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ABSTRACT

Accurate molecular representations are critical for drug discovery, and a central
challenge lies in capturing the chemical environment of molecular fragments,
as key interactions, such as H-bond and π stacking—occur only under specific
local conditions. Most existing approaches represent molecules as atom-level
graphs; however, individual atoms cannot express stereochemistry, lone pairs,
conjugation, and other complex features. Fragment-based methods (e.g., principal
subgraph or functional group libraries) fail to preserve essential information such
as chirality, aromatic bond integrity, and ionic states. This work addresses these
limitations from two aspects. (i) OverlapBPE tokenization1. We propose a
novel data-driven molecule tokenization method. Unlike existing approaches, our
method allows overlapping fragments, reflecting the inherently fuzzy boundaries
of small-molecule substructures and, together with enriched chemical information
at the token level, thereby preserving a more complete chemical context. (ii) h-
MINT model. We develop a hierarchical molecular interaction network capable
of jointly modeling drug–target interactions at both atom and fragment levels. By
supporting fragment overlaps, the model naturally accommodates the many-to-
many atom–fragment mappings introduced by the OverlapBPE scheme. Extensive
evaluation against state-of-the-art methods shows our method improves binding
affinity prediction by 2-4% Pearson/Spearman correlation on PDBBind and LBA,
enhances virtual screening by 1-3% in key metrics on DUD-E and LIT-PCBA, and
achieves the best overall HTS performance on PubChem assays. Further analysis
demonstrates that our method effectively captures interactive information while
maintaining good generalization.

1 INTRODUCTION

Precise modeling of protein-ligand interactions is pivotal for fundamental tasks, such as binding
affinity prediction and virtual screening, in early-stage drug discovery (R Laurie & Jackson, 2006). To
accurately decipher these interactions, it is essential to build expressive representations to fully capture
the chemical environment of the molecules. Most existing methods represent molecules as atom-
level graphs (Zhou et al., 2023); however, it is questionable whether they are able to learn essential
chemical information (e.g., stereochemistry, lone pairs, conjugation) just from atomic tokens (Wigh
et al., 2022). Another line of work employs molecular fragmentation (e.g., Principal Subgraph
(Kong et al., 2022b)) to preserve local contexts for atoms, in accordance with the intuition that many
physicochemical properties occur at the fragment level (Murray & Rees, 2009). Nevertheless, these
methods still fail to preserve crucial information like chirality, aromatic bond integrity, and ionic
states, which stems from their naive partitioning of molecules into disjoint sets.

This work addresses the above limitations by integrating innovations in both molecular representations
and model architectures. (i) We propose a novel and frequency-based molecular tokenization (i.e.,
fragmentation) algorithm, OverlapBPE, which preserves essential chemical knowledge (e.g., chirality,
aromaticity, charges). Specifically, we enrich the atomic representation with their properties (e.g.,
charges) and further incorporate 3D conformations during an iterative tokenizing process to extract
frequently occurring fragments. To maintain the integrity of aromatic systems, we further enable

1BPE (Byte Pair Encoding) (Sennrich et al., 2016) is a statistical tokenization method that iteratively merges
the most frequent pairs of symbols in a corpus to generate compact and efficient subword units.
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A. B. C.

Figure 1: Illustration of the OverlapBPE tokenization process. (i) Starting from the molecule in
A, we first extract all basic tokens from the atom graph. (ii) After identifying all basic tokens, we
obtain the initial fragments (left) and token graph (right), as shown in B, which contains 4 tokens in
3 types: c1ccccc1 (freq=3778), Cc (freq=3496), and Sc (freq=637). (iii) We then enumerate all
adjacent token pairs and identify the highest-frequency composite token from the final vocabulary
Φfinal, namely Cc1ccccc1 (freq=2458). (iv) Merging c1ccccc1 and Cc into a new token, we
obtain new fragments and token graph, as shown in C, containing 3 tokens in 2 types: Cc1ccccc1
(freq=2458), Sc (freq=637). (v) Continue enumerating adjacent pairs in token graph C; no matched
token found in vocabulary, the algorithm terminates.

atom overlaps between mined fragments, leading to a many-to-many mapping between atoms and
fragments. For example, a Naphthalene (c1c2ccccc2ccc1) can be tokenized into 2 benzene rings
(c1ccccc1) that share 2 aromatic C atoms. While the many-to-many mapping is necessary for
aromatic integrity, it also poses an additional challenge on the model architecture, as most existing
hierarchical molecular networks only support 1-1 mapping between atoms and fragments. (ii) To
support our OverlapBPE tokenization, we build the hierarchical Molecular Interaction NeTwork
(h-MINT), which explicitly accommodates the many-to-many atom–fragment mapping. h-MINT
introduces a bilevel attention mechanism that allows bidirectional information flow between atoms
and overlapping fragments, and further expands fragment-level relations into atom-level geometric
edges. This hierarchical yet equivariant design enables the model to capture multi-scale interaction
patterns while maintaining global consistency.

Extensive experiments exhibit the superiority of our method over existing baselines, highlighting
2-4% performance gains on Pearson/Spearman correlation for binding affinity prediction, 1-3% gains
on key metrics for virtual screening, and the best overall performance in HTS. Further analysis
shows that our tokenization captures important inductive bias, making our model robust to noise and
maintaining good generalization under different settings, indicating great potential for real-world
applications.

2 BACKGROUND AND RELATED WORK

Fragment-Based Molecular Tokenization Fragmentation partitions atom-level molecular graph
into coarse units that captures meaningful substructural features. Early work relied on hand-crafted
junction-tree rules or predefined fragment libraries (Jin et al., 2018; 2020; Yang et al., 2021). To
reduce manual bias, subsequent studies adopted unsupervised frequent-subgraph mining to construct
fragmentation rules in a data-driven manner: the underlying search is NP-hard (Kuramochi & Karypis,
2001; Jazayeri & Yang, 2021), but approximate algorithms make it tractable in practice (Inokuchi
et al., 2000; Yan & Han, 2002; Nijssen & Kok, 2004; Geng et al., 2023). Byte-pair encoding (BPE),
which iteratively merges the most frequent token pairs to build a compact vocabulary, has also been
adapted to 2D molecular data (Li & Fourches, 2021; Ucak et al., 2023; Shen & Póczos, 2024). Our
work is closely related to PS-VAE (Kong et al., 2022b), which proposes a data-driven tokenization
that automatically mines and merges the most frequent, maximally-sized molecular fragments
(i.e., principal subgraph). However, essential chemical information, such as stereochemistry and
conjugation, is usually neglected. In contrast, our proposed OverlapBPE tackles these challenges
by enriching atomic properties, involving 3D stereochemistry, and enabling overlapping between
fragments.
Molecular Interaction Modeling Recent deep-learning frameworks for biomolecular modeling
seek to couple fine-grained molecular representations interacting at multiple spatial resolutions.
At the finest scale, atom-level graphs are usually processed with E(n)-equivariant or directional
message-passing networks, capturing local physics with high fidelity (Schütt et al., 2017; Satorras
et al., 2021; Xu et al., 2022; Hoogeboom et al., 2022; Atz et al., 2021; Zaidi et al., 2022; Townshend
et al., 2020). To reason over chemistry that spans several bonds such as aromatic conjugation,
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hydrogen-bond lattices and π-stacking, researchers introduce coarser views by pooling atoms into
residues or surfaces for proteins (Jin et al., 2022; Anand & Achim, 2022; Somnath et al., 2021; Wang
et al., 2022), dual graphs for inverse folding (Gao et al., 2022), and functional-groups mined from
small-molecule graphs (Jin et al., 2018; Kong et al., 2022b; Geng et al., 2023). Cross-molecule
modules then embed ligand and receptor in a shared 3-D frame and predict poses or affinities with
regression, contrastive, or diffusion objectives (Kong et al., 2022a; Luo et al., 2022; Stärk et al.,
2022; Kong et al., 2024; Gao et al., 2023). Although these approaches broaden the receptive field,
they often remain confined to a single resolution and are unable to enable bidirectional information
flow between atoms and their corresponding substructures. Compared with prior hierarchical GNN
approaches, our h-MINT introduces an atom–token overlap mechanism and expands token-level
relations into atom-level geometric edges, enabling more flexible cross-scale information flow and
yielding fine-grained yet globally consistent interaction modeling.

