
Improving Robustness with Adaptive Weight Decay

Amin Ghiasi, Ali Shafahi, Reza Ardekani

Apple
Cupertino, CA, 95014

{mghiasi2, ashafahi, rardekani} @apple.com

Abstract

We propose adaptive weight decay, which automatically tunes the hyper-parameter
for weight decay during each training iteration. For classification problems, we
propose changing the value of the weight decay hyper-parameter on the fly based on
the strength of updates from the classification loss (i.e., gradient of cross-entropy),
and the regularization loss (i.e., `2-norm of the weights). We show that this simple
modification can result in large improvements in adversarial robustness — an
area which suffers from robust overfitting — without requiring extra data across
various datasets and architecture choices. For example, our reformulation results in
20% relative robustness improvement for CIFAR-100, and 10% relative robustness
improvement on CIFAR-10 comparing to the best tuned hyper-parameters of
traditional weight decay resulting in models that have comparable performance to
SOTA robustness methods. In addition, this method has other desirable properties,
such as less sensitivity to learning rate, and smaller weight norms, which the latter
contributes to robustness to overfitting to label noise, and pruning.

1 Introduction

Deep Neural Networks (DNNs) have exceeded human capability on many computer vision tasks. Due
to their high capacity for memorizing training examples (Zhang et al., 2021), DNN generalization
heavily relies on the training algorithm. To reduce memorization and improve generaliazation, several
approaches have been taken including regularization and augmentation. Some of these augmentation
techniques alter the network input (DeVries & Taylor, 2017; Chen et al., 2020; Cubuk et al., 2019,
2020; Müller & Hutter, 2021), some alter hidden states of the network (Srivastava et al., 2014; Ioffe
& Szegedy, 2015; Gastaldi, 2017; Yamada et al., 2019), some alter the expected output (Warde-Farley
& Goodfellow, 2016; Kannan et al., 2018), and some affect multiple levels (Zhang et al., 2017; Yun
et al., 2019; Hendrycks et al., 2019b). Typically, augmentation methods aim to enhance generalization
by increasing the diversity of the dataset. The utilization of regularizers, such as weight decay (Plaut
et al., 1986; Krogh & Hertz, 1991), serves to prevent overfitting by eliminating solutions that solely
memorize training examples and by constraining the complexity of the DNN. Regularization methods
are most beneficial in areas such as adversarial robustness, and noisy-data settings – settings which
suffer from catastrophic overfitting. In this paper, we revisit weight decay; a regularizer mainly used
to avoid overfitting.

The rest of the paper is organized as follows: In Section 2, we revisit tuning the weight decay
hyper-parameter to improve adversarial robustness and introduce Adaptive Weight Decay. Also in
Section 2, through extensive experiments on various image classification datasets, we show that
adversarial training with Adaptive Weight Decay improves both robustness and natural generalization
compared to traditional non-adaptive weight decay. Next, in Section 3, we briefly mention other
potential applications of Adaptive Weight Decay to network pruning, robustness to sub-optimal
learning-rates, and training on noisy labels.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

2 Adversarial Robustness

DNNs are susceptible to adversarial perturbations (Szegedy et al., 2013; Biggio et al., 2013). In the
adversarial setting, the adversary adds a small imperceptible noise to the image, which fools the
network into making an incorrect prediction. To ensure that the adversarial noise is imperceptible to
the human eye, usually noise with bounded `p-norms have been studied (Sharif et al., 2018). In such
settings, the objective for the adversary is to maximize the following loss:

max
|�|p✏

Xent(f(x+ �, w), y), (1)

where Xent is the Cross-entropy loss, � is the adversarial perturbation, x is the clean example, y is
the ground truth label, ✏ is the adversarial perturbation budget, and w is the DNN paramater.

A multitude of papers concentrate on the adversarial task and propose methods to generate robust
adversarial examples through various approaches, including the modification of the loss function
and the provision of optimization techniques to effectively optimize the adversarial generation loss
functions (Goodfellow et al., 2014; Madry et al., 2017; Carlini & Wagner, 2017; Izmailov et al.,
2018; Croce & Hein, 2020a; Andriushchenko et al., 2020). An additional area of research centers on
mitigating the impact of potent adversarial examples. While certain studies on adversarial defense
prioritize approaches with theoretical guarantees (Wong & Kolter, 2018; Cohen et al., 2019), in
practical applications, variations of adversarial training have emerged as the prevailing defense
strategy against adversarial attacks (Madry et al., 2017; Shafahi et al., 2019; Wong et al., 2020;
Rebuffi et al., 2021; Gowal et al., 2020). Adversarial training involves on the fly generation of
adversarial examples during the training process and subsequently training the model using these
examples. The adversarial training loss can be formulated as a min-max optimization problem:

min
w

max
|�|p✏

Xent(f(x+ �, w), y), (2)

2.1 Robust overfitting and relationship to weight decay

Adversarial training is a strong baseline for defending against adversarial attacks; however, it often
suffers from a phenomenon referred to as Robust Overfitting (Rice et al., 2020). Weight decay
regularization, as discussed in 2.1.1, is a common technique used for preventing overfitting.

2.1.1 Weight Decay

Weight decay encourages weights of networks to have smaller magnitudes (Zhang et al., 2018)
and is widely used to improve generalization. Weight decay regularization can have many forms
(Loshchilov & Hutter, 2017), and we focus on the popular `2-norm variant. More precisely, we focus
on classification problems with cross-entropy as the main loss – such as adversarial training – and
weight decay as the regularizer, which was popularized by Krizhevsky et al. (2017):

Lossw(x, y) = Xent(f(x,w), y) +
�wd

2
kwk22, (3)

where w is the network parameters, (x, y) is the training data, and �wd is the weight-decay hyper-
parameter. �wd is a crucial hyper-parameter in weight decay, determining the weight penalty
compared to the main loss (e.g., cross-entropy). A small �wd may cause overfitting, while a large
value can yield a low weight-norm solution that poorly fits the training data. Thus, selecting an
appropriate �wd value is essential for achieving an optimal balance.

