕt−1 = (ϕv

t−1, ϕ
l
t−1) trained with respect to previously annotated

data points St−1. The annotation set is then updated to St, and the model ϕt = (ϕv
t , ϕ

l
t) is retrained

on the updated annotation dataset to guide data selection in the next iteration.

The core of Algorithm 1 lies in how to select the batch of B data points for annotation. This
is achieved via three integrated steps: (1) modality selection, (2) coreset construction, and (3)
uncertainty-based selection. At a high level, Algorithm 1 first selects a modality that is under-
represented by the already annotated data St−1 (Step 1). It then constructs a coreset of BC data
on the selected modality to ensure coverage (Step 2), and finally selects B ≤ BC highly uncertain

3
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data points from this coreset using a cross-modal uncertainty score (Step 3), which quantifies how
confidently a feature in one modality matches candidates from the other.

Algorithm 1 Multimodal Active Learning

Input: Unaligned multimodal dataset D = {Dv,Dl}, number of iterations T , per-round selection
size B, coreset hyperparameter BC ≥ B.

1: Initialize multimodal model ϕ0 = {ϕv
0, ϕ

l
0} with random or pretrained weights.

2: Initialize the annotation set S0 = ∅.
3: for t = 1, · · · , T do
4: Consider unaligned data pool Dt := D \ St−1.
5: Step 1: Modality selection. Select modality kt := argmaxk∈{v,l} d

k
t that is less-covered

by previous annotations St−1, where

dkt := max
zi∈ϕt−1(Dkt

t )

min
zj∈ϕt−1(Skt

t−1)

dist(zi, zj). (1)

6: Step 2: Coreset construction. On modality kt, construct a coreset Ckt
t ⊆ D

kt
t of size BC

such that, together with Skt
t−1, it maximally covers Dkt

t :

Ckt
t := argmin

C:|C|=BC

max
zi∈ϕt−1(Dkt

t \C)
min

zj∈ϕt−1(Skt
t−1∪C)

dist(zi, zj). (2)

// Eq. (2) can be approximated with an efficient greedy algorithm (Algorithm 2).
7: Step 3: Uncertainty-based selection. Within coreset Ckt

t , select the top-B most uncertain
data points using multimodal model ϕt−1.

8: Let m := {v, l} \ {kt} denote the unselected modality in Step 1.
9: For each data xkt

i ∈ C
kt
t , compute its margin score u(xkt

i ) := wi
(1)−wi

(2), which serves as an

uncertainty measure. Here wi ∈ R|Dm
t | denotes the vector of similarity scores between xkt

i

and all unaligned features in the other modality Dm
t , and wi

(j) denotes the j-th largest entry
of wi. // Compute margin score as an uncertainty measure.

10: Select the subset {xkt
i }Bi=1 ⊆ C

kt
t with the top-B uncertainty scores (i.e., lowest margins),

annotate them, and update St ← St−1 ∪ {(xv
i , x

l
i)}Bi=1.

11: Model update. Train multimodal model ϕt = (ϕv
t , ϕ

l
t) on the updated annotation set St.

Output: Actively trained multimodal model ϕT = (ϕv
T , ϕ

l
T ).

Our Algorithm 1 integrates both diversity and uncertainty principles into multimodal active learning
with unaligned data. By restricting cross-modal uncertainty evaluation to the coreset constructed in
Step 2, our algorithm enables efficient data selection with per-round runtime that scales linearly in
|D|. In contrast, a naive uncertainty-based selection over the entire dataset would require quadratic
time in |D|, which is computationally prohibitive.

We next explain the details of each of the three steps in Algorithm 1.

Step 1: Modality selection. This step selects the modality that is underrepresented with respect to
the current annotation St−1 (line 5 in Algorithm 1). To assess coverage, for each modality k ∈ {v, l},
we compute the maximum distance of unaligned featuresDk

t := Dk\Skt−1 to their nearest neighbors
in Skt−1:

dkt := max
zi∈ϕt−1(Dkt

t )

min
zj∈ϕt−1(Skt

t−1)

dist(zi, zj),

where dist is a distance metric, and ϕ(x) denotes normalized embeddings to ensure comparabil-
ity across modalities. The modality with the largest distance value (i.e., least covered), kt :=
argmaxk∈{v,l} d

k
t , is selected for coreset construction in the next step. This step has a runtime

upper bound of O(|Dt| · |St−1|).

