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ABSTRACT

Learning elements of the hidden set(s), also known as group testing (GT), is a
well-established area in which one party tries to discover elements hidden by the
other party by asking queries and analyzing feedback. The feedback is a function
of the intersection of the query with the hidden set – in our case, it is a classical
double-threshold function, which returns i if the intersection is a singleton i ∈ [n]
and “null” otherwise (i.e., when the intersection is empty or of size at least 2). In
this work, we introduce a local framework to this problem: each hidden element is
an ”autonomous” element and can analyze feedback itself, but only for the queries
which this element is a part of. The goal is to design a deterministic non-adaptive
sequence of queries that allows each non-hidden element to learn about all other
hidden agents. We show that, surprisingly, this task requires substantially more
queries than the classic group testing – by proving a super-qubic (in terms of the
number of hidden elements) lower bound and constructing a specific sequence
of slightly longer length. We also extend the results to the model, where agents
belong to various clusters and selection must be done in queries avoiding elements
from “interfering” clusters. Our algorithms could be generalized to other feedback
functions, to adversarial/stochastic fault-prone scenarios and applied to codes.
Keywords: hidden set, group testing, local testing, non-adaptive queries, determin-
istic algorithms, lower bounds, clusters.

1 INTRODUCTION

In the Group Testing (GT) research field, introduced by Dorfman in 1943 Dorfman (1943), the
goal is to identify all elements of an unknown set K by asking queries and analyzing answers
(so called, feedback vector). Originally GT was applied for identifying infected individuals in
large populations using pooled tests, and it has also been very vibrant recently during and after
the COVID-19 pandemic Augenblick et al. (2020); Mallapaty et al. (2020); Sinnott-Armstrong
et al. (2020). GT has also applications in various areas of Machine Learning, such as: simplifying
multi-label classifiers Ubaru et al. (2020), approximating the nearest neighbor Engels et al. (2021),
or accelerating forward pass of a deep neural network Liang & Zou (2021). Other applications of
GT include stream processing, c.f., extracting the most frequent elements Cormode et al. (2003);
Cormode & Muthukrishnan (2005); Cormode & Hadjieleftheriou (2008); Yu et al. (2004); Kowalski
& Pajak (2022a), coding Kautz & Singleton (1964); Porat & Rothschild (2011b); Cheraghchi &
Ribeiro (2019) and network communication, c.f.: Clementi et al. (2001); Kowalski & Pelc (2003);
Jurdzinski et al. (2018). More information, applications and links could be found in the seminal
book Du et al. (2000) and recent literature Klonowski et al. (2022); Kowalski & Pajak (2022b).

In this work we consider one of the classical query’s feedback models: if the intersection of the query
with the hidden set is a single element, the id of this element is returned (we say that this element
is selected); otherwise an arbitrary null value is returned. We focus on deterministic non-adaptive
solutions, i.e., when a sequence of queries is determined by GT algorithm prior the hidden set is
selected by some adversary. The goal of the algorithm, often called a selector, is to select every
element of the hidden set, using as small number of queries as possible. It is already known that GT
in this model can be solved using O(k2 log(n/k)) queries De Bonis et al. (2003), and an explicit
polynomial-time construction of length O(k2 log n) exists Porat & Rothschild (2011a). The best
known lower bound on the number of queries is Ω(min{k2 log n/ log k, n}) Clementi et al. (2001).

In this work, inspired by recent papers by Jurdzinski et al. (2017; 2018) on collision-avoiding
communication, we pursue a study of non-adaptive GT enhanced by two additional properties.
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First, we require local learning, that is, each element in the near universe (but not in the hidden set)
needs to learn about the hidden set. However, it can do so only by being included in queries that
simultaneously select hidden elements. Note that these two goals, selection and local learning, are
not necessarily aligned: selection would rather produce smaller queries, to avoid intersections of size
bigger than 1 with the hidden set; quick local learning, on the other hand, would like to place as many
near elements to the query as possible – so that many of them could learn, in case the intersection
with the hidden set is a singleton. Thus, efficient implementation of selection with simultaneous local
learning is a challenging task.

Second, we go further to two-dimensional space1 and ask question of efficient local learning within
any single one-dimensional sub-space, simultaneously avoiding any elements from restricted union
of any other ℓ one-dimensional spaces (here, called clusters). Intuitively, presence of such elements in
queries may cause negative inference to the local learning process, e.g., in testing biological/chemical
samples, or shared-medium communication (learning “free channels”), or clustering records that are
close to being independent. Similarly as in local learning, avoiding any subset of other clusters may
not be aligned with simultaneous local learning in a single cluster (the choice of which sub-space
is learning and which to avoid could be made arbitrarily by an adversary); therefore, its efficient
implementation is challenging.

Apart from providing efficient polynomial-time constructions and almost matching lower bounds
on the number of queries in the two considered extended types of group testing, we provide several
extensions, remarks and open directions – see details in “Our contribution” and beyond in Section 2.

Motivation for this work.

Non-adaptive vs. adaptive group testing. There is a distinction between adaptive GT, which allows for
designing each consecutive queries with knowledge of the results of the preceding queries, and non-
adaptive GT, which requires that all queries are designed in advance, without any information about
results of other queries. While adaptive approach might, under some assumptions, result in more
efficient GT schemes – i.e., with a significantly smaller number of queries than in the non-adaptive
case – there are at least two advantages of the non-adaptive GT which make it very attractive. Firstly,
while adaptive GT schemes can be executed only in a sequential way (because each consecutive query
may depend on the results of the previous queries), all the queries of the non-adaptive scheme can be
executed in parallel. This property may, e.g., give much faster testing scenarios in the settings where
equipment/environment allows (or make it cheaper) for performing many tests in parallel. Secondly,
non-adaptive schemes can be transformed into – and in fact are, according to some definitions,
equivalent to – the encoding/decoding methods satisfying some specific properties. Well known and
very close examples of such application of non-adaptive schemes – both as group testing schemes
and as codes – are some types of error correcting codes, e.g., Superimposed Codes.

