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Abstract—Despite the renal biopsy being the gold standard
for diagnosing glomerulonephritis, this practice remains inacces-
sible for many patients worldwide. Nephropathologists typically
combine microscopy, immunohistology, transmission electron mi-
croscopy, clinical information, and genetic studies for diagnosis.
However, variability in nephropathology evaluation has hindered
its integration with emerging technologies and personalized
medicine. This study proposes the use of deep learning to extract
significant features to distinguish glomerulonephritis from PAS
sections without other modalities. To test this hypothesis, various
AI methods were tested for classifying 12 common glomeru-
lonephritis diagnoses. Finally, a sequential classification was
implemented, initially characterizing sclerosed and non-sclerosed
glomeruli using Swin-Transformers, followed by classifying the
non-sclerosed glomeruli into 12 types of glomerulonephritis using
ConvNeXt. The first step achieved an average Balanced Accuracy
of 97% and an AUC of 0.96. In the second step, a Balanced
Accuracy considering up to the top3 of 79.5% and an avarage
AUCs of 0.76 were achieved. This study establishes a baseline
for this challenging classification task, demonstrating promising
results even on single PAS glomerular crops.

Index Terms—Classification of Glomerulonephritis, Deep
Learning in Nephropathology, Self-Attention Architectures, Dig-
ital Pathology.

I. INTRODUCTION

THE digitalization of pathology departments has increased
the use of whole slide images (WSIs), improving telecon-
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sultation, education, and image archiving. Progress in machine
learning (ML) and hardware has enabled the integration of ar-
tificial intelligence (AI), developing tools to assist pathologists
in image analysis. Within digital pathology, nephropathology
stands out as a subspecialty that deals with low-incidence
diseases. Nephropathology has also been impacted by ad-
vancements in digital pathology and AI, as well as the work
of multidisciplinary teams [1].

Glomerular diseases are conditions that directly affect the
glomeruli. Patients with these types of diseases present multi-
ple signs and symptoms (e.g., edema, proteinuria, and hema-
turia) that are present in several of them. These diseases
are often characterized by certain common histopathological
properties as well. However, even with diagnosis done this
way, patients with the same disease show significant variability
in their presentation, progression, and response to treatment
[2]. Therefore, the classification of glomerular diseases has
often been described as complex by experts [3].

Renal biopsy is the gold standard for diagnosing glomeru-
lonephritis, using conventional microscopy techniques, im-
munohistology, and transmission electron microscopy. How-
ever, this practice remains inaccessible for diagnosing many
patients worldwide. Nephropathologists combine these ob-
servations with clinical information and genetic studies to
diagnose and provide prognostic and theranostic informa-
tion. Despite efforts to standardize biopsy processing and
histopathological descriptors, evaluation in nephropathology
remains variable, hindering its integration with emerging tech-
nologies and personalized medicine.

The hypothesis of this work is that classification methods



based on deep learning models are capable of extracting sig-
nificant features that allow distinguishing glomerulonephritis
from PAS sections, without the need of using other modalities.
To test this hypothesis and analyze the capabilities of these
methods, various AI methods have been implemented for the
classification of 12 common diagnoses of glomerulonephritis.
These glomerulonephritis and the acronym used in this work
are shown in Table I.

One of the most common applications is to classify
glomeruli into sclerosed or non-sclerosed. For this purpose,
CNNs have been primarily used, as in [4], [5], and [6].
In this latter publication, segmentation and classification of
tubular structures are also performed. Regarding other patholo-
gies, Altini et al. [7] uses the Oxford classification [8]–[10]
for Immunoglobulin A-associated Nephropathy (IgAN), with
datasets containing glomeruli from the 12 types of glomeru-
lonephritis used in this study. Other recent works apply AI
techniques to locate glomeruli, identify lesions (global and
segmental sclerosis, crescents), and quantify glomerular cells
on PAS-stained slides with accuracy values around 91% [11].
In Liu’s work [12], an AI-driven framework is developed
for quantifying glomerular volume and nodular mesangial
sclerosis in diabetic kidney disease, achieving 0.899 accuracy
for glomerulus classification and an AUROC score of 0.917
for disease prediction. In the work of Zhuang et al. [13] the
accuracy issues of ML models for diagnosing and predicting
the prognosis of IgA nephropathy is addressed by conducting
a systematic review of publications up to February 2024, from
Embase, Pubmed, Cochrane Library, and Web of Science.
Analyzing 47 studies with 51,935 patients, the pooled C-
index was found to be 0.902 for 27 diagnostic models and
0.838 for 144 prognostic models. New ML models perform
comparably to traditional ones. Future models should aim to
improve sensitivity, especially in moderate-risk prediction, and
focus on clinical application.