3 METHODOLOGY

3.1 OVERLAPBPE TOKENIZATION

We reveal that the failures of existing fragment-based methods stem from the naive partitioning of
molecules into disjoint sets. To address these limitations, we propose a new tokenization approach that
permits atom overlaps between mined fragments, enabling more expressive, coherent, and chemically
meaningful molecular representations.

Atom Graph An atom graph can be represented as a property graph Ga = (V a, Ea), where
V a = {ai} is a set of atoms, Ea ⊂ V a × V a is the set of bonds, and each atom/bond has an
associated element/bond type. A tokenization step maps a subgraph of Ga with certain atoms and
bonds into a token (V ′, E′)→ f ∈ Φ, where (V ′, E′) = Ga[V ′] ⊂ 2V ×2E is an induced subgraph,
and Φ is the set of tokens.

Token Graph A token graph Gf is constructed from an atom graph Ga through contracting
subgraphs in Ga as a single node while preserving connectivity. To guarantee not breaking important
substructures and support token overlap, we first identify a set of basic tokens Φbasic, which includes
smallest fragments that are chemically meaningful and should be preserved during partitioning. We
include all single atoms, bonds, and rings collected from the training set in Φbasic

2 to guarantee the
token set is complete, yet not all of the basic tokens will be added to the final vocabulary. In practice,
we first replace all rings with tokens, then bonds, and lastly atoms to make sure all atoms and bonds
are covered in the token graph Gf . In Gf , each node is a basic token, and the tokens are connected
through sharing atoms (or disconnected when it is an ion).

Gf = (V f , Ef ), T f : V f → Φbasic (1)

where V f is the set of tokens, Ef ⊆ V f × V f encodes their adjacency (e.g., two tokens share atoms
or connected by bonds), and T f maps each fragment node to its token type in Φbasic. Besides, the
following tokenization process follows a bottom-up BPE merge fashion3, which also guarantees that
the basic tokens will not be broken.

Frequency-Based Vocabulary Setup After we get the token graph Gf consisting of basic tokens,
we iteratively discover new composite tokens and update the vocabulary Φcomp as follows:

1. For a given token graph Gf = (V f , Ef ), enumerate all adjacent fragment pairs (fi, fj) ∈
Ef as composite token candidates: C = {Merge(fi, fj) | (fi, fj) ∈ Ef} where
Merge(fi, fj) denotes the operation of combining two neighboring fragments into a larger
fragment. Token frequency is computed over the training corpus.

2. Select the most frequent token f∗ ∈ C and add it to the vocabulary: Φcomp ← Φcomp ∪ {f∗}.
2Aromatic rings are treated as single delocalized π systems to preserve conjugation.
3In BPE, tokenization starts from an initial vocabulary of basic tokens (e.g., characters or word pieces),

and iteratively merges the most frequent adjacent pairs. Since merging only combines existing tokens without
splitting them, the original basic tokens remain intact.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3. Update all fragment graphs {Gf} in the corpus by replacing each occurrence of f∗ with
a new hyper node. Note that the original fragments in V f will not be removed from Gf

unless all of its adjacent composite candidates have been merged.
4. Repeat steps 1–3 until a stopping criterion (e.g., iteration steps) is met.
5. Filter Φbasic and Φcomp with minimum frequency threshold to make sure a proper vocabulary

size Φfinal = {f ∈ Φbasic ∪ Φcomp|freq(f) > t}.

OverlapBPE Tokenization After obtaining the vocabulary, we can tokenize an atom-bond graph
Ga following the frequency of tokens in Φfinal. Figure 1 illustrates the tokenization process.

1. Find all basic tokens Φbasic from Ga and convert Ga into fragment graph Gf . For basic
tokens in Gf , we preserve their token identifier if it’s in Φfinal, otherwise, we replace it with
a special identifier (e.g., <ring>) to make sure not breaking it in the following.

2. For Gf , enumerate all adjacent fragment pairs (fi, fj) ∈ Ef and find the matching token
f∗ ∈ Φfinal with the highest frequency that can be merged from pair(s) (fi, fj) ∈ Ef .
Replace pair(s) with f∗ and update Gf . Note that a token fi ∈ Nf will not be removed
from Gf unless fi and all its adjacent pairs (fi, fj) ∈ Ef have been merged.

3. Repeat step 2 until no fragment pairs match tokens in Φfinal.

Chemical Information Incorporation Our vocabulary can be easily extended to incorporate
domain knowledge. (i) To distinguish Chirality, the algorithm operates on 2D molecular graphs
augmented with 3D conformer information. The use of 3D coordinates ensures that stereochemistry
is preserved during tokenization. As a result, each token is assigned a unique isomeric SMILES string
as its vocabulary identifier, encoding both atomic connectivity and chirality. For example, L-lactic
and R-lactic are represented by C[C@H](O)C(=O)O and C[C@@H](O)C(=O)O, respectively. (ii)
Aromatic integrity is ensured by two complementary mechanisms. First, aromatic rings are treated
as indivisible basic tokens, which are preserved throughout the bottom-up merge process. Second, the
overlapping tokenization strategy allows for progressive merging of neighboring tokens, enabling the
discovery of extended conjugated systems while maintaining aromatic consistency. (iii) To properly
encode atomic attributes, such as charged and aromatic atoms, we assign explicit identifiers to
atoms with formal charges and/or aromatic participation. For instance, [Cl-] denotes a negatively
charged chlorine atom, while [n+] indicates a positively charged aromatic nitrogen. In contrast
to standard SMILES, which often omit such details when representing isolated atoms, our token
identifiers explicitly preserve these chemically significant properties.

3.2 H-MINT

In this section, we introduce hierarchical Molecular Interaction NeTwork (h-MINT), an SE(3)-
equivariant graph Transformer that (i) adapts its self-attention, feed-forward, and normalization layers
to maintain equivariance, and (ii) preserves atom–token overlap, allowing atoms to belong to multiple
tokens (and vice versa) for flexible fragment representations. The overall architecture is in Figure 2.

3.2.1 MODEL INPUT AND EMBEDDING

The model receives a pocket-ligand pair as input, including their atoms (V a
p , V

a
l )

4, tokens (V f
p , V f

l ),
and atom-token mapping Tp ⊆ V a

p × V f
p , Tl ⊆ V a

l × V f
l . Note that: (i) each node in V a or V f has

a type (e.g., element type N, token type [Cl-]). (ii) The mapping function T has 2 parts to map an
atom index to its associated token indices Ta2f and vice versa Tf2a, yet do not operate on atom and
token types. Thus, the embeddings can be obtained:

H0
p = Embed(V a

p , V
f
p , Tp), H0

l = Embed(V a
l , V

f
l , Tl), (2)

H0 = Embed(V a) + ScatterMean(Embed(V f ), Tf2a) + Embed(Pos(V a)), (3)
where we use scatter_mean to aggregate an atom’s associated token types information, and
Pos(·) simply maps an atom to its position code5 To collect global information from atoms and

4We use subscript p and l for pocket and ligand, superscript a and f to distinguish atom and token (fragment).
5The position code for a residue atom is its atom name, e.g., CA→ A, for a molecular atom is a special token

<sm>. We leave the complete position code table in the Appendix A.1.
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A. B. C.

Equiv Bilevel
Attention

Figure 2: Overall model architecture. (A) Global node, fragment tokens, and atoms in the ligand
molecule of an input pair. (B) The aggregation of fragment and global embeddings. (C) An encoder
layer of h-MINT. Note: Solid lines indicate connection within the same level. Dashed lines indicate
connections across different levels.

tokens, we also augment special <global> tokens to all node lists V a
p , V

a
l , V

f
p , V f

l . Some example
inputs can be found in the Appendix A.1.

3.2.2 BUILDING HIERARCHICAL GRAPH

The embedding layer only encodes type and position information, and also uses Tp, Tl to map token
type embedding into atom embedding dimensions. In this section, we further consider 3D structures
and build hierarchical graphs for message passing, as shown in Figure 2 B. Before we start building
the graph, we need to specify that the edges are directed, which means for any token-level edge
(fi, fj) or atom-level edge (ai, aj), the former node will receive a message from the latter.