Local vs. the “standard” centralized group testing. Our locality paradigm is designed to support
settings in which – because of privacy, security and safety issues or the danger of data leaks – access
to the results of particular tests is limited to those entities which are originally included in the test
(while staying hidden for the “outside world”). In such types of GT frameworks, the participants
outside of the hidden set are allowed to learn only the results of the queries which they belong to.
This property is modeled in the definition of the local selector (Section 2). In the clustered case (i.e.,
local avoiding selector) we address a more sophisticated privacy mechanism, where tests performed
within various groups (clusters) are only supposed to allow for reconstruction of the hidden set within
those groups. The clustered case can also be used in order to address a scenario where sampled input
(some digital data or e.g. some biological material) is supposed to be tested for various properties,
under multiple types of data, biological or chemical components, corresponding to clusters. However,
some of those properties might be similar or conflicting, such that mixing samples with probable
occurrence of at least two of them could give “false positives” for the other.

Two-thresholds vs. one-threshold feedback with s = 1. For the sake of presentation of our ideas, we
focus on a specific variant of a very general two-threshold feedback model with thresholds s1 ≤ s2
such that the result of the query determines whether the size of the intersection of a query set and the
hidden set is in the range [s1, s2]. Our variant assumes s1 = s2 = 1 and if the intersection size is 1, it
also returns the id of the singleton. This feedback function is popular e.g., in designing collision-free

1The first coordinate could be viewed as an element individual id, while the other – as its cluster id.
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wireless communication schedules De Marco & Stachowiak (2017), but there are other popular
feedbacks considered in the literature. Probably the most common feedback function assumes one
threshold s such that the result of a query is positive iff the size of the intersection of a query set
and the hidden set is at least s, cf., Dorfman (1943); Klonowski et al. (2022). We have chosen the
two-threshold model as it is most convenient to convey ideas and do the formal analysis. However, in
Section 5.2 we propose a new efficient transformation between the two abovementioned feedback
models – it is different from ones considered in the literature, cf., Kowalski & Pajak (2022b), because
it has to take into account locality of decoding process.

Paper overview. Section 2 formalizes the model, the problem and describes our contribution.
Sections 3 and 4 provide technical details regarding polynomial constructions and lower bounds for
local and avoiding selectors. Interesting extensions and corresponding open directions are developed
in Section 5. Related work is provided in Section 6. Some proofs, related work on other feedback
models and more open problems are deferred to the Appendix, due to space limit.

2 MODEL, PROBLEM, CONTRIBUTION AND PRELIMINARIES

Consider the universe of all elements – set N = [n] = {0, . . . , n−1}. Throughout the paper, we will
associate an element with its identifier. Let K, with |K| ≤ k, denote a hidden subset of N , chosen
arbitrarily by an adversary. It is typically assumed in the literature that k is substantially smaller than
n, denoted k ≪ n. Let Q = ⟨Q1, . . . , Qm⟩ be a fixed sequence of m queries generated by a given
non-adaptive algorithm. Here, a non-adaptive algorithm is also colloquially called in the literature
a (n, k)-selector or a (n, k)-strong selector (as the resulting sequence of queries is in fact a fixed
mathematical structure), while m is called the length or the size of the selector.

A general feedback function F is a function from subsets of N into an arbitrary domain. A function
is applied to K ∩ Qi and the result is called a feedback for query Qi. In our work, we assume a
classic feedback F that returns null in |K ∩Qi| ≠ 1 and returns x if K ∩Qi = {x}. In the latter
case, we say that the query selects element x from the hidden set. The goal of the selector is to have
every element of the hidden set selected by some query, for any possible hidden set.

In what follows, we present an extension of the classic notion of selector, defined above, by two addi-
tional properties that we require from selectors: locality and avoidance. They were introduced recently
by Jurdzinski et al. (2018) in the context of collision-avoiding schedules in network communication.2

Local Selectors. A sequence Q = (Q1, . . . , Qm) of sets over [n] satisfies Local Selection property
(or LocS property, for short) for a set K ⊆ [n], if for any x ∈ K and any y ̸∈ K, there is a set
Qi ∈ Q such that K ∩Qi = {x} and y ∈ Qi. One may interpret the above definition as a non-hidden
element y being a “witness” of a selection of a hidden element x, or alternatively, a non-hidden
element y learning that x is in the hidden set K but only if y itself is in the current query Qi. (Note
that although y ∈ Qi, y is not in Qi ∩K as it is not a hidden element.)

A sequence S = (S1, . . . , Sm) is an (n, k)-Local-Selector (or (n, k)-LocS, for short) of length m if,
for every subset K ⊆ [n] of size k, the family Q satisfies the LocS property for K. The following
non-constructive upper bound was proved using a probabilistic argument.

Lemma 1. Jurdzinski et al. (2018) For each positive integers n and k ≤ n, there exists an (n, k)-LocS
of length O(k3 log n).

One can generalize the notion of (n, k, ℓ)-LocS even further – to the situation that LocS property
must hold only in sub-spaces (with fixed second coordinate, and called clusters) of a two-dimensional
space. Even more, that this property holds using only queries that avoid a given set of ℓ other clusters.
Intuitively, having elements from other clusters in the query may negatively influence, or even clash,
the learning process within a given cluster – hence, the goal is to do local learning of k hidden
elements within the cluster and simultaneously avoiding the other ℓ “bad” clusters. More formal
definitions follow.

