
Programming Every Example:
Lifting Pre-training Data Quality Like Experts at Scale

Fan Zhou * 1 2 Zengzhi Wang * 1 2 Qian Liu 3 Junlong Li 1 Pengfei Liu ‡ 1 2 4

Abstract
Large language model pre-training has tradition-
ally relied on human experts to craft heuristics for
improving the corpora quality, resulting in numer-
ous rules developed to date. However, these fixed
rules lack the flexibility to address the unique
characteristics of individual examples, yet craft-
ing sample-wise rules is impractical for human
experts. In this paper, we show that even small
language models, with only 0.3B parameters, can
exhibit substantial data refining capabilities. We
propose Programming Every Example (PROX),
a novel framework that treats data refinement as
a programming task, and enables the model to
refine corpora by generating and executing fine-
grained operations, such as string normalization,
for each individual example at scale. Experiments
show that models trained on PROX-refined data
consistently outperform other baselines across 10
benchmarks, demonstrating effectiveness across
model sizes (up to 1.7B) and pre-training cor-
pora (C4, RedPajama-V2, FineWeb, FineWeb-
Edu, and DCLM). PROX also shows great po-
tential in continual pre-training: on math domain,
PROX boosts 7B models by up to 20% within
10B tokens—results typically achieved with much
larger scale training (e.g., 200B tokens). We be-
lieve PROX offers a way to curate high-quality
pre-training data, and finally contributes to effi-
cient LLM development.

1. Introduction
Large Language Models (LLMs) have made significant
strides in capabilities (Meta, 2024; Achiam et al., 2023;
Anthropic, 2024; Reid et al., 2024), excelling in tasks such

*Equal contribution 1Shanghai Jiao Tong University
2Generative AI Research Lab (GAIR) 3Sea AI Lab 4Shanghai
Artificial Intelligence Laboratory. Correspondence to: Pengfei Liu
<pengfei@sjtu.edu.cn>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

as creative writing (Yuan et al., 2022), complex reason-
ing (Wei et al., 2022; Kojima et al., 2022), and agentic task
planning and execution (Fan et al., 2022; Park et al., 2023).
Behind these, massive, high-quality pre-training corpora
form the backbone of these models, equipping them with
the essential knowledge and reasoning abilities crucial for a
wide range of downstream tasks (Penedo et al., 2024a).

The Internet offers vast amounts of data, but much of it
is noisy and unrefined, requiring extensive cleaning and
quality enhancement before being applied for pre-training.
Previous works focus primarily on designing heuristic-based
pipelines to lift data quality, such as document filtering (Rae
et al., 2021; Penedo et al., 2024a; Soldaini et al., 2024) and
perplexity-based scoring methods (Together, 2023), relying
heavily on human expertise and manual adjustments (Zhang
et al., 2024a). While widely adopted, these labor-intensive
solutions are inherently limited by rule coverage and their in-
ability to address every specific case. Recently, some efforts
have explored leveraging LLMs for high-quality data acqui-
sition. On the one hand, language models have been applied
for data filtering or selection (Xie et al., 2023; Wettig et al.,
2024; Yu et al., 2024; Dubey et al., 2024), but their role is
largely limited to identifying low-quality documents with-
out enabling fine-grained refinements (e.g., string-level). On
the other hand, LLMs are also being used to generate high-
quality data directly, i.e., data synthesis (Gunasekar et al.,
2023; Li et al., 2023; Ben Allal et al., 2024). Unlike filtering,
synthesis methods actively create or refine data to produce
new documents, but they require substantial computational
resources, limiting the methods’ scalability. Despite the
success, these methods can also inherit issues from LLMs
like hallucination (Maini et al., 2024), and assessing their
correctness and completeness in an interpretable manner
remains a challenge (Liu et al., 2024a).

At this intersection of data processing efficiency and data
quality improvement, we propose PROX, a model-based
framework for pre-training-level data refinement. PROX
focuses on refining corpora using smaller models at scale,
offering a more efficient alternative. As shown in Figure 2,
in practice, PROX first adapts small base language models
(e.g., < 1B) to data refining tasks through fine-tuning them
on seed data. The refining models in PROX then determine

1

Programmming Every Example: Lifting Pre-training Data Quality like Experts at Scale

0 70 140 210 1.9k 2k

42

44

46

48

50

52

54

56

Av
er

ag
e

Pe
rf

or
m

an
ce

 (%
)

30 × less training steps

+2.4%

Apply ProX on FineWeb

FLOPs
(×1019)

1.7B model trained on ProX
1.7B model trained on Orig.
TinyLLaMA-1.1B

OLMo-1B
Pythia-1.4B

Left: Pre-training from scratch on general domain.

0 1 2 3 4 50 80

30

35

40

45

50

55

M
at

h
Pe

rf
or

m
an

ce
 (%

)

7B

34B

20 × less training steps

+6.2%

Apply ProX on OpenWebMath

FLOPs
(×1020)

Cont. trained on ProX
Cont. trained on Orig.
Llemma-7B

InternLM-MATH
CodeLLaMA

Right: Continual pre-training on math domain.
Figure 1: Training FLOPs vs. downstream performance. Although these corpora have been processed through expert-crafted
rules, applying PROX still yields significant improvements over these baseline models trained with the original corpora.
Moreover, models trained on PROX curated data achieve competitive performance with much fewer training FLOPs.

the appropriate operations for each document in the pre-
training corpora via versatile programs, such as document
filtering, string normalization and noisy line removal. The
generated programs are then executed by a pre-defined ex-
ecutor, producing refined corpus ready for pre-training. In
this way, PROX is empowered with language models to au-
tonomously refine pre-training corpora, leveraging flexible
function calls to enhance data quality.

Experimental results demonstrate that the proposed PROX
framework consistently lifts data quality for pre-training.
Specifically, PROX achieves an average improvement of
2.5% over the original corpus on 10 downstream bench-
marks and outperforms state-of-the-art data selection meth-
ods by over 1.0% (§3.2). Furthermore, PROX demon-
strates broad applicability across model sizes from 0.3B
to 1.7B and achieves consistent performance gains across
diverse pre-training corpora of varying quality, includ-
ing RedPajama-V2 (Together, 2023), C4 (Raffel et al.,
2020), FineWeb, FineWeb-Edu (Penedo et al., 2024a), and
DCLM (Li et al., 2024) (§3.3). In domain-specific con-
tinual pre-training, as shown in Figure 1, PROX-refined
OpenWebMath (Paster et al., 2024) boosts performance
across 9 mathematical tasks (e.g., +20.3% on CODEL-
LAMA-7B) while significantly enhancing efficiency, achiev-
ing similar downstream results with up to 20× less com-
puting (§3.4). Quantitative analysis suggests scaling re-
finement FLOPs achieves comparable performance with
much lower training costs, offering an efficient path for
LLM pre-training (§4).

2. Programming Every Example
2.1. Data Refinement Task Formulation

Given any document in the corpus d ∈ D, such as an HTML
extract or a textbook, we define data refinement as the pro-

cess of transforming d into d̂, where d̂ exhibits higher quality.
While it is challenging to formally define “higher quality”
for pre-training data, we assume it can be described through
qualitative improvements, such as the removal of adver-
tisements, meaningless URL links, random code gibberish,
and content lacking educational value, just as shown on the
left side of Figure 2. Specifically, we formulate this refin-
ing process as the generation of a data processing program
Z , conditioned on d. The refined document d̂ is then pro-
duced by executing program Z on the original document
d. For instance, the “string normalization” can be a very
fine-grained process transforming noisy strings into clean
ones with executor E and program Znormalize:

E(Znormalize, d) = (s′i)
|d|
i=1 (1)

where s′i = normalize(si) if si needs normalization; oth-
erwise, s′i = si. Here, d = (s1, s2, ..., s|d|) is the orig-
inal document represented as a sequence of strings, and
normalize() is our normalization function that maps
certain strings to their normalized versions for simplicity.
Moreover, document filtering is a special case of refining
transformation, where executing Zfilter removes the entire
document, i.e., E(Zfilter, d) = ∅. In this way, data quality
improvements like cleaning or normalizing can be unified
into standardized functions executed by E(Z, d), where Z
encodes function calls or heuristics for each specific task.

2.2. PROX Framework

Overview As shown in Figure 2, given any document d as
input, PROX utilizes the language model itself with param-
eter θ to generate the data refinement program Z = fθ(d).
The snippet is executed within the executor E , producing
the refined document d̂ = E(fθ(d), d). We include two
stages in the PROX framework, aiming to refine the data
progressively, from rough to fine-grained. These two stages

2

Programmming Every Example: Lifting Pre-training Data Quality like Experts at Scale

Adapt

Pre-training Corpora
[000]
[001] A description of the type of authorized
interactions a can have with a resource. Examples
include read, write, execute, add, modify, and
delete.
……
[108]
[109]

ProX: Programming Every EXample

Activities | Technical Reports | About W3C | …

http://t.co/XUQZZRvn3i

ClickHere

Search English terms starting with the letter:

Base
Model

Refining
Model

Chunk-level Program
normalize(‘ClickHere’, ‘’)
remove_lines(0, 0)
remove_lines(108, 109)

ProX programs
Refined Corpora

Doc-level Program
keep_doc()

[001] A description of the
type of authorized
interactions a can have
with a resource. Examples
include read, write,
execute, add, modify, and
delete.
……

Generate

Noisy & Mixed-quality Clean & High-quality

Execute

1

2 3

!! ✓

Figure 2: An overview of PROX framework: (1) adapt a base language model for data refinement; (2) generate elaborate
programs for each document by PROX refining models, including document-level filtering and more fine-grained chunk-
level refining; (3) execute the programs with the docs via a Python executor, producing the refined high-quality corpora.

Table 1: PROX program design of document and chunk
level refining stage. doc and chunk will also be sent into
the corresponding functions as inputs for execution.

Stage Function Interface

Document
Level

drop doc()→ <None> “‘Delete the whole doc.′′′

keep doc()→ <str> “‘Return the orignal doc.′′′

Chunk
Level

remove lines(line start,line end)→ <str>
“‘Delete noisy lines from chunk.′′′

▷ line start<int>, index of the first line to be removed
▷ line end<int>, index of the last line to be removed

normalize(source str, target str)→ <str>
“‘Replace strings with normalized ones.′′′

▷ source str<str>, the noisy string pattern
▷ target str<str>, the string for replacement

keep chunk()→ <str> “‘Return the orignal chunk.′′′

are referred to as document-level programming and chunk-
level programming, as illustrated in Figure 2. In each stage,
the PROX refining model will generate programs Zdoc and
Zchunk to refine corpora at varying levels of granularities.

PROX Program Design Designing an effective program
space is key to maximizing language model capabilities.
For large-scale pre-training corpora, we prioritize: (1)
lightweight models capable of recognizing specific patterns,
and (2) simplicity and efficiency despite higher computa-
tional costs compared to heuristic-based pipelines. To bal-
ance functionality and resource constraints, we let models
generate function calls without detailed implementations,
ensuring effective document manipulation while maintain-
ing coherence. We present the function definitions in Ta-
ble 1, which also constitutes the program space of PROX.

The most fundamental operations we aim to perform on
a document are deletion and replacement. In PROX, we
incorporate these types of operations across different stages
to refine the corpus at different granularities: (1) In the
document-level programming stage, we define the functions
drop doc() to delete a document and keep doc() to
retain it. (2) At the chunk-level programming stage, we
split lengthy documents into smaller chunks and apply fine-
grained operations to them. These operations include delet-

ing specific lines with remove lines() and replacing
strings with normalize(), providing flexibility in mod-
ifying content rather than dropping the whole document.
For high-quality chunks that require no modifications, we
use the keep chunk() function. As shown in Table 1,
while the individual functions may seem straightforward,
their design space is flexible and capable of expressing
complex rules developed by human experts. We believe
expert-crafted rules can be projected into the program space
of PROX, demonstrating that our approach simplifies and
enhances the rule creation process, offering more systematic
and scalable refinement capabilities.

PROX Execution During the execution stage, the execu-
tor E executes the generated program snippetsZ to refine the
document. PROX integrates Pythonic grammars, wrapping
operations into functions with parameters, implemented in
Python for later execution. For example, in Figure 2, the
document contains noisy patterns such as navigation bars,
meaningless HTML links, and page indexes. The refin-
ing model generates programs to remove these lines and
patterns. At the document- and chunk-level programming
stages, PROX uses two refining models to generate pro-
grams with various function calls (see Table 1). We believe
this sequential approach ensures structured and effective
refinement, first addressing larger document noise, and then
focusing on finer-grained cleaning.

2.3. Model Adaptation for PROX

It is generally difficult for off-the-shelf models to directly
generate perfect PROX programs. In fact, generating such
custom API calls is relatively challenging even for the most
powerful LLMs at the current stage (Zhuo et al., 2024).
Thus, it is necessary to curate some seed data to adapt the
model for these scenarios. Under such consideration, we
employ advanced LLMs to annotate these operations via
zero-shot and few-shot prompting, and then adapt our small
models to these tasks by supervised fine-tuning (SFT). As
presented in Figure 3, we first apply additive scale scoring

3

Programmming Every Example: Lifting Pre-training Data Quality like Experts at Scale

Synthesize[Scoring Critiques]

Score 1-5[Function Definition]
def drop_doc(text: str):

”delete doc from corpus”
pass

LLMSeed Documents

DF Program
drop_doc()

DF Program
drop_doc()

Document-Program Pairs
Base Model Refining Model

Fine-tune
Inference
At Scale

Pretraining
CorporaZero-shot / Few-shot

Chunk-level Program
normalize(‘►©’,’’)

Doc-level Program
drop_doc()

Figure 3: The illustration of the model adaptation in PROX. We employ powerful LLMs (LLAMA-3) to annotate random
seed documents with valid programs and use doc-program pairs to fine-tune a small base language model, obtaining the
refining model suitable for fine-grained data refining tasks.

prompts (Yuan et al., 2024; Penedo et al., 2024a), to split the
corpus into kept and dropped documents, then use LLMs to
annotate fine-grained programs for kept documents. Specifi-
cally, we leverage the LLAMA-3-70B model (Dubey et al.,
2024) for seed data annotation, and the seed documents are
randomly sampled from the original pre-training corpus. In
PROX, this annotation is performed only once, and all mod-
els are adapted with the same curated data. To ensure the
reliability of the collected data, we also conduct necessary
checks for grammar correctness and control the removal
ratio threshold. Detailed procedures for program synthesis
and post-processing can be found in §A.1.

For simplicity and transparency, we use a small base lan-
guage model (e.g., 0.3B parameters) that we trained from
scratch on approximately 26B tokens of original unrefined
data, ensuring it is overtrained beyond the Chinchilla opti-
mal points (Hoffmann et al., 2022). This model serves as
the base model for ProX adaptation and also as the com-
parison baseline in subsequent experiments. The adapted
models’ performance will then be evaluated using the F1
score on the held-out validation dataset, both of which were
derived from the seed data we collected earlier. We select
the highest-performing checkpoints and employ them to
generate programs Z , for each document or chunk. These
programs together with the documents are then executed us-
ing the corresponding function implementation, resulting in
the final processed corpus. Please refer to the appendix for
more training details (§A.2), implementation for calculating
the F1 score (§A.3), and large-scale inference (§A.4).

3. Experiments
In this section, we first describe our experimental setup
(§3.1), then verify the effectiveness of each PROX refining
stage and compare it with various data selection methods
tailored for pre-training (§3.2). We then apply PROX to
various model sizes and corpora to demonstrate its broad
applicability (§3.3). Finally, we apply PROX to the mathe-
matical domain, showing its superiority in domain-specific
continual pre-training (§3.4).

3.1. Experiment Setup

Pre-training Corpora For the general domain, we be-
gin with RedPajama-V2 (Together, 2023), a preprocessed
large-scale dataset of 30 trillion tokens from diverse Internet
sources, ready for pre-training. We further apply PROX on
the C4 corpus (Raffel et al., 2020) with 198 billion tokens
and the recent high quality datasets including FineWeb (as
well as FineWeb-Edu) (Penedo et al., 2024a) and DCLM (Li
et al., 2024). For specific domain experiments, we use
OpenWebMath (Paster et al., 2024), a math-focused dataset
with 15 billion tokens. Table 8 (§B.2) reports full details of
our training corpus.