KNN Token Graph In the token level, every pair of input contains a sequence of pocket tokens
and a sequence of ligand tokens, plus 2 augmented global tokens, as follows:

[V f
p ;V f

l ] = [fp,g, fp,0, fp,1, fp,2, . . . , fl,g, fl,0, fl,1, fl,2, . . . ], (4)

where we use fp and fl to represent pocket and ligand tokens, and subscription f,g and f,i to denote
corresponding global token and i-th token. In this step, we construct a KNN graph for non-global
tokens, where the distance between token fi and fj is the minimum distance between all their atoms,

dist(fi, fj) = min
as∈fi,at∈fj

dist(as, at), (5)

For the two global tokens, we connect them with their following tokens to aggregate information
within each pocket and ligand, and we connect the 2 global tokens to exchange pair information.
Therefore we get the set of edges Ef

KNN = {(fi, fj)|fi ∈ V f
p ∪V

f
l , fj ∈ KNN(fi)}∪{(f,g, f,i)|f,i ∈

V f} ∪ {(fp,g, fl,g)}. For simplicity, we use KNN(fi) = {fj |(fi, fj) ∈ Ef
KNN} to denote neighbor-

hood of fi.

Token-expanded Atom Graph The atom graph is constructed through expanding each token-
level edge from Ef

KNN into several atom-level edges. More specifically, for a token-level edge in
(fi, fj) ∈ Ef

KNN, we connect each atom with atoms from the other token. In practice, to control the
number of atom-level edges, for an atom ai, we connect as ∈ fi with the k-nearest atoms in fj .
Through this expansion, we obtain a set of atom-level edges that contain short-range interactions
within atoms’ neighborhoods, as well as long-range interactions bridged by token-level edges. Finally,
we get the set of atom-level edges Ea

knn = {(as, at)|as ∈ fi, at ∈ knn(fj , as), (fi, fj) ∈ Ef
KNN},

and we use knn(fi, fj) to denote the set of atom-level edges expanded from (fi, fj).

3.2.3 BILEVEL MESSAGE PASSING

Prepared with aforementioned atom embeddings [H0
p ;H

0
l ] and token-grouped atom-level edges Ea

knn,
we now introduce our bilevel message passing through equivariant bilevel graph attention.

5
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Equivariant Bilevel Graph Attention For a token edge (fi, fj) ∈ Ef
KNN and their expanded atom

edges {(as, at)|as ∈ fi, at ∈ knn(fj , as)}, we first compute atom-level cross attention based on
input atom embeddings H l−1, where l is the current layer:

[Ql;Kl;Vl] = Linear(H l−1), (6)

Score : Si,j [as, at] = MLP(Ql[as],K
l[at],RBF(D[as, at]), ei,j), (7)

Attention Weight : αi,j [as, at] = Softmaxat∈knn(fj ,as)(Si,j [as, at]Wα), (8)

where Ql[as],K
l[at] are query and key vectors of as, at, RBF(D[as, at]) embeds the relative position

of at to as, ei,j is the edge type embedding of (fi, fj)6, and Wα is to project the scores into scalars.
Through Softmax in Eq. 8, as is able to aggregate messages from at ∈ knn(fj , as), namely .

The token-level cross attention is defined through aggregating all atom-level edges expanded from
the token-level edge.

Score : Si,j =
1

|knn(fi, fj)|
∑

(as,at)∈knn(fi,fj)

Mi,j [as, at], (9)

Attention Weight : βi,j = Softmaxfj∈KNN(fi)(Si,jWβ), (10)

where Wβ projects the scores into scalars. Basically, Si,j aggregates all atom-level edges expanded
from (fi, fj). Then we have the following message passing and embedding update:

mi,j [as] =
∑

at∈knn(fj ,as)

αi,j [as, at]V
l[at], (11)

mi[as] =
∑

fj∈KNN(fi)

βi,jMLP(mi,j [as]), (12)

H l[as]← H l−1[as] + ScatterMean(mi[as], Tf2a). (13)

where Vl[at] is the value vector of at at layer-l. Stacking equivariant bilevel attention, equivariant
feed-forward layer, and equivariant layer normalization together, we obtain an equivariant graph
Transformer layer, as shown in Figure 2 C. For more details, please refer to Appendix A.2.

4 EXPERIMENTS AND RESULTS

In this section, we evaluate our OverlapBPE and h-MINT model in two fundamental drug discovery
tasks: binding affinity prediction (Section 4.1) and virtual screening (Section 4.2). We conduct further
experiments and case study for OverlapBPE in incorporating chemical information and representing
chirality in Section 4.3.

4.1 BINDING AFFINITY PREDICTION

Task Definition Given the 3D structure of a pocket-ligand pair, the task is to predict the binding
affinity, i.e., change in free energy upon binding. The input is a complex (p, l) with 3D structure, and
the output is a real value y. Performance is assessed with regression metrics such as root-mean-square
error (RMSE) and Pearson/Spearman correlation against experimental affinities.

Setup We follow Somnath et al. (2021); Wang et al. to conduct experiments on the well-established
PDBBind benchmark (Wang et al., 2005) and split the 4,709 complexes according to sequence identity
of the protein using a 30% threshold. We also employ the LBA dataset with its predefined splits
from the Atom3D benchmark (Townshend et al., 2020), comprising 3,507 protein-ligand complexes
for training, 466 for validation, and 490 for testing. For the baseline models, we compare against a
variety of approaches (Öztürk et al., 2018; Bepler & Berger, 2019; Rao et al., 2019; Elnaggar et al.,
2022; Gainza et al., 2020; Hermosilla et al., 2020; Somnath et al., 2021; Wang et al., 2022; Jing et al.,
2021; Townshend et al., 2020; Schütt et al., 2017; Gasteiger et al., 2021; Zhou et al., 2023; Gao et al.;
Feng et al.). Details are provided in Appendix B.1. Among these models, we primarily focus our
comparison on GET (Kong et al., 2024) and its variants, as it currently achieves the best performance

6We use different edge types to distinguish intra- and inter-molecule edges.
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Table 1: Mean and standard deviation of three runs on the PDBBind benchmark. The best
results are marked in bold, and the second best are underlined. Baseline results are borrowed from
(Wang et al.; Kong et al., 2024). Details in Appendix B.

Model RMSE ↓ Pearson ↑ Spearman ↑

Separate
Encoder

DeepDTA 1.866 ± 0.080 0.472 ± 0.022 0.471 ± 0.024
Bepler and Berger’s 1.985 ± 0.006 0.165 ± 0.006 0.152 ± 0.024
TAPE 1.890 ± 0.035 0.338 ± 0.044 0.286 ± 0.124
ProtTrans 1.544 ± 0.015 0.438 ± 0.053 0.434 ± 0.058
MaSIF 1.484 ± 0.018 0.467 ± 0.020 0.455 ± 0.014
IEConv 1.554 ± 0.016 0.414 ± 0.053 0.428 ± 0.032
Holoprot-Full Surface 1.464 ± 0.006 0.509 ± 0.002 0.500 ± 0.005
Holoprot-Superpixel 1.491 ± 0.004 0.491 ± 0.014 0.482 ± 0.032
ProNet-Amino Acid 1.455 ± 0.009 0.536 ± 0.012 0.526 ± 0.012
ProNet-Backbone 1.458 ± 0.003 0.546 ± 0.007 0.550 ± 0.008
ProNet-All-Atom 1.463 ± 0.001 0.551 ± 0.005 0.551 ± 0.008
ESM-2 + fingerprint 1.537 ± 0.001 0.455 ± 0.013 0.433 ± 0.009

Joint
Encoder

GVP 1.594 ± 0.073 - -
Atom3D-3DCNN 1.416 ± 0.021 0.550 ± 0.021 0.553 ± 0.009
Atom3D-ENN 1.568 ± 0.012 0.389 ± 0.024 0.408 ± 0.021
Atom3D-GNN 1.601 ± 0.048 0.545 ± 0.027 0.533 ± 0.033
GET 1.430 ± 0.007 0.586 ± 0.001 0.575 ± 0.002
GET-Murcko 1.415 ± 0.010 0.590 ± 0.002 0.578 ± 0.003
GET-BRICS 1.410 ± 0.008 0.592 ± 0.003 0.579 ± 0.004
GET-PS 1.387 ± 0.015 0.601 ± 0.002 0.582 ± 0.005
Ours 1.295 ± 0.001 0.640 ± 0.002 0.625 ± 0.002

and shares similarity with our method. Specifically, we include GET-PS, GET-Murcko, and GET-
BRICS, which are GET models incorporating the Principal Subgraph tokenization (Kong et al., 2022b),
Bemis-Murcko scaffolding (Bemis & Murcko, 1996), and BRICS tokenization (Wegscheid-Gerlach
et al.). We also include another baseline (ESM-2+fingerprint) which incorporates ESM-2 embedding
to represents pockets and traditional fingerprints (Morgan+ERP+Avalon) to represent molecules.