2Jurdzinski et al. (2018) called these extended selectors (n, k)-witnessed strong selector (or (n, k)-wss) for
our (n, k)-LocS, and (n, k)-witnessed clusters aware strong selector (or (n, k, ℓ)-wcass) for our (n, k, ℓ)-LocAS.
In our work, we propose a unified system of names refined to the GT area: locality and avoidance.
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Local Avoiding Selectors. We say that a set Q ⊆ [n]2 is free of ϕ ∈ [n] if for all (x, ϕ′) ∈ Q we
have ϕ′ ̸= ϕ. A set Q is free of a given set C ⊆ [n] if Q is free of each element ϕ ∈ C. We call a set
of pairs K × {ϕ} a slice, set [n]× {ϕ} a cluster, and ϕ a cluster number. Let K ⊆ [n]× {ϕ} be a
set of elements that we would like to select locally in the cluster ϕ, and L ⊆ [n] \ {ϕ} be a set of
cluster numbers in conflict with the cluster ϕ, i.e., elements of these clusters we want to avoid when
locally selecting elements in K. Then, a sequence Q = (Q1, ..., Qm) of subsets of [n]2 satisfies
Local Avoiding Selection property (LocAS property, for short) for K with respect to L if for each
x ∈ K and each y ̸∈ K from cluster ϕ (i.e., y ∈ [n]×{ϕ}) there is a set Qi such that Qi ∩K = {x},
y ∈ Qi and Qi ∩ ([n]× L) = ∅ (i.e., Qi is free of clusters from the set L of cluster names). In less
formal words, LocAS property requires that for each x ∈ K and each y ̸∈ K such that y ∈ [n]×{ϕ}
is in the same cluster as x: x is selected by some Qi, y learns about x ∈ K (i.e., y ∈ Qi), and Qi is
free of the clusters from L (i.e., elements from clusters L do not interfere learning by y about x).

A sequence Q = (Q1, ..., Qm) of subsets of [n]2 is an (n, k, ℓ)-Local-Avoiding-Selector (or (n, k, ℓ)-
LocAS, for short) if for any set L ⊆ [n] of size ℓ, any ϕ ̸∈ L and any set K ⊆ [n]× {ϕ} of size k,
selector Q satisfies LocAS property for K with respect to L. The following non-constructive upper
bound was proved using a probabilistic argument.

Lemma 2. Jurdzinski et al. (2018) For each natural n, and k, ℓ ≤ n, there exists an (n, k, ℓ)-LocAS
of length O((k + ℓ)ℓk2 log n).

Our technical contribution. In this work we present polynomial time constructions of efficient
(n, k)-LocS and (n, k, ℓ)-LocAS. The former has length O(k3 log2 n(logk n+ (log log n/ log k)2)),
c.f., Section 3 and Theorem 3.1, while the latter – length O((k + ℓ)ℓk2 log3 n(logk n +
(log log n/ log k)2)) = O((k + ℓ)ℓk2 polylog n), c.f., Section 4 and Theorem 4.1. Both our re-
sults give almost the same formulas as the best known existential results – see the cited Lemmas 1
and 2, respectively. Those results only proved, by using a probabilistic argument, that selectors of
similar length exist, without showing how to construct them, c.f., Jurdzinski et al. (2017; 2018). Ours
is the first and efficient construction of such selectors.

We complement our constructive results by proving almost-matching lower bounds, correspondingly:
Ω(min{k3 logk n, kn}) on the length of any (n, k)-LocS, see Section 3 and Theorem 3.2, and
Ω(ℓ ·min{k3 logk n, kn}) on the length of any (n, k, ℓ)-LocAS, see Section 4 and Theorem 4.2.

Extensions of technical results to fault-prone testing environments, different feedback functions (such
as classic beeping) and applications to codes, are given in Section 5.

A note on inefficiency of a product of selectors. One could be tempted to construct (n, k)-LocS
or (n, k, ℓ)-LocAS by taking a product of two classic (n, k)-selectors, or two classic (n, k)-selectors
and one (n, ℓ)-selectors, respectively. This way, each of the three properties: selection, locality
(witnessing) and avoidance, would be assured “independently” by the means of a different selector
in such product. Note, however, that such constructions would not be efficient, and result in linear
or even quadratic overhead comparing to our constructions, due to the super-quadratic lower bound
on the length of a classic selector – Ω(min{k2 log n/ log k, n}) Clementi et al. (2001) (hence, the
product will be of order at least k4). Details about the definition of selectors’ product and an argument
why it satisfies locality are given in Appendix A.1.

Preliminaries and notation. A sequence Q = (Q1, ..., Qm) of queries could also be, equivalently,
viewed as, and represented by, a 0-1 matrix, in which rows represent elements of the universe,
columns represent queries, and an intersection of a row with a column stores value 1 iff the element
corresponding to the row belongs to the query corresponding to the column. Such matrix correspond
to a matrix of some specific code, see Section 5.3 for relation between non-adaptive GT and codes.

We say that Q is constructible in polynomial time if there exists a polynomial-time algorithm, that
given parameters n, k, ℓ (whichever are relevant) outputs an appropriate sequence of queries satisfying
the requirements. W.l.o.g., in order to avoid rounding in the presentation, we assume that n and other
crucial parameters used in this work are powers of 2.
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Figure 1: An illustration presenting consecutive matrices M ′′, M ′ and M used in the algorithm
building (n, k)-LocS. On the figure, a = qd for the smallest d such that qd > n, y1 is the yth largest
prime number which gives y1 = O(y log y), p1, p2, . . . denote consecutive primes (i.e., p1 = 2,
p2 = 3, p3 = 5 and so on, y1 = py according to this notation).

3 LOCAL SELECTORS

The following polynomial-time algorithm produces an (n, k)-LocS of length polylogarithmically
close to the existential results. Later, we also show that it is actually polylogarithmically close to the
absolute lower bound on the lengts of any (n, k)-LocS, c.f., Theorem 3.2.

1. Let d = ⌈logk n⌉ and let q = c · k · d, for some constant 0 < c ≤ 2, be a prime number such
that qd+1 = (c · k · d)d+1 ≥ n. Note that such constant c exists, because (kd)d+1 > n and
between two integers ⌈(kd)d+1⌉ and 2 · ⌈(kd)d+1⌉ ≤ ⌈(2kd)d+1⌉ there is at least prime
number (by the well known distribution property of prime numbers). Let q1 be the qth
prime number.