Base Models Our experiments are conducted on various
sizes of language models. (1) To verify different stages’ ef-
fectiveness of PROX, we employ a 0.7B sized model sharing
LLAMA-2 architecture (Touvron et al., 2023b), denoted as
TLM-S, used for both pre-training from scratch and refining.
We also compare PROX with data selection methods using
PYTHIA-410M/1B’s architecture (Biderman et al., 2023),
as those employed in MATES (Yu et al., 2024). (2) For
further evaluation of PROX using different refining and base
model sizes, we scale model sizes from 0.3B (0.5×smaller,
denoted as TLM-XS) to 1.7B (2×larger, denoted as TLM-
M). (3) For domain-specific continual pre-training, we select
TINYLLAMA-1.1B (Zhang et al., 2024b), LLAMA-2 (Tou-
vron et al., 2023b), CODELLAMA (Rozière et al., 2023)
and MISTRAL-7B (Jiang et al., 2023) as representative base
models for their adequate training and solid performance.
Detailed specifications and training recipes are provided in
§B.3, especially in Table 9 and Table 10.

Baselines To ensure a fair comparison within the same
experiment, we maintain consistent training hyperparam-
eters across most of the baselines, differing only in data
refining and selection pipelines. We compare PROX with
various baseline methods, including: (1) heuristic filtering
rules used to create Gopher (Rae et al., 2021), C4 (Raf-
fel et al., 2020), and FineWeb (Penedo et al., 2024a)), (2)
fasttext-based filtering, trained on our PROX’s seed data,
(3) existing data selection techniques, including DSIR (Xie

4

Programmming Every Example: Lifting Pre-training Data Quality like Experts at Scale

Table 2: Detailed performance on 10 downstream tasks. All models use the same TLM-S architecture and are trained
on RedPajama-V2. The doc-level (PROX-D) and chunk-level (PROX-C) refining are done by fine-tuning the raw data
pre-trained model as a refining model. Bolded entries represent the best results. #Win represents the number of tasks where
the method achieved the best performance.

Method ARC-C ARC-E CSQA HellaS MMLU OBQA PIQA SIQA WinoG SciQ AVG #Win
Raw 26.1 44.3 29.7 39.1 27.3 29.2 66.9 39.0 52.0 67.4 42.1 0 / 10

Applying Rule-based filtering on Raw Data: GO = Gopher rules, C4 = C4 rules, FW = FineWeb rules.

GO 25.7 44.0 31.3 40.2 27.3 29.0 66.3 39.0 51.2 68.9 42.3 0 / 10
C4 25.0 46.0 31.0 40.5 27.1 29.2 68.5 40.5 51.7 66.6 42.6 2 / 10
FW 25.2 46.8 32.6 39.6 27.2 29.0 66.5 39.4 52.4 69.2 42.8 2 / 10
GO+C4+FW 25.2 43.9 30.0 41.9 27.5 31.0 67.0 39.9 51.9 65.3 42.3 0 / 10
FASTTEXT 26.9 49.9 29.5 39.0 28.5 31.8 64.7 39.6 52.1 70.4 43.3 2 / 10

Applying PROX (ours) on Raw Data: D = Doc-level Programming, C = Chunk-level Programming.

PROX-D 26.6 49.7 30.1 40.5 29.4 30.4 66.3 39.0 51.2 71.6 43.5 1 / 10
PROX-D+C 26.4 51.9 30.9 42.4 29.4 31.6 67.9 40.0 52.2 73.5 44.6 3 / 10

et al., 2023), DsDm (Engstrom et al., 2024), MATES (Yu
et al., 2024), QuRating (Wettig et al., 2024), and (4) LLM
synthesis approaches (such as INSTLM (Cheng et al., 2024)
and COSMO (Ben Allal et al., 2024)) or LLM Pruning
(SHEAREDLLAMA (Xia et al., 2024)). For domain-specific
continual pre-training, we also compare with strong open-
sourced models such as LLEMMA (Azerbayev et al., 2024),
and INTERNLM2-MATH (Ying et al., 2024). Please refer to
§C for full baseline details.

Evaluation Setup We compare the trained models’ perfor-
mance over a vast of datasets for comprehensive evaluation:
(1) For general pre-training, we evaluate performance across
ten selected tasks using lighteval’s implementation (Fourrier
et al., 2023); we have also included LM-eval-harness (Bi-
derman et al., 2024) for fair comparison with data selection
methods. (2) For domain-specific continual pre-training
evaluation, we integrate nine mathematical related tasks and
report few-shot chain-of-thought (CoT) (Wei et al., 2022)
performance. The selected evaluation benchmarks, number
of evaluation examples, and full details can be found in §D.

3.2. Verifying PROX’s effectiveness

Verifying Effectiveness for Each PROX Operation We
first conduct a series of experiments to verify the effec-
tiveness of each PROX operation. We begin by training
TLM-S on the RedPajama-V2 raw data for approximately
26B tokens (or 12.5K steps) as the initial baseline. Follow-
ing Wettig et al. (2024) and for convenience, we sequen-
tially apply the document-level and chunk-level refining
pipelines by fine-tuning the 0.7B model itself. We then
perform large-scale program synthesis and execution using
the refining models, resulting in Ddoc and Ddoc+chunk. Such
2-stage synthesis requires approximately 192 A100 GPU
hours for processing 60B tokens of data. The downstream
performance is presented in Table 2, including base models
trained on the data produced by PROX refinement methods

0.0 2.5 5.0 7.5 10.0 12.5
Training Step (K)

35.0

37.5

40.0

42.5

45.0

Av
er

ag
e

Pe
rf

or
m

an
ce

 (%
)

ProX-D+C
ProX-D
FastText
Rule
Raw

Figure 4: Downstream performance w.r.t. different training
steps: first 0.5K, then evenly from 2.5K to 12.5K. Rule: the
best performing FineWeb rule in Table 2.

and different rule-based baselines. Moreover, we visualize
the dynamic benchmark performance in Figure 4, implying
the consistent improvement of PROX over all baselines. See
§E.1 for full detailed results of all intermediate checkpoints.

These results show that PROX is highly effective, outper-
forming the raw corpus with an average boost of 2.5%,
including significant boosts such as 7.6% on ARC-E, and
3.3% on HellaSwag. Such improvements were achieved
even on benchmarks that are typically prone to performance
instability, such as SIQA, WinoGrande, and CSQA. By con-
trast, rule-based methods demonstrate relatively marginal
overall improvement. For instance, Gopher rules achieve
only a 0.2% boost, while C4 shows a modest 0.5% improve-
ment. Furthermore, combining all three rules (as is done in
constructing the official FineWeb corpus), does not lead to
any larger enhancement in overall performance.

Comparing with Data Selection Methods Apart from
comparing with heuristic methods, we also include existing
representative model-based data selection methods tailored
for pre-training corpora to verify PROX’s effectiveness. In
Table 3, we report both 0-shot and 2-shot performance un-

5

Programmming Every Example: Lifting Pre-training Data Quality like Experts at Scale

Table 3: Comparison with different data selection methods
on 8 benchmarks using C4 corpus and PYTHIA architecture.

Method
Total

FLOPs
(×1e19)

0-shot 2-shot #Win

Model Architecture: PYTHIA-410M

Random 06.4 42.7 43.8 0 / 8
DSIR 06.4 42.5 43.7 1 / 8
DsDm 10.7 43.4 44.1 0 / 8
QuRating 26.4 43.5 44.6 0 / 8
MATES 08.1 44.0 45.0 0 / 8
PROX (ours) 13.2 46.2 47.5 7 / 8

Model Architecture: PYTHIA-1B

Random 17.7 44.7 45.4 0 / 8
MATES 20.0 45.8 46.4 1 / 8
PROX (ours) 21.9 46.8 48.4 7 / 8

der the same settings used in MATES (Yu et al., 2024).
While we merely apply document-level stage (i.e., PROX-
D) which is indeed similar to data selection methods, we
can see that PROX outperforms the strongest data selection
method MATES, by 2.2% and 2.5% in 0-shot and 2-shot
average performance for 410M model, and by 1.0% and
2.0% for 1B model. Additionally, PROX achieves the best
performance on 7 out of 8 benchmarks tested, demonstrat-
ing its superiority over existing data selection methods. Full
evaluation results are provided in Table 13 (§E.2).

3.3. Applying PROX across model sizes and corpora

In this section, we demonstrate that PROX can effectively
benefit models beyond scales and across different corpora,
and greatly improves the training efficiency.

PROX works well across different scales. We train a se-
ries of models from 350M to 1.7B (i.e., TLM-XS, TLM-S,
and TLM-M) on the same 26B tokens used in §3.2, and
then fine-tune these models on doc-level and chunk-level
tasks, obtaining refining models with different sizes. We
then apply these models in both doc-level and chunk-level
refining stages and use the curated data for from-scratch pre-
training. We report the adaptation performance on refining
tasks of different refining model sizes in Table 4. According
to the validation performance, adaptation works well across
all model sizes, all achieving > 80% F1 on document-level
refinement, and > 75% F1 on chunk-level refinement. We
further train models of different sizes from scratch using
data produced by refining models of varying sizes. In Fig-
ure 5, the heatmap indicates that all refining models of three
sizes improve data quality over raw data with a consistent
performance boost of 2% over all base model sizes. While
TLM-XS curated data shows slightly better downstream per-
formance, it has a lower token-level retention ratio (23.2%
vs. 28.8%) compared to larger models as reflected in Ta-
ble 4. This implies that moderately larger models suggest a

Table 4: Refining model’s performance on valid set and
token retention ratio of original corpus.

Size Doc-level Chunk-level Kept Ratio

XS (0.3B) 82.6 75.2 23.2%
S (0.7B) 81.3 75.6 25.6%
M (1.7B) 83.7 77.3 28.8%

Raw ProX-(xs) ProX-(s) ProX-(m)

xs
s

mB
as

e
M

od
el

 S
iz

e

39.6 42.3 41.9 41.9

42.5 43.9 44.6 43.5

43.4 46.0 46.2 45.7
40

42

44

46

Pe
rf

or
m

an
ce

Figure 5: PROX’s effect over different model sizes.

favorable balance between data quality and quantity. These
additional tokens likely provide more knowledge during
pre-training without compromising downstream benchmark
performance, showcasing an effective trade-off between
data refinement and information preservation.

PROX works well across pre-training corpora. To as-
sess the applicability of PROX across various pre-training
corpora, we extend our experiments beyond RedPajama-V2
to C4 and the recently released top-quality corpus includ-
ing FineWeb, FineWeb-Edu, and DCLM. We apply exactly
the same PROX-xs refining models detailed in Table 4 to
these corpora without constructing new seed data. We con-
ducted larger-scale experiments by training 1.7B models
from scratch for about 50B tokens, again achieving no-
table improvements: On ten downstream benchmarks, mod-
els trained on PROX’s curated data showed improvements
of +2.0% on RedPajama-V2, +2.9% on C4, +2.4% on
FineWeb, +0.9% on FineWeb-Edu, and +1.7% on DCLM,
as shown in Figure 6.

ProX brings greater training efficiency. To demonstrate
the non-trivial nature of these results, we compared models
trained on PROX curated data against various models trained
by different approaches. These include models like TINYL-
LAMA-1.1B (trained on 3T tokens, about 60× of our train-
ing tokens and 40× training FLOPs), SHEADLLAMA-1.3B
(pruned from LLAMA-2-7B, with extra 50B tokens training),
and models using LLM data synthesis, such as INSTRUC-
TIONLM-1.3B and COSMO-1.8B. Our results, including
TLM-M (PROX) and TLM-M (Raw), are presented along-
side all these baselines in Figure 6. On FineWeb, which is
recognized for its high-quality data, TLM-M using PROX-
refined data performs comparably to pruned models like
SHEADLLAMA-1.3B and TINYLLAMA-1.1B, despite their
reliance on additional pruning techniques or much larger
datasets. Moreover, using much less computing overhead
for data refinement, our models even outperform models that

6

Programmming Every Example: Lifting Pre-training Data Quality like Experts at Scale

RedPajama C4 FineWeb FineWeb-Edu DCLM
42

44

46

48

50

52

A
ve

ra
ge

 P
er

fo
rm

an
ce

 (%
)

TinyLlama-1.1B-3T: 50.1%

46.0
45.5

47.4

50.1 50.0

48.0
48.4

49.8

51.0
51.7

Inst-LM Cosmo S-Llama

49.2

49.7 50.3

Raw Data
ProX

LLM Synthesis
Model Pruning

Figure 6: Performance of original data and PROX curated
data trained models across different datasets using ≈ 50B
tokens and comparison with existing models trained using
different techniques like LLM data synthesis and direct
model pruning. Inst-LM: INSTRUCTIONLM-1.3B; Cosmo:
COSMO-1.8B; S-Llama: SHEAREDLLAMA-1.3B.

rely heavily on data synthesis with LLMs, underscoring the
PROX’s efficiency. Notably, models like INSTRUCT-LM-
1.3B, trained on 100 billion tokens from a fine-tuned MIS-
TRAL-7B synthesizer, and COSMO-1.8B, trained on 180B
tokens (including 25B tokens synthesized by MIXTRAL-
8x7B), require significantly more compute than PROX. In
fact, their computational cost of data synthesis has far sur-
passed the training overhead.

3.4. Applying PROX to Specific Domains

We also demonstrate the potential of PROX in the contin-
ual pre-training scenario, specifically, in the mathematical
domain. We apply the very same pipeline as in general
domains to the OpenWebMath corpus (Paster et al., 2024),
aiming to further mine and refine the high-quality and clean
data from the crawled vast web pages. We apply PROX-xs
series for refining as described in § 3.3 and adapt them on
math seed data for the document-level and chunk-level refin-
ing tasks. Finally, about 5.5B tokens remain after document-
level refining, and about 4.7B after chunk-level refining. We
present the final mathematical evaluation results of models
trained on OpenWebMath in Table 5, with comprehensive
evaluation results and full ablation studies presented in §E.4.

PROX boosts continual pre-training efficiency vastly.
Without any domain-specific design, Table 5 shows that pre-
training on OpenWebMath refined by PROX brings 11.0%
average performance improvements for TINYLLAMA-1.1B,
14.6% for LLAMA-2, 20.3% for CODELLAMA, 7.6% for
MISTRAL, which clearly exceeds the improvements of all
baselines, including their counterparts pre-trained on the
original corpus. Notably, applying rule-based filtering does
not improve performance; instead, it causes a 3.1% degra-

Table 5: Math domain continual pre-training (CPT) results
with few-shot CoT evaluation performance averaged over 9
mathematical reasoning benchmarks.

Model Size CPT Method Uniq
Toks

Train
Toks

Math
AVG. Perf.

LLEMMA 7B ✓ - 55B 200B 50.9 (+21.8)

INTERNLM2 7B ✗ - - - 36.1
7B ✓ - 31B 125B 48.7 (+12.6)

TINYLLAMA

1.1B ✗ - - - 14.7
1.1B ✓ - 15B 15B 21.5 (+6.8)
1.1B ✓ Rule 6.5B 15B 18.4 (+3.7)
1.1B ✓ PROX 5B 15B 25.7 (+11.0)

LLAMA-2
7B ✗ - - - 31.5
7B ✓ - 15B 10B 42.8 (+11.3)
7B ✓ PROX 5B 10B 46.1 (+14.6)

CODELLAMA
7B ✗ - - - 29.1
7B ✓ - 15B 10B 43.2 (+14.1)
7B ✓ PROX 5B 10B 49.4 (+20.3)

MISTRAL
7B ✗ - - - 51.6
7B ✓ - 15B 10B 54.8 (+3.2)
7B ✓ PROX 4.7B 10B 59.2 (+7.6)

dation compared to continual pre-training on the original
corpus. This suggests that universal heuristics are inef-
fective across all domains, highlighting the need for au-
tomated pipelines like PROX. Moreover, compared with
existing math continual pre-training models like LLEMMA
and INTERNLM2-MATH typically requiring hundreds of
billions of training tokens, PROX demonstrates remarkable
efficiency gains. A more controlled comparison further high-
lights this: LLEMMA-7B, based on CODELLAMA-7B, was
trained on 200B tokens; whereas PROX, also starting from
CODELLAMA-7B, reaches similar performance (50.9% vs.
49.4%) with just 10B tokens of training, indicating a 20×
reduction in training computes.