2.1.2 Robust overfitting phenomenon revisited

To study robust overfitting, we focus on evaluating the `1 adversarial robustness on the CIFAR-
10 dataset while limiting the adversarial budget of the attacker to ✏ = 8 – a common setting for
evaluating robustness. For these experiments, we use a WideResNet 28-10 architecture (Zagoruyko
& Komodakis, 2016) and widely adopted PGD adversarial training (Madry et al., 2017) to solve the
adversarial training loss with weight decay regularization:

min
w

�
max

|�|18
Xent(f(x+ �, w), y) +

�wd

2
kwk22

�
, (4)

2

(a) (b) (c)

Figure 1: Robust validation accuracy (a) and validation loss (b) and training loss (c) on CIFAR-10
subsets. �wd = 0.00089 is the best performing hyper-parameter we found by doing a grid-search.
The other two hyper-parameters are two points from our grid-search, one with larger and the other
with smaller hyper-parameter for weight decay. The thickness of the plot-lines correspond to the
magnitude of the weight-norm penalties. As it can be seen by (a) and (b), networks trained by small
values of �wd suffer from robust-overfitting, while networks trained with larger values of �wd do not
suffer from robust overfitting but the larger �wd further prevents the network from fitting the data (c)
resulting in reduced overall robustness.

We reserve 10% of the training examples as a held-out validation set for early stopping and checkpoint
selection. In practice, to solve eq. 4, the network parameters w are updated after generating adversarial
examples in real-time using a 7-step PGD adversarial attack. We train for 200 epochs, using an initial
learning-rate of 0.1 combined with a cosine learning-rate schedule. Throughout training, at the end of
each epoch, the robust accuracy and robustness loss (i.e., cross-entropy loss of adversarial examples)
are evaluated on the validation set by subjecting the held-out validation examples to a 3-step PGD
attack. For further details, please refer to A.1.

To further understand the robust overfitting phenomenon in the presence of weight decay, we train
different models by varying the weight-norm hyperparameter �wd in eq. 4.

Figure 1 illustrates the accuracy and cross-entropy loss on the adversarial examples built for the
held-out validation set for three choices1 of �wd throughout training. As seen in Figure 1(a), for
small �wd choices, the robust validation accuracy does not monotonically increase towards the end
of training. The Non-monotonicity behavior, which is related to robust overfitting, is even more
pronounced if we look at the robustness loss computed on the held-out validation (Figure 1(b)). Note
that this behavior is still evident even if we look at the best hyper-parameter value according to the
validation set (�⇤

wd = 0.00089).

Various methods have been proposed to rectify robust overfitting, including early stopping (Rice
et al., 2020), use of extra unlabeled data (Carmon et al., 2019), synthesized images (Gowal et al.,
2020), pre-training (Hendrycks et al., 2019a), use of data augmentations (Rebuffi et al., 2021), and
stochastic weight averaging (Izmailov et al., 2018).

In Fig. 1, we observe that simply having smaller weight-norms (by increasing �wd) could reduce this
non-monotonic behavior on the validation set adversarial examples. Although, this comes at the cost
of larger cross-entropy loss on the training set adversarial examples, as shown in Figure 1(c). Even
though the overall loss function from eq. 4 is a minimization problem, the terms in the loss function
implicitly have conflicting objectives: During the training process, when the cross-entropy term holds
dominance, effectively reducing the weight norm becomes challenging, resulting in non-monotonic
behavior of robust validation metrics towards the later stages of training. Conversely, when the
weight-norm term takes precedence, the cross-entropy objective encounters difficulties in achieving
significant reductions. In the next section, we introduce Adaptive Weight Decay, which explicitly
strikes a balance between these two terms during training.

2.2 Adaptive Weight Decay

Inspired by the findings in 2.1.2, we propose Adaptive Weight Decay (AWD). The goal of AWD is to
maintain a balance between weight decay and cross-entropy updates during training in order to guide

1Figure 2 captures the complete set of �wd values we tested.

3

the optimization to a solution which satisfies both objectives more effectively. To derive AWD, we
study one gradient descent step for updating the parameter w at step t+ 1 from its value at step t:

wt+1 = wt �rwt · lr � wt · �wd · lr, (5)

where rwt is the gradient computed from the cross-entropy objective, and wt · �wd is the gradient
computed from the weight decay term from eq. 3. We define �awd as a metric that keeps track of the
ratio of the magnituedes coming from each objective:

�awd(t) =
k�wdwtk
krwtk

, (6)

To keep a balance between the two objectives, we aim to keep this ratio constant during training.
AWD is a simple yet effective way of maintaining this balance. Adaptive weight decay shares
similarities with non-adaptive (traditional) weight decay, with the only distinction being that the
hyper-parameter �wd is not fixed throughout training. Instead, �wd dynamically changes in each
iteration to ensure �awd(t) ⇡ �awd(t�1) ⇡ �awd. To keep this ratio constant at every step t, we can
rewrite the �awd equation (eq. 6) as:

�wd(t) =
�awd · krwtk
kwtk

, (7)

Eq. 7 allows us to have a different weight decay hyperparameter value (�wd) for every optimization
iteration t, which keeps the gradients received from the cross entropy and weight decay balanced
throughout the optimization. Note that weight decay penalty �t can be computed on the fly with
almost no computational overhead during the training. Using the exponential weighted average
�̄t = 0.1⇥ ¯�t�1 + 0.9⇥ �t, we could make �t more stable (Algorithm 1).