2. Consider all polynomials Pi of degree d over field [q], for 1 ≤ i ≤ qd+1. Notice that there
are qd+1 of such different polynomials.

3. Create a matrix M ′ of size qd+1 × q. Each row i contains subsequent values Pi(x) of
polynomial Pi for arguments x = 0, 1, . . . , q − 1, where x is the column number (columns
of M ′ are numbered from 0 to q − 1). A matrix M ′′ is created from M ′ as follows: each
value y = Pi(x) is represented and padded in q21 consecutive columns of 0s and 1s, where
value 1 is on positions y1 · z, for any prime number z ≤ q1 and for y1 defined as the
yth prime number; all other positions are filled with value 0. We call these columns an
x-segment. Notice that each row of M ′′ has q · q21 columns (q21 columns in each segment,
where segments correspond to different arguments x), thus M ′′ has size qd+1 × q · q21 ; we
number the columns from 1 to q · q21 , where the first segment (corresponding to argument
x = 0) consists of columns 1, . . . , q21 , the second segment (corresponding to the argument
x = 1) has columns q21 + 1, . . . , 2q21 , and so on.

4. Remove qd+1 − n arbitrary rows from matrix M ′′, creating matrix M with exactly n
remaining rows. Recall that we earlier guaranteed that qd+1 is at least n.

5. Each column of matrix M corresponds to one qyery set Qi of an (n, k)-LocS {Qi}
q·q21
i=1 over

the set of n elements, where an element corresponds to a row and it belongs to Qi iff there
is value 1 in the intersection of the corresponding row with ith column.

Theorem 3.1. The polynomially constructed family of queries {Qi}
q·q21
i=1 is an (n, k)-LocS of length

q · q21 = O(k3 log2 n(logk n+ (log log n/ log k)2)), for some suitable constant 0 < c ≤ 2.

Proof. Consider a constructed matrix M for some suitable constant c > 0. Observe first that two
polynomials Pi and Pj of degree at most d, for i ̸= j, could have equal values for at most d different
arguments. This is because they have equal values for arguments x for which Pi(x)− Pj(x) = 0.
However, since Pi − Pj is also a polynomial of degree at most d, it could have at most d zeroes.
Hence, Pi(x) = Pj(x) for at most d different arguments x.
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Consider any set of k polynomials P corresponding to some rows of matrix M , and any polynomial
Pj /∈ P corresponding to a different row of M . Consider any polynomial Pi ∈ P; clearly, i ̸= j.
Denote by P ′ = P \ {Pi} the set of polynomials in P different from Pi; they are also different from
Pj , by the choice of Pj . There are at most (k − 1) · d different arguments x where some of the k − 1
polynomials in P ′ could be equal to Pi, and similarly, at most (k − 1) · d different arguments x
where some of the k − 1 polynomials in P ′ could be equal to Pj . Thus, for q − 2(k − 1) · d different
arguments, the values of the polynomials Pi and Pj are simultaneously different from the values of
polynomials in P ′. Therefore, there are at least q − 2(k − 1) · d ≥ 1 segments (corresponding to
some arguments) x in which Pi(x) and Pj(x) are different from any Pi′(x), where Pi′ ∈ P ′. Let us
pick arbitrarily such a segment/argument x. Let y = Pi(x) and y′ = Pj(x). Further, let y1 be the yth
prime number and y′1 be the y′th prime number.

Consider column y1 · y′1 in segment x of matrix M . By definition of distribution of 1’s in a segment
(see point 3 of the algorithm creating matrix M ), there are values 1 in this column in the rows
corresponding to both polynomials Pi and Pj . Consider any polynomial Pi′ ∈ P ′. By the choice
of x, the value y∗ = Pi′(x) is different from y, y′. Hence, the row corresponding to polynomial Pi′

has values 1 only at positions ŷ · y∗1 , where y∗1 is the y∗th prime number and ŷ is any prime number
not bigger than q1. These positions are, however, all different from position y1 · y′1 in segment x,
in which both rows corresponding to polynomials Pi and Pj have value 1. This is because at least
one prime number in the multiplicative representations of these positions is different from y1, y

′
1. It

means that this column x · q21 + y1 · y′1 has value 1 in rows corresponding to polynomials Pi and Pj ,
and value 0 in all rows corresponding to polynomials in P ′. This completes the proof that the matrix
M is an (n, k)-LocS.

The length of the constructed (n, k)-LocS is q · q21 = O(q3 log2 q), as q1 = O(q log q) by the prime
number theorem applied to the largest of the considered prime numbers – the qth prime number. We
have q = O(k log n/ log k), and consequently log q = O(log k + log log n). Thus, the length of
the (n, k)-LocS is q · q21 = O(k3 log2 n(logk n+ (log log n/ log k)2)). The construction is clearly
polynomial, as it is done by enlisting consecutive elements of the algebraic field containing at most
O(n) elements, computing values of polynomials (there is a polynomial number of considered
polynomials) and padding polynomially many columns modulo prime numbers in O(n log n).

Now we prove a lower bound on the length of any (n, k)-LocS, almost matching our constructive
result in Theorem 3.1.
Theorem 3.2. Every (n, k)-LocS has length Ω(min{k3 logk n, kn}).

Proof. First, observe that the number of 1s in each row i of any (n, k)-LocS is c ·min{k2 logk n, n},
for some constant c > 0, because the corresponding columns must form an (n, k)-strongly-selective
family for which i is a witness; the lower bound on the number of columns in any (n, k)-strongly-
selective family is Ω(min{k2 logk n, n}), by Clementi et al. (2001).