Results We employ OverlapBPE on the ligand molecules while utilizing residues as tokens for
pockets, and conduct evaluations on PDBbind and LBA datasets separately. Table 1 and 2 report the
mean and the standard deviation of the metrics across 3 runs for the PDBbind and LBA datasets. Our
model demonstrates significantly better performance over baseline methods in the binding affinity
prediction task. Our improvement suggests that our tokenization and modeling may better preserve
interaction-relevant chemical features. Significance test and more detailed analysis are in Appendix B.

4.2 STRUCTURE-BASED VIRTUAL SCREENING

Task Definition Given the 3D structure of a pocket p and a library of ligands {li}, the task is to
retrieve candidate ligands that are possible to bind with p. A Virtual Screening (VS) model learns a
score si for each pair (p, li), and ranks all candidate ligands in descending order of si. The evaluation
metrics include the area under the ROC curve (AUC), enrichment factor at a given top-k threshold
(EF@k), and BEDROC, which emphasize early-recognition of true binders.

Setup Evaluation was performed on DUD-E (Mysinger et al., 2012) (102 targets, 22,886 actives)
following preprocessing by Gao et al. (2023), and additionally on LIT-PCBA (Tran-Nguyen et al.,
2020), DEKOIS (Vogel et al., 2011), and JACS/Merck (Wang et al., 2015; Schindler et al., 2020) as
used in (Feng et al., 2025) (results in Appendix C.4). We benchmark against classical docking tools
(Halgren et al., 2004; Trott et al., 2009), early ML scoring functions (Durrant & Mccammon, 2011;
Ballester et al., 2010; Stepniewska-Dziubinska et al., 2017; Zheng et al., 2019; Zhang et al., 2023),
and contrastive learning frameworks DrugCLIP (Gao et al., 2023) and LigUnity (Feng et al., 2025).
Since DrugCLIP and LigUnity use different training sets, for a fair comparison, we train these models
and our model with PDBBind (Wang et al., 2005) only, which comprises 16,744 pocket-ligand pairs,
with any overlap with the test sets removed. Following the conventions (Feng et al., 2025; Gao et al.,
2023), these models are initialized with pretrained checkpoint of UniMol (Zhou et al., 2023), with
loss definitions and further implementation details in Appendix C.
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Table 2: Mean and standard deviation of three runs on LBA prediction. The baseline results are
from Kong et al. (2024). Models with * are large pretrained models, results from (Gao et al.; Feng
et al.). The best results are marked in bold and the second best are underlined. Note: To save space,
we only report the best baseline settings from atom-level, fragment-level, and bi-level. Details in
Appendix B.

Best Repr. Setting Model RMSE ↓ Pearson ↑ Spearman ↑

Atom-level

SchNet 1.357 ± 0.017 0.598 ± 0.011 0.592 ± 0.015
EGNN 1.358 ± 0.000 0.599 ± 0.002 0.587 ± 0.004
LEFTNet 1.343 ± 0.004 0.610 ± 0.004 0.598 ± 0.003
ET 1.367 ± 0.037 0.599 ± 0.017 0.584 ± 0.025
UniMol* 1.434 0.565 0.540
BigBind* 1.340 0.632 0.620
ProFSA* 1.377 0.628 0.620

Frag-level

GemNet 1.393 ± 0.036 0.569 ± 0.027 0.553 ± 0.026
Equiformer 1.350 ± 0.019 0.604 ± 0.013 0.591 ± 0.012
DimeNet++ 1.388 ± 0.010 0.582 ± 0.009 0.574 ± 0.007

Bi-level

MACE 1.372 ± 0.021 0.612 ± 0.010 0.592 ± 0.010
GET 1.331 ± 0.008 0.618 ± 0.005 0.607 ± 0.005
GET-PS 1.312 ± 0.016 0.631 ± 0.011 0.642 ± 0.011
Ours 1.276 ± 0.011 0.660 ± 0.001 0.661 ± 0.001

Table 3: Zero-shot Virtual Screening on DUD-E. Baseline results are from (Gao et al., 2023; Feng
et al., 2025). Models with * are trained with PDBBind data only for fair comparison. Details in
Appendix C.

AUC BEDROC EF ↑
(%) ↑ (%) ↑ 0.5% 1% 5%

Glide-SP 76.70 40.70 19.39 16.18 7.23
Vina 71.60 - 9.13 7.32 4.44
NN-score 68.30 12.20 4.16 4.02 3.12

RFscore 65.21 12.41 4.90 4.52 2.98
Pafnucy 63.11 16.50 4.24 3.86 3.76
OnionNet 59.71 8.62 2.84 2.84 2.20
Planet 71.60 - 10.23 8.83 5.40
DrugCLIP * 81.39 45.96 34.27 29.01 10.18
LigUnity * 81.69 46.01 34.44 29.07 10.26

Ours * 84.45 47.64 35.06 29.91 10.76

Results As shown in Table 3, our model successfully generalizes to the DUD-E benchmark under
the zero-shot setting, thanks to the expressiveness of the proposed OverlapBPE and the supporting
model h-MINT. Notably, our method surpasses the state-of-the-art baselines in terms of all the metrics,
indicating its strong ability of capturing precise protein-ligand interaction patterns.
4.3 ADDITIONAL ANALYSIS OF TOKENIZATION

In this section, we provide additional analysis about our tokenization method’s advantages in two
aspects: incorporating chemical information and representing chirality.

Incorporating chemical information. Figure 3 illustrates a case study from the LBA dataset. Our
tokenization preserves the integrity of the benzene ring and retains the positive charge of [N+],
which is necessary for forming the pi-cation interaction between the ligand and the protein pocket.
In contrast, the PS tokenization treats [N] as neutral and thus cannot capture this interaction. This
difference contributes to more accurate affinity prediction, with our method achieving an error of
0.56 compared to 0.67 for the PS tokenization.
Representing chirality. To further validate the effectiveness of our overlap tokenization and its capa-
bility to represent chirality, we followed MolKGNN (Liu et al., 2023) and conducted high-throughput
screening (HTS) experiments on PubChem assays as a binary classification task. Specifically, we
only use the OverlapBPE tokenization with XGBoost (Chen & Guestrin, 2016) and do not adopt the
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A. B. OverlapBPE(ours) PS tokenization

Ionizable group Broken rings
Aromatic integrity

C.

Uncharged group

PS token

Figure 3: OverlapBPE (ours) better preserves aromatic bond integrity, and ionic state. (A)
An interaction formed between the ligand and the protein pocket. The ligand contains a positively
charged [N+], which forms two π-cation interactions with two aromatic rings in the protein pocket.
(B) Representation using our tokenization method. Green colors indicate fragments without charge.
Red colors indicate charged fragments. (C) Representation using the PS tokenization method, where
green and red indicate fragments as above, but the [N+] charge is not preserved, and some rings are
broken.

h-MINT model for two reasons: (i) the dataset lacks target structures, and (ii) HTS places stringent
demands on efficiency. We evaluate OverlapBPE on 8 PubChem HTS assays in Table 4. The baselines
include strong atom-level GNN models such as SchNet (Schütt et al., 2017), SphereNet (Liu et al.,
2022), ChiRo (Adams et al., 2021), KerGNNs (Feng et al., 2022) and MolKGNN (Liu et al., 2023).
For OverlapBPE, we investigate two variants: a chiral vocabulary that preserves chirality in tokens,
and a non-chiral vocabulary that omits stereochemical information. All baselines rely on extensive
molecular features and complex model architectures, whereas our method only utilizes tokenized
bag-of-words features combined with XGBoost for classification. We report early-enrichment perfor-
mance using logAUC[0.001,0.1] in Table 4 and can observe that: (i) Our chiral method significantly
outperforms non-chiral one, showing the importance of chirality information in HTS tasks; (ii) Our
method outperforms all baselines in average ranking, and even exceeds ChiRo and MolKGNN, which
are designed to represent molecular chirality; (iii) Leveraging XGBoost’s lightweight feature, our
method completes training and prediction within 1 second.