As far as the authors know, no further studies have been
conducted to classify glomeruli from renal biopsies into the
12 classes considered here.

II. MATERIALS

A total of 786 renal biopsies with glomerulonephritis (GN)
from seven participating institutions were analyzed. Of these,
461 biopsies came from different patients. Each renal biopsy
was diagnosed by expert nephropathologists with one of the 12
types of glomerulonephritis listed in I. The biopsies for all di-
agnostic classes were randomly selected without consideration
of any histopathological descriptors or histological subtypes.
Expert nephropathologists assigned and retrospectively con-
firmed the diagnostic classes prior to inclusion, using a stan-
dardized diagnostic work-up that included paraffin histology,
immunostaining for immunoglobulin heavy and light chains,
and transmission electron microscopy. This thorough process,
applied to all cases, ensured a robust and reliable ground truth
for the entire dataset.

The biopsies used in this work come from three different
datasets: the 1st, consisting of 725 renal biopsies from 400

TABLE I: GN pathologies present in the dataset

Name Label
Anti-glomerular Basement Membrane antibody GN AMBGN
Anti-Neutrophil Cytoplasmic Antibody-associated GN ANCA
C3-GlomeruloNephritis C3-GN
Cryoglobulinemic GN CryoGN
Dense Deposit Disease DDD
Fibrillary GN Fibrilar
Infection-associated GN IAGN
Immunoglobulin A-associated GN IgAGN
Membranous nephopathy Membranous
idiopathic MembranoProliferative GN MPGN
Proliferative GN Monoclonal Immunoglobulin Deposits PGNMID
Systemic Lupus Erythematodes-associated GN class IV SLEGN-IV

different patients, (dataset A); the 2nd comprising 50 renal
biopsies from different patients, where only the sclerotic
glomeruli were used (dataset B); and the 3rd (dataset C), used
as a hold-out for testing, which consists of 61 renal biopsies
from different patients. Datasets A and C contain the 12 types
of GN.

The renal biopsies were digitized (WSIs) using various scan-
ners, including the Hamamatsu NanoZoomer, the Axioscan
(Carl Zeiss), the Pannoramic Midi Slide Scanner (3DHIS-
TECH), and the Aperio CS2 (Leica). All of the WSIs use
Periodic Acid-Schiff (PAS) staining. The glomeruli in the
images were automatically detected using the segmentation
model described in [Ref. hidden for double-blind review],
implemented by the co-authors, and reviewed by expert pathol-
ogists. For each glomerulus, a rectangular crop was extracted,
leaving a margin of 300 pixels on each side. In total, 12,969
PAS-stained glomerular crops were obtained. Dataset A, used
for training and validation, comprises 10,128 crops. Dataset
B, used for training and validation of sclerotic glomeruli,
comprises 1,170 crops. Dataset C, used for testing, comprises
1,671 crops. Each crop in datasets A and C retains its original
diagnostic label corresponding to one of the 12 classes. Dataset
A also contains sclerotic glomeruli (see Figure 1 for the class
distribution of glomeruli crops across the entire datasets).

Fig. 1: Distribution of glomeruli crops per class and datasets

Figure 2 shows examples of glomeruli for each of the
classes. It can be observed the variability in glomeruli, such as
differences in texture and colour, even among glomeruli of the



same class. The variety of colors present in the images even
when using the same stain, as well as the subtle differences
at first glance between the different classes is also observed.

Fig. 2: Example images of each class of glomeruli. Two
glomeruli from each class are shown

III. METHODS

Several advanced classification networks were tested, these
include: FocalNet, ConvNeXt, Swin-Transformers, and Ef-
ficientNet. These networks aim to optimize neural network
architectures to improve efficiency and performance by using
innovations in attention mechanisms and convolutions.