Let m denote the minimum length of any (n, k)-LocS. Consider any row i and remove from the
(n, k)-LocS all the columns having 1 in row i, and then the row i itself. What remains, must
be an (n − 1, k − 1)-LocS, as the original (n, k)-LocS has to handle, in particular, all subsets
of [n] of size k − 1 taken from [n] \ {i} with added element i, and has length at most m − c ·
min{k2 logk−1 n, n}. Repeating it recursively, after j steps we get (n− j, k − j)-LocS of length at
most m− j · c ·min{(k/2)2 logk−j n, n}, for 1 ≤ j ≤ k/2, and consequently for j = k/2: we get
(n−k/2, k/2)-LocS of length at most m−(k/2)·c·min{(k/2)2 logk/2 n, n}. It follows that the length
m− (k/2) · c ·min{(k/2)2 logk/2 n, n} must be positive, thus, together with the fact that logk/2 n =

Θ(logk n), we get m > (k/2) · c ·min{(k/2)2 logk/2 n, n} = Ω(min{k3 logk n, kn}).

4 LOCAL AVOIDING SELECTORS

Suppose that we are given a set X ⊆ [n]2 of size at most k · ℓ and such that it consists of at most ℓ
slices of size at most k each. The (n, k)-LocS from Section 3 guarantees that all other agents learn set
X in O((kℓ)3 polylog n) rounds. Is faster learning possible if we require that only other agents in
each slice’s cluster learn the slice? Even more, if we additionally would like to avoid clashes between
in such learning rounds from other slices of X?
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The following polynomial-time algorithm produces an (n, k, ℓ)-LocAS of length polylogarithmically
close to the existential result – see Figure 2 for an illustration.

1. Let dk = ⌈logk n⌉, and let qk = c · k · dk be a prime number such that qdk+1
k = (c · k ·

dk)
dk+1 ≥ n, for some constant 4 < c ≤ 8. Note that such constant c exists, because

(kdk)
dk+1 > n and between two integers: ⌈(4kdk)dk+1⌉ and its double 2⌈(4kdk)dk+1⌉ ≤

⌈(8kdk)dk+1⌉, there is at least one prime number. Analogously, we define dℓ and qℓ.

2. Consider all polynomials Pi of degree dk over field [qk], for 1 ≤ i ≤ qdk+1
k . Notice that

there are qdk+1
k of such different polynomials. Analogously, consider all polynomials Ri of

degree dℓ over field [qℓ], for 1 ≤ i ≤ qdℓ+1
ℓ . Notice that there are qdℓ+1

ℓ of such different
polynomials.

3. Create a matrix M ′
k of size qdk+1

k × qk. Each row i contains subsequent values Pi(z) of
polynomial Pi for arguments z = 0, 1, . . . , qk − 1, where z is the column number (columns
of M ′

k are numbered from 0 to qk−1). We trim matrix M ′
k to n rows by removing qdk+1

k −n
arbitrary rows.
Analogously, we create a matrix M ′

ℓ of size qdℓ+1
ℓ × qℓ, in which each row i contains

subsequent values Ri(z) of polynomial Ri for arguments z = 0, 1, . . . , qℓ − 1, where z is
the column number (columns of M ′

ℓ are numbered from 0 to qℓ − 1). We trim matrix M ′
ℓ to

n rows by removing qdℓ+1
ℓ − n arbitrary rows.

4. Matrix M ′ is created from M ′
k,M

′
ℓ as follows: there are n2 rows and q = 3max{qk, qℓ}

columns. In each row (i, ϕ), corresponding to the pair of polynomials Pi, Rϕ, and each
column z ∈ [q], we put in the intersection a pair of values (Pi(z mod qk), Rϕ(z mod qℓ)).

5. Matrix M is created from M ′ as follows: each pair of values (i⋆, ϕ⋆) = (Pi(z
mod qk), Rϕ(z mod qℓ)) in column z is represented and padded in (q′k)

2q′ℓ consecutive
columns of 0s and 1s as follows. Let q′k, q

′
ℓ be the prime numbers of order 2qk and 2qℓ + 1,

respectively (i.e., the (2qk)-th prime number in the order of all prime numbers, and (2qℓ+1)-
st prime number in the order of all prime numbers). Let pi be the prime number of order 2i⋆
and p′ be any prime number of order 2, 4, 6, . . . , 2qk. Let pϕ⋆ be the prime number of order
2ϕ⋆+1. We put values 1 in columns pi ·p′ ·pϕ⋆ , and values 0 in the remaining columns. We
call these columns a z-segment. Notice that each row of M has q · (q′k)2q′ℓ columns ((q′k)

2q′ℓ
columns in each segment, where segments corresponds to different columns z of M ′). Thus,
M is an n2× q · (q′k)2q′ℓ matrix; we number its columns from 1 to q · (q′k)2q′ℓ, where the first
segment (corresponding to argument z = 0) consists of columns 1, . . . , (q′k)

2q′ℓ, the second
segment (corresponding to the argument z = 1) (q′k)

2q′ℓ + 1, . . . , 2(q′k)
2q′ℓ, and so on.

6. Each column of matrix M corresponds to one query set Qi of an (n, k, ℓ)-LocAS

{Qi}
q·(q′k)

2q′ℓ
i=1 over the set of n2 elements (corresponding to the rows of M ).

Theorem 4.1. The polynomially constructed {Qi}
q·(q′k)

2q′ℓ
i=1 is an (n, k, ℓ)-LocAS of length

O

(
(k + ℓ)k2ℓ · log4 n

log2 k log ℓ log(kℓ)
(log k + log log n)2(log ℓ+ log log n)

)
,

for some suitable constant 4 < c ≤ 8.

The proof of Theorem 4.1 is deferred to Appendix A.2.

Below we show a lower bound that nearly matches the constructive result analyzed in Theorem 4.1.
Theorem 4.2. Every (n, k, ℓ)-LocAS has length Ω(ℓ ·min{k3 logk n, kn}).

Proof. Consider (n, k, ℓ)-LocAS of length m. Consider a set L ⊆ [n] of size ℓ + 1. For any
i ∈ [n], consider a set of pairs {(i, j) : i ∈ [n]}, that is, a set of rows in the (n, k, ℓ)-LocAS
corresponding/labeled to/by these pairs. The number of columns that

• have at least one 1 in these rows (i.e., take part in the local selection of any set of size k of
pairs with i in their second coordinate), and

7



Under review as a conference paper at ICLR 2024

P1

P2

Pi

x

Pi(x)

0 qk − 1. . .