Step 2: Coreset construction. Given the selected modality kt, in Step 2 (line 6 of Algorithm 1),
we construct a coreset Ckt

t ⊆ D
kt
t of size BC ≥ B that, when combined with already annotated data

4
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points Skt
t−1, maximally covers the unaligned dataDkt

t . This is formalized in Eq. (2) of Algorithm 1.
Solving Eq. (2) exactly is NP-Hard (Cook et al., 1994). Following prior work in diversity-based
active learning in the unimodal setting (Sener & Savarese, 2017), we employ a greedy approximation
algorithm (Algorithm 2) that guarantees a 2× OPT solution with runtime O(BC · |Dt| · |St−1|).

Step 3: Uncertainty-based selection. With the constructed coreset Ckt
t , in Step 3 (lines 7-10 of

Algorithm 1), we compute the margin score as the a measure of uncertainty and select the top-
B data points with the highest uncertainty (i.e., lowest margin scores) for multimodal annotation.
For each xkt

i ∈ C
kt
t , we compute a vector of similarity scores wi ∈ R|Dm

t | between xkt
i and all

unaligned features in the other modality m := {v, l} \ {kt}. The calculation of similarity score is
usually model-dependent; but a simple example is the inner product between representations (or its
variants), e.g., wi

j := ⟨ϕkt
t−1(x

kt
i ), ϕm

t−1(x
m
j )⟩ for xm

j ∈ Dm
t . The uncertainty score is computed as

the margin between the top two similarity scores: u(xkt
i ) := wi

(1) − wi
(2). We select the B data

points in Ckt
t with the lowest margin scores. This step has a runtime of O(BC · |Dt|).

Algorithm 2 Greedy Approximation for Coreset Construction

Input: Selected modality kt, unaligned multimodal dataset Dkt
t , selection size BC , multimodal

model ϕt−1, current annotation set St−1.
1: Initialize coreset set Ckt

t = ∅.
2: while |Ckt

t | < BC do
3: Select a data point zu such that:

zu := argmax
zi∈ϕt−1(Dkt

t )

min
zj∈ϕt−1(Skt

t−1)

dist(zi, zj).

4: Update Ckt
t ← C

kt
t ∪ {zu}.

Output: Coreset Ckt
t .

Computational complexity. Summing the runtime of Steps 1–3, the per-round data acquisition
complexity of Algorithm 1 is upper bounded by O(BC · |Dt| · |St−1|), where |St−1| = O(tB) and
|Dt| ≤ |D|.2 Across T rounds, the total complexity is upper bounded by O(T 2 · B · BC · |D|), as
formalized in Proposition 1. The dominant factor is O(|D|), which is typically large in real-world
multimodal learning tasks. In contrast, a naive uncertainty-based approach would compute margin
scores for all pairs across modalities in the unaligned data, resulting in a per-round complexity of
O(|D|2), which is computationally expensive. Our algorithm avoids this quadratic bottleneck by
computing cross-modal uncertainty only over the coreset (Step 3). We present the computational
complexity analysis in Proposition 1 and defer the formal proof to Appendix A.2.

Proposition 1. The per-round data acquisition complexity of Algorithm 1 is upper bounded by
O(BC · |Dt| · |St−1|), resulting in an overall complexity of O(T 2 ·B ·BC · |D|).

3.2 EXTENSIONS OF ALGORITHM 1

Streaming-based multimodal active learning. While Algorithm 1 is originally designed for the
pool-based setting, it can be easily adapted to streaming-based multimodal active learning. As
introduced in Section 2, in the streaming-based setting, the learner only has access to the current
batch of stream data Dt. To adapt Algorithm 1 to this setting, we simply replace line 4 with the
current batch of stream data Dt, and leave all other parts of the algorithm unchanged. As a result,
aside from potential variation in the size ofDt, the per-round computational complexity remains the
same as in the pool-based case.

Active learning beyond vision-language models. Although our focus in this paper is on multi-
modal learning with vision-language data, Algorithm 1 can be naturally extended to general mul-

2We focus on the data acquisition complexity and its dependency on the size of the data pool O(|D|), which
is usually large for multimodal learning; note that the model training complexity is the same for all active
learning algorithms and it’s proportional to the training data size O(|St−1|).