Table 4: Early-enrichment performance on PubChem HTS assays. Metric is logAUC[0.001,0.1]

(higher is better). Ours (chiral) preserves the chirality of tokens and Ours (non-chiral) does not.
Bold numbers indicate the best method per dataset. Baseline results are taken from Liu et al. (2023).

PubChem AID MolKGNN SchNet SphereNet DimeNet++ ChiRo KerGNN Ours (chiral) Ours (non-chiral)

435008 0.255 0.187 0.215 0.203 0.168 0.147 0.221 0.211
1798 0.174 0.195 0.196 0.208 0.165 0.078 0.217 0.282
435034 0.227 0.246 0.230 0.235 0.211 0.179 0.281 0.261
2258 0.301 0.240 0.380 0.340 0.251 0.195 0.265 0.246
463087 0.390 0.332 0.399 0.389 0.258 0.150 0.338 0.322
488997 0.303 0.319 0.309 0.315 0.193 0.081 0.384 0.376
2689 0.415 0.324 0.401 0.367 0.351 0.264 0.348 0.343
485290 0.498 0.333 0.450 0.463 0.295 0.223 0.474 0.341

Avg. Rank 3.250 5.250 3.125 3.375 6.375 8.000 2.625 4.000

5 DISCUSSION AND FUTURE WORK

We introduced OverlapBPE and h-MINT, an efficient tokenization-plus-learning framework for
protein–ligand interactions that achieves superior performance on virtual screening and affinity
prediction. For future work, we would like to explore ways to incorporate other domain knowledge
(e.g., PAINS) that is infrequent but crucial for drug discovery. Besides, we plan to extend h-MINT to
docking pose prediction and broader structure-based drug design.
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ETHICS STATEMENT

Small-molecule modeling plays a critical role in drug discovery, with broad potential applications in
therapeutic development, virtual screening, and rational design of ligands targeting protein pockets.
Advances in representation learning and interaction modeling offer new opportunities to accelerate
discovery and improve our understanding of molecular interactions, which may positively impact
medicine, biotechnology, and related fields.

At the same time, we recognize that such computational approaches also carry potential risks,
particularly regarding misuse in unsafe or unethical drug design. To mitigate these risks, this study is
conducted exclusively on publicly available datasets and strictly follows established ethical guidelines.
We advocate for the responsible research and application of molecular modeling methods to ensure
their development contributes to societal benefit.

REPRODUCIBILITY STATEMENT

We ensure that the training data, training and inference procedures, and result evaluations are all
reproducible. The appendix provides all necessary details and offers a comprehensive explanation of
each component of this work. The datasets used are publicly available, and the model implementation
is based on the open-source GET (Kong et al., 2024), LigUnity (Feng et al., 2025) and MolKGNN
(Liu et al., 2023) codebases. The code and models used for evaluation are also publicly accessible
and cited in the appendix. Furthermore, we describe the training hyperparameters in detail in the
appendix, thereby ensuring that the entire experimental process is fully reproducible.
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A METHOD

A.1 OVERLAPBPE

c1cscn1 c1c[nH]cn1 c1ccccc1 cS(N)(=O)=O

c1cscn1 nc[nH] NS(=O)(=O)c1ccccc1

Figure 4: Comparison of overlap (top) and non-overlap tokenization (bottom).

Overlap vs. Non-overlap Tokenization In Figure 4, we show an example molecule tokenized in 2
different ways. We use different colors to highlight the tokenized fragments. From the top figure,
we can see the molecule has 4 tokens, with 3 of the tokens sharing atoms with other tokens (we also
highlight the shared atoms and bonds in red). From the bottom figure, we can see that an aromatic
bond is broken and forms 2 disjoint tokens. From this figure, we can identify the difference between
overlap-tokenization and non-overlap-tokenization. With overlap-tokenization better preserving the
local chemical environment and better respecting the fuzzy boundaries of substructures in small
molecules, we believe our novel OverlapBPE is potent to boost small molecular representation,
interaction, and even generation tasks.

Example Input Here we show some example inputs to the encoder, more specifically, the embed-
ding layer. The embedding layer takes 3 inputs: atom sequences, atom-level position codes, and
token sequences, for pairs of pocket-ligands.

[V a
p ;V

a
l ] :[<g_atom>, N, C, C, O, C, ..., <g_atom>, C, C, ...]

(14)
[Pos(V a

p ); Pos(V a
l )] :[<g_pos>, ‘’, A, ‘’, ‘’, B, ..., <g_pos>, sm, sm, ...]

(15)

[V f
p ;V f

l ] :[<g_frag>, ALA, ..., <g_frag>, c1cscn1, ...] (16)

Position Code Certain types of molecules have conventional position codes to distinguish different
atoms with the same element type in the same fragment, e.g., CA and CB in residues. For small
molecules, since there are no such conventional position codes, we simply use sm as the position code
for all atoms in small molecules. In addition, we also add some special position codes for special
tokens, e.g., <global>, <mask>, <pad>.

Tokenization Overhead Compared to the PS tokenizer and GET, the computational overhead
of OverlapBPE and h-MINT mainly stems from the repeated calculation of atoms. We performed
tokenization using OverlapBPE and PS on the 3,507 molecules in the LBA training set, and the
results are shown in Table 5.

For tokenization, the number of atoms processed by OverlapBPE is 1.32 times that of PS:(7.95 × 4.5)
/ (8 × 3.39) = 1.32. However, since tokenization can be executed offline and is fully parallelizable,
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Table 5: Comparison of tokenization statistics.

Tokenizer Avg # tokens / mol Avg # atoms / token
OverlapBPE 7.95 4.5
Principal Subgraph 8 3.39

the overhead is negligible in practice. For instance, OverlapBPE only takes 7 minutes to process
47.9k molecules using 32 CPUs for virtual screening training data.

A.2 H-MINT

SE-(3) Equivariance In this section, we provide more details about the model design. At first, h-
MINT follows GET’s (Kong et al., 2024) architecture with 2-channel updates: One is the equivariant
channel, which mainly encodes and predict the coordinates of molecules following SE-(3) symmetry.
The other is the invariant channel, which mainly encodes and predicts embeddings (i.e., H). Thus,
in general, our model is an SE-(3) equivariant model. Since we only use the embedding channel in
this paper, we mainly show the update and message passing for the invariant channel. However, our
model can also be extended to SE-(3) scenarios like structure prediction and generation.

Difference with GET We want to emphasize the difference between h-MINT and GET. GET
is designed for non-overlap tokenization, while h-MINT is designed for overlap tokenization, and
this induces a fundamental difference in model design. For GET, atoms and tokens are in a 1-1
mapping, making its model design simple and straightforward. For h-MINT, atoms and tokens are
in a many-to-many mapping, which requires a bidirectional indexing system to convert atom-level
embeddings to token-level embeddings and vice versa.

In Section 3.2, we present the embedding layer, graph construction, and Bilevel Graph Attention
Layer. For the next, we complement other modules, including Bidirectional Equivariant Feed-Forward
Network (FFN) and Bidirectional Equivariant Layer Normalization (LN).

Bidirectional Equivariant FFN For this module, the input contains the atom-level embedding
H l passed from the former module, and also the bidirectional mapping between atoms and tokens
Ta2f , Tf2a. The update is as follows:

H l,f = ScatterMean(H l, Ta2f ) (17)

H l′ = ScatterMean(H l,f , Tf2a) (18)

H l ← H l + MLP([H l;H l′ ;RBF(D)]), (19)

where H l′ can be regarded as token-enhanced atom representation, and D stores the pairwise atom
distances.

Bidirectional Equivariant LN This module involves normalization within each input pair, since we
do not use the equivariant channel. Here, we apply simple Layer Normalization to the representations.

H l ← H l − E [H l]√
Var[H l] + ϵ

· σ + µ, (20)

where σ and µ are learnable parameters, and E [] and Var[] are used to calculate the mean and variance
of the variable.

B EXPERIMENTS: BINDING AFFINITY PREDICTION

B.1 PDBBIND BENCHMARK

We follow the data processing of (Somnath et al., 2021; Wang et al.) to conduct experiments on
the PDBBind (v2019) Benchmark. More specifically, we use the split with a sequence identity of
30% to prevent leakage. This filtering results in 4,709 complexes, which are then split into 3,507,
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466, and 490 for training, validation, and testing (Somnath et al., 2021). We directly borrow the
baseline results from (Wang et al.; Kong et al., 2024). The main advantage of GET-PS and our model
is tokenizing small molecules into fragments. To evaluate these models, we simply remove pairs
without small molecules, which results in a slightly smaller split (4436 samples) compared to the
original identity30 data split (4463 samples).