4. Analysis

Impact on the Original Data We compare the docu-
ment’s token length distribution of the original corpus with
that of the PROX-refined corpus in Figure 7. In the general
domain, the refined data exhibits a noticeable shift in the
average number of tokens per document. Before refinement,
documents with fewer than 100 tokens make up a signif-
icant portion of the corpus; after applying the PROX, the
majority of them contain more than 200 tokens, with an
average number of tokens per document increasing from
1217 to over 2000. This shift, however, is not observed
in OpenWebMath (Middle part in Figure 7). One possible
reason for this outlier is that the OpenWebMath corpus is
collected mostly from sources different from the general
domain, e.g., online forums like Stack Exchange, and aca-
demic publisher websites such as Arxiv. And noises of these
sources can be quite different from general domains. Further
analysis and case studies on these documents are provided
in §F.1, §F.2, and §F.3.

7

Programmming Every Example: Lifting Pre-training Data Quality like Experts at Scale

101 102 103 104

D
en

si
ty

Avg.Toks: 1217.5
Avg.Toks:2004.8

(#toks)

Original Data
ProX Refined Data

102 103 104

Avg.Toks: 1815.8

Avg.Toks: 1734.9

(#toks)

Original Data
ProX Refined Data

0.3B 0.7B 1.7B
0.0

0.5

1.0

1.5

2.0

Tr
ai

n
+

In
fe

r F
LO

Ps
 (×

1e
20

)

0.42 0.43

0.72 0.69

2.26

1.35

Train FLOPs
Infer FLOPs

Figure 7: Left and Middle: Comparison of doc’s token length distributions between original and PROX-refined data from
RedPajama-V2 and OpenWebMath, respectively. Right: Total FLOPs comparison for achieving comparable downstream
performance with/without PROX refining: 0.3B (Avg. Perf = 40.5), 0.7B (41.6), and 1.7B (42.9). 1

Table 6: Analysis of programs generated by PROX: error
program ratio and program complexity (function calls).

Domain
Error Ratio Avg. Func Calls

Doc-level Chunk-level Chunk-level

General 0.04% 0.36% 3.7
Math 0.06% 0.11% 2.7

PROX Generated Program Analysis PROX maintains
extremely low failure rates (< 0.4%) across both refining
stages and domains while demonstrating computational ef-
ficiency, requiring only 3.7 and 2.7 average function calls
for general and math domains respectively. This indicates
PROX is well-suited for small models, achieving high relia-
bility under resource constraints.

Computing Overhead Analysis Although PROX demon-
strates very promising results in downstream tasks, such
large-scale inference will require an extra computing budget.
Gladly, the relative computational cost for PROX will keep

decreasing when developing larger models. In Figure 7, we
calculate the FLOPs consumed by checkpoints with similar
downstream performance, both with and without PROX. As
model size increases, the proportion of inference FLOPs for
applying PROX decreases. Surprisingly, for the largest 1.7B
model, we achieve performance comparable to a model pre-
trained on the original data, but with only 58% of baseline’s
FLOPs. This demonstrates that refining methods like PROX
not only enhance data quality but also provide efficiency
for developing LLMs, reinforcing the value of allocating
additional resources to refining pre-training data.

5. Related Works
Pre-training Data Processing It has been a common prac-
tice to execute pre-processing before training due to the
noisy nature of raw data from the Internet, which can hurt
model performance (Touvron et al., 2023a; Together, 2023;
Penedo et al., 2024a). The pipeline usually starts with docu-
ment preparation, such as URL filtering and text extraction

1The train FLOPs for the base model (≈ 5.3 × 1019) used
to create the refining model are excluded. This is because any
pre-trained LLM can theoretically serve as the base for refinement.

(Wenzek et al., 2020; Smith et al., 2022). The remaining
documents will then undergo several quality checks with
heuristic rules like overall length, symbol-to-word ratio to
determine whether they are kept, or aborted (Zhang et al.,
2024a; Dou et al., 2024; Qiu et al., 2024). Finally, these
documents are deduplicated with algorithms such as Min-
Hash (Broder, 1997). In PROX, we use small language
models for further data refining, outperforming heuristic
rules with acceptable computational overhead.

Data Selection Methods Data selection is more com-
monly applied in the later stages of large-scale data pre-
processing. In supervised fine-tuning, it typically involves
selecting a much smaller subset of samples while maintain-
ing performance (Liu et al., 2024b). Recent efforts have
extended these selection strategies to pre-training (Engstrom
et al., 2024; Xie et al., 2023; Ankner et al., 2024; Sachdeva
et al., 2024). Wettig et al. (2024) train a rater model to
score documents on four quality criteria; MATES (Yu et al.,
2024) apply LMs to estimate data influence and enables
dynamic selection schema. Moreover, as mentioned in
LLAMA-3 (Meta, 2024), LLAMA-2 (Touvron et al., 2023b)
are used as text-quality classifiers that underpin LLAMA-
3’s training data. In PROX, we provide more fine-grained
operations within documents for further improvements.

6. Conclusion
We introduced PROX, a framework that uses small language
models to refine pre-training data through program genera-
tion and execution. Extensive experiments show that train-
ing on PROX curated data greatly improves performance on
various downstream benchmarks, and holds effective across
different model sizes and datasets. For the math domain,
models trained on PROX curated data also yield significant
improvements with 20× less training tokens. Further analy-
sis also shows applying PROX can achieve similar results
with less compute for large-scale LLM pre-training. These
results demonstrate PROX’s potential to enhance data qual-
ity while reducing costs in training LLMs. We believe that
PROX paves the way for developing more efficient LLMs,
and scaling computing for data refinement may further ac-
celerate progress in future exploration.

8

Programmming Every Example: Lifting Pre-training Data Quality like Experts at Scale

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

Acknowledgement
We extend our profound gratitude to Shanghai AI Lab and
Sea AI Lab for generously providing valuable computational
resources, which were instrumental in the realization of this
project. Our sincere thanks also go to Mingxuan Wang and
Jiaze Chen from ByteDance for their crucial support. We are
deeply thankful to Ethan Chern from Shanghai Jiao Tong
University and Yuqing Yang from University of Southern
California for their early discussions and insightful contribu-
tions, and equally grateful to Zhoujun Cheng from UC San
Diego, Yiheng Xu and Tianbao Xie from University of Hong
Kong, and Terry Yue Zhuo from Monash University for
their valuable feedback, to Guilherme Penedo and Loubna
Ben Allal from Hugging Face for their guidance on hyper-
parameter tuning, to Zhibin Gou from Tsinghua University
for providing advise on continual pre-training, to Lyuman-
shan Ye for helping with illustrations and color scheme de-
sign. Finally, special thanks go to Peiyuan Zhang from UC
San Diego, representing the TinyLlama team, for providing
a great open pre-training framework and supporting series of
acceleration operators. These collective wisdom and unwa-
vering support have been pivotal to our project. This project
is supported by SJTU SEIEE - ByteDance Large Language
Model Joint Laboratory, Shanghai Artificial Intelligence
Laboratory.

References
Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I.,

Aleman, F. L., Almeida, D., Altenschmidt, J., Altman, S.,
Anadkat, S., et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

AI, L. Litgpt. https://github.com/
Lightning-AI/litgpt, 2023.

Amini, A., Gabriel, S., Lin, S., Koncel-Kedziorski, R., Choi,
Y., and Hajishirzi, H. Mathqa: Towards interpretable
math word problem solving with operation-based for-
malisms. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pp. 2357–2367, 2019.

Ankner, Z., Blakeney, C., Sreenivasan, K., Marion, M.,
Leavitt, M. L., and Paul, M. Perplexed by perplexity:
Perplexity-based pruning with small reference models.

In ICLR 2024 Workshop on Navigating and Addressing
Data Problems for Foundation Models, 2024.

Anthropic, A. The claude 3 model family: Opus,
sonnet, haiku. Claude-3 Model Card, 2024.
URL https://www-cdn.anthropic.com/
de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/
Model_Card_Claude_3.pdf.

Azerbayev, Z., Schoelkopf, H., Paster, K., Santos, M. D.,
McAleer, S. M., Jiang, A. Q., Deng, J., Biderman, S.,
and Welleck, S. Llemma: An open language model for
mathematics. In The Twelfth International Conference
on Learning Representations, 2024. URL https://
openreview.net/forum?id=4WnqRR915j.

Ben Allal, L., Lozhkov, A., Penedo, G., Wolf,
T., and von Werra, L. Cosmopedia, Febru-
ary 2024. URL https://huggingface.co/
datasets/HuggingFaceTB/cosmopedia.

Biderman, S., Schoelkopf, H., Anthony, Q. G., Bradley,
H., O’Brien, K., Hallahan, E., Khan, M. A., Purohit, S.,
Prashanth, U. S., Raff, E., et al. Pythia: A suite for ana-
lyzing large language models across training and scaling.
In International Conference on Machine Learning, pp.
2397–2430. PMLR, 2023.

Biderman, S., Schoelkopf, H., Sutawika, L., Gao, L., Tow,
J., Abbasi, B., Aji, A. F., Ammanamanchi, P. S., Black,
S., Clive, J., DiPofi, A., Etxaniz, J., Fattori, B., Forde,
J. Z., Foster, C., Jaiswal, M., Lee, W. Y., Li, H., Lovering,
C., Muennighoff, N., Pavlick, E., Phang, J., Skowron, A.,
Tan, S., Tang, X., Wang, K. A., Winata, G. I., Yvon, F.,
and Zou, A. Lessons from the trenches on reproducible
evaluation of language models, 2024.

Bisk, Y., Zellers, R., Gao, J., Choi, Y., et al. Piqa: Reasoning
about physical commonsense in natural language. In Pro-
ceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Broder, A. Z. On the resemblance and containment of
documents. In Proceedings. Compression and Complexity
of SEQUENCES 1997 (Cat. No. 97TB100171), pp. 21–29.
IEEE, 1997.

Cheng, D., Gu, Y., Huang, S., Bi, J., Huang, M., and Wei, F.
Instruction pre-training: Language models are supervised
multitask learners. arXiv preprint arXiv:2406.14491,
2024.

Clark, C., Lee, K., Chang, M.-W., Kwiatkowski, T., Collins,
M., and Toutanova, K. Boolq: Exploring the surprising
difficulty of natural yes/no questions. In Proceedings
of the 2019 Conference of the North American Chapter

9

https://github.com/Lightning-AI/litgpt
https://github.com/Lightning-AI/litgpt
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://openreview.net/forum?id=4WnqRR915j
https://openreview.net/forum?id=4WnqRR915j
https://huggingface.co/datasets/HuggingFaceTB/cosmopedia
https://huggingface.co/datasets/HuggingFaceTB/cosmopedia

Programmming Every Example: Lifting Pre-training Data Quality like Experts at Scale

of the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long and Short
Papers), pp. 2924–2936, 2019.

Clark, P., Cowhey, I., Etzioni, O., Khot, T., Sabharwal, A.,
Schoenick, C., and Tafjord, O. Think you have solved
question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., et al. Training verifiers to solve math word problems.
arXiv preprint arXiv:2110.14168, 2021.

Dao, T. FlashAttention-2: Faster attention with better paral-
lelism and work partitioning. In International Conference
on Learning Representations (ICLR), 2024.

Dou, L., Liu, Q., Zeng, G., Guo, J., Zhou, J., Lu, W., and
Lin, M. Sailor: Open language models for south-east asia.
CoRR, abs/2404.03608, 2024. doi: 10.48550/ARXIV.
2404.03608. URL https://doi.org/10.48550/
arXiv.2404.03608.

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle,
A., Letman, A., Mathur, A., Schelten, A., Yang, A., Fan,
A., et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

Engstrom, L., Feldmann, A., and Madry, A. Dsdm: Model-
aware dataset selection with datamodels. arXiv preprint
arXiv:2401.12926, 2024.

Fan, L., Wang, G., Jiang, Y., Mandlekar, A., Yang, Y., Zhu,
H., Tang, A., Huang, D.-A., Zhu, Y., and Anandkumar, A.
Minedojo: Building open-ended embodied agents with
internet-scale knowledge. Advances in Neural Informa-
tion Processing Systems, 35:18343–18362, 2022.

Fourrier, C., Habib, N., Wolf, T., and Tunstall,
L. Lighteval: A lightweight framework for llm
evaluation, 2023. URL https://github.com/
huggingface/lighteval.

Gunasekar, S., Zhang, Y., Aneja, J., Mendes, C. C. T.,
Del Giorno, A., Gopi, S., Javaheripi, M., Kauffmann,
P., de Rosa, G., Saarikivi, O., et al. Textbooks are all you
need. arXiv preprint arXiv:2306.11644, 2023.

Hendrycks, D., Burns, C., Kadavath, S., Arora, A., Basart,
S., Tang, E., Song, D., and Steinhardt, J. Measuring
mathematical problem solving with the math dataset. In
Thirty-fifth Conference on Neural Information Process-
ing Systems Datasets and Benchmarks Track (Round 2),
2021.

Hoffmann, J., Borgeaud, S., Mensch, A., Buchatskaya, E.,
Cai, T., Rutherford, E., Casas, D. d. L., Hendricks, L. A.,

Welbl, J., Clark, A., et al. Training compute-optimal
large language models. arXiv preprint arXiv:2203.15556,
2022.

Hu, S., Tu, Y., Han, X., He, C., Cui, G., Long, X., Zheng, Z.,
Fang, Y., Huang, Y., Zhao, W., et al. Minicpm: Unveiling
the potential of small language models with scalable train-
ing strategies. arXiv preprint arXiv:2404.06395, 2024.

Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford, C.,
Chaplot, D. S., Casas, D. d. l., Bressand, F., Lengyel, G.,
Lample, G., Saulnier, L., et al. Mistral 7b. arXiv preprint
arXiv:2310.06825, 2023.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B.,
Chess, B., Child, R., Gray, S., Radford, A., Wu, J., and
Amodei, D. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Kojima, T., Gu, S. S., Reid, M., Matsuo, Y., and Iwasawa,
Y. Large language models are zero-shot reasoners. Ad-
vances in neural information processing systems, 35:
22199–22213, 2022.

Koncel-Kedziorski, R., Roy, S., Amini, A., Kushman, N.,
and Hajishirzi, H. Mawps: A math word problem reposi-
tory. In Proceedings of the 2016 conference of the north
american chapter of the association for computational lin-
guistics: human language technologies, pp. 1152–1157,
2016.

Kwon, W., Li, Z., Zhuang, S., Sheng, Y., Zheng, L., Yu,
C. H., Gonzalez, J. E., Zhang, H., and Stoica, I. Efficient
memory management for large language model serving
with pagedattention. In Proceedings of the ACM SIGOPS
29th Symposium on Operating Systems Principles, 2023.

Li, J., Fang, A., Smyrnis, G., Ivgi, M., Jordan, M., Gadre, S.,
Bansal, H., Guha, E., Keh, S., Arora, K., et al. Datacomp-
lm: In search of the next generation of training sets for lan-
guage models. arXiv preprint arXiv:2406.11794, 2024.

Li, Y., Bubeck, S., Eldan, R., Del Giorno, A., Gunasekar,
S., and Lee, Y. T. Textbooks are all you need ii: phi-1.5
technical report. arXiv preprint arXiv:2309.05463, 2023.

Lin, Z., Gou, Z., Gong, Y., Liu, X., Shen, Y., Xu, R., Lin, C.,
Yang, Y., Jiao, J., Duan, N., et al. Rho-1: Not all tokens
are what you need. arXiv preprint arXiv:2404.07965,
2024.

Liu, J., Cui, L., Liu, H., Huang, D., Wang, Y., and Zhang,
Y. Logiqa: A challenge dataset for machine reading
comprehension with logical reasoning. arXiv preprint
arXiv:2007.08124, 2020.

Liu, R., Wei, J., Liu, F., Si, C., Zhang, Y., Rao, J., Zheng,
S., Peng, D., Yang, D., Zhou, D., et al. Best practices and

10

https://doi.org/10.48550/arXiv.2404.03608
https://doi.org/10.48550/arXiv.2404.03608
https://github.com/huggingface/lighteval
https://github.com/huggingface/lighteval

Programmming Every Example: Lifting Pre-training Data Quality like Experts at Scale

lessons learned on synthetic data for language models.
arXiv preprint arXiv:2404.07503, 2024a.

Liu, W., Zeng, W., He, K., Jiang, Y., and He, J. What makes
good data for alignment? a comprehensive study of auto-
matic data selection in instruction tuning. In The Twelfth
International Conference on Learning Representations,
2024b. URL https://openreview.net/forum?
id=BTKAeLqLMw.

Lu, P., Qiu, L., Chang, K.-W., Wu, Y. N., Zhu, S.-C., Ra-
jpurohit, T., Clark, P., and Kalyan, A. Dynamic prompt
learning via policy gradient for semi-structured mathemat-
ical reasoning. In International Conference on Learning
Representations (ICLR), 2023.