Algorithm 1 Adaptive Weight Decay
1: Input: �awd > 0
2: �̄ 0
3: for (x, y) 2 loader do

4: p model(x) . Get models prediction.
5: main CrossEntropy(p, y) . Compute CrossEntropy.
6: rw backward(main) . Compute the gradients of main loss w.r.t weights.
7: � krwk�awd

kwk . Compute iteration’s weight decay hyperparameter.
8: �̄ 0.1⇥ �̄+ 0.9⇥ stop_gradient(�) . Compute the weighted average as a scalar.
9: w w � lr(rw + �̄⇥ w) . Update Network’s parameters.

10: end for

2.2.1 Differences between Adaptive and Non-Adaptive Weight Decay

To study the differences between adaptive and non-adaptive weight decay and to build intuition, we
can plug in �t of the adaptive method (eq. 7) directly into the equation for traditional weight decay
(eq. 3) and derive the total loss based on Adaptive Weight Decay:

Losswt(x, y) = Xent(f(x,wt), y) +
�awd · krwtkkwtk

2
, (8)

Please note that directly solving eq. 8 will invoke the computation of second-order derivatives since
�t is computed using the first-order derivatives. However, as stated in Alg. 1, we convert the �t into a
non-tensor scalar to save computation and avoid second-order derivatives. We treat krwtk in eq. 8
as a constant and do not allow gradients to back-propagate through it. As a result, adaptive weight
decay has negligible computation overhead compared to traditional non-adaptive weight decay.

By comparing the weight decay term in the adaptive weight decay loss (eq. 8): �awd
2 kwkkrwk

with that of the traditional weight decay loss (eq. 3): �wd
2 kwk

2, we can build intuition on some of
the differences between the two. For example, the non-adaptive weight decay regularization term
approaches zero only when the weight norms are close to zero, whereas, in AWD, it also happens

4

(a) (b)

Figure 2: Robust accuracy (a) and loss (b) on CIFAR-10 validation subset. Both figures highlight the
best performing hyper-parameter for non-adaptive weight decay �wd = 0.00089 with sharp strokes.
As it can be seen, lower values of �wd cause robust overfitting, while high values of it prevent network
from fitting entirely. However, training with adaptive weight decay prevents overfitting and achieves
highest performance in robustness.

when the cross-entropy gradients are close to zero. Consequently, AWD prevents over-optimization
of weight norms in flat minima, allowing for more (relative) weight to be given to the cross-entropy
objective. Additionally, AWD penalizes weight norms more when the gradient of cross-entropy is
large, preventing it from falling into steep local minima and hence overfitting early in training.

We verify our intuition of AWD being capable of reducing robust overfitting in practice by replacing
the non-adaptive weight decay with AWD and monitoring the same two metrics from 2.1.2. The
results for a good choice of the AWD hyper-parameter (�awd) and various choices of non-adaptive
weight decay (�wd) hyper-parameter are summarized in Figure 2 2.

2.2.2 Related works to Adaptive Weight Decay

The most related studies to AWD are AdaDecay (Nakamura & Hong, 2019) and LARS (You et al.,
2017). AdaDecay changes the weight decay hyper-parameter adaptively for each individual parameter,
as opposed to ours which we tune the hyper-parameter for the entire network. LARS is a common
optimizer when using large batch sizes which adaptively changes the learning rate for each layer. We
evaluate these relevant methods in the context of improving adversarial robustness and experimentally
compare with AWD in Table 2 and Appendix D 3.

2.3 Experimental Robustness results for Adaptive Weight Decay

AWD can help improve the robustness on various datasets which suffer from robust overfitting. To
illustrate this, we focus on six datasets: SVHN, FashionMNIST, Flowers, CIFAR-10, CIFAR-100,
and Tiny ImageNet. Tiny ImageNet is a subset of ImageNet, consisting of 200 classes and images of
size 64⇥ 64⇥ 3. For all experiments, we use the widely accepted 7-step PGD adversarial training to
solve eq. 4 (Madry et al., 2017) while keeping 10% of the examples from the training set as held-out
validation set for the purpose of early stopping. For early stopping, we select the checkpoint with the
highest `1 = 8 robustness accuracy measured by a 3-step PGD attack on the held-out validation set.
For CIFAR10, CIFAR100, and Tiny ImageNet experiments, we use a WideResNet 28-10 architecture,
and for SVHN, FashionMNIST, and Flowers, we use a ResNet18 architecture. Other details about
the experimental setup can be found in Appendix A.1. For all experiments, we tune the conventional
non-adaptive weight decay parameter (�wd) for improving robustness generalization and compare
that to tuning the �awd hyper-parameter for adaptive weight decay. To ensure that we search for
enough values for �wd, we use up to twice as many values for �wd compared to �awd.

Figure 3 plots the robustness accuracy measured by applying AutoAttack (Croce & Hein, 2020b)
on the test examples for the CIFAR-10, CIFAR-100, and Tiny ImageNet datasets, respectively. We

2See Appendix C.4 for similar analysis on other datasets.
3Due to space limitations we defer detailed discussions and comparisons to Appendix D.