B.2 IMPLEMENTATION DETAILS

We conduct experiments on 1 RTX A6000 GPU. Each model is trained with the Adam optimizer
and learning rate decay. Considering the number of tokens and atoms may vary with different input
complexes, to safely and efficiently utilize the GPU memory, we implement a dynamic batch to
include as many complexes as possible while not exceeding some threshold max_n_vertex. For graph
construction, we use k = 9 for the KNN token graph, which means each token is connected with 9
nearest tokens within a complex. And we use k = 3 for the token-expanded atom graph, which means
for atom as ∈ fi, for each KNN of the token, fj ∈ KNN(fi), as will connect to 3 nearest atoms
in fj . We set the RBF kernel size to be 32. For baseline models, we follow the official parameter
configuration. For our model, we mainly tune the learning rate (lr ∈ [1e− 3, 1e− 4]), final learning
rate (flr ∈ [1e − 3, 1e − 6]), and max number of epochs (max_epoch ∈ [10, 40]). Here we list the
key hyperparameters for reproducing our results on PDBBind (lr = 1e− 4, flr = 1e− 4, max_epoch
= 40) and LBA (lr = 1e− 3, flr = 1e− 4, max_epoch = 20).

B.3 BASELINE MODELS

We include many baseline models in this section of experiments. Here we briefly introduce their
methods. For the PDBBind benchmark, DeepDTA (Öztürk et al., 2018), Bepler and Berger’s (Bepler
& Berger, 2019), TAPE (Rao et al., 2019), ProtTrans (Elnaggar et al., 2022), MaSIF Gainza et al.
(2020), IEConv (Hermosilla et al., 2020), Holoprot (Somnath et al., 2021), and ProNet (Wang et al.)
use separate encoders for pockets and ligands. GVP (Jing et al., 2020), Atom3D (Townshend et al.,
2020), and GET (Kong et al., 2024) instead use a joint encoder for pockets and ligands. Inspired by
the good performance and trends in joint encoder models, we also adopt a joint encoder architecture.

For the LBA dataset, SchNet (Schütt et al., 2018), DimeNet++ (Gasteiger et al., 2020), GemNet
(Gasteiger et al., 2021) are invariant models based on invariant geometric features (i.e., distance
and angle). EGNN (Satorras et al., 2021), TorchMD-Net (ET) (Thölke & De Fabritiis, 2022),
and LEFTNet (Du et al., 2023) preserve equivariant features and are directly implemented on 3D
coordinates. MACE (Batatia et al., 2022) and Equiformer (Liao & Smidt, 2022) utilize harmonic and
irreducible representations to preserve high-order equivariant features. We also include atom-level
pretrained models, UniMol (Zhou et al., 2023), ProFSA (Gao et al.) and BigBind (Feng et al.). In
general, all these models mainly use their invariant channel for affinity prediction, similar to GET
(Kong et al., 2024) and our model; thus, we can ignore how these models deal with equivariant
features in these experiments. We borrow the baseline results mainly from GET (Kong et al., 2024),
which provides a complete comparison of all the above models in 3 representation settings: atom-
level, fragment-level, and bi-level. To save space, we include each model’s best representation setting
only.

B.4 ADDITIONAL EXPERIMENT ANALYSIS

Significance of Improvements Since the benchmarks (PDBBind and LBA) are relatively small, to
guarantee fair comparison and consistent results, we report mean and std for 3 runs in Table 1 and 2.
Besides, we also conduct a significance test on the prediction results of GET, GET-PS and our model.
And the results show p-values < 0.005 for these models in both PDBBind and LBA tasks. These
evidences conclude that our model performs significantly better than the strong baselines, GET, and
GET-PS.

PDBBind Results Analysis From Table 1, we can mainly draw the following conclusions: (i)
Joint encoder is generally better than separate encoders. (ii) GET outperforms other baselines by a
wide margin due to its hierarchical modeling, and GET-PS performs even better for better alignment
between residues and small molecule fragments. (iii) Our model consistently outperforms GET and
GET-PS by a wide margin (4%-5% Pearson Correlation, and 5% Spearman Correlation). We are
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Figure 5: Parameter study of KNN graph construction. Kf: KNN in fragment-level graph.

also surprised by the improvements, and we recognize that the improvements come from our new
tokenization, OverlapBPE, and our new model h-MINT.

As defined in Section 3.2.2, we employ K-Nearest Neighbors (KNN) to construct both fragment-level
and atom-level graphs, where the choice of the hyperparameter K plays a critical role in determining
the quality of graph connectivity and the overall model performance. To assess the impact of different
K values, we conducted a parameter study on the PDBBind dataset. The results are illustrated in
Figure 5. From the results we can see that our model is not sensitive to the choice of K. Therefore,
selecting the parameter within a proper range can consistently yield satisfactory performance.

LBA Results Analysis Table 2 compares different models with atom-level, fragment-level, and
bi-level representations. We borrow the baseline results from (Kong et al., 2024), which compares
all baselines in all 3 representation settings. In this paper, we only include the baseline results in
their best representation settings for saving space. From this table, we can see: (i) In general, bi-level
representation is better than atom-level or fragment-level. This is reasonable because some molecular
interactions happen on atoms (H-bond) and some happen on fragments (π stacking). Thus, we believe
integrating bi-level information is crucial for modeling molecular interactions. (ii) GET and GET-PS
still outperform other baselines by a wide margin (2% Pearson and Spearman Correlation), which
demonstrates the effectiveness of their unified representations and model design. (iii) Last, our model
outperforms GET and GET-PS even more than their improvements (3% Pearson Correlation, 2%
Spearman Correlation). This result again validates the effectiveness of our OverlapBPE tokenization
and our new model for many-to-many mapping between atoms and tokens.

C EXPERIMENTS: VIRTUAL SCREENING

C.1 DETAILS ON LOSS FUNCTION

According to LigUnity (Feng et al., 2025), we optimise a composite objective

L =
(
Lp→l + Ll→p

)
+ Lrank︸ ︷︷ ︸

LLigUnity

+ λmseLmse, (1)

which extends the original loss with an additional regression term.

Contrastive retrieval losses. For a mini-batch of B pocket embeddings pi and ligand embeddings lj
we define

Lp→l = −
1

B

B∑
i=1

log
exp
(
τ ⟨pi, li⟩

)∑B
j=1 exp

(
τ ⟨pi, lj⟩

) , Ll→p sym., (2)

Listwise ranking loss. Given a pocket i with Mi ligands sorted by experimental affinity π1≻ . . .≻
πMi ,

Lrank = −
Mi−1∑
k=1

µk log
exp
(
τ ⟨pi, lπk

⟩
)∑Mi

t=k exp
(
τ ⟨pi, lπt

⟩
) , (3)

with positional weights µk = 1
log(k+1) .
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MSE loss. Similar to the regression loss implemented in the LigUnity paper, let âij be the predicted
activity for pair (i, j) and aij the ground truth. With P the positive set, N represents a 20 %
subsample of negatives, pocket-wise weakest positive amin,i and safety margin δ, which was set to
2.0:

Lmse =
1

|P|+ |N |

( ∑
(i,j)∈P

(âij − aij)
2 +

∑
(i,j)∈N

[
max

(
0, âij − (amin,i − δ)

)]2)
. (4)

Throughout this paper, we fix the weights to λmse = 2. Empirically, the extra MSE term accelerates
convergence and mitigates the overfit on the training dataset.

C.2 EVALUATION METRICS

We assess model performance using the following metrics:

• AUC-ROC (Area Under the Receiver Operating Characteristic curve): measures the
probability that a randomly chosen active compound is ranked higher than a randomly
chosen inactive one. In our paper, we use AUC to denote it.

• BEDROC (Boltzmann-Enhanced Discrimination of Receiver Operating Character-
istic): emphasizes early recognition of actives by applying an exponential weighting to
the ROC curve, controlled by a tunable parameter. Following previous works, we set the
parameter to 80.5.

• Enrichment Factor (EF): quantifies the fold-increase in actives found among the top
percentile of the ranked library relative to random selection, reported here at 0.5%, 1%, and
5%.