. . .

. . .

values in[0, . . . , qk − 1]

P
q
dk+1

k

R1

R2

Rφ

y

Rφ(y)

0 ql − 1. . . . . .

values in[0, . . . , ql − 1]

R
q
dl+1

l

⇒

⇒

Remove
rows

Size: qk × n

Size: ql × n

M ′
l

M ′
k ⇒

Size:

q × n2

M ′

for q = 3max(qk, ql)

⇒

z0 q − 1. . . . . .

(Pi, Rφ)

(i?, φ?)

M

z–segment

Product

Expand

columns

Figure 2: An illustration of consecutive matrices used in the algorithm building (n, k, l)-LocAS. On
the figure, (i⋆, ϕ⋆) = (Pi(z mod qk), Qϕ(z mod ql)), the matrix M is obtained by the replacement
of each element of M ′ with a binary sequence of the length (q′k)

2q′l as described in the item 5 of the
description of the algorithm before the theorem.

• do not have any 1 from any row labeled by an element in L \ {i} (i.e., avoids other elements
in L on the second coordinate)

is at least Ω(min{k3 logk n, kn}), by the fact that they must be an (n, k)-LocS, to which Theorem 3.2
applies. Denote the set of such columns Ci.

Next, if we consider analogous set Ci′ of columns defined for an element i′ ∈ L different from L, it
is disjoint with Ci, due to the second bullet in the definition of set Ci above (avoidance property).
Hence, the total number of columns in the (n, k, ℓ)-LocAS is

|L| · Ω(min{k3 logk n, kn}) ≥ Ω(ℓ ·min{k3 logk n, kn}) .

5 EXTENSIONS

This section presents interesting extensions to technical results obtained in the previous sections, as
well as corresponding future directions. Other perspective open problems are given in Appendix B.

5.1 FAULT-TOLERANCE OF LOCAL GT

Suppose one would like to be able to decode the hidden set correctly even if some α positions
in the feedback vector would be altered by a worst-case adversary. More precisely, assume that
the adversary could change a feedback from specific id to zero (but cannot produce/forge an id as
feedback). Observe that if we use a larger constant c in the constructions, for instance, c ≥ 2 + α

kd ,
there will be always some column with correct feedback because the number of “witnessed” segments
(and thus, also columns) for a pair i, j, which is q − 2(k − 1) · d, deducted by the number of
adversarially changed ones, α, is still at least 1 (see the proofs of Theorems 3.1 and 4.1). Increasing
constant c obviously increases the lengths of selectors by factor ⌈ α

kd⌉. Improving the number of
tolerated faults or generalizing to other types of adversarial or stochastic failures is an interesting
area for further investigation.

8
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5.2 OTHER FEEDBACK FUNCTIONS

We show an example how to convert the obtained results to another popular GT feedback functions
– the classic one-threshold setting in which the feedback vector is a 0-1 vector where the value on
a position z is equal 1 if the intersection of the z-th query with the hidden set is non-empty, and is
equal to 0 otherwise. It has also been named beeping feedback in recent literature.

The method is similar to the one guarantying fault-tolerance. If we extend parameter c to be a
constant slightly bigger than 2, the asymptotic length and analysis of our constructions become intact.
However, the number of “witnessed” columns for any pair i, j, which is q − 2(k − 1) · d, could be
made bigger than d. Each such column corresponds to a different segment, and thus – to different
arguments for which polynomials are evaluated. Obviously, the feedback now is only 1 in such
columns, however, j could create as many equations as the number of such columns in order to find
the polynomial of any element i in the hidden set. Now, since the number of such equations is at least
d+ 1, the polynomial for i could be interpolated successfully, as its degree is at most d. Hence, each
element of the hidden set could be successfully found.

Note here that lower bounds from Sections 3 and 4 hold automatically for the beeping feedback,
because the previously considered feedback function is richer than the beeping feedback.

Extending our constructions and lower bounds to other types of feedback function, considered in the
literature (cf., Klonowski et al. (2022)) is another interesting research direction.

5.3 LOCAL GT AS CODES

By definition of GT, one should be able to decode a hidden set from the feedback vector – recall that
each position of this vector has been created by applying a given feedback function to the intersection
of the query corresponding to this position (queries are designed by the “coding” algorithm) and the
hidden set (an arbitrary set, fixed by the adversary). For instance, in case of the beeping feedback
function, the feedback vector is computed by applying bitwise OR on the vectors of participating
elements, and if another element want to get the feedback locally, it applies bitwise AND to its own
vector and the feedback vector. Applying similar methodology to other feedback function which
are symmetric Boolean function could result in interesting results in the area of codes, in particular,
when the function is applied to the participating codewords and the feedback is decoded locally with
avoidance of codewords from different clusters/groups.

6 RELATED WORK

Adaptive version of the group testing model considered in our work has also been extensively studied,
including early work by Capetanakis (1979a;b) and Hayes (1978), who independently found an
adaptive, deterministic tree-based algorithm with O(k + k log(n/k)) queries, but using a slightly
richer feedback. Greenberg & Winograd (1985) proved a lower bound Ω

(
k logn
log k

)
in this setting.

Kowalski (2005) gave an adaptive construction of O(k+k log n
k ) queries with the feedback exactly as

considered in this work (although, when it comes to polynomial time construction, a polylogarithmic
overhead is incurred). The corresponding lower bound was given by Clementi et al. (2001).

Different types of selectors have been widely used to avoid simultaneous access to communication
channel or other resources, c.f., Chlebus et al. (2000); Chrobak et al. (2002); Jurdzinski & Kowalski
(2012). The witnessed strong selectors, corresponding to our local selectors, were introduced in con-
text of token traversal in an SINR ad hoc network Jurdzinski et al. (2017), while their generalization,
called witnessed cluster aware strong selectors (corresponding to our local avoiding selectors) were
introduced in Jurdzinski et al. (2018). As mentioned in Section 2, only existential upper bounds on
sizes of such selectors have been known until now.