Luukkonen, R., Komulainen, V., Luoma, J., Eskelinen, A.,
Kanerva, J., Kupari, H.-M., Ginter, F., Laippala, V., Muen-
nighoff, N., Piktus, A., et al. Fingpt: Large generative
models for a small language. In Proceedings of the 2023
Conference on Empirical Methods in Natural Language
Processing, pp. 2710–2726, 2023.

Maini, P., Seto, S., Bai, H., Grangier, D., Zhang, Y., and
Jaitly, N. Rephrasing the web: A recipe for compute
and data-efficient language modeling. arXiv preprint
arXiv:2401.16380, 2024.

Mehta, S., Sekhavat, M. H., Cao, Q., Horton, M., Jin, Y.,
Sun, C., Mirzadeh, I., Najibi, M., Belenko, D., Zatloukal,
P., et al. Openelm: An efficient language model family
with open-source training and inference framework. arXiv
preprint arXiv:2404.14619, 2024.

Meta. Introducing meta llama 3: The most capable openly
available llm to date, 2024. URL https://ai.meta.
com/blog/meta-llama-3.

Miao, S.-Y., Liang, C.-C., and Su, K.-Y. A diverse corpus
for evaluating and developing english math word problem
solvers. In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pp. 975–984,
2020.

Mihaylov, T., Clark, P., Khot, T., and Sabharwal, A. Can
a suit of armor conduct electricity? a new dataset for
open book question answering. In Riloff, E., Chiang,
D., Hockenmaier, J., and Tsujii, J. (eds.), Proceedings of
the 2018 Conference on Empirical Methods in Natural
Language Processing, pp. 2381–2391, Brussels, Belgium,
October-November 2018. Association for Computational
Linguistics. doi: 10.18653/v1/D18-1260. URL https:
//aclanthology.org/D18-1260.

Muennighoff, N., Rush, A., Barak, B., Le Scao, T., Tazi, N.,
Piktus, A., Pyysalo, S., Wolf, T., and Raffel, C. A. Scaling
data-constrained language models. Advances in Neural
Information Processing Systems, 36:50358–50376, 2023.

Park, J. S., O’Brien, J., Cai, C. J., Morris, M. R., Liang,
P., and Bernstein, M. S. Generative agents: Interactive
simulacra of human behavior. In Proceedings of the 36th
Annual ACM Symposium on User Interface Software and
Technology, pp. 1–22, 2023.

Paster, K., Santos, M. D., Azerbayev, Z., and Ba, J. Open-
webmath: An open dataset of high-quality mathemat-
ical web text. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https:
//openreview.net/forum?id=jKHmjlpViu.

Patel, A., Bhattamishra, S., and Goyal, N. Are nlp models
really able to solve simple math word problems? In Pro-
ceedings of the 2021 Conference of the North American
Chapter of the Association for Computational Linguistics:
Human Language Technologies, pp. 2080–2094, 2021.

Penedo, G., Kydlı́ček, H., Lozhkov, A., Mitchell, M., Raffel,
C., Von Werra, L., Wolf, T., et al. The fineweb datasets:
Decanting the web for the finest text data at scale. arXiv
preprint arXiv:2406.17557, 2024a.

Penedo, G., Kydlı́ček, H., Cappelli, A., Sasko, M.,
and Wolf, T. Datatrove: large scale data pro-
cessing, 2024b. URL https://github.com/
huggingface/datatrove.

Qiu, J., Lv, H., Jin, Z., Wang, R., Ning, W., Yu, J., Zhang,
C., Chu, P., Qu, Y., Peng, R., et al. Wanjuan-cc: A safe
and high-quality open-sourced english webtext dataset.
arXiv preprint arXiv:2402.19282, 2024.

Rae, J. W., Borgeaud, S., Cai, T., Millican, K., Hoffmann,
J., Song, F., Aslanides, J., Henderson, S., Ring, R.,
Young, S., et al. Scaling language models: Methods,
analysis & insights from training gopher. arXiv preprint
arXiv:2112.11446, 2021.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21
(140):1–67, 2020.

Reid, M., Savinov, N., Teplyashin, D., Lepikhin, D., Lilli-
crap, T., Alayrac, J.-b., Soricut, R., Lazaridou, A., Firat,
O., Schrittwieser, J., et al. Gemini 1.5: Unlocking multi-
modal understanding across millions of tokens of context.
arXiv preprint arXiv:2403.05530, 2024.

Rozière, B., Gehring, J., Gloeckle, F., Sootla, S., Gat, I., Tan,
X. E., Adi, Y., Liu, J., Remez, T., Rapin, J., Kozhevnikov,
A., Evtimov, I., Bitton, J., Bhatt, M., Canton-Ferrer, C.,
Grattafiori, A., Xiong, W., Défossez, A., Copet, J., Azhar,
F., Touvron, H., Martin, L., Usunier, N., Scialom, T.,
and Synnaeve, G. Code llama: Open foundation models

11

https://openreview.net/forum?id=BTKAeLqLMw
https://openreview.net/forum?id=BTKAeLqLMw
https://ai.meta.com/blog/meta-llama-3
https://ai.meta.com/blog/meta-llama-3
https://aclanthology.org/D18-1260
https://aclanthology.org/D18-1260
https://openreview.net/forum?id=jKHmjlpViu
https://openreview.net/forum?id=jKHmjlpViu
https://github.com/huggingface/datatrove
https://github.com/huggingface/datatrove

Programmming Every Example: Lifting Pre-training Data Quality like Experts at Scale

for code. CoRR, abs/2308.12950, 2023. doi: 10.48550/
ARXIV.2308.12950. URL https://doi.org/10.
48550/arXiv.2308.12950.

Sachdeva, N., Coleman, B., Kang, W.-C., Ni, J., Hong,
L., Chi, E. H., Caverlee, J., McAuley, J., and Cheng,
D. Z. How to train data-efficient llms. arXiv preprint
arXiv:2402.09668, 2024.

Sakaguchi, K., Bras, R. L., Bhagavatula, C., and Choi, Y.
Winogrande: An adversarial winograd schema challenge
at scale. Communications of the ACM, 64(9):99–106,
2021.

Sap, M., Rashkin, H., Chen, D., LeBras, R., and Choi, Y.
Socialiqa: Commonsense reasoning about social interac-
tions. arXiv preprint arXiv:1904.09728, 2019.

Shao, Z., Wang, P., Zhu, Q., Xu, R., Song, J., Zhang, M.,
Li, Y., Wu, Y., and Guo, D. Deepseekmath: Pushing
the limits of mathematical reasoning in open language
models. arXiv preprint arXiv:2402.03300, 2024.

Smith, S., Patwary, M., Norick, B., LeGresley, P., Rajbhan-
dari, S., Casper, J., Liu, Z., Prabhumoye, S., Zerveas, G.,
Korthikanti, V., et al. Using deepspeed and megatron to
train megatron-turing nlg 530b, a large-scale generative
language model. arXiv preprint arXiv:2201.11990, 2022.

Soldaini, L., Kinney, R., Bhagia, A., Schwenk, D., Atkin-
son, D., Authur, R., Bogin, B., Chandu, K., Dumas, J.,
Elazar, Y., Hofmann, V., Jha, A., Kumar, S., Lucy, L.,
Lyu, X., Lambert, N., Magnusson, I., Morrison, J., Muen-
nighoff, N., Naik, A., Nam, C., Peters, M., Ravichander,
A., Richardson, K., Shen, Z., Strubell, E., Subramani,
N., Tafjord, O., Walsh, E., Zettlemoyer, L., Smith, N.,
Hajishirzi, H., Beltagy, I., Groeneveld, D., Dodge, J.,
and Lo, K. Dolma: an open corpus of three trillion to-
kens for language model pretraining research. In Ku,
L.-W., Martins, A., and Srikumar, V. (eds.), Proceed-
ings of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp.
15725–15788, Bangkok, Thailand, August 2024. Asso-
ciation for Computational Linguistics. URL https:
//aclanthology.org/2024.acl-long.840.

Su, J., Ahmed, M., Lu, Y., Pan, S., Bo, W., and Liu, Y.
Roformer: Enhanced transformer with rotary position
embedding. Neurocomputing, 568:127063, 2024.

Talmor, A., Herzig, J., Lourie, N., and Berant, J. Com-
monsenseQA: A question answering challenge targeting
commonsense knowledge. In Burstein, J., Doran, C., and
Solorio, T. (eds.), Proceedings of the 2019 Conference of
the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies,

Volume 1 (Long and Short Papers), pp. 4149–4158, Min-
neapolis, Minnesota, June 2019. Association for Compu-
tational Linguistics. doi: 10.18653/v1/N19-1421. URL
https://aclanthology.org/N19-1421.

Team, I. Internlm: A multilingual language model with
progressively enhanced capabilities, 2023.

Together. Redpajama: an open dataset for training large lan-
guage models, October 2023. URL https://github.
com/togethercomputer/RedPajama-Data.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,
Azhar, F., et al. Llama: Open and efficient foundation lan-
guage models. arXiv preprint arXiv:2302.13971, 2023a.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., et al. Llama 2: Open foundation and fine-
tuned chat models. arXiv preprint arXiv:2307.09288,
2023b.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi,
E., Le, Q. V., Zhou, D., et al. Chain-of-thought prompting
elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837,
2022.

Welbl, J., Liu, N. F., and Gardner, M. Crowdsourc-
ing multiple choice science questions. arXiv preprint
arXiv:1707.06209, 2017.

Wenzek, G., Lachaux, M., Conneau, A., Chaudhary, V.,
Guzmán, F., Joulin, A., and Grave, E. Ccnet: Ex-
tracting high quality monolingual datasets from web
crawl data. In Calzolari, N., Béchet, F., Blache, P.,
Choukri, K., Cieri, C., Declerck, T., Goggi, S., Isahara,
H., Maegaard, B., Mariani, J., Mazo, H., Moreno, A.,
Odijk, J., and Piperidis, S. (eds.), Proceedings of The
12th Language Resources and Evaluation Conference,
LREC 2020, Marseille, France, May 11-16, 2020, pp.
4003–4012. European Language Resources Association,
2020. URL https://aclanthology.org/2020.
lrec-1.494/.

Wettig, A., Gupta, A., Malik, S., and Chen, D. QuRating:
Selecting high-quality data for training language mod-
els. In International Conference on Machine Learning
(ICML), 2024.

Xia, M., Gao, T., Zeng, Z., and Chen, D. Sheared llama:
Accelerating language model pre-training via structured
pruning. In The Twelfth International Conference on
Learning Representations, 2024.

12

https://doi.org/10.48550/arXiv.2308.12950
https://doi.org/10.48550/arXiv.2308.12950
https://aclanthology.org/2024.acl-long.840
https://aclanthology.org/2024.acl-long.840
https://aclanthology.org/N19-1421
https://github.com/togethercomputer/RedPajama-Data
https://github.com/togethercomputer/RedPajama-Data
https://aclanthology.org/2020.lrec-1.494/
https://aclanthology.org/2020.lrec-1.494/

Programmming Every Example: Lifting Pre-training Data Quality like Experts at Scale

Xie, S. M., Santurkar, S., Ma, T., and Liang, P. S. Data
selection for language models via importance resampling.
Advances in Neural Information Processing Systems, 36:
34201–34227, 2023.

Ying, H., Zhang, S., Li, L., Zhou, Z., Shao, Y., Fei, Z.,
Ma, Y., Hong, J., Liu, K., Wang, Z., et al. Internlm-
math: Open math large language models toward verifiable
reasoning. arXiv preprint arXiv:2402.06332, 2024.

Yu, Z., Das, S., and Xiong, C. Mates: Model-aware data
selection for efficient pretraining with data influence mod-
els. arXiv preprint arXiv:2406.06046, 2024.

Yuan, A., Coenen, A., Reif, E., and Ippolito, D. Wordcraft:
story writing with large language models. In 27th Inter-
national Conference on Intelligent User Interfaces, pp.
841–852, 2022.

Yuan, W., Pang, R. Y., Cho, K., Sukhbaatar, S., Xu, J.,
and Weston, J. Self-rewarding language models. arXiv
preprint arXiv:2401.10020, 2024.

Zellers, R., Holtzman, A., Bisk, Y., Farhadi, A., and Choi,
Y. Hellaswag: Can a machine really finish your sentence?
arXiv preprint arXiv:1905.07830, 2019.

Zhang, G., Qu, S., Liu, J., Zhang, C., Lin, C., Yu, C. L., Pan,
D., Cheng, E., Liu, J., Lin, Q., et al. Map-neo: Highly
capable and transparent bilingual large language model
series. arXiv preprint arXiv:2405.19327, 2024a.

Zhang, P., Zeng, G., Wang, T., and Lu, W. Tinyllama:
An open-source small language model. arXiv preprint
arXiv:2401.02385, 2024b.

Zhao, Y., Gu, A., Varma, R., Luo, L., Huang, C.-C., Xu, M.,
Wright, L., Shojanazeri, H., Ott, M., Shleifer, S., Desmai-
son, A., Balioglu, C., Damania, P., Nguyen, B., Chauhan,
G., Hao, Y., Mathews, A., and Li, S. Pytorch fsdp: Ex-
periences on scaling fully sharded data parallel. Proc.
VLDB Endow., 16(12):3848–3860, aug 2023. ISSN 2150-
8097. doi: 10.14778/3611540.3611569. URL https:
//doi.org/10.14778/3611540.3611569.

Zheng, Y., Zhang, R., Zhang, J., Ye, Y., and Luo, Z. Lla-
mafactory: Unified efficient fine-tuning of 100+ language
models. arXiv preprint arXiv:2403.13372, 2024.

Zhuo, T. Y., Vu, M. C., Chim, J., Hu, H., Yu, W., Widyasari,
R., Yusuf, I. N. B., Zhan, H., He, J., Paul, I., et al. Big-
codebench: Benchmarking code generation with diverse
function calls and complex instructions. arXiv preprint
arXiv:2406.15877, 2024.

13

https://doi.org/10.14778/3611540.3611569
https://doi.org/10.14778/3611540.3611569

Programmming Every Example: Lifting Pre-training Data Quality like Experts at Scale

A. PROX Implementation Details
A.1. Supervised Fine-tuning Data Collection

In this section, we elaborate on the detailed prompts used to generate the SFT data for model adaptation. In principle, We
apply the same prompts for general domain corpora (including C4 (Raffel et al., 2020), RedPajama-V2 (Together, 2023),
FineWeb (Penedo et al., 2024a)) and mathematical corpus (OpenWebMath (Paster et al., 2024)). All seed data is randomly
sampled from the raw corpora.

Document-level Programming We apply two zero-shot scoring prompts to evaluate and assign a combined score to
each web document before synthesizing the (doc, program) pair. One of the prompts is the same as the one used in
FineWeb-Edu, which is a prompt to let the model decide the educational score. Additionally in PROX, we add a new format
scoring prompt, focusing on the format and structure of the document. Both prompts follow the additive style proposed by
Yuan et al. (2024). Given these prompts, the language models generate short critiques and assign a score between 0 and 5.

In FineWeb-Edu, documents are retained only if the educational score (Edu Score) is greater than 2. However, this approach
is too aggressive when attempting to preserve a larger portion of the tokens. For instance, FineWeb-Edu retains only 1.3
trillion tokens out of the original 15 trillion in the FineWeb corpus. To recall more documents, we relax the filtering criteria
by incorporating the format score as follows:

Filtering Criteria =

Edu Score ≥ 3, keep document;
Edu Score = 2 and Format Score ≥ 4, keep document;
Edu Score < 2, drop document.

(2)

Finally, we use LLAMA-3-70B-INSTRUCT to annotate 51K data, splitting 5K for validation. 2

The FineWeb-Edu prompt and our format scoring prompts are presented in Figure 8.

Chunk-level Programming We apply chunk-level programming for more fine-grained operations. We find three very
popular patterns that keep occurring in all corpus: (1) menu, navigation bars at the top of the document; (2) button, html
elements, links; (3) footers.

In general, LLMs work well given within 5 few-shot examples. But to generate these program snippets more accurately, we
apply few-shot prompting with LLAMA-3-70B-INSTRUCT for each type of noise. We merge these programs aiming to clean
different types of noises, perform some grammar checking, and make them the final data for training and validation during
the chunk-level refining stage. The annotated source comes from the same seed document used in the previous document
filtering stage, accumulating to about 57K data, of which 5K is split as validation.