C.3 IMPLEMENTATION DETAILS

The implementation of virtual screening experiments includes two parts: training the baselines and
finetuning our model. All the models were trained on 1 RTX 6000 GPU with 24 GB memory. For the
baseline models, we retrained LigUnity (Feng et al., 2025) on the PDBBind dataset. To ensure a fair
evaluation, we excluded all the samples that exist in any of the test datasets. We also followed their
papers’ original parameters. To evaluate, we averaged the weights of the last 3 model checkpoints.
We finetuned our h-MINT model on the same PDBBind dataset. Namely, the training parameters
were similar to LigUnity, with learning rate = 1e− 4, warmup ratio = 0.06, and the maximum number
of ligands selected for each pocket was 16. However, we used 32-bit precision for training rather
than the original 16-bit, changed the batch size to 96, and set the gradient clip to 10. We trained the
model for 100 epochs initially, and observed that it converged at around the 25th epoch. Therefore,
we trained it for 25 epochs and averaged the last 3 checkpoints for evaluation purposes.

C.4 EXPERIMENTS ON LIT-PCBA, DEKOIS AND JACS/MERCK DATASET

C.4.1 LIT-PCBA DATASET

The LIT-PCBA dataset (Tran-Nguyen et al., 2020) is constructed from dose–response PubChem
bioassays to mitigate the target and decoy selection biases found in other benchmarks. It comprises
15 protein targets with 7844 experimentally confirmed actives and 407381 inactive, which reflects
realistic hit rates in high-throughput screening.

C.4.2 ADDITIONAL RESULTS AND SIGNIFICANCE TEST

Table 6 reports AUC, BEDROC, and enrichment factors (EF) on LIT-PCBA in the zero-shot setting.
Namely, as the original LigUnity was trained on another larger dataset Feng et al. (2025), we did not
directly compare our method with it. However, we also used their provided checkpoint and evaluated
its performance on the PCBA dataset. It could be concluded that LigUnity trained on its full dataset
leads the zero-shot performance, which also highlights the value of larger training datasets, similar
to Table 3. When constrained to PDBBind alone, our approach outperforms LigUnity across most
metrics, achieving an AUC of 57.77% and EF0.5% of 7.01. These results strongly demonstrate its
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Table 6: Zero-shot Virtual Screening on LIT-PCBA. Baseline results are from Gao et al. (2023);
Feng et al. (2025); Jia et al. (2024). Models with * are trained with PDBBind data only. Bold numbers
indicate the best performance.

AUC BEDROC EF ↑
(%) ↑ (%) ↑ 0.5% 1% 5%

Surflex 51.47 - - 2.50 -
Glide-SP 53.15 4.00 3.17 3.41 2.01

Planet 57.31 - 4.64 3.87 2.43
Gnina 60.93 5.40 - 4.63 -
DeepDTA 56.27 2.53 - 1.47 -
BigBind 60.80 - - 3.82 -
DrugCLIP * 58.15 4.12 4.11 3.08 2.27
LigUnity * 57.61 4.34 4.06 3.03 2.25

Ours * 57.77 6.27 7.01 5.20 2.18

Table 7: Zero-shot Virtual Screening on DEKOIS.

AUC BEDROC EF ↑
(%) ↑ (%) ↑ 0.5% 1% 5%

LigUnity 76.92 47.20 18.57 16.25 8.21
Ours 81.05 47.71 18.085 16.77 8.74

robustness under limited training data and the effectiveness of our efficient tokenization strategy. In
addition, we also provides comparison with LigUnity following (Feng et al., 2025) in Table 7 and 8.
These results validate that h-MINT generalizes effectively across datasets and tasks, including both
affinity-ranking and virtual-screening benchmarks.

To demonstrate the significance of our results, we conducted statistical significance tests for all
benchmarks (DUDE, PCBA, DEKOIS, and FEP). For all comparisons between h-MINT(ours) vs.
LigUnity, we obtained p-values < 0.005, demonstrating that the improvements are statistically
significant and consistent, rather than due to random variation.

C.5 ABLATION OF MSE LOSS OVER LIGUNITY

To isolate the contribution of this loss, we trained LigUnity with additional MSE loss (exact same
combined loss as ours) under identical settings on the PDBBind training set, as shown in Table 9. The
results on DUDE and LIT-PCBA are shown in the table above, which confirms the following findings:
(i). Effect of the proposed auxiliary loss. Using our proposed auxiliary loss consistently improves
LigUnity across almost all metrics on both datasets. For example, on DUDE, AUC improves from
81.69 to 82.57, and BEDROC from 46.01 to 47.58. On LIT-PCBA, early-recognition metrics show
noticeable gains as well. This confirms that additional loss is beneficial and strengthens the model’s
scoring ability. (ii). Advantage of h-MINT (LigUnity+MSE vs Ours). Our model further improves
over LigUnity+MSE on most metrics. Gains are particularly clear in early-recognition measures
such as BEDROC and EF0.01, which are widely regarded as key metrics for virtual screening. These
results confirm that: our proposed regression loss is effective, but our h-MINT architecture delivers
additional, consistent boosts beyond what the regression loss alone can offer. Thus, the comparison
with LigUnity is fair, and the observed improvements come from both components of our method.

Table 8: Zero-shot Virtual Screening on JACS/Merck.

r2

LigUnity 0.173
Ours 0.216
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Table 9: Ablation of MSE Loss over LigUnity

Dataset Model AUC BEDROC EF ↑
(%) ↑ (%) ↑ 0.5% 1% 5%

DUDE
LigUnity 81.69 46.01 34.44 29.07 10.26
LigUnity+MSE 82.57 47.58 35.83 29.77 10.70
Ours 84.47 47.65 35.06 29.90 10.76

LIT-PCBA
LigUnity 57.61 4.34 4.07 3.04 2.26
LigUnity+MSE 57.68 5.64 6.50 4.22 2.14
Ours 57.77 6.21 7.01 5.20 2.18

Table 10: Vocabulary Statistics on LBA training set.

min_freq # tokens (basic / composite / all) avg token size (basic / composite / all)

200 41 / 52 / 93 2.56 / 5.81 / 4.38
100 54 / 80/ 134 2.87 / 6.53 / 5.05
50 74 / 137 / 211 3.11 / 7.44 / 5.92
20 94 / 200 / 294 3.28 / 8.11 / 6.56
10 112 / 400 / 512 3.54 / 9.55 / 8.23

C.6 COMPUTATIONAL OVERHEAD

OverlapBPE duplicates certain atoms during tokenization to maintain the continuity and integrity of
chemical substructures. Because of these overlapping tokens, the final number of atoms becomes
roughly 1.32 times the original. Despite this, both tokenization and graph construction are highly
parallelizable and can be performed fully offline in preprocessing. In practice, the overhead is
negligible: OverlapBPE only takes 7 minutes to process 47.9k molecules using 32 CPUs for virtual
screening training data.

During training and inference, the main computational cost comes from the underlying UniMol
encoder. h-MINT functions as a light-weight adapter, and the runtime difference compared with
LigUnity is minimal: our’s training time is ×1.12 than LigUnity, and our’s inference time is ×1.07
than LigUnity. Therefore, although h-MINT introduces a richer atom-fragment representation, the
parallel and offline preprocessing ensures that the runtime during the actual virtual screening pipeline
remains nearly unchanged.

D ADDITIONAL ANALYSIS AND EXPERIMENTS

D.1 VOCABULARY STATISTICS

We provide vocabulary statistics on LBA training set in Table 10. For all the datasets, we extract
vocabularies solely from the training set, without introducing additional data.

D.2 REPRESENTING CHIRALITY FOR HTS

We evaluate whether explicitly encoding stereochemistry in our fragment representation improves
early enrichment on eight PubChem HTS assays. In contrast to structure-based virtual screening in
Section 4.2, HTS assay data do not include explicit target information. Each assay contains active and
inactive compounds corresponding to the same target. We construct two OverlapBPE vocabularies:
(i) Ours-non-chiral, which omits stereochemical markers, and (ii) Ours-chiral, which operates on 2D
graphs augmented with 3D conformer cues (used only to disambiguate stereocenters) and assigns
isomeric SMILES identifiers to tokens, thereby preserving R/S and @/@@ annotations. Each molecule
is tokenized into overlapping fragments; we compute sparse bag-of-tokens features and train an
XGBoost logistic classifier per assay on the official train/valid/test split. We report logAUC[0.001,0.1],
which emphasizes the low false-positive region relevant to early enrichment.
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Table 11: Ablation Study of OverlapBPE and h-MINT on LBA.