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Datasets used in our experiments and their corresponding evaluation metrics.

Datasets Evaluation metrics #Data samples

ColorSwap Scores: text, image, group (Burapacheep et al., 2024) 1400
MS-COCO R@1: I→ T, T→ I (Zhai et al., 2023) 118K
DataComp Average score over 38 tasks (Gadre et al., 2024) 12.8M

timodal settings with m ≥ 3 unaligned modalities D = {D(1),D(2), · · · ,D(m)}. To support this
generalization, we modify Step 1 and Step 3 of the algorithm while keeping Step 2 unchanged, since
it operates solely within the selected modality. We discuss these changes below:

• For Step 1, we generalize the modality selection in Eq. (1) to select the least-covered modality
among all m modalities, i.e., kt := argmaxk∈{1,2,...,m} d

k
t .

• For Step 3, given any data point xkt ∈ Dkt
t in the selected modality, let uj(xkt) denote its cross-

modal uncertainty score with respect to each unselected modality j ∈ [m] \ {kt}. We then
define the overall uncertainty score as u(xkt) :=

∑
j∈[m]\{kt} u

j(xkt), and use this score for
uncertainty-based selection.

Assuming m = O(1), the computational complexity of this generalized algorithm remains order-
wise the same as the analysis provided in Proposition 1.

4 EXPERIMENTS

We conduct extensive experiments to evaluate the effectiveness of our proposed algorithm. The ex-
perimental setup is described in Section 4.1, followed by the main results and analyses in Section 4.2.
We defer additional implementation details and experimental results to Appendix A.3.

4.1 EXPERIMENTAL SETUPS

Datasets. We conduct experiments on three multimodal datasets: ColorSwap (Burapacheep et al.,
2024), MS-COCO (Lin et al., 2014), and DataComp (Gadre et al., 2024). ColorSwap is designed to
evaluate object-color matching with color-swapped image-caption pairs. MS-COCO is a large-scale
image-caption dataset designed for object detection. DataComp consists of large-scale image-text
pairs collected from Common Crawl. See Table 1 for detailed descriptions of these datasets. We
use ColorSwap for pool-based AL, and MS-COCO and DataComp for streaming-based AL. For
ColorSwap and MS-COCO, we initialize models from pretrained weights and study multimodal
active learning in the finetuning regime. For DataComp, we initialize models from random weights
to evaluate multimodal active learning in the pretraining regime.

Baselines and models. We compare our algorithm against three baselines: RAND, CORESET, and
UNCERTAINTY. RAND serves as a passive learning baseline, randomly selecting data pairs for anno-
tation. Since multimodal active learning with unaligned data is a new problem, no existing baselines
directly apply. To better assess the performance of our Algorithm 1, we construct two additional
baselines by adapting widely used unimodal methods to the multimodal setting: a diversity-based
method (CORESET) and an uncertainty-based method (UNCERTAINTY).3

We implement our algorithm and all baselines using the CLIP model (Radford et al., 2021) and its
variants SigLIP (Zhai et al., 2023) and LiT (Zhai et al., 2022), evaluating across models of different
sizes. Detailed hyperparameter settings are reported in Appendix A.3.2.

Evaluation metrics. We adopt standard evaluation metrics for each dataset. For ColorSwap, we
report the text score, image score, and group score, as proposed by Burapacheep et al. (2024). For
MS-COCO, we report recall@1 for both image-to-text and text-to-image retrieval, as commonly
used in the literature (Zhai et al., 2023). For DataComp, we follow Gadre et al. (2024) and report

3Full algorithmic details of CORESET and UNCERTAINTY are provided in Appendix A.3.1.
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Figure 1: Results of pool-based multimodal active learning on the ColorSwap dataset with CLIP-
B32 (top) and SigLIP-B16 (bottom). We report text score (left), image score (middle), and group
score (right) as learning progresses.
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Figure 2: Streaming-based multimodal active learning with the MS-COCO (left and middle) and
DataComp (right) datasets using CLIP-B32. We report R@1 (image-to-text) (left), R@1 (text-to-
image) (middle), and the average score across 38 downstream tasks (right). We report algorithm
performance as learning progresses.

the average score across 38 downstream tasks. All results are averaged over 4 random runs, with
shaded regions in plots indicating 2/3 of a standard deviation.