After the release of LLAMA-3.1-405B-INSTRUCT, We also try to use only one prompt aiming to remove all the noises.
However, we find such practices lead to aggressive removal of the original document, often making the document less
coherent. Finally, we decide to only keep the head part and tail part of the program generated by LLAMA-3.1-405B-
INSTRUCT, which is previously mentioned in FinGPT (Luukkonen et al., 2023), and merge with the previous programs
generated by LLAMA-3-70B-INSTRUCT.

The few-shot prompts used to generate program snippets are presented in Figure 9, Figure 10 and Figure 11.

Comparison with FineWeb-Edu’s Approach Compared with the recently released FineWeb-Edu, which also uses
model-based scoring by applying a BERT model to evaluate documents, we find that our relaxed design retains more tokens
without compromising overall data quality. Specifically, FineWeb-Edu retains about 1.3 trillion tokens out of a 15 trillion
token corpus (less than 9%), while PROX curation typically keeps 23% to 28%, providing up to 3× more unique tokens for
training.

2In the earlier stage of experiments, we found that a dataset of thousands of data points (i.e., 5K) is also sufficient to equip the model
with the “programming” abilities. This generally holds true for both document-level and chunk-level programming tasks. Scaling the
dataset size could enhance the model’s robustness across various documents so we finally enlarge the pool to over 50K.

14

Programmming Every Example: Lifting Pre-training Data Quality like Experts at Scale

Edu Scoring Prompts (Penedo et al., 2024a)

Below is an extract from a web page. Evaluate whether the page has a high educational value and could be useful in an educational setting for teaching from primary school to grade school levels
using the additive 5-point scoring system described below. Points are accumulated based on the satisfaction of each criterion:

- Add 1 point if the extract provides some basic information relevant to educational topics, even if it includes some irrelevant or non-academic content like advertisements and pro-
motional material. - Add another point if the extract addresses certain elements pertinent to education but does not align closely with educational standards. It might mix educational content with
non-educational material, offering a superficial overview of potentially useful topics, or presenting information in a disorganized manner and incoherent writing style. - Award a third point if the
extract is appropriate for educational use and introduces key concepts relevant to school curricula. It is coherent though it may not be comprehensive or could include some extraneous information. It
may resemble an introductory section of a textbook or a basic tutorial that is suitable for learning but has notable limitations like treating concepts that are too complex for grade school students.
- Grant a fourth point if the extract highly relevant and beneficial for educational purposes for a level not higher than grade school, exhibiting a clear and consistent writing style. It could be similar to
a chapter from a textbook or a tutorial, offering substantial educational content, including exercises and solutions, with minimal irrelevant information, and the concepts aren’t too advanced for grade
school students. The content is coherent, focused, and valuable for structured learning.
- Bestow a fifth point if the extract is outstanding in its educational value, perfectly suited for teaching either at primary school or grade school. It follows detailed reasoning, the writing style is easy
to follow and offers profound and thorough insights into the subject matter, devoid of any non-educational or complex content.
The extract:
¡EXAMPLE¿.
After examining the extract:
- Briefly justify your total score, up to 100 words.

- Conclude with the score using the format: “Educational score: ¡total points¿”

Format Scoring Prompts

Evaluate the provided web content extraction sample. Points are accumulated based on the satisfaction of each criterion:

0. Start with 0 points.
1. Add 1 point if the extract contains some readable content, even if it includes a significant amount of HTML tags, navigation elements, or other web page artifacts. The main content should be
identifiable, albeit mixed with noise.
2. Add another point if the extract shows signs of basic cleaning. Most obvious HTML tags have been removed, though some may remain. The text structure begins to emerge, but non-content
elements (e.g., footer links, button text) may still be present. The writing style may be disjointed due to remnants of page structure.
3. Award a third point if the extract is largely cleaned of HTML and most non-content elements. The main body of the content is intact and coherent. Some extraneous information (e.g., isolated
URLs, timestamps, image alt text) may persist, but doesn’t significantly impede readability. The extract resembles a rough draft of the original content.
4. Grant a fourth point if the extract is highly refined, with clear paragraph structure and formatting. Almost all HTML tags and non-content elements have been eliminated. Minimal noise remains.
The content flows well and reads like a near-final draft, with consistent formatting and style.
5. Bestow a fifth point if the extraction is flawless. The content is entirely clean, preserving the original structure (paragraphs, headings, lists) without any HTML tags or web page elements. No
extraneous information is present. The extract reads as if it were a professionally edited document, perfectly capturing the original content.
The extract:
¡EXAMPLE¿.
After examining the extract:
- Briefly justify your total score, up to 100 words.

- Conclude with the score using the format: ”Extraction Quality Score: ¡total points¿”

Figure 8: Edu scoring prompts used in FineWeb (Penedo et al., 2024a) and newly proposed “format scoring” prompts for
PROX.

Moreover, we conducted a preliminary study by training 0.7 billion parameter models on these data. We found that models
trained on our curated data achieved similar downstream performance, as shown in Table 7. Therefore, we believe our
current strategy is more suitable for large-scale pre-training, as it is capable of retaining more tokens while maintaining very
high data quality.

Table 7: Comparing FineWeb-Edu with our strategy on TLM-S.

Methods Kept Ratio ARC-C ARC-E CSQA HellaSwag MMLU OBQA PiQA SIQA WinoG SciQ AVG #Win

FineWeb-Edu 8.6% 30.3 58.7 29.0 42.0 30.4 31.8 67.7 38.1 50.4 73.3 45.2 5/10
FineWeb-PROX 28.0% 27.7 55.7 30.4 44.2 29.5 31.0 68.8 39.3 52.2 72.8 45.2 5/10

15

Programmming Every Example: Lifting Pre-training Data Quality like Experts at Scale

Navigation Removal Prompts

You’re tasked with generating Python programs to clean web text strings by removing navigation bars. The web text will be presented with line numbers starting from `[000]`. Your task is to use
the following pre-defined functions to clean the text:

```python

def untouch_doc():
"""leave the clean doc untouched, for tagging clean and high quality doc."""

def remove_lines(start: int, end: int):
"""remove noisy lines from `start` until `end`, including `end`."""

```

Your goal is to identify navigation bars or menu items at the beginning of the text and remove them using the `remove_lines()` function. If the text doesn’t contain a navigation bar or menu
items, use the `untouch_doc()` function to indicate that no cleaning is necessary. If the line contains other text other than navigation, also call `untouch_doc` to escape overkilling.
Here are some examples to guide you:
Example 1:

[doc]
[000] Home | Products | About Us | Contact
[001] Welcome to our website
[002] Here's our main content...
[/doc]
Program:
```python
remove_lines(start=0, end=0)
```

Example 2:

[doc]
341 US 479 Hoffman v. United States
341 US 479 Hoffman v. United States 341 U.S. 479
95 L.Ed. 1118
HOFFMANv.UNITED STATES.
Mr. William A. Gray, Philadelphia, Pa., for petitioner.
Mr. John F. Davis, Washington, D.C., for respondent.
......
[/doc]
Program:
```python
untouch_doc()
```

Example 3:

[doc]
[000]Police Search Tunbridge Wells House Over Human Remains Tip Off
[001]Posted: 16/04/2012 10:44 Updated: 16/04/2012 10:44 reddit stumble
[002]Crime, Body Buried In House, Buried Body, Buried Remains, Tip-Off, Uk News, Uk Police,
[003]Detectives are searching the gardens of a house following information that human remains may be
buried there.
[/doc]
Program:
```python
untouch_doc()
```

Example 4:

[doc]
[000]Home > Bollywood News > Bollywood Stars clash on Indian TV Bollywood Stars clash on Indian TV
[001]By Lekha Madhavan09:47 pm Betting big on the festive season, general entertainment channels (GECs)
are launching celebrity-driven shows, but media buyers are concerned about the audience split that is set
to happen.
[002]The fourth season of Bigg Boss on Colors is almost certain to clash with the fourth season of Kaun
Banega Crorepati (KBC) on Sony Entertainment Television (SET) in the second week of October.
[003]Another big property, Master Chef, to be hosted by Akshay Kumar, on STAR Plus, is also expected to go
on air in October. However, the channel is yet to disclose the launch date.
[004]Big-budget shows like these are often loss-making propositions for channels, as the operating cost is
very high and advertisement revenues do not suffice to cover the cost.
[005]Source: IBNS
[/doc]
Program:
```python
untouch_doc()
```

For each given web text, analyze the content and determine if there’s a navigation bar or menu items at the beginning. If present, use `remove_lines()` or `normalize()` to remove them.
If not, use `untouch_doc()` to indicate that no cleaning is needed.
Example: ¡EXAMPLE¿.
After examining the web text: - Briefly describe if the web extract contains navigation bar at the begining (10 lines).
- You must not mistakenly decide that title of the page is navigation bar and remove it.
- When the whole line is navigation bar, call `remove_lines`; if the line contains other information, call `normalize` to remove part of it.

- Give your program using the same format: ```python[your code]```

Figure 9: Few-shot navigation bar removal prompts.

16

Programmming Every Example: Lifting Pre-training Data Quality like Experts at Scale

URL Removal Prompts

You’re tasked with generating Python programs to clean web text strings by removing http lines. The web text will be presented with line numbers starting from `[000]`. Your task is to use the
following pre-defined functions to clean the text:

```python

def untouch_doc():
"""leave the clean doc untouched, for tagging clean and high quality doc."""

def remove_lines(start: int, end: int):
"""remove noisy lines from `start` until `end`, including `end`."""

def normalize(source_str: str, target_str: str=""):
"""turn noisy strings into normalized strings."""

```

Your goal is to identify http links from the text and remove them using the `remove_lines()` or `normalize()` function. If the text doesn’t contain http lines, use the `untouch_doc()`
function to indicate that no cleaning is necessary.
Here are some examples to guide you:
Example 1:

[doc]
[013] http://groups.google.com/group/toowoombalinuxLast
[014] Breaking News: Major Event Unfolds
[015] http://code.google.com/p/inxi/
[/doc]
Program:
```python
# the whole line-[013] is http, so remove the line-[013]
remove_lines(start=13, end=13)
# the whole line-[015] is http, so remove the line-[015]
remove_lines(start=15, end=15)
```

Example 2:

[doc]
[000] The Impact of Climate Change on Global Ecosystems
[001] By Dr. Jane Smith
[002] Climate change continues to be a pressing issue...
[/doc]
Program:
```python
untouch_doc()
```

Example 3:

[doc]
[021]Bow-wow
[022]http://groups.google.com/group/toowoombalinuxLast edited by Puppyt on Mon 06 Jun 2011, 00:23; edited
1 time in total
[023]I would like to see something like Jitsi
[024]http://www.jitsi.org/. Plus some others incorporated into a puppy distro.
[/doc]
Program:
```python
# the http link in line 22 and line 24 comes with other text, so use normalize to ONLY remove the link
without touching text.
normalize(source_str="http://groups.google.com/group/toowoombalinuxLast", target_str="")
normalize(source_str="http://www.jitsi.org/.", target_str="")
```

For each given web text, analyze the content and determine if there’s a navigation bar or menu items at the beginning. If present, use `remove_lines()` or `normalize()` to remove them.
If not, use `untouch_doc()` to indicate that no cleaning is needed.
Example: ¡EXAMPLE¿.
After examining the web text: - do not remove text together with http.
- Briefly describe if the web extract contains http links; and make sure remove them will not influence the main content.
- Program only contain sequences of function callings and comments, no other codes.
- note line number starts with 0. make accurate annotations about line number. put the exact int line number of the given line. do not add 1 or minus 1.
- Give your program using the same format: ```python[your code]```

Figure 10: Few-shot URL removal prompts.

17

Programmming Every Example: Lifting Pre-training Data Quality like Experts at Scale

Footer Removal Prompts

You’re tasked with generating Python programs to clean web text strings by removing footer sections, references. The web text will be presented with line numbers starting from `[000]`. Your task
is to use the following pre-defined functions to clean the text:

```python

def untouch_doc():
"""leave the clean doc untouched, for tagging clean and high quality doc."""

def remove_lines(start: int, end: int):
"""remove noisy lines from `start` until `end`, including `end`."""

def normalize(source_str: str, target_str: str=""):
"""turn noisy strings into normalized strings."""

```

Your goal is to identify footer sections from the text and remove them using the `remove_lines()` function. Footers and references typically appear at the end of the text and may contain
information such as copyright notices, contact details, or navigation links. If the text doesn’t contain a footer section or any references, use the `untouch_doc()` function to indicate that no
cleaning is necessary.
Here are some examples to guide you:
Example 1:

[doc]
[013] In conclusion, the study demonstrates significant findings.
[014] © 2023 Research Institute. All rights reserved.
[015] Contact: info@research-institute.com
[016] Follow us on social media: @ResearchInst
[/doc]
Program:
```python
# Remove the footer section starting from line 14
remove_lines(start=14, end=16)
```

Example 2:

[doc]
[000] The Impact of Climate Change on Global Ecosystems
[001] By Dr. Jane Smith
[002] Climate change continues to be a pressing issue...
[003] Further research is needed to fully understand its implications.
[/doc]
Program:
```python
untouch_doc()
```

Example 3:

[doc]
[020] Thank you for reading our newsletter.
[021] Stay informed with our latest updates!
[022] ---
[023] Unsubscribe | Privacy Policy | Terms of Service
[024] NewsletterCo, 123 Main St, Anytown, USA
[/doc]
Program:
```python
# Remove the footer section starting from the divider
remove_lines(start=22, end=24)
```

For each given web text, analyze the content and determine if there is a footer section or reference. If present, use `remove_lines()` to remove it. If not, use `untouch_doc()` to indicate
that no cleaning is needed.
Example: ¡EXAMPLE¿.
After examining the web text:
- Briefly describe if the web extract contains a footer section or references; ensure that removing it will not influence the main content. If not, simply call `untouch_doc`.
- The program should only contain sequences of function calls and comments, no other code.
- Note that line numbers start with 0. Make accurate annotations about line numbers. Put the exact int line number of the given line. Do not add 1 or subtract 1.

- Give your program using the same format: ```python[your code]```

Figure 11: Few-shot footer removal prompts.

18

Programmming Every Example: Lifting Pre-training Data Quality like Experts at Scale

A.2. Supervised Fine-tuning Details

Training Parameters We use llama-factory (Zheng et al., 2024) as our main code base for the Adaptation Stage. We
apply full parameter supervised fine-tuning on our base models: we train on the whole seed dataset for 3 to 5 epochs, with
batch size as 64, and cosine learning rate schedular (lr from 1e-5→ 1e-6). Also, we find that the base model converges quite
fast on these tasks, thus we do not apply further tuning over hyper-parameters, and keep the same training configurations for
all the adaptation tasks.

A.3. Evaluation Metrics for PROX Refining Tasks

Document-level Refining Task The document filtering task is indeed equal to a binary classification problem, where
documents are classified as either to be kept (1) or dropped (0). We evaluate the performance using the F1 score, calculated
as follows:

F1 = 2 · Precision · Recall
Precision + Recall

(3)

where:

Precision =
TP

TP + FP
, Recall =

TP
TP + FN

(4)

The F1 score ranges from 0 to 1 and we assume a higher F1 score indicates better classification performance.

Chunk-level Refining Task This task actually contains two parts: line removal and string normalization. However, we
find it rather hard to evaluate the normalization task, so we use the line removal accuracy to reflect the refining performance.
We propose a line-wise F1 score metric:

The F1 score is computed by comparing the predicted noisy lines with the labeled noisy lines. First, we extract the noisy line
indexes from both the prediction and the label. Then, we calculate the overlap between these two sets. The true positives
(TP) are the number of lines in this overlap. False positives (FP) are the predicted noisy lines that are not in the labeled set,
and false negatives (FN) are the labeled noisy lines that are not in the predicted set. The calculation is actually simple:

TP (True Positives) = |Predicted Noisy Lines ∩ Actual Noisy Lines| (5)

FP (False Positives) = |Predicted Noisy Lines \ Actual Noisy Lines| (6)

FN (False Negatives) = |Actual Noisy Lines \ Predicted Noisy Lines| (7)

Then we use same calculation of F1 score mentioned before, i.e., F1 = 2·TP
2·TP+FP+FN .

19

Programmming Every Example: Lifting Pre-training Data Quality like Experts at Scale

A.4. PROX Inference at scale

Thanks to the Datatrove project (Penedo et al., 2024b), we are able to efficiently split, and load the whole corpus to each
worker (which normally equals the number of GPUs since small models do not require tensor parallelism). We use the
vllm (Kwon et al., 2023) to perform large-scale inference.