RMSE ↓ Pearson ↑ Spearman ↑

GET 1.331 ± 0.008 0.618 ± 0.005 0.607 ± 0.005
GET+PS 1.312 ± 0.016 0.631 ± 0.011 0.642 ± 0.011
h-MINT+PS 1.321 ± 0.010 0.633 ± 0.007 0.641 ± 0.008
GET+OverlapBPE N/A N/A N/A
Ours (h-MINT+OverlapBPE) 1.276 ± 0.011 0.660 ± 0.001 0.661 ± 0.001

D.3 ABLATION STUDY OF OVERLAPBPE AND H-MINT

OverlapBPE tokenization and overlap-compatible hierarchical interaction model, jointly form an inte-
grated framework to tackle the challenge of fuzzy boundaries of meaningful molecular substructures
in 3D molecular interaction modeling. Meaningful comparison can only be made when they’re used
together, because (i) no other network architectures are available for overlapping substructures, and
(ii) when non-overlapping tokenization is used, the molecular graphs for h-MINT and GET become
identical. As evidence, we provide the following ablation on LBA dataset that adopts non-overlap PS
tokenizer for h-MINT in Table 11.

As can been seen in this table, GET is not compatible with OverlapBPE. OverlapBPE+hMINT
consistently outperforms models with PS tokenizer, demonstrating a clear gain of OverlapBPE. When
non-overlap PS tokenizer is used, GET+PS and h-MINT+PS achieve similar performance as expected.
The tokenizer and h-MINT architecture are both necessary to handle overlapping fragments and
preserve key chemical information (atomic integrity, ionic states, chirality).

D.4 NOISE-ROBUSTNESS ANALYSIS
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(a) Structure Noise (Train Set)
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(b) Structure Noise (System)
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(c) Fragment Mask (Train Set)
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(d) Fragment Mask (System)

Figure 6: Noise robustness comparison on LBA. We report results from 3 runs.
In this section, we analyze the robustness and generalization of GET, GET-PS, and our model under
different noise scales on LBA. We consider two noise settings: adding noise only to the training set
for simulating scenarios when training data is of low quality or is predicted, and adding noise to both
training and test sets for simulating system bias or data resolution. To investigate the effect of noise
in different features, we add random noise to input structures, or randomly mask token types with
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Figure 7: t-SNE Visualization of Fragment Embeddings.

some ratio7. The results can be found in Figure 6. In general, we can conclude that: (i) Our model is
robust to structure noise even up to 5 Å. (ii) Compared with atom-level 3D structures, token types
provide stronger inductive bias for binding affinity prediction, which again highlights the importance
of fragment-level representations.

D.5 FRAGMENT EMBEDDING ANALYSIS OF H-MINT

To evaluate the representation capability of the h-MINT model for molecular fragments, we first
analyzed the spatial distribution of fragment embeddings using t-SNE, shown in Figure 7. The results
showed that all fragments clustered into 6 distinct categories in the latent space.

Figure 8: H-bond acceptors distribution across clusters.

Statistical analysis of fragments in each cluster, as shown in Figure 8, revealed that Cluster 5 exhibited
significant chemical specificity. This cluster was predominantly enriched with functional groups
containing lone electron pairs on N and O atoms, such as C=O, CNC(C)=O, and CNS(=O)(=O).

7Since GET only uses atom representations for molecules, we only compare GET-PS with ours in (c)-(d).
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These structures, acting as typical hydrogen bond acceptors, can form stable interactions with polar
amino acids (e.g., the hydroxyl group of serine or the guanidinium group of arginine) in protein
binding pockets. This ability to capture key chemical features enables h-MINT to more sensitively
identify structural determinants affecting binding affinity, leading to superior performance over
existing sequence- or graph-based baseline models on the binding affinity prediction and virtual
screening tasks.

D.6 EFFECT OF THE FREQUENCY THRESHOLD

We vary the minimum frequency used by OverlapBPE, yielding vocabularies of sizes {98, 136, 212,
294}. Performance improves from small vocabularies to around 200, where we observe the best
aggregate results, and then slightly degrades at 294. Run-to-run variation is small (std < 0.006
across metrics), indicating stable behavior. These trends suggest a bias–variance trade-off: overly
strict thresholds (very small vocab) underfit by missing informative fragments, whereas overly lax
thresholds (very large vocab) admit rare or redundant fragments that increase sparsity and noise. A
moderate threshold around 200 offers the best balance between coverage and denoising.

Table 12: Vocabulary size ablation on PDBBind. Values are obtained over three runs.

Vocab size Pearson Spearman RMSE

98 0.618 ± 0.005 0.601 ± 0.006 1.344 ± 0.007
136 0.615 ± 0.002 0.605 ± 0.002 1.332 ± 0.003
212 0.640 ± 0.004 0.626 ± 0.005 1.299 ± 0.001
294 0.622 ± 0.002 0.617 ± 0.003 1.327 ± 0.002

D.7 ADDITIONAL EXPERIMENTS ON MOLECULAR PROPERTY PREDICTION

We include 3 property prediction tasks from MoleculeNet. The baseline follows MoleculeNet directly,
which extracts ECFP features and trains XGBoost with grid search. The ECFP features are chosen
from 128-bit, 512-bit, 1024-bit and 2048-bit according to dataset. We augment the ECFP features
with bag-of-word features extracted from OverlapBPE and train the same XGBoost. The results are
in Table 13. The significant improvements in prediction error confirm that OverlapBPE provides
discriminative representations for molecules.

Table 13: Molecular Property Prediction Benchmarks from MuleculeNet.

RMSE ESOL ↓ FreeSolv ↓ Lipo ↓

ECFP 1.5668 3.9498 0.8875
ECFP + OverlapBPE 1.2972 3.3409 0.8270

D.8 EXAMPLE TOKENS AND CHEMICAL INSIGHTS

By construction, OverlapBPE induces a hierarchical organization of fragments: basic tokens corre-
spond to chemically primitive units (atoms, bonds, individual rings), while composite tokens capture
larger patterns such as fused ring systems and side chains. In this section, we analyze how the learned
fragments align with standard functional chemistry.

We provide a list of the top 100 fragments mined from the LBA training set in Fig. 9, and we are
able to obtain many chemically and biologically meaningful subunits or motifs. We emphasize that
this motif-mining procedure is fully automatic, based solely on the data distribution, and leverages
no prior chemical or biological knowledge. We analyse and categorize the mined fragments into the
following chemically or biologically meaningful parts.

Chemical functional groups. A functional group is a specific group of atoms or bonds within a
molecule that is responsible for its characteristic chemical properties and reactions. Representative
functional groups mined include: carboxyl, phosphate, amide (peptide bond), benzyl, secondary
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amino, tertiary amino, and quaternary amino (ammonium). These functional groups are small
chemical subunits that were often selected by hand in previous functional-group-based tokenization
but can be easily recovered with our approach.

Biomolecule subunits. Compared to simple chemical functional groups, biomolecules such as
proteins, DNA, RNA, and polysaccharides are significantly larger. Yet, the monomers that constitute
these biomolecules exhibit characteristic patterns, such as amino acids, nucleotides, and saccharides.
Indeed, we observe a considerable number of biologically meaningful fragments in our codebook:
peptide bond, adenine, pyranose, deoxyribose, and, most notably, the whole nucleotide adenosine
monophosphate, which consists of an adenine, a ribose, and a phosphate. To the best of our
knowledge, none of the existing fragmentation approaches has been able to mine such large subunits
while preserving their biological significance.

Drug subunits. Remarkably, we also observed that our approach could mine large chemical
subunits that are common motifs in small-molecule drugs. These include: adamantane, a 10-
carbon tricyclic motif with a highly symmetric fused four hexane rings, occurring in some antiviral
drugs; *sulfonamide*, in the antibacterial drug sulfanilamide; and most notably, the 28-heavy atom
*sulfonamide protease inhibitor motif* in HIV drugs. Indeed, our approach automatically mined this
large subunit, demonstrating its effectiveness at capturing the biochemical roles of many motifs.

Figure 9: Top-100 composite tokens from LAB vocabulary.
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E THE USE OF LARGE LANGUAGE MODELS

We employ large language models exclusively for language editing, which is limited to polishing
text to improve readability. No language models contributed to the development of research ideas,
analysis, models, or interpretation of results.
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