4.2 MAIN RESULTS

Pool-based multimodal active learning. We compare Algorithm 1 against three baselines on the
ColorSwap dataset. As shown in Fig. 1, our algorithm generally outperforms the baselines across
all three metrics. Notably, with CLIP-B32, Algorithm 1 achieves a group score of 49.42 using only
15% of the data, which is comparable to the group score reached by RAND at 25%, correspond-
ing to a 40% reduction in annotation cost. Relative to UNCERTAINTY, our algorithm achieves a
group score of 51.42 with 20% of the data, while UNCERTAINTY requires 30% to reach a similar
score—representing a 33% reduction in cost. In addition to superior data efficiency, Algorithm 1 is
computationally more efficient than UNCERTAINTY, which incurs higher complexity (Section 3.1).

Streaming-based multimodal active learning. We next evaluate Algorithm 1 in the streaming-
based setting on MS-COCO and DataComp datasets. On MS-COCO (left and middle panels of
Fig. 2), our algorithm consistently outperforms all baselines across both retrieval metrics. For ex-
ample, on R@1 (image-to-text), Algorithm 1 achieves a score of 41.47 using 23,600 samples (20%
of the data), matching the performance of CORESET and RAND with 25% of the data. This corre-
sponds to a 20% reduction in annotation cost.
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Figure 3: Group scores on the ColorSwap dataset in the pool-based setting, using CLIP-L14 (left),
LiT-L14 (middle), and SigLIP-L16 (right).

Table 2: Ablation study of Algorithm 1 with different modality selection strategies in the pool-based
setting using CLIP-B32 and SigLIP-B16. We report group scores with 30% of aligned data.

Model Random Text-only Image-only OURS

CLIP-B32 52.4±3.7 52.8±1.4 50.7±2.3 54.3±1.2
SigLIP-B16 75.50±2.1 77.67±2.9 76.89±1.9 79.42±2.9

To examine performance at larger scales, we further conduct experiments on the DataComp dataset
(right panel of Fig. 2), reporting the average score across 38 downstream tasks. Our algorithm out-
performs all baselines, with particularly large margins over RAND and UNCERTAINTY. Relative to
CORESET, Algorithm 1 achieves clear improvements as the number of aligned pairs grows, reaching
a score of 11.59 with 2.5M pairs. For context, training on the full 12.8M aligned pairs (the perfor-
mance skyline) yields a score of 13.20 (Gadre et al., 2024). Thus, our method attains 87.80% of the
skyline with just 2.5M pairs, whereas CORESET reaches only 85.68% of the skyline (with a score
of 11.31).

Robustness across CLIP variants and model sizes. To evaluate the robustness of Algorithm 1
across architectures and model sizes, we conduct additional experiments with multiple CLIP vari-
ants, including SigLIP (Zhai et al., 2023) and LiT (Zhai et al., 2022), as well as models of different
sizes. Given the high runtime cost of the streaming-based setting, most experiments are performed
in the pool-based scenario. Figure 3 reports group scores for large-scale variants, where Algo-
rithm 1 consistently outperforms the baselines. Results for text and image scores are deferred to
Appendix A.3.3, and show similar trends.

5 ANALYSES AND ABLATIONS

Modality selection. We first assess the effectiveness of the modality selection strategy in Algo-
rithm 1 (Step 1). Following the same experimental setup as in Fig. 1, we compare our approach
against three alternatives: randomly choosing a modality, always selecting the text modality, and
always selecting the image modality. As reported in Table 2, our proposed strategy achieves the best
performance across both CLIP and SigLIP models. For example, it attains a group score of 54.3
with the CLIP model, representing up to a 7% improvement over the image-only strategy, with all
other components held fixed.