For chunk-wise programming, we will split the original document into several chunks, controlling the tokens of each chunk
less than the context window. In practice, we normally replace the token count process with a word count process to save
time and control the window size as 1, 500. The general algorithm is implemented as below:

Algorithm 1 Document Chunk Splitting Algorithm

Require: Document D, context window size W
Ensure: Set of chunks C

1: C ← ∅, c← ∅
2: for each line l in D do
3: if TokenCount(c+ l) ≤W then
4: c← c+ l ▷ Add line to current chunk
5: else
6: if c ̸= ∅ then
7: C ← C ∪ {c} ▷ Save current chunk
8: end if
9: if TokenCount(l) ≤W then

10: c← l ▷ Start new chunk
11: else
12: C ← C ∪ {FlagAsSkipped(l)} ▷ Flag long line
13: c← ∅
14: end if
15: end if
16: end for
17: if c ̸= ∅ then
18: C ← C ∪ {c} ▷ Add the final chunk
19: end if
20: return C

20

Programmming Every Example: Lifting Pre-training Data Quality like Experts at Scale

B. Pre-training Details

B.1. Training Infrastructure

Code Base Thanks to LitGPT (AI, 2023), and TinyLlama (Zhang et al., 2024b), we are able to flexibly train all our base
models. We inherit several fused kernels from the TinyLlaMA, which is installed from the FlashAttention (Dao, 2024)
including fused rotary positional embedding (RoPE) (Su et al., 2024), layer normalization, and cross-entropy loss to help
saving memory. We mainly apply FSDP strategy (Zhao et al., 2023) to enable training larger scale models on multiple nodes.

B.2. Pre-training Corpora

Due to computing constraints and for fair comparison purposes, we cannot exhaustively train over the whole corpora. Thus,
we apply random sampling for some of the pre-training corpora and make them as our pre-training data pools.

• For RedPajama-V2, We randomly download 70 file shards, obtaining a total data pool consisting about 500B tokens,
we evenly separate it into 8 dumps, with each containing about 62.5B tokens; due to computing constraints, we use only
1 dump for verifying effectiveness (Section 3.2) and use 2 dumps for scaling the training to 50B tokens (Section 3.3);

• For C4, we download the whole dataset, which contains about 198B tokens;

• For FineWeb, we download the official 350B sample; 3

• For OpenWebMath, we download the whole dataset.

We report the corpora details applied in each experiment in Table 8.

Table 8: The detailed breakdown for pre-training corpora in all experiments.

Section Experiments Source Data Description Corpora Size (B) Train Tokens (B) Epoch

Section 3.2 Table 2, Figure 4 RedPajama-V2

raw data size 62.5

26.2

0.42
after rule-based filtering 31.5 0.83
after PROX-D 19.0 1.38
after PROX-D+C 16.0 1.64

Section 3.2 Table 3 C4
random -

26.2
-

after PROX-D 41.5 (GPT-NeoX) 0.63
other baselines - -

Section 3.3 Figure 5 RedPajama-V2

raw data size 62.5

26.2

0.42
after PROX-D+C (using PROX-xs) 14.5 1.80
after PROX-D+C (using PROX-s) 16.0 1.64
after PROX-D+C (using PROX-m) 18.0 1.46

Section 3.3 Figure 6

C4
raw data size 198.0

52.4

0.53
after PROX-D+C (using PROX-xs) 44.5 1.18

RedPajama-V2
raw data size 123.5 0.42
after PROX-D+C (using PROX-xs) 29 1.81

FineWeb
raw data size 79.0 0.66
after PROX-D+C (using PROX-xs) 18.0 2.91

Section 3.4 Table 5, 1.1B model OpenWebMath

raw data size 15.0

15.7

1.05
after rule-based filtering 6.5 2.40

after PROX-D 5.5 2.85
after PROX-D+C 4.7 3.49

Section 3.4 Table 5, 7B model OpenWebMath
raw data size 15.0

10.5
0.70

after PROX-D 5.5 1.91
after PROX-D+C 4.7 2.23

3https://huggingface.co/datasets/HuggingFaceFW/fineweb/tree/main/sample/350BT

21

https://huggingface.co/datasets/HuggingFaceFW/fineweb/tree/main/sample/350BT

Programmming Every Example: Lifting Pre-training Data Quality like Experts at Scale

B.3. Model Configuration and Training Parameters

Table 9: The details of the pre-training experiments’ model architecture.

Model Hidden Size Intermediate Size Context Len Heads Layers Vocab Size # Params (w/o embed)

Training From Scratch

TLM-XS 1,280 2,048 2,048 16 24 32,000 354,284,800 (313,324,800)
TLM-S 1,536 4,864 2,048 24 24 32,000 758,982,144 (709,830,144)
TLM-M 2,048 8,192 2,048 32 24 32,000 1,741,785,088 (1,676,249,088)

PYTHIA-410M 1,024 4,096 1,024 16 24 50,304 405,334,016 (353,822,720)
PYTHIA-1B 2,048 8,192 1,024 8 16 50,304 1,011,781,632 (908,759,040)

Continual Pre-training

TINYLLAMA-1.1B 2,048 5,632 2,048 32 22 32,000 1,100,048,384 (1,034,512,384)
LLAMA-2-7B 4,096 11,008 4,096 32 32 32,000 6,738,415,616 (6,607,343,616)
CODELLAMA-7B 4,096 11,008 4,096 32 32 32,016 6,738,546,688 (6,607,409,152)
MISTRAL-7B 4,096 14,336 4,096 32/8 (GQA) 32 32,000 7,241,732,096 (7,110,660,096)

Table 10: Training hyper-parameters of all base models.

Model Context
Length Batch Size Max Steps Warmup

Steps
Weight
Decay Optimizer LR

Scheular LR

Training from Scratch

TLM-XS 1,024 2,048 12,500 500 0.1 AdamW cosine 5e-4→ 5e-5
TLM-S 1,024 2,048 12,500 500 0.1 AdamW cosine 5e-4→ 5e-6
TLM-M 1,024 2,048 12,500/2,5000 500 0.1 AdamW cosine 3e-4→ 3e-5

PYTHIA-410M 512 1,024 50,200 2,000 0.1 AdamW WSD 1e-3→ 6.25e-5
PYTHIA-1B 512 1,024 50,200 2,000 0.1 AdamW WSD 1e-3→ 6.25e-5

Continual Pre-training

TINYLLAMA-1.1B 2,048 1,024 7,500 0 0.1 AdamW cosine 8e-5→ 8e-6
LLAMA-2-7B 4096 256 15,000 (early stop at 10,000) 0 0.1 AdamW cosine 8e-5→ 8e-6
CODELLAMA-7B 4096 1024 3,750 (early stop at 2,500) 0 0.1 AdamW cosine 3e-4→ 3e-5
MISTRAL-7B 4,096 256 15,000 (early stop at 10,000) 0 0.1 AdamW cosine 2e-5→ 2e-6

Base Model Selection Our pre-training experiments are conducted using various sizes of decoder-only language models.

1. To verify different stages’ effectiveness of PROX, we employ a 750M sized model sharing LLAMA-2 architecture (Tou-
vron et al., 2023b), denoted as TLM-S, used for both pre-training from scratch and refining. We also compare PROX with
data selection methods using PYTHIA-410M/1B’s architecture (Biderman et al., 2023), as those employed in MATES (Yu
et al., 2024).

2. For further evaluation of PROX using different refining and base model sizes, we scale the model sizes from 350M (0.5×
smaller, denoted as TLM-XS) and 1.7B (2× larger, denoted as TLM-M), all based on the LLAMA-2 architecture.

3. For domain-specific continual pre-training, we select TINYLLAMA-1.1B (Zhang et al., 2024b), LLAMA-2 (Touvron
et al., 2023b), CODELLAMA (Rozière et al., 2023) and MISTRAL-7B (Jiang et al., 2023) as representative base models
for their adequate training and solid performance.

Model Architecture The models we used in general and continual pre-training are presented at Table 9 with detailed
architecture configuration.

Training Hyperparameter Choice We primarily use a cosine learning rate scheduler and follow established settings used
in Zhang et al. (2024b) and Lin et al. (2024). The default configurations for each experiment can be found below and we
elaborate on full details in Table 10.

22

Programmming Every Example: Lifting Pre-training Data Quality like Experts at Scale

1. For general pre-training experiments, we set the learning rate to 5e-4 for TLM-XS and TLM-S, 3e-4 for TLM-M; the
maximum sequence lengths are uniformly set to 2048, and the global batch size is set to 2M tokens.

2. Additionally, we align all our hyper-parameters with those used in MATES (Yu et al., 2024) to facilitate a direct
comparison with their existing data selection methods, as previously shown in Table 3. In this case, we switch to the
warmup-stable-decay (WSD) learning rate scheduler (Hu et al., 2024), as implemented in MATES. For a fair comparison
with baselines implemented in MATES, we apply the exact same WSD Schedular (Hu et al., 2024):

lr(t) =

t
W · η, if t < W

η, if W ≤ t < S

0.54·(t−S)/D · η, if S ≤ t < S +D

(8)

where W equals to 2000, S equals to 50000, D equals to 200.

3. For continual pre-training experiments, we set different hyperparameters for different base models, as shown in Table 10.
We apply an early-stop mechanism mentioned in INTERNLM2-MATH (Ying et al., 2024) for 7B model experiments. We
mainly refer to these settings to the setup reported in Rho-1 (Lin et al., 2024) and LLEMMA (Azerbayev et al., 2024). We
do not use warmup in continual pre-training experiments.

23

Programmming Every Example: Lifting Pre-training Data Quality like Experts at Scale

C. PROX Baseline Selection
To ensure a fair comparison w.r.t. training cost, we keep most of the training hyperparameters, such as training steps and

batch size, consistent across baselines, with only the data refining and selection pipelines differing. We compare PROX to a
series of baselines:

1. In § 3.2, to verify PROX’s effectiveness, we first compare with PROX with regular pre-training over the raw
RedPajama-V2 data. We also introduce heuristic baselines used to curate the FineWeb corpora, which is the com-
bination of three filtering strategies from C4 (Raffel et al., 2020), Gopher (Rae et al., 2021), and newly crafted rules (as
FineWeb rules). We also reproduce the fasttext classifier filtering which is reported as the strongest baseline in DCLM (Li
et al., 2024) on our own corpus. Apart from rule-based baselines, we also introduce existing data selection tech-
niques proposed in previous works, including (1) importance resampling: DSIR (Xie et al., 2023); (2) model-based
selection: DsDM (Engstrom et al., 2024), MATES (Yu et al., 2024), and QuRating (Wettig et al., 2024).

2. In § 3.3, to test PROX on different model sizes and training corpora, we scale the TLM-M’s training tokens to 50B over
RedPajama-V2, C4, and FineWeb. To show PROX efficiency, we then directly compare with models covering a variety
of pre-training approaches including (1) large-scale pre-training: TINYLLAMA-1.1B (Zhang et al., 2024b) trained on
3T tokens; (2) model pruning from existing models: (SHEADLLAMA (Xia et al., 2024) pruned from LLAMA-2 and
trained on extra 50B tokens); (3) LLM synthesis (INSTRUCTIONLM-1.3B (Cheng et al., 2024) trained on MISTRAL-7B
generated data and COSMO-1.8B (Ben Allal et al., 2024) trained on MIXTRAL-8x7B generated data).

3. In § 3.4’s specific domain continual pre-training, apart from standard continual pre-training on TINYLLAMA-1.1B,
LLAMA-2-7B, CODELLAMA-7B, and MISTRAL-7B, we additionally introduce with well-known and strong baselines
trained on public (or partially public) data, including RHO-1 (Lin et al., 2024), INTERNLM2-MATH (Ying et al., 2024),
LLEMMA (Azerbayev et al., 2024), and an internal checkpoint reported in DEEPSEEK-MATH (Shao et al., 2024).

24

Programmming Every Example: Lifting Pre-training Data Quality like Experts at Scale

D. Downstream Tasks Evaluation

D.1. General Pre-training Evaluation

Lighteval Configurations We mainly borrow the evaluation benchmarks from FineWeb’s nine selected “early signal”
tasks (Penedo et al., 2024a), and use the implementation of lighteval (Fourrier et al., 2023) to test all our base models. We
also introduce SciQ (Welbl et al., 2017) which is widely used in previous works and proved a good testbed (Mehta et al.,
2024; Wettig et al., 2024). By default, we report the normalized zero-shot accuracy. All nine benchmarks are listed as below:

• ARC (Clark et al., 2018): including ARC-Easy (ARC-E) and ARC-Challenge (ARC-C)

• CommonSense QA (Talmor et al., 2019) (CSQA)

• HellaSwag (Zellers et al., 2019)

• MMLU (Hendrycks et al., 2021)

• OpenBook QA (Mihaylov et al., 2018) (OBQA)

• PIQA (Bisk et al., 2020)

• SocialIQA (Sap et al., 2019) (SIQA)

• WinoGrande (Sakaguchi et al., 2021) (WinoG)

• SciQ (Welbl et al., 2017)

We use the same configuration used in FineWeb’s, which randomly picks 1, 000 samples for each dataset (for MMLU,
it selects 1, 000 samples for each of the 57 subsets), and reports the normalized accuracy. This average performance is
calculated over the nine benchmarks, where ARC-C and ARC-E are considered as two separate benchmarks, and MMLU
is treated as a single benchmark. This approach differs slightly from the aggregation score calculation in FineWeb, as we
believe MMLU’s performance is relatively unstable, and we aim to give equal weight to all benchmarks, preventing MMLU
from becoming a dominant factor. For the original lighteval scores, please refer to the §E.1, where we include a dynamic
result curve that clearly illustrates the fluctuations in each benchmark.

We choose to present zero-shot evaluation mainly following settings used in all FineWeb’s ablation experiments (Penedo
et al., 2024a). We find the FineWeb evaluation maintains a very stable performance curve when training tokens gradually
accumulate. Also, it is very time-efficient for fast evaluation regarding our extensive pre-training experiments(20+ final
runs, with hundreds of intermediate checkpoints). We also present few-shot evaluation results in Table 11. Also, we find
that not all benchmarks show better performance given few-shot prompts. For example, we do not observe a very clear
performance boost on HellaSwag, MMLU, PIQA, and WinoGrande. Similar observation can also be noticed in recent
works (Mehta et al., 2024; Muennighoff et al., 2023), where 0-shot Hellaswag and 0-shot WinoGrande show very close
performances with 5-shot ones.

Based on these findings and considerations, we present zero-shot evaluation results in Table 2, Figure 4 and use it as our
default evaluation metrics.

LM-Eval Harness Configurations We also include the lm-evel-harness (Biderman et al., 2024) for zero-shot and few-shot
performance, for fair comparison with different data selection methods including DSIR (Xie et al., 2023), DsDm (Engstrom
et al., 2024), Qurating (Wettig et al., 2024) MATES (Yu et al., 2024). Similar to lighteval configuration, we include:

• ARC: including ARC-E and ARC-C

• HellaSwag

• LogiQA (Liu et al., 2020)

25

Programmming Every Example: Lifting Pre-training Data Quality like Experts at Scale

• OpenBook QA (OBQA)

• PIQA

• WinoGrande (WinoG)

• SciQ

We exclude the BoolQ (Clark et al., 2019) tasks from MATES (Yu et al., 2024), leaving eight tasks in total. This decision
was made because we observed that the BoolQ benchmark performance exhibited severe fluctuations and showed a notable
declining trend in the early stages. Therefore, we decided to exclude it from our evaluation set. Such a similar trend is also
observed earlier in the OpenELM work (Mehta et al., 2024). We report both zero-shot and two-shot performance. If the
metrics include normalized accuracy, we use that measure; otherwise, we use accuracy.

D.2. Continual Pre-training Evaluation

We evaluate all benchmarks implemented in the math-eval-harness repository,4 including:

• Math (MATH) (Hendrycks et al., 2021)

• GSM8K (Cobbe et al., 2021)

• SVAMP (Patel et al., 2021)

• ASDiv (Miao et al., 2020)

• MAWPS (Koncel-Kedziorski et al., 2016)

• MathQA (MQA) (Amini et al., 2019)

• TableMWP (TAB) (Lu et al., 2023)

• SAT MATH (Azerbayev et al., 2024)

We use few-shot CoT prompting (Wei et al., 2022) when evaluating these tasks, and report the accuracy of each task.

E. Full Evaluation Results

E.1. Detailed Performance on 10 Benchmarks in Sec 3.2

We report full evaluation results of checkpoints saved at different training steps in Section 3.2. We present the results for
0.7B models trained on data curated by different methods in Table 12, including models trained on raw data, rule-based
filtered data, fasttext-filtered data, and data curated by PROX.