5

(a) (b)

(c) (d)

(e) (f)

Figure 3: `1 = 8 robust accuracy on the test set of adversarially trained WideResNet28-10
networks on CIFAR-10, CIFAR-100, and Tiny ImageNet (a, c, e) using different choices for the
hyper-parameters of non-adaptive weight decay (�wd), and (b, d, f) different choices of the hyper-
parameter for adaptive weight decay (�awd).

observe that training with adaptive weight decay improves the robustness by a margin of 4.84% on
CIFAR-10, 5.08% on CIFAR-100, and 3.01% on Tiny ImageNet, compared to the non-adaptive
counterpart. These margins translate to a relative improvement of 10.7%, 20.5%, and 18.0%, on
CIFAR-10, CIFAR-100, and Tiny ImageNet, respectively.

Increasing robustness often comes at the cost of drops in clean accuracy (Zhang et al., 2019). This
observation could be attributed, at least in part, to the phenomenon that certain `p-norm bounded
adversarial examples bear a closer resemblance to the network’s predicted class than their original
class (Sharif et al., 2018). An active area of research seeks a better trade-off between robustness and
natural accuracy by finding other points on the Pareto-optimal curve of robustness and accuracy. For
example, (Balaji et al., 2019) use instance-specific perturbation budgets during training. Interestingly,
when comparing the most robust network trained with non-adaptive weight decay (�wd) to that

6

Method Dataset Opt kWk2 Nat Acc AutoAtt Xent+ �⇤
wd·kWk2

2
2

�wd = 0.00089 CIFAR-10 SGD 35.58 84.31 45.19 0.58
�awd = 0.022 SGD 7.11 87.08 50.03 0.08

�wd = 0.0005 CIFAR-100 SGD 51.32 60.15 22.53 0.67

�awd = 0.022 SGD 13.41 61.39 27.15 1.51

�wd = 0.00211 Tiny ImgNet SGD 25.62 47.87 16.73 3.56
�awd = 0.01714 SGD 15.01 48.46 19.74 2.80

�wd = 5e� 7 SVHN SGD 102.11 92.04 44.16 1.02

�awd = 0.02378 SGD 5.39 93.04 47.10 1.15

�wd = 0.00089 FashionMNIST SGD 14.39 83.96 78.73 0.51
�awd = 0.01414 SGD 9.05 85.42 79.24 0.44

�wd = 0.005 Flowers SGD 19.94 90.98 32.35 1.72
�awd = 0.06727 SGD 13.87 90.39 39.22 1.42

Table 1: Adversarial robustness of PGD-7 adversarially trained networks using adaptive and non-
adaptive weight decay. Table summarizes the best performing hyper-parameter for each method
on each dataset. Not only the adaptive method outperforms the non-adaptive method in terms of
robust accuracy, it is also superior in terms of the natural accuracy. Models trained with AWD
have considerably smaller weight-norms. In the last column, we report the total loss value of the
non-adaptive weight decay for the best tuned � for that dataset, found by grid search for each dataset.
Interestingly, when we measure the non-adaptive total loss (eq. 4) on the training set, we observe that
networks trained with the adaptive method often have smaller non-adaptive training loss even though
in AWD we have not optimized that loss directly.

trained with AWD (�awd), we notice that those trained with the adaptive method have higher clean
accuracy across various datasets (Table. 1).

In addition, we observe comparatively smaller weight-norms for models trained with adaptive weight
decay, which might contribute to their better generalization and lesser robust overfitting. For the
SVHN dataset, the bes model trained with AWD has ⇡ 20x smaller weight-norm compared to the
best model trained with traditional weight-decay. Networks which have such small weight-norms that
maintain good performance on validation data is difficult to achieve with traditional weight-decay
as previously illustrated in sec. 2.1.2. Perhaps most interestingly, when we compute the value of
non-adaptive weight decay loss for AWD trained models, we observe that they are even sometimes
superior in terms of that objective as it can be seen in the last column of Table 1. This behavior
could imply that the AWD reformulation is better in terms of optimization and can more easily find a
balance and simultaneously decrease both objective terms in eq. 4 and is aligned with the intuitive
explanation in sec. 2.2.1.

The previously shown results suggest an excellent potential for adversarial training with AWD. To
further study this potential, we only substituted the Momentum-SGD optimizer used in all previous
experiments with the ASAM optimizer (Kwon et al., 2021), and used the same hyperparameters used
in previous experiments for comparison with advanced adversarial robustness algorithms. To the
best of our knowledge, and according to the RobustBench (Croce et al., 2020), the state-of-the-art
`1 = 8.0 defense for CIFAR-100 without extra synthesized or captured data using WRN28-10
achieves 29.80% robust accuracy (Rebuffi et al., 2021). We achieve 29.54% robust accuracy, which is
comparable to these advanced algorithms even though our approach is a simple modification to weight

decay. This is while our proposed method achieves 63.93% natural accuracy which is ⇡ 1% higher.
See Table 2 for more details. In addition to comparing with the SOTA method on WRN28-10, we
compare with a large suite of strong robustness methods which report their performances on WRN32-
10 in Table 2. In addition to these two architectures, in Appendix C.1, we test other architectures to
demonstrate the robustness of the proposed method to various architectural choices. For ablations
demonstrating the robustness of AWD to various other parameter choices for adversarial training
such as number of epochs, adversarial budget (✏), please refer to Appendix C.3 and Appendix C.2,
respectively.