Due to the variability and the challenge of visually de-
termining if individual glomeruli belong to the same slide,
our objective was to incorporate more variability and broaden
the dataset. Consequently, a partition was established at the
glomerulus level, allocating 75% of the glomeruli crops for
training, 15% for validation, and 10% for testing. The initial
results from all networks were highly promising, with an
average sensitivity of 0.98, specificity of 0.99 and a balanced
accuracy of 0.99. However, when the dataset was partitioned at
the slide level, to prevent information leakage across biopsies,
the performance decreased drastically. It resulted in an average
sensitivity of 0.2, an average specificity of 0.93, and a balanced
accuracy of 0.63 with a standard deviation of 0.1 across all
methods and classes.

Several tests were done with colour standardization and
color transfer for data augmentation but the results only
increased around 2%. Therefore, it was concluded that texture
and the contextual relationships of the tissue plays a funda-
mental role in the diagnosis of these glomeruli crops.

Furthermore, activation maps were visualized using various
techniques such as Grad-CAM++, ScoreCAM, FullGrad, Lay-
erCAM, and XGradCAM to highlight areas of the images that
significantly contribute to predicting specific classes. From the
conducted tests, all methods show similar results as depicted
in Figure 3.This figure shows two glomeruli, one of type DDD
and one of type IAGN, along with activation maps from the
six methods. No specific area was identified by the network
as relevant or contributing to the prediction. Figure 4 shows
activation maps using Grad-CAM++ for different glomeruli
types: panel a) shows a Cryoglobulinemic-type glomerulus
misclassified as ANCA, while panel b) shows a correctly
classified DDD-type glomerulus.

Fig. 3: Activation maps of glomeruli using Grad-CAM++,
ScoreCAM, FullGrad, LayerCAM, and XGradCAM. 1st row:
DDD-type glomerulus; 2nd row: IAGN-type glomerulus

By examining Figure 2, it can be observed that sclerosed
glomeruli have unique textures distinct from those with GN.
Therefore, a sequential process was designed and imple-
mented: first categorizing glomeruli as sclerosed or non-
sclerosed, then further dividing them into 12 distinct classes.
The findings demonstrated a significant improvement, attain-
ing a balanced accuracy of 0.97 in the initial classification of
sclerosed and non-sclerosed glomeruli.



(a) Cryoglobulinemic-type glomerulus classified as ANCA

(b) DDD-type glomerulus classified correctly as DDD

Fig. 4: Activation maps using Grad-CAM++. Panel a) a
Cryoglobulinemic-type glomerulus misclassified as ANCA
and b) shows a correctly classified DDD-type glomerulus

A. Datasets preparation

The preparation of datasets was as follows:
• Set of 12 Glomerulonephritis Pathologies

Sclerotic glomeruli were excluded, leaving a dataset of only
non-sclerotic glomeruli crops from dataset A. This results in
12 classes for each GN pathology, without including glomeru-
losclerosis. The dataset partitions were created using a 5-fold
cross-validation technique. However, the number of glomeruli
in each set (training, validation, and test) varies across folds.
This variation is due to a constraint applied when forming
each fold. Specifically, glomeruli from the same WSI must be
placed in the same set. This prevents models from learning
to extract features shared by glomeruli from the same WSI.
It ensures that models classify glomeruli based on pathology-

related features, rather than features of the entire image. In
addition, biopsies from the same patient are placed in the same
set to prevent them from appearing in both the training and
test sets.

The final distributions for the folds used in classifying the
12 GN pathologies were based on glomeruli crops from dataset
A (see Figure 1), with allocations ranging from [71%, 14%,
15%] to [69%, 15%, 16%] for training, validation, and testing,
respectively, across classes and folds.

• Sclerosed and Non-Sclerosed Set
The sclerosed and non-sclerosed glomeruli dataset was cre-
ated based on the 12-glomerulonephritis dataset. The ”Non-
Sclerosed” class is a subset of glomeruli from the 12 patholo-
gies, ensuring diverse representation. The partitions from each
fold of the original dataset were maintained, adhering to
WSI restrictions for consistency and allowing for independent
model training. Initially, the test set showed an imbalance
by including all glomeruli from the 12 glomerulonephritis
pathologies. However, adding sclerosed glomeruli from dataset
B balanced the classes. Since sclerosed and non-sclerosed
glomeruli can share the same WSIs, WSI restrictions apply
to both. This approach resulted in balanced datasets with a
representative ’Non-Sclerosed’ class. The distribution used for
these two classed is shown in Table II for the best fold.