Robustness to coreset hyperparameter BC . To examine robustness to the coreset hyperparam-
eter BC (Step 2), we conduct experiments across model families (CLIP and SigLIP) and scales
(CLIP-B32 and SigLIP-L16). As shown in Fig. 4, performance remains stable across different
values of BC and annotation costs, demonstrating that our method is robust to this parameter. In
practice, we select the value of BC from the set {1.5B, 2B, 2.5B}, depending on the dataset and
model. We provide detailed hyperparameter selections in Appendix A.3.2.
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Figure 4: Parameter study of Algorithm 1 with different values of BC in the pool-based setting using
CLIP-B32 and SigLIP-L16. We report group scores as learning progresses.

Table 3: Case study of Algorithm 1, recording margin scores at Step 3 under the pool-based setting
with CLIP-B32. We report average margin scores (scaled by ×10−2) for both correctly and incor-
rectly matched groups (with respect to the ground-truth alignments) across different percentages of
aligned data pairs.

Percentage of Aligned Data 5% 10% 15% 20% 25% 30%
Correctly matched group 3.8±0.2 4.0±0.1 4.2±0.4 4.7±0.2 4.8±0.2 5.2±0.2

Incorrectly matched group 0.9±0.1 1.0±0.2 1.3±0.1 1.4±0.2 1.4±0.1 1.5±0.5

Effectiveness of margin score in data selection. To evaluate the effectiveness of the margin
score in Algorithm 1 (Step 3), we analyze its behavior across different percentages of aligned
data pairs. At each iteration, Step 3 computes pseudo-alignments for all unaligned data points
by selecting their most likely match based on similarity. We then partition the data into correctly
matched and incorrectly matched groups (with respect to ground-truth alignments) and report their
average margin scores in Table 3. As expected, incorrectly matched samples consistently exhibit
lower margin scores than correctly matched ones, reflecting higher uncertainty and thus greater
value for active selection. Since these pseudo-alignments are computed on unaligned data not
yet used in training, the results confirm that the margin score provides a robust and meaningful
uncertainty signal even in noisy, unaligned settings.

Synergy of uncertainty and diversity in data selection. As shown in Section 4.2, Algorithm 1
consistently outperforms all baselines. We attribute this advantage to its ability to prioritize data
points that are both uncertain (Step 3) and diverse (Step 2). To test this hypothesis, we visualize the
ColorSwap dataset using t-SNE on image-modality embeddings, comparing data selected by Algo-
rithm 1 with those chosen by UNCERTAINTY. As shown in Fig. 8 (deferred to Appendix A.3.4),
points selected by Algorithm 1 (red stars) not only concentrate near high-uncertainty regions (blue
circles; selected by UNCERTAINTY) but also spread more broadly across the embedding space, re-
flecting greater diversity. This joint emphasis on uncertainty and diversity provides a key advantage
of Algorithm 1.

6 CONCLUSION

We presented the first study of active learning in multimodal settings with unaligned data, address-
ing the key challenges of bidirectional alignment and annotation across large cross-modal candidate
spaces. By integrating uncertainty- and diversity-based selection in a modality-aware design, we
developed an efficient algorithm applicable to both pool-based and streaming-based scenarios. Ex-
periments on benchmark datasets show that our approach reduces annotation requirements by up to
40% while maintaining model performance, highlighting the promise of active learning for scalable
and cost-effective multimodal learning. Although our focus has been on multimodal representation
learning, an important future direction is to extend these ideas to multimodal generative models.
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A APPENDIX

A.1 RELATED WORK

Active learning. Active learning (AL) aims to train accurate models with fewer annotations by
selectively querying the most informative instances (Settles, 2009). It has become increasingly
important in modern applications where unlabeled data are abundant but annotation is costly. The-
oretically, a long line of work has established the provable benefits of AL over standard passive
learning (Castro & Nowak, 2007; Balcan et al., 2007; Dasgupta et al., 2009; Hanneke, 2014; Kr-
ishnamurthy et al., 2019; Puchkin & Zhivotovskiy, 2021; Zhu & Nowak, 2022b;a). Empirically,
AL has also demonstrated consistent gains, especially when integrated with deep neural networks
(Sener & Savarese, 2017; Ash et al., 2019; Citovsky et al., 2021; Ash et al., 2021; Wang et al., 2022;
Saran et al., 2023; Zhang et al., 2024a), and more recently with large pretrained models (Margatina
et al., 2023; Bhatt et al., 2024; Yuan et al., 2025).