Adaptive Weight Decay (AWD) can help improve the robustness over traditional weight decay on
many datasets as summarized before in Table 1. In Table 2 we demonstrated that AWD when

7

Method WRN Aug Epo ASAM TR SWA Nat AA

�AdaDecay = 0.002* 28-10 P&C 200 - - - 57.17 24.18
(Rebuffi et al., 2021) 28-10 CutMix 400 - X X 62.97 29.80

(Rebuffi et al., 2021) 28-10 P&C 400 - X X 59.06 28.75
�wd = 0.0005 28-10 P&C 200 - - - 60.15 22.53

�wd = 0.0005 + ASAM 28-10 P&C 100 X - - 58.09 22.55
�wd = 0.00281* + ASAM 28-10 P&C 100 X - - 62.24 26.38

�awd = 0.022 28-10 P&C 200 - - - 61.39 27.15
�awd = 0.022 + ASAM 28-10 P&C 100 X - - 63.93 29.54

AT (Madry et al., 2017) 32-10 P&C 100† - - - 60.13 24.76
TRADES (Zhang et al., 2019) 32-10 P&C 100† - X - 60.73 24.90

MART (Wang et al., 2020) 32-10 P&C 100† - - - 54.08 25.30
FAT (Zhang et al., 2020a) 32-10 P&C 100† - - - 66.74 20.88

AWP (Wu et al., 2020) 32-10 P&C 100† - - - 55.16 25.16
GAIRAT (Zhang et al., 2020b) 32-10 P&C 100† - - - 58.43 17.54

MAIL-AT (Liu et al., 2021) 32-10 P&C 100† - - - 60.74 22.44
MAIL-TR (Liu et al., 2021) 32-10 P&C 100† - X - 60.13 24.80

�awd = 0.022 + ASAM 32-10 P&C 100 X - - 64.49 29.70

Table 2: CIFAR-100 adversarial robustness performance of various strong methods. Adaptive weight
decay with ASAM optimizer outperforms many strong baselines. For experiments marked with * we
do another round of hyper-parameter search. �AdaDecay indicates using the work from Nakamura
& Hong (2019). The columns represent the method, depth and width of the WideResNets used,
augmentation, number of epochs, whether ASAM, TRADES (Zhang et al., 2019), and Stochastic
Weight Averaging (Izmailov et al., 2018), were used in the training, followed by the natural accuracy
and adversarial accuracy using AutoAttack. In the augmentation column, P&C is short for Pad and
Crop. The experiments with † are based on results from (Liu et al., 2021) which use a custom choice
of parameters to alleviate robust overfitting. We also experimented with methods related to AWD
such as LARS. We observed no improvement, so we do not report the results here. More details can
be found in Appendix D.2.

combined with advanced optimization methods such as ASAM can result in models which have good
natural and robust accuracies when compared with advanced methods on the CIFAR-100 dataset.
Table 3 compares AWD+ASAM with various advanced methods on the CIFAR-10 dataset. The
hyper-parameters used in this experiment are similar to those used before for the CIFAR-100 dataset.
As it can be seen, despite it’s simplicity, AWD depicts improvements over very strong baselines on
two extensively studied datasets of the adversarial machine learning domain 4.

Method WRN Aug Epo CIFAR-10
Nat AA

AT (Madry et al., 2017) 32-10 P&C 100† 87.80 48.46
TRADES (Zhang et al., 2019) 32-10 P&C 100† 86.36 53.40

MART (Wang et al., 2020) 32-10 P&C 100† 84.76 51.40
FAT (Zhang et al., 2020a) 32-10 P&C 100† 89.70 47.48

AWP (Wu et al., 2020) 32-10 P&C 100† 57.55 53.08
GAIRAT (Zhang et al., 2020b) 32-10 P&C 100† 86.30 40.30

MAIL-AT (Liu et al., 2021) 32-10 P&C 100† 84.83 47.10
MAIL-TR (Liu et al., 2021) 32-10 P&C 100† 84.00 53.90

�awd = 0.022 + ASAM 32-10 P&C 100 88.55 54.04

Table 3: WRN32-10 models CIFAR-10 models trained with AWD when using the ASAM optimizer
are more robust than models trained with various sophisticated algorithms from the literature.

4ImageNet robustness results can be seen in Appendix C.11

8

3 Additional Properties of Adaptive Weight Decay

Due to the properties mentioned before, such as reducing overfitting and resulting in networks
with smaller weight-norms, Adaptive Weight Decay (AWD) can be seen as a good choice for other
applications which can benefit from robustness. In particular, below in 3.1 we study the effect of
adaptive weight decay in the noisy label setting. More specifically, we show roughly 4% accuracy
improvement on CIFAR-100 and 2% on CIFAR-10 for training on the 20% symmetry label flipping
setting (Bartlett et al., 2006). In addition, in the Appendix, we show the potential of AWD for
reducing sensitivity to sub-optimal learning rates. Also, we show that networks which are naturally
trained achieving roughly similar accuracy, once trained with adaptive weight decay, tend to have
lower weight-norms. This phenomenon can have exciting implications for pruning networks (LeCun
et al., 1989; Hassibi & Stork, 1992).

3.1 Robustness to Noisy Labels

Popular vision datasets, such as MNIST (LeCun & Cortes, 2010), CIFAR (Krizhevsky et al., 2009),
and ImageNet (Deng et al., 2009), contain some amount of label noise (Yun et al., 2021; Zhang,
2017). While some studies provide methods for identifying and correcting such errors (Yun et al.,
2021; Müller & Markert, 2019; Al-Rawi & Karatzas, 2018; Kuriyama, 2020), others provide training
algorithms that avoid over-fitting, or even better, avoid fitting the incorrectly labeled examples entirely
(Jiang et al., 2018; Song et al., 2019; Jiang et al., 2020).