TABLE II: Distribution in training, validation, and test sets for
the first fold of the sclerosed and non-sclerosed dataset

Label Train Validation Test Total
Non-Sclerosed 378 156 1670 2204
Sclerosed 376 156 1289 1821

B. Base Models for Glomeruli Classification

Two base models for glomeruli classification were de-
veloped: one for classifying them into sclerosed and non-
sclerosed, and another for classifying the non-sclerosed ones
into 12 glomerulonephritis pathologies. The best-performing
networks were EfficientNet [14], Swin Transformer [15], and
ConvNeXt [16]. Below are the general characteristics and their
training parameters. These parameters are the same for training
the models for classification into sclerosed and non-sclerosed,
as well as into the 12 pathologies. The only difference in the
training is the dataset used.

• ConvNeXt
ConvNeXt is a convolutional network that incorporates im-
provements from transformers by adapting them into a purely
convolutional solution. For example, to reduce dimensionality,
it uses a convolution with a larger kernel size and a stride of 0,
mimicking patch division; it also employs layer normalization
instead of batch normalization. The architecture utilized in
this project is ConvNeXt Base or ConvNeXt-B. The model is
pretrained on ImageNet-1K and subsequently retrained using
the glomeruli datasets with specific parameters: it employs the
AdamW optimizer with an initial learning rate set to 0.001
and incorporates a weight decay of 0.05. Additional settings
include an epsilon value of 10−8, β1 of 0.9, and β2 of 0.999.



The learning rate policy follows a cosine annealing approach,
starting with a warmup phase of 20 epochs using a linear
warmup type and a rate of 0.001. The minimum learning rate
is established at 0.01, with a maximum training duration of
300 epochs and a batch size of 64. Input images for the model
are resized to 224 × 224 pixels and normalized using Ima-
geNet’s mean and standard deviation. Training incorporates
two data augmentation techniques: RandAugment [17] and
RandomErasing [18].

• Swin-Transformers
Swin-Transformers use the sliding window mechanism which
allows for better capture of local and global features, as well
as improving the efficiency and scalability of transformers.
Unlike the basic Vision Transformer (ViT), where the outputs
of each layer maintain the same dimension, in Swin the
patches become progressively smaller throughout the network
(hierarchical structure). The version used in this work is Swin-
T (Tiny), with the following parameters: Optimizer AdamW,
Initial learning rate 0.001, Weight decay 0.05, ϵ 10−8, β1 0.9,
β2 0.999, Learning rate policy: Cyclic with cosine annealing,
Warm-up epochs 20, Warm-up type: Linear, Warm-up rate
0.001, Minimum learning rate 0.01, Maximum number of
epochs 300, and Batch size 64. Additionally, the input images
for the model are resized to 224 × 224 pixels and normal-
ized using the mean and standard deviation of ImageNet.
For training, two data augmentation policies are also used:
RandAugment [17] and RandomErasing [18].

• EfficientNet
EfficientNet focuses on optimizing the size, depth, and number
of channels of convolutional networks, providing an optimal
balance between performance and computational efficiency. It
uses a compound coefficient to scale the size of the network
according to the size of the input. The model used in this work
is EfficientNet-B, pretrained on ImageNet-1K and retrained
using the glomeruli datasets with the following parameters:
Optimizer SGD, Initial learning rate 0.1, Momentum 0.9,
Weight decay 0.0001, Learning rate policy: Step decay; Steps
(epochs) at 30, 60, and 90; Maximum number of epochs 300,
and Batch size 4. Additionally, the input images for the model
are resized to 224 × 224 pixels and normalized using the mean
and standard deviation of ImageNet.

IV. RESULTS

The classification of glomeruli into 12 classes showed
improved results in the second stage after classifying and re-
moving the sclerotic glomeruli. Swin-Transformers showed the
best performance in the first stage while classifying sclerotic
glomeruli versus non-sclerotic, and ConvNeXt showed the best
performance in the second one.

A. Base model for classification of glomeruli into sclerosed
and non-sclerosed

The performance metrics for the base models classifying
glomeruli into sclerosed and non-sclerosed are shown in
Table III. These metrics correspond to the averages of the test

sets from each fold, in order to compare the overall perfor-
mance of the models, regardless of the partition configuration.