Related work on other GT models can be found in Appendix A.3.
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A APPENDIX

A.1 TECHNICAL DETAILS ABOUT SELECTORS’ PRODUCT

In Section 2 we discussed, in a “Note ...”, an alternative approach to constructing local selectors via
selectors’ product, and why it is much less efficient than the technical constructions in our work. More
specifically, one could be tempted to construct (n, k)-LocS or (n, k, ℓ)-LocAS by taking a product
of two classic (n, k)-selectors, or two classic (n, k)-selectors and one (n, ℓ)-selectors, respectively.
This way, each of the three properties: selection, locality (witnessing) and avoidance, would be
assured “independently” by the means of a different selector in such product. Note, however, that
such constructions would not be efficient, and result in linear or even quadratic overhead comparing

12

https://doi.org/10.1016/j.tcs.2022.03.026
https://doi.org/10.24963/ijcai.2022/52
http://papers.nips.cc/paper_files/paper/2022/hash/61fc0928bc62ad9cf0cb5cab961fc178-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/61fc0928bc62ad9cf0cb5cab961fc178-Abstract-Conference.html
http://doi.acm.org/10.1145/872035.872045
https://doi.org/10.1109/TIT.2011.2163296
https://doi.org/10.1109/TIT.2011.2163296
http://dx.doi.org/10.1109/TIT.2011.2163296
https://proceedings.neurips.cc/paper/2020/file/fea16e782bc1b1240e4b3c797012e289-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/fea16e782bc1b1240e4b3c797012e289-Paper.pdf


Under review as a conference paper at ICLR 2024

to our constructions, due to the super-quadratic lower bound on the length of a classic selector –
Ω(min{k2 log n/ log k, n}) Clementi et al. (2001) (hence, the product will be of order at least k4).

To convey more details, first we need to formally define the meaning of a product of two selectors.
(Here we only focus on the first paradigm of locality.) It could be seen as a product with “or” operation
on pairs of columns. Consider a column Qi of the first selector and a column Q′

j of the second
selector that has length m′. In the product, the column (i− 1)m′ + j is defined as follows: the value
stored in a row v ∈ [n] is 1 if Qi[v] = 1 or Q′

j [v] = 1, otherwise it is 0. Having a product of two
(n, k)-selectors, consider any set K of size k, any element v ∈ K and any w ∈ [n] \K. Consider
a column Qi in the first selector in which v is selected from set K – its existence is guaranteed by
the definition of (n, k)-selector. If w ∈ Qi we are done – there is a selection of v witnessed by w.
Suppose then that w /∈ Qi. Consider set K ′ = (K \ {v}) ∪ {w}. It has k elements, thus the second
(n, k)-selector has a query Q′

j in which w is selected from K ′. It means that in the product of the
two selectors, in the query/column (i− 1)m′ + j, row v has value 1 (by the fact that Qi[v] = 1 and
definition of selectors’ product), row w has value 1, while all elements in K \ {v} = K ′ \ {w} have
value 0. Thus, this column guarantees selection of v from K with w being a "witness".

A.2 PROOF OF THEOREM 4.1

Consider a constructed matrix M for some suitable constant c > 0. The same argument as in the
proof of Theorem 3.1 shows that any two polynomials P and P ′ of degree at most d, for any d, could
have equal values for at most d different arguments.

Consider any set K of k rows of matrix M with the same second coordinate, say ϕ. Pick an arbitrary
row (i, ϕ) ∈ K and row (j, ϕ) /∈ K. Let Pi, Pj be the corresponding polynomials based on the
first coordinates, and Rϕ their common polynomial corresponding to their second coordinate ϕ (i.e.,
cluster number). Let P be the set of all polynomials corresponding to the first coordinates of rows in
K, and let P ′ = P \ {Pi}. Consider any set L of ℓ numbers in [n] \ {ϕ} and let R = {Rv : v ∈ L}.

We first argue that there is a segment z ∈ [q] such that

(a) Pi(z) ̸= Pi′(z) and Pj(z) ̸= Pi′(z), for any (i′, ϕ) ∈ K different from (i, ϕ), and
(b) Rϕ(z) ̸= Rv(z), for every v ∈ L.

There are at most (k − 1) · dk different arguments z ∈ [qk] where some of the k − 1 polynomials in
P ′ could be equal to Pi, and similarly, at most (k − 1) · dk different arguments z ∈ [qk] where some
of the k − 1 polynomials in P ′ could be equal to Pj . Let us call these logical events for an argument
z – Event_1 and Event_2, respectively. Note that now we only consider z ∈ [qk], as polynomials
P are defined over the field of arguments in [qk]. Therefore, the upper bounds on the number of
arguments z ∈ [q] are (k − 1)dk · ⌈ q

qk
⌉ for each of these two logical events, which sum up to at most

2(k − 1)dk · ⌈ q
qk
⌉ arguments z ∈ [q] for which at least one of these events applies.

Analogously, there are at most ℓ · dℓ different arguments z ∈ [qℓ] where some of the ℓ polynomials
in R could be equal to Rϕ. Let us call such event for argument z – Event_3. Note that here we
only consider z ∈ [qℓ], as polynomials R are defined over the field of arguments in [qℓ]. Hence, the
number of arguments z ∈ [q] for which it may happen is at most ℓ · dℓ · ⌈ q

qℓ
⌉.

To summarize the two previous paragraphs, none of Event_1, Event_2 and Event_3 happens for

q − 2(k − 1)dk · ⌈ q

qk
⌉ − ℓ · dℓ · ⌈

q

qℓ
⌉ ≥ q − 2(k − 1)dk ·

(
q

qk
+ 1

)
− ℓ · dℓ ·

(
q

qℓ
+ 1

)
q − 2

q

c
+ 2

q

ck
− 2

qk
c

− q

c
+

q

cℓ
− qℓ

c
≥ q − 4

q

c
+ 2

q

ck
+

q

cℓ
≥ 1

arguments z ∈ [q], since q > 2qk + qℓ and c > 4.