In this section, we perform a preliminary investigation of adaptive weight decay’s resistance to fitting
training data with label noise. Following previous studies, we use symmetry label flipping (Bartlett
et al., 2006) to create noisy data for CIFAR-10 and CIFAR-100 and use ResNet34 as the backbone.
Other experimental setup details can be found in Appendix A.2. Similar to the previous section, we
test different hyper-parameters for adaptive and non-adaptive weight decay. To ease comparison
in this setting, we train two networks for each hyper-parameter: 1- with a certain degree of label
noise and 2- with no noisy labels. We then report the accuracy on the clean label test set. The test
accuracy on the second network – one which is trained with no label noise – is just the clean accuracy.
Having the clean accuracy coupled with the accuracy after training on noisy data enables an easier
understanding of the sensitivity of each training algorithm and choice of hyper-parameter to label
noise. Figure 4 gathers the results of the noisy data experiment on CIFAR-100.

Figure 4 demonstrates that networks trained with adaptive weight decay exhibit a more modest
decline in performance when label noise is present in the training set. For instance, Figure 4(a) shows
that �awd = 0.028 for adaptive and �wd = 0.0089 for non-adaptive weight decay achieve roughly
70% accuracy when trained on clean data, while the adaptive version achieves 4% higher accuracy
when trained on the noisy data. Appendix C.5 includes similar results for CIFAR-10.

Intuitively, based on eq. 7, in the later stages of training, when examples with label noise generate
large gradients, adaptive weight decay intensifies the penalty for weight decay. This mechanism
effectively prevents the model from fitting the noisy data by regularizing the gradients.

4 Conclusion

Regularization methods for a long time have aided deep neural networks in generalizing on data
not seen during training. Due to their significant effects on the outcome, it is crucial to have the
right amount of regularization and correctly tune training hyper-parameters. We propose Adaptive
Weight Decay (AWD), which is a simple modification to weight decay – one of the most commonly
employed regularization methods. In our study, we conduct a comprehensive comparison between
AWD and non-adaptive weight decay in various settings, including adversarial robustness and training
with noisy labels. Through rigorous experimentation, we demonstrate that AWD consistently yields
enhanced robustness. By conducting experiments on diverse datasets and architectures, we provide
empirical evidence to showcase the effectiveness of our approach in mitigating robust overfitting.

9

(a) (b)

(c) (d)

Figure 4: Comparison of similarly performing networks once trained on CIFAR-100 clean data, after
training on 20% (a), 40% (b), 60% (c), and 80% (d). Networks trained with adaptive weight decay
are less sensitive to label noise compared to ones trained with non-adaptive weight decay.

5 Acknowledgement

We extend our sincere appreciation to Zhile Ren for their invaluable support and perceptive contribu-
tions during the publication of this manuscript.

10

References

Al-Rawi, M. and Karatzas, D. On the labeling correctness in computer vision datasets. In IAL@

PKDD/ECML, pp. 1–23, 2018.

Andriushchenko, M., Croce, F., Flammarion, N., and Hein, M. Square attack: a query-efficient
black-box adversarial attack via random search. In European Conference on Computer Vision, pp.
484–501. Springer, 2020.

Balaji, Y., Goldstein, T., and Hoffman, J. Instance adaptive adversarial training: Improved accuracy
tradeoffs in neural nets. arXiv preprint arXiv:1910.08051, 2019.

Bartlett, P. L., Jordan, M. I., and McAuliffe, J. D. Convexity, classification, and risk bounds. Journal

of the American Statistical Association, 101(473):138–156, 2006.

Bergstra, J., Yamins, D., and Cox, D. Making a science of model search: Hyperparameter optimization
in hundreds of dimensions for vision architectures. In International conference on machine learning,
pp. 115–123. PMLR, 2013.

Biggio, B., Corona, I., Maiorca, D., Nelson, B., Šrndić, N., Laskov, P., Giacinto, G., and Roli, F.
Evasion attacks against machine learning at test time. In Joint European conference on machine

learning and knowledge discovery in databases, pp. 387–402. Springer, 2013.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A., Shyam,
P., Sastry, G., Askell, A., et al. Language models are few-shot learners. Advances in neural

information processing systems, 33:1877–1901, 2020.

Carlini, N. and Wagner, D. Towards evaluating the robustness of neural networks. In 2017 ieee

symposium on security and privacy (sp), pp. 39–57. Ieee, 2017.

Carmon, Y., Raghunathan, A., Schmidt, L., Duchi, J. C., and Liang, P. S. Unlabeled data improves
adversarial robustness. Advances in Neural Information Processing Systems, 32, 2019.

Chen, P., Liu, S., Zhao, H., and Jia, J. Gridmask data augmentation. arXiv preprint arXiv:2001.04086,
2020.

Cohen, J., Rosenfeld, E., and Kolter, Z. Certified adversarial robustness via randomized smoothing.
In International Conference on Machine Learning, pp. 1310–1320. PMLR, 2019.

Croce, F. and Hein, M. Minimally distorted adversarial examples with a fast adaptive boundary attack.
In International Conference on Machine Learning, pp. 2196–2205. PMLR, 2020a.

Croce, F. and Hein, M. Reliable evaluation of adversarial robustness with an ensemble of diverse
parameter-free attacks. In International conference on machine learning, pp. 2206–2216. PMLR,
2020b.

Croce, F., Andriushchenko, M., Sehwag, V., Debenedetti, E., Flammarion, N., Chiang, M., Mittal,
P., and Hein, M. Robustbench: a standardized adversarial robustness benchmark. arXiv preprint

arXiv:2010.09670, 2020.

Cubuk, E. D., Zoph, B., Mane, D., Vasudevan, V., and Le, Q. V. Autoaugment: Learning augmentation
strategies from data. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pp. 113–123, 2019.