4https://github.com/ZubinGou/math-evaluation-harness

26

https://github.com/ZubinGou/math-evaluation-harness

Programmming Every Example: Lifting Pre-training Data Quality like Experts at Scale

Table 11: Few-shot performance on 10 selected tasks. All models use the same TLM-S architecture and are trained
on RedPajama-V2. The doc-level (PROX-D) and chunk-level (PROX-C) refining are done by fine-tuning the raw data
pre-trained model as a refining model same as Table 2.

Method ARC-C ARC-E CSQA HellaS MMLU OBQA PIQA SIQA WinoG SciQ AVG

Raw 25.5 50.3 33.2 39.9 27.8 29.2 67.8 38.7 52.4 71.5 43.6
Rule-based 26.2 50.9 34.1 41.8 27.8 29.2 66.8 40.5 52 72.8 44.2
PROX-D 29.1 55.7 35.6 41.8 29.4 29.2 66.8 38.3 51.3 77 45.4
PROX-D+C 27.2 59.9 38.3 42.8 29.7 31.4 67.1 40.3 50.2 75.8 46.3

27

Programmming Every Example: Lifting Pre-training Data Quality like Experts at Scale

Table 12: Full evaluation results on TLM-S.

Train
Steps ARC-C ARC-E CSQA HellaSwag MMLU OBQA PiQA SIQA WinoG SciQ AVG

Raw Data

2500 22.1 39.0 27.6 31.6 25.9 26.6 61.2 37.3 48.9 59.1 37.9
5000 24.4 41.2 28.8 34.8 26.7 27.0 64.9 39.3 50.4 61.9 39.9
7500 26.5 43.9 29.5 37.2 27.2 29.0 64.8 38.7 50.8 68.2 41.6
10000 25.8 43.5 29.1 38.8 27.4 29.8 66.9 39.0 51.2 66.2 41.8
12500 26.1 44.3 29.7 39.1 27.3 29.2 66.9 39.0 52.0 67.4 42.1

Gopher

2500 22.3 39.4 26.6 31.3 25.6 27.0 61.1 38.9 51.3 58.6 38.2
5000 25.1 41.4 29.8 34.3 26.4 27.2 64.5 39.6 52.1 62.9 40.3
7500 26.5 43.0 30.5 38.5 27.2 28.8 65.7 38.2 53.7 66.4 41.8
10000 26.2 44.2 31.8 39.2 27.5 29.4 66.6 38.9 51.3 68.2 42.3
12500 25.7 44.0 31.3 40.2 27.3 29.0 66.3 39.0 51.2 68.9 42.3

C4

2500 22.6 40.6 28.8 31.3 26.2 27.4 61.7 39.3 51.2 57.1 38.6
5000 22.9 41.6 29.3 36.0 26.8 27.6 64.7 40.2 50.9 63.6 40.4
7500 24.2 44.2 29.5 39.2 27.2 28.4 66.2 40.9 51.6 63.8 41.5
10000 24.6 44.8 30.4 39.5 27.0 29.4 68.7 40.9 51.7 63.9 42.1
12500 25.0 46.0 31.0 40.5 27.1 29.2 68.5 40.5 51.7 66.6 42.6

FineWeb

2500 23.2 39.4 27.2 31.8 25.6 26.2 62.6 39.0 51.4 57.1 38.3
5000 24.2 42.3 29.8 36.2 27.0 28.4 64.3 38.9 51.4 61.4 40.4
7500 24.4 44.1 30.4 37.8 27.2 28.2 66.1 39.5 50.8 66.2 41.5
10000 23.6 46.6 32.0 39.6 27.0 27.8 66.3 39.2 53.1 70.5 42.6
12500 25.2 46.8 32.6 39.6 27.2 29.0 66.5 39.4 52.4 69.2 42.8

Gopher + C4 + FineWeb

2500 23.6 39.3 27.6 32.1 25.8 26.0 61.7 39.8 50.9 55.4 38.2
5000 23.9 40.9 29.0 36.2 26.9 26.8 65.3 39.3 52.7 62.4 40.3
7500 25.6 42.2 30.7 39.7 27.0 28.4 66.0 40.2 51.8 60.9 41.2
10000 25.8 43.3 30.8 41.4 27.5 29.8 66.9 39.5 51.8 63.1 42.0
12500 25.0 43.9 30.0 41.9 27.5 31.0 67.0 39.9 51.9 65.3 42.3

PROX-D

2500 25.6 43.2 27.7 32.9 27.2 27.0 61.3 39.4 50.6 63.0 39.8
5000 25.4 46.2 28.4 35.7 28.1 28.8 64.7 39.3 53.3 64.2 41.4
7500 26.9 49.2 29.1 39.2 28.6 30.8 65.4 38.8 51.2 71.7 43.1
10000 26.7 48.2 30.5 39.9 28.6 28.6 66.2 39.7 51.9 71.2 43.2
12500 26.6 49.7 30.1 40.5 29.4 30.4 66.3 39.0 51.2 71.6 43.5

PROX-D+C

2500 24.9 43.4 27.3 32.1 26.9 28.2 60.9 38.8 51.2 60.8 39.5
5000 24.9 49.6 28.8 36.8 27.9 30.6 64.7 38.8 51.1 66.9 42.0
7500 25.5 51.2 30.8 38.8 28.4 31.2 67.3 40.2 50.3 71.7 43.5
10000 26.2 51.7 30.8 39.9 29.0 32.6 68.6 39.7 51.7 73.7 44.4
12500 26.4 51.9 30.9 42.4 29.4 31.6 67.9 40.0 52.2 73.5 44.6

28

Programmming Every Example: Lifting Pre-training Data Quality like Experts at Scale

E.2. Detailed Performance on 8 Benchmarks used in Data Selection Experiments

The full benchmark performance used in data-selection method comparison experiments is presented in Table 13.

Table 13: Detailed evaluation results for different data selection methods.

Method ARC-C ARC-E HellaSwag LogiQA OBQA PIQA WinoGrande SciQ AVG

PYTHIA-410M 0-shot

Random 25.6 40.2 39.7 24.7 29.4 67.1 50.6 64.1 42.7
DSIR 23.8 39.9 39.6 27.0 28.4 66.8 51.5 63.1 42.5
DsDm 24.7 41.7 40.3 27.5 29 68.1 50.1 65.4 43.4

QuRating 25.4 42.0 40.7 25.3 30.2 67.5 52.1 64.8 43.5
MATES 25.0 41.8 41.0 25.7 30.8 68.7 52.7 66.0 44.0
PROX 27.2 48.9 43.1 26.9 31.8 68.4 54.1 69.5 46.2

PYTHIA-410M 2-shot

Random 25.3 42.6 39.9 24.1 28.6 66.9 52.2 70.6 43.8
DSIR 23.6 42.0 39.8 26.1 28.6 66.1 51.6 71.4 43.7
DsDm 23.6 44.2 40.1 23.5 29.2 66.5 51.5 74 44.1

QuRating 23.6 43.9 40.4 26.1 30.2 67.4 51.4 74.1 44.6
MATES 25.3 43.8 40.6 24.9 30.6 67.1 53.4 74.1 45.0
PROX 27.0 52.7 42.6 23.7 32.8 68.2 53.9 78.9 47.5

PYTHIA-1B 0-shot

Random 25.6 43.7 43.8 27.5 31.8 68.9 50.7 65.8 44.7
MATES 25.9 44.9 45.3 28.7 32.2 69.5 52.4 67.3 45.8
PROX 26.2 49.1 46.6 24.8 32.2 70.3 54.2 70.9 46.8

PYTHIA-1B 2-shot

Random 25.5 45.1 42.9 24.6 30.0 68.3 52.1 74.6 45.4
MATES 26.8 46.1 44.8 25.2 30.6 68.7 51.6 75.7 46.2
PROX 27.3 54.5 46.2 26.6 32.2 69.0 53.9 77.4 48.4

0 10 20
Training Tokens(B)

22

24

26

Pe
rf

or
m

an
ce

ARC-C

ProX-D+C
ProX-D
Rule
Raw

0 10 20
Training Tokens(B)

30

35

40

45

50

Pe
rf

or
m

an
ce

ARC-E

ProX-D+C
ProX-D
Rule
Raw

0 10 20
Training Tokens(B)

24

26

28

30

32

Pe
rf

or
m

an
ce

CSQA

ProX-D+C
ProX-D
Rule
Raw

0 10 20
Training Tokens(B)

30

35

40

Pe
rf

or
m

an
ce

HellaSwag

ProX-D+C
ProX-D
Rule
Raw

0 10 20
Training Tokens(B)

25

26

27

28

29

Pe
rf

or
m

an
ce

MMLU

ProX-D+C
ProX-D
Rule
Raw

0 10 20
Training Tokens(B)

24

26

28

30

32

Pe
rf

or
m

an
ce

OBQA

ProX-D+C
ProX-D
Rule
Raw

0 10 20
Training Tokens(B)

55

60

65

Pe
rf

or
m

an
ce

PiQA

ProX-D+C
ProX-D
Rule
Raw

0 10 20
Training Tokens(B)

37

38

39

40

Pe
rf

or
m

an
ce

SIQA

ProX-D+C
ProX-D
Rule
Raw

0 10 20
Training Tokens(B)

48

50

52

54

Pe
rf

or
m

an
ce

WinoG

ProX-D+C
ProX-D
Rule
Raw

0 10 20
Training Tokens(B)

40

50

60

70

Pe
rf

or
m

an
ce

SciQ

ProX-D+C
ProX-D
Rule
Raw

Figure 12: Visualization of dynamic performance on ten benchmarks. Rule: the best performing FineWeb rule in Table 2.

29

Programmming Every Example: Lifting Pre-training Data Quality like Experts at Scale

E.3. Detailed Performance in Sec. 3.3

In § 3.3, we test PROX’s effectiveness using different sizes of refining models, and also train a series of models by using
these curated data. We report these detailed results in Table 14, Table 15 and Table 16.

Table 14: Full evaluation results of TLM-XS trained on different PROX model curated data.

Train
Steps ARC-C ARC-E CSQA HellaSwag MMLU OBQA PiQA SIQA WinoG SciQ AVG

TLM-XS trained on Raw data

2500 22.5 38.5 27.0 29.1 25.8 25.0 60.2 38.8 50.4 58.6 37.6
5000 23.6 39.2 28.7 33.1 26.1 26.6 62.2 39.5 49.9 66.2 39.5
7500 23.8 42.7 28.0 33.4 26.0 26.2 64.0 39.3 51.5 67.0 40.2

10000 23.8 41.2 27.8 35.0 26.6 28.0 65.3 40.9 50.1 65.9 40.5
12500 22.6 41.9 29.7 32.8 26.2 26.4 62.2 39.3 51.3 63.3 39.6

TLM-XS trained on PROX-xs data

2500 24.8 43.5 26.5 30.3 26.8 26.6 59.3 38.6 50.8 60.7 38.8
5000 23.7 44.3 28.1 33.8 27.3 28.8 61.3 38.9 50.9 70.2 40.7
7500 24.1 46.0 29.2 35.0 27.7 30.6 63.4 38.7 52.0 70.4 41.7

10000 25.3 46.1 28.3 35.7 28.1 29.2 64.4 38.5 51.2 70.6 41.7
12500 25.9 47.5 29.2 36.7 28.1 30.2 64.6 38.0 51.7 71.4 42.3

TLM-XS trained on PROX-s data

2500 23.5 41.9 24.9 30.4 26.6 27.6 62.0 37.8 49.3 61.4 38.5
5000 24.7 44.5 27.0 33.8 27.5 28.0 62.4 38.0 50.6 67.0 40.3
7500 25.3 45.3 27.3 34.0 27.9 29.2 63.4 37.7 52.9 68.7 41.2

10000 25.6 45.7 27.6 35.6 28.6 30.2 63.6 37.4 52.0 71.1 41.7
12500 26.4 46.7 27.5 37.2 28.1 29.8 62.8 37.8 52.2 70.1 41.9

TLM-XS trained on PROX-m curated data

2500 22.9 41.3 26.5 31.1 26.9 27.0 62.2 37.6 50.6 62.4 38.9
5000 25.8 44.0 27.3 34.0 27.1 29.6 63.1 38.5 51.8 64.9 40.6
7500 26.0 45.3 28.5 36.6 27.7 29.8 63.6 39.4 51.3 68.5 41.7

10000 26.0 46.6 28.8 37.3 27.6 30.6 63.3 38.7 51.6 70.3 42.1
12500 26.5 46.4 29.1 37.6 28.1 29.4 64.1 38.7 51.5 68.0 41.9

We also further scale PROX to other two pre-training corpora, C4 and FineWeb. We also scale our training to about 50B
tokens, and directly compare with existing well-trained models developed by different research groups. We report our
detailed results in Table 17, Table 18 and Table 19. We also present other models’ results in Table 20.

30

Programmming Every Example: Lifting Pre-training Data Quality like Experts at Scale

Table 15: Full evaluation results of TLM-S trained on different PROX model curated data.

Train
Steps ARC-C ARC-E CSQA HellaSwag MMLU OBQA PiQA SIQA WinoG SciQ AVG

TLM-S trained on Raw data

2500 22.1 39.0 27.6 31.6 25.9 26.6 61.2 37.3 48.9 59.1 37.9
5000 24.4 41.2 28.8 34.8 26.7 27.0 64.9 39.3 50.4 61.9 39.9
7500 26.5 43.9 29.5 37.2 27.2 29.0 64.8 38.7 50.8 68.2 41.6

10000 25.8 43.5 29.1 38.8 27.4 29.8 66.9 39.0 51.2 66.2 41.8
12500 26.1 44.3 29.7 39.1 27.3 29.2 66.9 39.0 52.0 67.4 42.1

TLM-S trained on PROX-xs curated data

2500 23.8 44.1 26.5 33.5 26.9 29.4 60.7 38.9 50.6 62.1 39.6
5000 26.8 48.1 28.4 36.7 28.0 30.6 64.0 38.6 50.3 65.6 41.7
7500 26.9 49.0 30.6 39.5 28.2 29.6 65.3 39.6 52.2 69.6 43.0

10000 26.7 51.3 29.4 40.1 28.3 31.8 64.1 39.3 51.4 69.9 43.2
12500 26.8 52.1 30.2 41.8 28.5 31.6 65.5 39.5 51.9 70.8 43.9

TLM-S trained on PROX-s curated data

2500 24.9 43.4 27.3 32.1 26.9 28.2 60.9 38.8 51.2 60.8 39.5
5000 24.9 49.6 28.8 36.8 27.9 30.6 64.7 38.8 51.1 66.9 42.0
7500 25.5 51.2 30.8 38.8 28.4 31.2 67.3 40.2 50.3 71.7 43.5

10000 26.2 51.7 30.8 39.9 29.0 32.6 68.6 39.7 51.7 73.7 44.4
12500 26.4 51.9 30.9 42.4 29.4 31.6 67.9 40.0 52.2 73.5 44.6

TLM-S trained on PROX-m curated data

2500 25.3 45.3 27.5 32.2 26.7 27.0 62.4 38.7 50.6 60.8 39.6
5000 26.1 45.4 28.6 37.2 27.4 27.8 65.7 38.9 50.9 65.6 41.4
7500 27.1 47.5 30.6 41.0 28.6 29.2 66.8 39.3 51.1 69.9 43.1

10000 26.7 50.5 30.7 41.5 28.4 30.2 67.0 40.1 49.9 70.9 43.6
12500 27.4 50.7 30.6 42.0 28.8 30.2 67.4 39.4 48.8 70.1 43.5

31

Programmming Every Example: Lifting Pre-training Data Quality like Experts at Scale

Table 16: Full evaluation results of TLM-M trained on different PROX model curated data.