Using balanced accuracy for comparison, Swin Transformer
performs best with 0.9718 ± 0.0144, compared to 0.8604 ±
0.0360 for ConvNeXt and 0.7780 ± 0.1636 for EfficientNet.
Similar results are observed when using precision as the
reference metric. Regarding the ROC (Receiver Operating
Characteristic) and their AUC (Area Under the Curve), Swin
Transformer is again the best model, with an AUC of 1.00,
followed by ConvNeXt with 0.99 and EfficientNet with 0.79.
Figure 5 shows the two best models.

a) ConvNet b) Swin Transformer

Fig. 5: ROC curves and average AUCs on the test set across 5
folds for the initial stage of glomerulus classification process,
highlighting ConvNeXt and Swin Transformer as top perform-
ers in classifying Sclerosed and Non-sclerosed glomeruli.

B. Base model for classifying non-sclerosed glomeruli into 12
renal glomerulonephritis pathologies

Figure 6 shows a visual comparison of the base models for
classifying glomeruli into the 12 proposed pathologies. These
metrics are the average of the 5 folds. Although only the model
generated in one fold is finally used for testing with the hold-
out dataset, this average is used to compare different methods,
aiming for a comparison independent of the partitions taken.
Taking balanced accuracy as the reference metric, the best-
performing model is ConvNeXt, with an average for the 12
classes of 0.6418± 0.0837, compared to 0.6334± 0.1080 for
Swin Transformer and 0.6009± 0.0772 for EfficientNet.

It was also observed that the model correctly identified an
average balanced accuracy of 0.795 for all positive classes
within the top 3 most likely. Thus, the results were analyzed
considering that the model was correct if the true class was
among the top-2 and top-3 predicted classes. The complete
results for this model are illustrated in Table IV.

If we consider ROC curves and AUC, the difference be-
tween the models is higher. Once again, the top model is Con-
vNeXt, with an average AUC for the 12 classes of 0.7908±
0.0831, followed by Swin Transformer with 0.7625± 0.0710,



TABLE III: Results on the test set for the three baseline models for classifying glomeruli as sclerosed and non-sclerosed. The
best result for the sclerosed class for each metric is highlighted in bold.

Model Class Precision Sensitivity Specificity F1-Score Balanced Accuracy
ConvNeXt Non-sclerosed 0.8300± 0.0372 0.9542± 0.0439 0.7666± 0.0706 0.8870± 0.0281 0.8604± 0.0360

Sclerosed 0.9386± 0.0531 0.7666± 0.0706 0.9542± 0.0439 0.8415± 0.0443 0.8604± 0.0360
Swin Transf. Non-sclerosed 0.9702± 0.0243 0.9790± 0.0055 0.9647± 0.0291 0.9745± 0.0122 0.9718± 0.0144

Sclerosed 0.9752± 0.0055 0.9647± 0.0291 0.9790± 0.0055 0.9697± 0.0148 0.9718± 0.0144
EfficientNet Non-sclerosed 0.7725± 0.1594 0.8881± 0.1293 0.6679± 0.2426 0.8219± 0.1308 0.7780± 0.1636

Sclerosed 0.8376± 0.2122 0.6679± 0.2426 0.8881± 0.1293 0.7327± 0.2089 0.7780± 0.1636

TABLE IV: Complete results, from Top-1 to Top-3, on the test set of ConvNeXt for the classification of glomeruli into the 12
pathologies.The worst result is highlighted in red and the best in green.

Class Top-k Precision Sensibility Specificity F1-Score Balanced Accuracy
ABMGN Top-1 0.3293± 0.1296 0.1756± 0.0444 0.965± 0.0204 0.2236± 0.0611 0.5703± 0.0274

Top-3 0.6971± 0.1404 0.5163± 0.1797 0.9792± 0.0167 0.5731± 0.1547 0.7477± 0.0878
ANCA Top-1 0.2117± 0.1312 0.2242± 0.1364 0.9372± 0.0136 0.2171± 0.133 0.5807± 0.0733

Top-3 0.5735± 0.1353 0.5499± 0.1907 0.9706± 0.0075 0.5589± 0.1631 0.7603± 0.098
C3-GN Top-1 0.1497± 0.1343 0.1246± 0.1106 0.9541± 0.023 0.1354± 0.1203 0.5393± 0.0507

Top-3 0.506± 0.1702 0.5105± 0.1819 0.9751± 0.0138 0.4072± 0.2673 0.6778± 0.1371
CryoGN Top-1 0.3745± 0.2074 0.3215± 0.2428 0.9429± 0.0349 0.3142± 0.1629 0.6322± 0.1112