Cubuk, E. D., Zoph, B., Shlens, J., and Le, Q. V. Randaugment: Practical automated data augmenta-
tion with a reduced search space. In Proceedings of the IEEE/CVF conference on computer vision

and pattern recognition workshops, pp. 702–703, 2020.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on computer vision and pattern recognition, pp. 248–255.
Ieee, 2009.

DeVries, T. and Taylor, G. W. Improved regularization of convolutional neural networks with cutout.
arXiv preprint arXiv:1708.04552, 2017.

11

Gastaldi, X. Shake-shake regularization. arXiv preprint arXiv:1705.07485, 2017.

Goodfellow, I. J., Shlens, J., and Szegedy, C. Explaining and harnessing adversarial examples. arXiv

preprint arXiv:1412.6572, 2014.

Gowal, S., Qin, C., Uesato, J., Mann, T., and Kohli, P. Uncovering the limits of adversarial training
against norm-bounded adversarial examples. arXiv preprint arXiv:2010.03593, 2020.

Hassibi, B. and Stork, D. Second order derivatives for network pruning: Optimal brain surgeon.
Advances in neural information processing systems, 5, 1992.

Hendrycks, D., Lee, K., and Mazeika, M. Using pre-training can improve model robustness and
uncertainty. In International Conference on Machine Learning, pp. 2712–2721. PMLR, 2019a.

Hendrycks, D., Mu, N., Cubuk, E. D., Zoph, B., Gilmer, J., and Lakshminarayanan, B. Aug-
mix: A simple data processing method to improve robustness and uncertainty. arXiv preprint

arXiv:1912.02781, 2019b.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In International conference on machine learning, pp. 448–456. PMLR,
2015.

Izmailov, P., Podoprikhin, D., Garipov, T., Vetrov, D., and Wilson, A. G. Averaging weights leads to
wider optima and better generalization. arXiv preprint arXiv:1803.05407, 2018.

Jiang, L., Zhou, Z., Leung, T., Li, L.-J., and Fei-Fei, L. Mentornet: Learning data-driven curriculum
for very deep neural networks on corrupted labels. In International conference on machine learning,
pp. 2304–2313. PMLR, 2018.

Jiang, L., Huang, D., Liu, M., and Yang, W. Beyond synthetic noise: Deep learning on controlled
noisy labels. In International Conference on Machine Learning, pp. 4804–4815. PMLR, 2020.

Kannan, H., Kurakin, A., and Goodfellow, I. Adversarial logit pairing. arXiv preprint

arXiv:1803.06373, 2018.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers of features from tiny images. 2009.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet classification with deep convolutional
neural networks. Communications of the ACM, 60(6):84–90, 2017.

Krogh, A. and Hertz, J. A simple weight decay can improve generalization. Advances in neural

information processing systems, 4, 1991.

Kuriyama, K. Autocleansing: Unbiased estimation of deep learning with mislabeled data. 2020.

Kwon, J., Kim, J., Park, H., and Choi, I. K. Asam: Adaptive sharpness-aware minimization for scale-
invariant learning of deep neural networks. In International Conference on Machine Learning, pp.
5905–5914. PMLR, 2021.

LeCun, Y. and Cortes, C. MNIST handwritten digit database. 2010. URL http://yann.lecun.
com/exdb/mnist/.

LeCun, Y., Denker, J., and Solla, S. Optimal brain damage. Advances in neural information

processing systems, 2, 1989.

Liu, F., Han, B., Liu, T., Gong, C., Niu, G., Zhou, M., Sugiyama, M., et al. Probabilistic margins for
instance reweighting in adversarial training. Advances in Neural Information Processing Systems,
34:23258–23269, 2021.

Loshchilov, I. and Hutter, F. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101,
2017.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and Vladu, A. Towards deep learning models
resistant to adversarial attacks. arXiv preprint arXiv:1706.06083, 2017.

12

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

Mendoza, H., Klein, A., Feurer, M., Springenberg, J. T., and Hutter, F. Towards automatically-tuned
neural networks. In Workshop on automatic machine learning, pp. 58–65. PMLR, 2016.

Müller, N. M. and Markert, K. Identifying mislabeled instances in classification datasets. In 2019

International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE, 2019.

Müller, S. G. and Hutter, F. Trivialaugment: Tuning-free yet state-of-the-art data augmentation. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 774–782, 2021.

Nakamura, K. and Hong, B.-W. Adaptive weight decay for deep neural networks. IEEE Access, 7:
118857–118865, 2019.

Plaut, D. C. et al. Experiments on learning by back propagation. 1986.

Rasley, J., Rajbhandari, S., Ruwase, O., and He, Y. Deepspeed: System optimizations enable training
deep learning models with over 100 billion parameters. In Proceedings of the 26th ACM SIGKDD

International Conference on Knowledge Discovery & Data Mining, pp. 3505–3506, 2020.

Real, E., Aggarwal, A., Huang, Y., and Le, Q. V. Aging evolution for image classifier architecture
search. In AAAI conference on artificial intelligence, volume 2, pp. 2, 2019.

Rebuffi, S.-A., Gowal, S., Calian, D. A., Stimberg, F., Wiles, O., and Mann, T. Fixing data
augmentation to improve adversarial robustness. arXiv preprint arXiv:2103.01946, 2021.

Rice, L., Wong, E., and Kolter, Z. Overfitting in adversarially robust deep learning. In International

Conference on Machine Learning, pp. 8093–8104. PMLR, 2020.

Shafahi, A., Najibi, M., Ghiasi, M. A., Xu, Z., Dickerson, J., Studer, C., Davis, L. S., Taylor, G., and
Goldstein, T. Adversarial training for free! Advances in Neural Information Processing Systems,
32, 2019.