Despite these successes, most work has focused on the unimodal setting with unidirectional anno-
tation: given unlabeled features, the learner selects a subset for labeling. The closest multimodal
extension is the pre-aligned setting (Shen et al., 2023), which assumes that vision-language pairs
are already aligned and simply queries labels on these pairs. Since alignment is free, this effectively
reduces to unimodal AL on composite examples rather than tackling the harder challenge of discov-
ering cross-modal correspondences. Other applications of AL to multimodal tasks, such as video
captioning (Zhang et al., 2024b), follow a different path: one modality (e.g., video) is treated as
input while the other (e.g., text) serves as annotation, keeping the process strictly unidirectional and
thus still structurally unimodal.

In contrast, we introduce the first multimodal AL setting that supports bidirectional alignment with
unaligned data: the learner is provided with independent vision and language features and must
actively acquire meaningful cross-modal correspondences, either from images to text or from text to
images. This setting is directly motivated by modern multimodal pipelines such as CLIP (Radford
et al., 2021) and SigLIP (Zhai et al., 2023), where unimodal features are easy to obtain at scale, but
high-quality alignment is expensive, domain-specific, and often the true bottleneck.

Multimodal learning. Multimodal learning seeks to integrate information from diverse modali-
ties such as text, images, and audio to improve learning performance (Baltrušaitis et al., 2018; Liang
et al., 2024). Early approaches relied on supervised labels, where multimodal features were anno-
tated with classification labels, making the process closely resemble standard unimodal learning.
More recently, multimodal learning has shifted toward supervision from paired multimodal data,
where one modality provides a supervision signal for another (Zong et al., 2024). A prominent ex-
ample is CLIP (Radford et al., 2021) and its variants (Zhai et al., 2022; 2023), which leverage paired
image–text data to train contrastive objectives that align representations across modalities.

While large-scale, noisily aligned multimodal data can be scraped from the web, it is increasingly
recognized that training high-performing multimodal models requires high-quality, well-aligned
datasets (Gadre et al., 2024; Bai et al., 2024). This need is even more pronounced in specialized
domains such as medical imaging (Chen & Hong, 2024) and autonomous driving (Ge et al., 2023),
where careful multimodal annotation is both critical and costly. These challenges highlight the
importance of developing efficient methods that can learn effectively from fewer paired examples.
Although recent work has explored active learning for multimodal tasks with label annotations (Shen
et al., 2023), to the best of our knowledge, our work is the first to design a multimodal active learning
algorithm specifically tailored for pairing annotation.

Data selection. Data selection is closely related to active learning, aiming to construct a high-
quality subset of data for more efficient or effective model training. The key distinction lies in the
availability of labels or pairings: active learning selects data points before annotation, whereas data
selection assumes a fully labeled or paired dataset. From this perspective, active learning is strictly
more challenging, as it must operate without access to labeling or pairing information.

Data selection methods have been shown to reduce training cost (Schreiber et al., 2020; Mindermann
et al., 2022; Sorscher et al., 2022; Yang et al., 2022; Shen et al., 2024), and in some cases even
improve performance by removing duplicated or noisy data (Lee et al., 2021; Tirumala et al., 2023;
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Xia et al., 2024). In the multimodal domain, researchers have proposed metrics such as CLIPScore
(Hessel et al., 2021) and its extensions (Wang et al., 2024a;b; Joshi et al., 2024) to evaluate the
quality of image-ext pairs, enabling filtering of low-quality examples for data selection. While
CLIPScore-based filtering has proven useful for multimodal data selection (Schuhmann et al., 2021),
it assumes access to pre-paired multimodal data and is therefore unsuitable for our setting with
unaligned modalities.

A.2 SUPPORTING RESULTS FROM SECTION 3

Proposition 1. The per-round data acquisition complexity of Algorithm 1 is upper bounded by
O(BC · |Dt| · |St−1|), resulting in an overall complexity of O(T 2 ·B ·BC · |D|).

Proof. We analyze the data acquisition complexity of Algorithm 1 as follows.

• Per-round complexity. We analyze the runtime of each major step in the algorithm:

– Line 5. The main computational cost arises from evaluating Eq. (1), which involves
iterating over both Dt and St−1. The resulting runtime is upper bounded by O(|Dt| ·
|St−1|).