Top-3 0.6258± 0.1579 0.5595± 0.2504 0.9632± 0.0264 0.5609± 0.1471 0.7613± 0.1163
DDD Top-1 0.5717± 0.2014 0.3561± 0.2612 0.9778± 0.0139 0.4095± 0.2523 0.6669± 0.1288

Top-3 0.8103± 0.1369 0.5808± 0.2513 0.986± 0.0118 0.6515± 0.1896 0.7834± 0.1255
Fibrilar Top-1 0.283± 0.0837 0.309± 0.1714 0.9383± 0.0208 0.2895± 0.1231 0.6236± 0.0797

Top-3 0.6007± 0.0354 0.5771± 0.1034 0.968± 0.007 0.5853± 0.0602 0.7726± 0.0487
IAGN Top-1 0.3622± 0.2474 0.3069± 0.3608 0.9589± 0.0169 0.3137± 0.307 0.6329± 0.1762

Top-3 0.6586± 0.2653 0.5285± 0.3627 0.9735± 0.0169 0.557± 0.3078 0.751± 0.1808
IgAGN Top-1 0.4383± 0.0927 0.6349± 0.0676 0.9201± 0.0265 0.5158± 0.08 0.7775± 0.0397

Top-3 0.6798± 0.0779 0.8795± 0.0673 0.96± 0.0145 0.7653± 0.0674 0.9197± 0.0367
MPGN Top-1 0.1742± 0.0848 0.2153± 0.073 0.8928± 0.0384 0.1876± 0.0729 0.5541± 0.0446

Top-3 0.4801± 0.1589 0.5912± 0.1472 0.9369± 0.0252 0.5281± 0.1542 0.7641± 0.0834
Membranous Top-1 0.6341± 0.1504 0.512± 0.1902 0.9683± 0.0201 0.5401± 0.1166 0.7402± 0.0899

Top-3 0.8326± 0.0804 0.8413± 0.0982 0.9834± 0.0095 0.8316± 0.0479 0.9123± 0.0469
PGNMID Top-1 0.3614± 0.0482 0.5227± 0.1037 0.9044± 0.0239 0.4219± 0.0449 0.7136± 0.0452

Top-3 0.5998± 0.0458 0.8418± 0.104 0.942± 0.0138 0.6959± 0.027 0.8919± 0.0466
SLEGN-IV Top-1 0.3324± 0.1913 0.4073± 0.2555 0.9325± 0.024 0.364± 0.2163 0.6699± 0.1374

Top-3 0.5334± 0.2358 0.6035± 0.2465 0.9568± 0.0233 0.5642± 0.2389 0.7801± 0.1337

and EfficientNet with 0.7317± 0.0945. Figure 7 displays the
ROC curves and AUC of the top two methods.

Figure 7 shows superior results compared to Table IV
because they assess different aspects with different methods.
The ROC curve measures the model’s ability to distinguish
between positive and negative samples of a class at various
classification thresholds. This indicates good ranking ability
but not necessarily optimal classification performance at a
fixed threshold. For all three models, performance varies
widely across classes, especially when considering other
metrics like precision. Taking ConvNeXt’s precision as an
example across each class, we observe results ranging from
0.63 for membranous nephropathy to 0.15 for C3-GN in
top1. The low result for the latter can be justified because
diagnosing this pathology typically requires other techniques
such as immunofluorescence [19], [20].

However, results for top-3 improve for classification of all
GN pathologies. The values increase for all metrics by between
0.21 and 0.35, with the standard deviation remaining consis-
tent. For example, balanced accuracy in top-3 ranges from
0.68 to 0.92. The best-performing classes are Membranous,
IgAGN, and PGNMID, where a balance between sensitivity
and specificity is maintained, with sensitivity values around
0.84 and 0.87 and specificity ranging from 0.94 to 0.98.

After selecting ConvNeXt as the best model out of the three,
the model generated from the best fold is evaluated with the
hold-out dataset. This set is entirely independent from the
others and consists of all images from database C. The results
are shown in Figure 8. The overall performance is slightly
lower, with a balanced accuracy of 0.577±0.074, compared to
0.642±0.084 previously. The ROC curves and their respective
AUCs are shown in Figure 9. The average AUC values on
the hold-out dataset are slightly lower, 0.69 compared to the
previously obtained 0.79. However, classification improves
slightly in 5 classes.