Sharif, M., Bauer, L., and Reiter, M. K. On the suitability of lp-norms for creating and preventing
adversarial examples. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition Workshops, pp. 1605–1613, 2018.

Smith, S., Patwary, M., Norick, B., LeGresley, P., Rajbhandari, S., Casper, J., Liu, Z., Prabhumoye,
S., Zerveas, G., Korthikanti, V., et al. Using deepspeed and megatron to train megatron-turing nlg
530b, a large-scale generative language model. arXiv preprint arXiv:2201.11990, 2022.

Song, H., Kim, M., and Lee, J.-G. Selfie: Refurbishing unclean samples for robust deep learning. In
International Conference on Machine Learning, pp. 5907–5915. PMLR, 2019.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. Dropout: a simple
way to prevent neural networks from overfitting. The journal of machine learning research, 15(1):
1929–1958, 2014.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., and Fergus, R. Intriguing
properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

Tan, M. and Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In
International conference on machine learning, pp. 6105–6114. PMLR, 2019.

Wang, Y., Zou, D., Yi, J., Bailey, J., Ma, X., and Gu, Q. Improving adversarial robustness requires
revisiting misclassified examples. In International Conference on Learning Representations, 2020.

Warde-Farley, D. and Goodfellow, I. 11 adversarial perturbations of deep neural networks. Perturba-

tions, Optimization, and Statistics, 311:5, 2016.

Wong, E. and Kolter, Z. Provable defenses against adversarial examples via the convex outer
adversarial polytope. In International Conference on Machine Learning, pp. 5286–5295. PMLR,
2018.

Wong, E., Rice, L., and Kolter, J. Z. Fast is better than free: Revisiting adversarial training. arXiv

preprint arXiv:2001.03994, 2020.

13

Wu, D., Xia, S.-T., and Wang, Y. Adversarial weight perturbation helps robust generalization.
Advances in Neural Information Processing Systems, 33:2958–2969, 2020.

Yamada, Y., Iwamura, M., Akiba, T., and Kise, K. Shakedrop regularization for deep residual learning.
IEEE Access, 7:186126–186136, 2019.

You, Y., Gitman, I., and Ginsburg, B. Large batch training of convolutional networks. arXiv preprint

arXiv:1708.03888, 2017.

Yun, S., Han, D., Oh, S. J., Chun, S., Choe, J., and Yoo, Y. Cutmix: Regularization strategy to
train strong classifiers with localizable features. In Proceedings of the IEEE/CVF international

conference on computer vision, pp. 6023–6032, 2019.

Yun, S., Oh, S. J., Heo, B., Han, D., Choe, J., and Chun, S. Re-labeling imagenet: from single to
multi-labels, from global to localized labels. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pp. 2340–2350, 2021.

Zagoruyko, S. and Komodakis, N. Wide residual networks. arXiv preprint arXiv:1605.07146, 2016.

Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O. Understanding deep learning (still)
requires rethinking generalization. Communications of the ACM, 64(3):107–115, 2021.

Zhang, G., Wang, C., Xu, B., and Grosse, R. Three mechanisms of weight decay regularization.
arXiv preprint arXiv:1810.12281, 2018.

Zhang, H., Cisse, M., Dauphin, Y. N., and Lopez-Paz, D. mixup: Beyond empirical risk minimization.
arXiv preprint arXiv:1710.09412, 2017.

Zhang, H., Yu, Y., Jiao, J., Xing, E., El Ghaoui, L., and Jordan, M. Theoretically principled trade-off
between robustness and accuracy. In International conference on machine learning, pp. 7472–7482.
PMLR, 2019.

Zhang, J., Xu, X., Han, B., Niu, G., Cui, L., Sugiyama, M., and Kankanhalli, M. Attacks which
do not kill training make adversarial learning stronger. In International conference on machine

learning, pp. 11278–11287. PMLR, 2020a.

Zhang, J., Zhu, J., Niu, G., Han, B., Sugiyama, M., and Kankanhalli, M. Geometry-aware instance-
reweighted adversarial training. arXiv preprint arXiv:2010.01736, 2020b.

Zhang, X. A method of data label checking and the wrong labels in mnist and cifar10. Available at

SSRN 3072167, 2017.

Zhou, Y., Ebrahimi, S., Arık, S. Ö., Yu, H., Liu, H., and Diamos, G. Resource-efficient neural
architect. arXiv preprint arXiv:1806.07912, 2018.

14

	Introduction
	Adversarial Robustness
	Robust overfitting and relationship to weight decay
	Weight Decay
	Robust overfitting phenomenon revisited

	Adaptive Weight Decay
	Differences between Adaptive and Non-Adaptive Weight Decay
	Related works to Adaptive Weight Decay

	Experimental Robustness results for Adaptive Weight Decay

	Additional Properties of Adaptive Weight Decay
	Robustness to Noisy Labels

	Conclusion
	Acknowledgement
	Experimental Setup
	Adversarial Training
	Noisy Label Training

	Implementation
	Extra Results
	Varying the architecture
	Varying the Attack Budget
	Varying the number of Epochs
	CIFAR-100 robustness and Adaptive Weight Decay
	CIFAR-10 robustness to noisy labels
	2D Grid search for best parameter values for ResNet32
	Visualizing images from the CIFAR-100 training set where best AWD models do not fit.
	Additional Robustness benefits
	Under-Fitting Data, A Desirable Property
	Robustness to Sub-Optimal Learning Rate
	Adaptive weight decay on ImageNet
	Robustness to Parameter Pruning

	Related Work on Adaptive Weight Decay
	AdaDecay
	LARS

	Limitations
	An Example for Convergence of Adaptive Weight Decay