– Line 6. For coreset construction, we use the greedy approximation algorithm in
Algorithm 2. Each iteration for selecting a point and updating the coreset takes
O(|Dt| · |St−1|) time. Repeating this process BC times gives an overall runtime of
O(BC · |Dt| · |St−1|).

– Lines 7–10. These steps perform uncertainty-based selection. Computing uncertainty
scores over BC coreset candidates against the other modality requires O(BC · |Dt|)
operations.

Summing the contributions from each step, the per-round data acquisition complexity is
upper bounded by

O(BC · |Dt| · |St−1|).

• Overall complexity. Since |St−1| = B · (t− 1), the total complexity over T rounds is

O

(
BC ·

T∑
t=1

|Dt| ·B · (t− 1)

)
= O(T 2 ·B ·BC · |D|),

where we use |Dt| ≤ |D| for all t.

Remark 1. Faster implementation of Line 6 in Algorithm 1. To improve efficiency, Line 6 (using
Algorithm 2) can be implemented using a distance caching strategy. Initially, we compute the min-
imum distances between all candidate points in Dt and the selection set St−1, incurring a runtime
of O(|Dt| · |St−1|). For subsequent iterations in the greedy selection process, we only need O(|Dt|)
operations to update the cache and select the next point. Thus, the overall runtime of Line 6 is
improved to O ((BC + |St−1|) · |Dt|).

A.3 OTHER DETAILS FOR EXPERIMENTS

A.3.1 ADDITIONAL DETAILS AND BASELINES

Computing resources. All experiments are implemented in PyTorch (Paszke et al., 2019), with
parts of the codebase adapted from DataComp (Gadre et al., 2024) and OpenCLIP (Ilharco et al.,
2021). Experiments are conducted on a single NVIDIA RTX 6000 Ada GPU.

Additional details on datasets. We use the 2017 release of MS-COCO, which contains approxi-
mately 118K training images (train split) and 5K validation images (val split).4 Since only these two
splits provide captions, we use the train split for training and the val split for testing. Each image in
MS-COCO is paired with five captions; in our experiments, we use the first caption for each image.

4https://cocodataset.org
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Baselines. We provide full implementations of the two baseline methods used in our experiments:
CORESET (Algorithm 3) and UNCERTAINTY (Algorithm 4). Both are adapted from diversity-based
and uncertainty-based active learning algorithms originally developed for unimodal settings.

In the multimodal setting, Algorithm 3 randomly selects a modality and then constructs a coreset
within that modality using a greedy algorithm. Algorithm 4 computes margin-based uncertainty
scores in both directions (text → image and image → text), and selects the top-B most uncertain
instances for multimodal annotation.

To extend these baselines to the streaming setting, we adopt the same strategy as in Algorithm 1:
line 4 in both Algorithm 3 and Algorithm 4 is replaced with the current batch of stream data Dt,
while the remainder of each algorithm is left unchanged.

For consistency, we use Euclidean distance as the default metric in Algorithm 1, Algorithm 3, and
Algorithm 4.

Algorithm 3 Multimodal Coreset Selection

Input: Unaligned multimodal dataset D = {Dv,Dl}, number of iterations T, per-round selection
size B.

1: Initialize multimodal model ϕ0 = {ϕv
0, ϕ

l
0} with random or pretrained weights.

2: Initialize the annotation set S0 = ∅.
3: for t = 1, · · · , T do
4: Consider unaligned data pool Dt := D \ St−1.
5: Randomly select a modality kt ∈ {v, l}.
6: for c = 1, · · · , B do
7: zu = argmax

zi∈ϕ(Dkt
t )

min
zj∈ϕ(Skt

t−1)
dist(zi, zj).

8: Annotate zu and add (zvi , z
l
i) to St.

9: Train multimodal model ϕt = (ϕv
t , ϕ

l
t) on the updated annotation set St.

Output: Actively trained multimodal model ϕT = (ϕv
T , ϕ

l
T ).

Algorithm 4 Multimodal Uncertainty-based Data Selection

Input: Unaligned multimodal dataset D = {Dv,Dl}, number of iterations T, per-round selection
size B.

1: Initialize multimodal model ϕ0 = {ϕv
0, ϕ

l
0} with random or pretrained weights.