Consider such an argument z and its corresponding segment in the constructed matrix M . Consider
column pi·pj ·pϕ in this segment, where pi, pj are the prime numbers of order 2Pi(z mod qk), 2Pj(z
mod qk), respectively, and pϕ is the prime numbers of order 2Rϕ(z) + 1. By definition, this column
of segment z has 1 in rows (i, ϕ) and (j, ϕ), but not in any other rows (i′, ϕ) ∈ K \ {i}, by Event_1
and Event_2. This column does not have a 1 in rows with second coordinate in set L, as such rows are
not divisible by pϕ by Event_3. This completes the proof that the matrix M is an (n, k, ℓ)-LocAS.
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The length of the constructed (n, k, ℓ)-LocAS is q · (q′k)2q′ℓ = O((qk + qℓ)q
2
kqℓ log

2 qk log qℓ), as
q′k = O(qk log qk) and q′ℓ = O(qℓ log qℓ) by the prime number theorem applied to the largest of the
considered prime numbers – the prime numbers of order 2qk and 2qℓ + 1, respectively. We have
qk = O(k log n/ log k) and qℓ = O(ℓ log n/ log ℓ). Consequently, log qk = O(log k + log log n)
and log qℓ = O(log ℓ+ log log n). Thus, the length of the (n, k, ℓ)-LocAS is

q · (q′k)2q′ℓ = O((qk + qℓ)q
2
kqℓ log

2 qk log qℓ)

≤ O

(
(k + ℓ)k2ℓ · log4 n

log2 k log ℓ log(kℓ)
(log k + log log n)2(log ℓ+ log log n)

)
.

The construction is clearly polynomial, as it is done by enlisting consecutive elements of the algebraic
field containing at most O(n) elements, computing values of polynomials (there is a polynomial
number of considered polynomials) and padding polynomially many columns modulo prime numbers
in O(n log n).

A.3 RELATED WORK ON OTHER MODELS OF GROUP TESTING

In the simplest group testing model, considered in most of the literature Du et al. (2000), the feedback
informs only if the intersection between query Q and the hidden set K is empty or not (sometimes it
is also called a beeping model).

In the quantitative group testing model, also called a coin weighting problem, we are given a set of
n coins of two distinct weights w0 (true coin) and w1 (counterfeit coin), out of which up to k are
counterfeit ones. The queries correspond to weighing any subset of coins on a spring scale. The
feedback, therefore, gives exact number of counterfeit coins in the subset/query. This problem can
be solved using O(k log(n/k)/ log k) non-adaptive queries, c.f., Grebinski & Kucherov (2000). It
matches a standard information-theoretic lower bound of Ω(k log(n/k)/ log k). Bshouty (2009)
considered the problem of efficient polynomial-time constructions of O(k log(n/k)/ log k) queries
that allows to decode the counterfeit coins from the feedback, but only adaptive solution was obtained.
Efficient polynomial-time construction of non-adaptive queries remains an open problem. – the
best known construction of non-adaptive queries was given recently by Kowalski & Pajak (2022b),
however it has a polylogarithmic overhead on the number of queries.

Threshold Group Testing is another feedback model, including a set of thresholds, c.f., Damaschke
(2005); De Marco et al. (2020). The feedback returns whether or not the size of the intersection is
larger or smaller than each threshold. De Marco et al. (2021) showed that it is possible to define an
interval of

√
k log k thresholds resulting in an algorithm with O(k log(n/k)/ log k) queries.

If a feedback only returns whether the size of the intersection |Q∩K| is odd or even, then O(k log n
k )

queries are sufficient to decode the hidden set, as shown by Censor-Hillel et al. (2015).

Group testing with general feedback functions was studied and put together in Klonowski et al.
(2022); Kowalski & Pajak (2022b) – more specifically, how the complexity of the feedback function
influences learning time.

Randomized solutions to group testing have also been widely studied – the reader may find hot topics
and references in the recent papers by Gebhard et al. (2019); Coja-Oghlan et al. (2020); Feige &
Lellouche (2020); Bay et al. (2020). We would like to point out that randomized solutions are typically
designed for an oblivious adversary, of weaker power than the unbounded adversary considered in
the deterministic setting (including our work). Moreover, randomized queries requires a substantial
number of truly random bits, in order to avoid biases – detrministic solutions are fair in the sense that
they reveal all hidden elements.

B DISCUSSION AND OTHER FUTURE DIRECTIONS

This work introduced to the GT area new concepts (translated from network communication theory)
of local learning and avoidance of elements from different clusters. We designed polynomially
constructable and nearly optimal, in terms of the number of queries, non-adaptive query systems
that observe both new properties. To justify near-optimality of our constructions, we also proved the
corresponding lower bounds.
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Apart of open problems already suggested in Section 5, there are more interesting directions to follow.

First and most straightforward future direction is to improve the remaining gaps on the lengths of
LocS and LocAS selectors, since the constructions and corresponding lower bounds are not strictly
matching, as well as analyzing their other properties, e.g., query sizes.

Second and main future direction regards direct generalization of the proposed concepts into multi-
dimensional system, and further into more structured systems (e.g., graphs, hypergraphs, matroids,
polytopes, etc.).

Third open question addresses robustness of the proposed concepts and their implementations. For
instance, how to express privacy in terms of the proposed or related concepts of locality and avoidance?

Finally, as a fourth topic, one could ask whether randomization substantially helps in local learning,
especially against an adaptive adversary who may dynamically tailor the hidden set (as long as it
is compatible with the obtained feedback at any time)? If the answer is yes, what is the minimum
amount of randomness (entropy) needed and how it affects learning time?
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