C. Discussion

The results highlight the challenge of identifying key fea-
tures among the 12 GN pathologies and the need for additional
information such as immunofluorescence tests, for accurate
diagnosis.. Manual classification with the hold-out dataset by
four pathologists was performed to assess inter-pathologist
variation and compare with ConvNeXt. The difficulty in classi-
fying some pathologies was consistent, with higher agreement
in top-3 results. Pathologists noted that some glomeruli crops
could be classified into multiple classes visually. Therefore,
certain pathologies require the use of additional sample pro-



(a) Precision (b) Sensibility

(c) Specificity (d) Balanced Acc.

Fig. 6: Results on the test set for the three models classifying
glomeruli into the 12 GN pathologies. In blue, ConvNeXt; in
orange, Swin Transformer; and in green, EfficientNet.

cessing techniques, as both methods and experts are unable to
distinguish between them using only PAS-stained images.

In all methods, performance varies greatly depending on the
pathology. Some, such as C3-GN, consistently yield the worst
results across all models, unlike Membranous, which always
achieved the best results. Pathologies with poorer performance
across all models often require additional tests for diagnosis
or belong to subtypes within the same group of pathologies,
such as MPGN, DDD, and C3-GN [19], [20]. This reaffirms
not only the need to include other types of medical tests
in training but also the necessity for a more differentiable
taxonomy among pathologies at a medical level.

V. CONCLUSIONS

Complete microscopic images were obtained and properly
processed for use in deep learning models. Expert annota-
tions were made on complete images, and glomerular crops
were extracted and appropriately labeled. Different partitions
were prepared using a custom variation of the 5-fold cross-
validation technique, which were subsequently used to com-
pare models by evaluating their performances independently
of the partition configuration. Specific constraints were ap-
plied within the realm of histological images during dataset
creation at the patient and WSI levels to prevent data leakage
between sets. Additionally, the test sets were enriched with a
completely different database, which also helped balance the
dataset and test the sequential model implemented. Thus, a
robust dataset was successfully created for the training and
evaluation of deep learning models.

A sequential model was implemented to first classify
glomeruli as sclerosed or non-sclerosed, then further classify
non-sclerosed glomeruli into 12 GN pathologies. The models

(a) ConvNeXt

(b) Swin Transformer

Fig. 7: ROC curves and average AUCs on the test set across
5 folds for the second stage of glomerulus classification
process, highlighting ConvNeXt and Swin Transformer as top
performers in the 12 glomerulonephritis classification.

were evaluated using average metrics across 5 folds, including
precision, sensitivity, specificity, F1-score, balanced accuracy,
and AUC from ROC analysis.

Swin Transformer was chosen as the best model for the first
stage due to its superior overall performance, with a balanced
accuracy of 0.9718±0.0144 and an AUC of 1.00. ConvNeXt
was selected as the best model for the second stage to classify
the 12 GN types, with an average balanced accuracy of 0.6418
for top-1 and 0.795 for top-3 across the test sets in the 5 folds,
along with an AUC of 0.75. In the hold-out dataset, this best
model achieved an average balanced accuracy of 0.5774 and an
AUC of 0.6925. The most accurately detected GN types were
Membranous and IgAGN. The Membranous class achieved
the best values in all metrics from top-1 to top-3 classification,
with a balanced accuracy of 0.84 and an average AUC of 0.86
across all datasets.

It can be asserted that the model reliably diagnoses glomeru-
losclerosis and further distinguishes between 12 types of
glomerulonephritis with consistent performance, particularly
identifying the Membranous class.



(a) Precision (b) Sensibility

(c) Specificity (d) Balanced Acc.

Fig. 8: Results on the hold-out dataset of the best base model
for glomerulus classification into 12 GN pathologies. This
model is the best fold of ConvNeXt.

Fig. 9: ROC curves and AUCs on the hold-out dataset for the
best base method of glomerulus classification across the 12
pathologies. The model is the top fold of ConvNeXt.

A QuPath extension has been developed with these models,
aiming to ease its integration into clinical practice. The tool
classifies glomeruli as sclerosed or non-sclerosed, and predict
the most likely GN class from top-1 to top-3 for non-sclerosed
cases. This proof-of-concept study establishes a baseline for
this difficult classification task, which usually requires im-
munostains, electron microscopy and even clinical data.
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