2: Initialize the annotation set S0 = ∅.
3: for t = 1, · · · , T do
4: Consider unaligned data pool Dt := D \ St−1

5: For each modality k ∈ {v, l} and for each data xk
i ∈ Ckt , compute its margin score u(xk

i ) :=
wi

(1)−wi
(2), which serves as an uncertainty measure. Here wi ∈ R|Dm

t | denotes the vector of

similarity scores between xkt
i and all unaligned features in the other modality m := {v, l} \

{k}, and wi
(j) denotes the j-th largest entry of wi. // Calculate the margin scores from

both directions.

6: Select B data points with smallest margin scores with respect to {xv
i }

|Dv
t |

i=1 ∪ {xl
j}

|Dl
t|

j=1 , anno-
tate them, and update St ← St−1 ∪ {(xv

i , x
l
i)}Bi=1. // If, within the top-B selection,

a selected image feature is paired with another selected language feature, then
continue the selection process until getting B annotated pairs.

7: Train multimodal model ϕt = (ϕv
t , ϕ

l
t) on the updated annotation set St.

Output: Actively trained multimodal model ϕT = (ϕv
T , ϕ

l
T ).

A.3.2 HYPERPARAMETER SETTINGS
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Table 4: Hyperparameter settings for the ColorSwap dataset using CLIP model.

Hyperparameters CLIP-B32 CLIP-L14

Epochs 50 50
Batch Size 70 35
Optimizer AdamW AdamW
Weight Decay 0.1 0.1
Learning Rate 2× 10−5 1× 10−5

BC 2.5B 2.5B

Table 5: Hyperparameter settings for the ColorSwap dataset using SigLIP and LiT.

Hyperparameters SigLIP-B16 SigLIP-L16 LiT-L14

Epochs 80 80 50
Batch Size 70 35 35
Optimizer AdamW AdamW AdamW
Weight Decay 0.1 0.1 0.1
Learning Rate 2× 10−5 1× 10−5 1× 10−5

BC 1.5B 2.0B 2.5B

Table 6: Hyperparameter settings for the MS-COCO and DataComp datasets using CLIP model.

Hyperparameters MS-COCO DataComp

Epochs 10 1
Batch Size 256 512
Optimizer AdamW AdamW
Weight Decay 1× 10−4 0.2
Learning Rate 1× 10−5 6.25× 10−5

BC 2B 2.5B

Tables 4 to 6 list the hyperparameters used in our experiments across datasets and model variants.
For ColorSwap and MS-COCO, we initialize models from pretrained weights and study multimodal
active learning in the finetuning regime. For DataComp, we initialize models from random weights
to evaluate multimodal active learning in the pretraining regime.

A.3.3 ADDITIONAL EXPERIMENTAL RESULTS

We present additional experimental results in Figs. 5 to 7. The conclusions from the main results in
Section 4.2 remain consistent across different CLIP variants and model sizes: Algorithm 1 continues
to outperform all baselines.

A.3.4 SUPPORTING FIGURES FOR ADDITIONAL ANALYSES

In Fig. 8, we generate a t-SNE visualization on the ColorSwap dataset using image-modality data
selected by Algorithm 1 and by UNCERTAINTY.

A.4 THE USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs were used to polish the writing of this paper.
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Figure 5: Results of pool-based multimodal active learning on the ColorSwap dataset with CLIP-
L14. We report text score (left), image score (middle), and group score (right) as learning progresses.
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Figure 6: Results of pool-based multimodal active learning on the ColorSwap dataset with SigLIP-
L16. We report text score (left), image score (middle), and group score (right) as learning progresses.
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Figure 7: Results of pool-based multimodal active learning on the ColorSwap dataset with LiT-L14.
We report text score (left), image score (middle), and group score (right) as learning progresses.
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t-SNE visualization on ColorSwap

Uncertainty
Ours

Figure 8: t-SNE visualization of image-modality embeddings from the ColorSwap dataset, compar-
ing our method (Algorithm 1) with an uncertainty-based baseline (UNCERTAINTY). Points selected
by the baseline are shown as blue circles, while points selected by our method are shown as red
stars. Blue density contours represent the distribution of all data. Compared to the uncertainty-
based method, our approach selects samples that not only capture uncertain regions but also exhibit
greater diversity across the embedding space.
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