Train
Steps ARC-C ARC-E CSQA HellaSwag MMLU OBQA PiQA SIQA WinoG SciQ AVG

TLM-S trained on Raw data

2500 23.5 41.5 27.5 32.9 26.4 25.2 62.1 39.4 51.5 65.1 39.5
5000 24.0 42.1 29.6 37.6 27.6 27.2 65.0 39.7 53.2 68.5 41.4
7500 24.3 44.9 28.9 39.3 27.8 27.6 66.4 40.4 51.3 69.2 42.0

10000 24.8 46.1 29.6 41.4 27.9 28.4 67.5 39.8 51.9 70.9 42.8
12500 26.3 46.8 29.0 43.2 28.3 27.8 68.2 40.5 50.7 72.5 43.3

TLM-M trained on PROX-xs curated data

2500 24.9 49.6 26.5 34.0 27.3 30.4 61.8 37.9 51.3 65.1 40.9
5000 26.7 47.6 28.6 39.7 28.5 31.8 65.4 39.5 50.2 70.7 42.9
7500 27.5 52.1 30.4 41.8 29.6 31.8 67.6 39.6 51.7 75.2 44.7

10000 28.4 54.7 29.8 45.2 30.8 31.8 67.9 39.7 52.0 77.7 45.8
12500 28.8 54.2 29.7 46.5 30.9 31.8 68.2 39.9 51.3 78.3 46.0

TLM-M trained on PROX-s curated data

2500 25.3 45.7 27.8 34.2 27.8 29.0 64.4 37.5 49.3 66.3 40.7
5000 26.1 49.0 28.8 40.2 29.2 30.8 65.6 39.0 50.5 71.2 43.0
7500 27.7 53.6 31.1 44.1 29.6 34.8 67.6 39.4 52.5 72.2 45.3

10000 27.2 54.0 31.5 45.1 30.3 33.8 67.7 39.7 52.9 74.2 45.6
12500 28.6 56.1 31.8 45.5 30.5 34.4 68.5 39.4 51.3 76.1 46.2

TLM-M trained on PROX-m curated data

2500 24.7 44.1 25.9 34.8 27.4 27.8 62.9 38.9 49.2 67.0 40.3
5000 27.7 48.0 26.8 40.5 28.5 30.6 67.4 39.4 50.3 69.1 42.8
7500 26.7 51.9 26.7 42.9 29.3 31.4 69.1 40.3 50.4 73.3 44.2

10000 28.4 52.4 27.9 45.0 29.7 32.0 70.2 40.0 51.9 75.4 45.3
12500 28.3 53.7 28.4 45.9 30.1 33.8 70.6 41.1 52.3 72.5 45.7

32

Programmming Every Example: Lifting Pre-training Data Quality like Experts at Scale

Table 17: Full evaluation results on scaling pre-training to about 50B tokens on RedPajama-V2.

Train
Steps ARC-C ARC-E CSQA HellaSwag MMLU OBQA PiQA SIQA WinoG SciQ AVG

TLM-M trained on RedPajama-V2 raw data.

2500 24.0 42.9 26.6 33.7 25.9 26.0 62.4 39.4 52.3 64.0 39.7
5000 24.3 45.9 26.4 37.4 27.0 27.6 64.1 39.7 49.5 66.2 40.8
7500 25.1 45.3 28.8 40.3 27.1 29.2 66.3 39.1 51.7 66.9 42.0

10000 25.8 49.3 31.5 42.5 28.0 28.8 66.7 39.6 51.5 74.0 43.8
12500 25.3 50.1 30.2 43.0 28.2 30.0 66.6 39.2 51.1 74.2 43.8
15000 26.2 50.3 31.2 44.3 28.8 28.4 68.2 39.8 51.7 76.2 44.5
17500 25.8 51.1 30.8 44.7 29.0 29.6 67.7 39.2 52.6 75.2 44.6
20000 26.7 52.5 31.7 47.2 28.6 30.4 69.0 39.6 53.0 78.2 45.7
22500 27.4 51.7 32.1 47.2 29.3 30.4 69.5 39.5 51.9 78.5 45.7
25000 26.9 51.4 32.4 47.3 29.3 32.2 69.7 39.6 52.1 79.1 46.0

TLM-M trained on PROX refined RedPajama-V2 data.

2500 24.8 46.8 27.2 33.8 27.3 28.2 61.3 38.6 50.3 65.1 40.3
5000 26.9 49.3 28.5 40.1 28.0 30.6 66.2 39.7 50.2 70.1 43.0
7500 28.5 53.1 29.2 41.7 29.4 33.2 66.9 39.3 53.0 73.0 44.7

10000 28.2 53.5 30.1 43.6 29.8 31.6 68.4 39.6 52.0 75.3 45.2
12500 29.5 55.3 30.2 46.4 30.5 32.2 68.6 40.2 52.6 76.9 46.2
15000 30.0 57.1 30.2 47.6 30.9 33.0 69.5 39.8 52.2 77.8 46.8
17500 31.5 59.6 29.4 49.5 31.6 33.6 69.4 39.8 53.0 78.9 47.6
20000 31.2 61.2 29.4 50.4 31.4 35.2 70.6 40.1 53.7 79.6 48.3
22500 32.0 61.7 30.2 51.4 31.4 34.0 70.0 39.9 53.2 79.5 48.3
25000 31.1 60.7 29.8 51.0 31.7 33.2 70.9 39.2 53.3 79.1 48.0

Table 18: Full evaluation results on scaling pre-training to about 50B tokens on C4.

Train
Steps ARC-C ARC-E CSQA HellaSwag MMLU OBQA PiQA SIQA WinoG SciQ AVG

TLM-M trained on C4 raw data.

2500 22.4 39.7 26.8 36.5 26.5 27.6 64.8 40.2 50.1 60.0 39.5
5000 23.9 42.9 27.5 42.3 27.1 29.6 68.2 39.6 50.3 66.6 41.8
7500 25.1 44.8 28.2 45.4 27.1 29.2 70.7 40.7 51.6 66.3 42.9

10000 25.5 46.0 32.3 48.2 27.9 31.6 71.1 39.7 52.3 67.6 44.2
12500 25.8 48.8 30.3 49.7 27.9 31.6 71.2 40.9 52.0 69.4 44.8
15000 26.9 48.0 28.2 50.5 28.5 31.4 71.9 41.1 51.4 69.7 44.8
17500 26.6 48.8 30.3 52.1 28.6 31.2 73.2 41.6 52.0 70.0 45.4
20000 26.3 50.1 29.7 52.5 28.5 32.6 72.3 41.7 52.3 71.0 45.7
22500 25.8 50.7 31.0 52.9 28.8 33.8 73.0 41.6 53.0 71.5 46.2
25000 25.3 48.8 30.1 52.4 28.8 32.2 72.0 40.6 53.6 71.7 45.5

TLM-M trained on PROX refined C4 data.

2500 24.1 45.9 26.0 37.3 27.2 29.0 66.3 39.8 50.8 65.9 41.2
5000 27.3 50.0 26.6 42.4 28.6 33.8 68.1 40.5 53.0 71.9 44.2
7500 28.3 53.7 27.7 47.7 29.3 35.4 71.1 39.3 54.0 73.1 46.0

10000 30.0 54.3 28.1 50.9 30.0 33.6 71.2 40.6 52.0 74.2 46.5
12500 29.3 56.7 27.5 52.3 30.9 33.8 72.8 39.9 52.5 77.5 47.3
15000 29.6 55.9 28.3 53.9 30.6 35.0 72.9 41.0 53.8 75.8 47.7
17500 30.6 55.5 28.7 53.3 31.2 34.2 73.6 40.4 53.4 76.7 47.8
20000 30.0 57.6 28.3 54.9 31.1 37.2 74.6 40.7 53.6 79.4 48.7
22500 30.1 56.7 28.6 55.2 31.4 37.2 73.8 41.6 53.3 77.7 48.6
25000 31.1 56.0 28.4 55.2 31.1 36.2 74.0 41.0 54.1 76.8 48.4

33

Programmming Every Example: Lifting Pre-training Data Quality like Experts at Scale

Table 19: Full evaluation results on scaling pre-training to about 50B tokens on FineWeb.

Train
Steps ARC-C ARC-E CSQA HellaSwag MMLU OBQA PiQA SIQA WinoG SciQ AVG

TLM-M trained on FineWeb raw data.

2500 22.9 41.2 28.9 34.3 26.1 27.6 64.8 39.3 52.1 62.8 40.0
5000 25.5 44.5 30.4 39.8 26.9 32.0 68.4 39.2 52.1 67.2 42.6
7500 26.8 45.6 31.4 44.1 27.6 30.2 70.9 38.8 52.2 70.3 43.8

10000 27.2 46.2 31.3 47.2 28.3 31.6 72.1 38.8 53.4 69.0 44.5
12500 26.4 49.2 32.1 48.7 28.7 31.6 71.5 40.1 52.6 74.7 45.6
15000 27.1 49.6 32.8 49.5 28.9 31.0 72.7 39.0 52.3 77.1 46.0
17500 26.4 50.9 33.8 51.3 29.3 31.0 71.9 39.3 53.0 78.0 46.5
20000 27.1 53.1 33.2 51.2 29.6 32.2 73.4 39.7 52.3 76.3 46.8
22500 27.1 51.2 34.9 51.7 29.5 33.4 73.7 40.1 52.4 78.0 47.2
25000 28.5 52.6 33.9 53.2 29.8 32.6 72.9 40.2 53.0 77.1 47.4

TLM-M trained on PROX refined FineWeb data.

2500 25.8 46.8 27.4 36.1 27.7 28.8 63.9 39.3 51.9 69.1 41.7
5000 28.5 52.1 28.8 43.5 29.3 32.6 66.4 38.7 51.2 71.3 44.2
7500 28.2 52.0 30.6 45.9 29.9 33.0 69.3 39.5 51.7 71.8 45.2

10000 29.3 54.3 30.6 48.5 30.8 33.2 69.7 40.7 50.6 74.4 46.2
12500 28.7 57.8 30.7 48.1 31.1 32.6 72.0 40.4 52.7 77.4 47.2
15000 31.1 59.6 31.9 50.4 31.8 34.4 71.9 40.5 50.8 78.0 48.0
17500 32.6 60.9 31.9 51.5 32.2 33.8 72.3 39.7 52.5 78.9 48.6
20000 33.2 62.5 32.5 51.6 32.4 34.6 72.4 39.7 51.7 80.7 49.1
22500 34.7 63.6 32.9 53.3 32.9 34.8 73.1 40.3 54.2 80.5 50.0
25000 34.4 63.9 32.6 53.0 33.1 34.4 73.1 39.3 52.7 81.5 49.8

Table 20: Detailed evaluation results of existing base models trained on different corpora and trained using different
techniques.

ARC-C ARC-E CSQA HellaSwag MMLU OBQA PiQA SIQA WinoG SciQ AVG

TINYLLAMA-1.1B (trained on 3T tokens)

31.5 59.0 35.5 57.8 32.8 33.4 72.8 40.0 56.0 82.4 50.1

OLMO-1B (trained on 2T tokens)

31.4 59.7 38.9 61.9 32.2 38.4 76.1 41.5 53.9 78.8 51.3

PYTHIA-1.4B

28.7 56.9 34.7 51.7 31.5 36.0 71.8 40.8 55.1 79.3 48.7

PYTHIA-2.8B

32.9 61.0 36.5 60.4 33.3 35.0 73.5 41.1 57.0 83.1 51.4

SHEAREDLLAMA-1.3B (pruned from LLAMA-2-7B)

22.4 39.7 29.3 36.0 26.4 28.4 62.6 39.9 52.0 71.4 40.8

SHEAREDLLAMA-1.3B (pruned from LLAMA-2-7B, and further trained on 50B tokens)

29.0 58.3 34.8 59.6 32.0 35.0 74.6 41.0 56.3 82.3 50.3

INSTRUCTLM-1.3B (LLM data synthesis)

28.1 57.9 32.5 52.3 30.0 34.0 74.5 39.9 56.1 86.9 49.2

COSMO-1.8B (LLM data synthesis)

33.4 57.0 31.2 55.1 32.4 35.2 71.4 42.0 54.7 84.4 49.7

34

Programmming Every Example: Lifting Pre-training Data Quality like Experts at Scale

E.4. Evaluation Results of Continual Pre-training in Sec. 3.4

We provide full ablation results for each base model, as shown in Table 21. We can observe that PROX-D+C consistently
improves average performance over PROX-D across various base models. Although the performance gain from PROX-
D+C compared to PROX-D is less pronounced than the improvement of PROX-D over continual pre-training on raw
OpenWebMath, this is both understandable and expected. PROX-D+C does not significantly reduce the token count beyond
the reductions achieved by PROX-D alone. Given the scale of the OpenWebMath corpus, a more aggressive token removal
strategy could potentially diminish the diversity of unique tokens below the threshold necessary for robust pre-training.
This observation underscores the delicate balance between data refinement and maintaining sufficient linguistic variety for
effective language model training, particularly when working with limited-scale corpora.

Table 21: Full ablation results on OpenWebMath Continual Pre-training (CPT). All models are tested using few-shot CoT
prompts. LLEMMA and INTERNLM2-MATH are continual pre-trained models from CODELLAMA (Rozière et al., 2023) and
INTERNLM2 (Team, 2023) with public available data, respectively. DEEPSEEK-LLM denotes an internal DeepSeek model,
and the model trained on OpenWebMath introduced by Shao et al. (2024). Note that the unique tokens and training tokens
in the column refer exclusively to the token numbers from math-specific corpora (calculated by corresponding tokenizers). †:
MQA evaluation of INTERNLM2-BASE is based on an alternative prompt due to non-prediction issues with the original
prompt. The bolded entries represent the best results within the same base model and CPT experiments.

Model Size Method Uniq
Toks

Train
Toks GSM8K MATH SVAMP ASDiv MAWPS TAB MQA MMLU

STEM
SAT

MATH AVG

Existing Continual Pre-training for Reference

DEEPSEEK-LLM 1.3B - - - 2.9 3.0 - - - - - 19.5 15.6 -
1.3B - 14B 150B 11.5 8.9 - - - - - 29.6 31.3 -

CODELLAMA (Base)
7B - - - 11.8 5.0 44.2 50.7 62.6 30.6 14.3 20.4 21.9 29.1
34B - - - 31.8 10.8 61.9 66.0 83.4 51.6 23.7 43.0 53.1 47.3

LLEMMA
7B - 55B 200B 38.8 17.2 56.1 69.1 82.4 48.7 41.0 45.4 59.4 50.9 (+21.8)
34B - 55B 50B 54.2 23.0 67.9 75.7 90.1 57.9 49.8 54.7 68.8 60.1 (+12.8)

INTERNLM2-BASE
7B - - - 27.0 6.6 49.0 59.3 74.8 40.1 20.9† 19.0 28.1 36.1
20B - - - 50.6 18.8 72.5 75.9 93.9 45.4 33.1 53.7 59.4 55.9

INTERNLM2-MATH
7B - 31B 125B 41.8 14.4 61.6 66.8 83.7 50.0 57.3 24.8 37.5 48.7 (+12.6)
20B - 120B 500B 65.4 30.0 75.7 79.3 94.0 50.9 38.5 53.1 71.9 62.1 (+6.2)

Applying Data Refinement Approaches

TINYLLAMA (Base) 1.1B - - - 2.8 3.2 10.9 18.0 20.2 12.5 14.6 16.4 21.9 14.7

TINYLLAMA (CPT)

1.1B - 15B 15B 6.2 4.8 22.3 36.2 47.6 19.3 11.6 20.7 25.0 21.5 (+6.8)
1.1B RHO 15B 9B∗5 7.1 5.0 23.5 41.2 53.8 - 18.0 - - -
1.1B Rule 6.5B 15B 4.5 2.8 17.5 29.4 39.3 15.1 12.4 19.4 25.0 18.4 (+3.7)
1.1B PROX-D 5.4B 15B 9.3 7.4 23.4 41.9 55.6 22.1 14.6 24.1 25.0 24.8 (+10.1)
1.1B PROX-D+C 5B 15B 9.0 5.6 23.8 41.9 56.9 22.2 15.6 26.8 31.2 25.7 (+11.0)

LLAMA-2 (Base) 7B - - - 14.1 3.8 39.5 51.6 63.6 30.9 12.5 32.9 34.4 31.5

LLAMA-2 (CPT)
7B - 15B 10B 29.6 13.6 49.2 61.9 78.4 36.3 31.9 40.5 43.8 42.8 (+11.3)
7B PROX-D 5.4B 10B 30.3 16.0 54.2 63.8 79.5 37.3 37.2 44.2 46.9 45.5 (+14.0)
7B PROX-D+C 5B 10B 30.6 16.8 50.2 63.7 79.3 37.3 40.1 43.8 53.1 46.1 (+14.6)

CODELLAMA (Base) 7B - - - 11.8 5.0 44.2 50.7 62.6 30.6 14.3 20.4 21.9 29.1

CODELLAMA (CPT)
7B - 15B 10B 31.1 14.8 51.4 62.1 81.2 33.6 30.4 40.5 43.8 43.2 (+14.1)
7B PROX-D 5.4B 10B 38.1 17.0 54.2 67.0 83.1 40.9 39.8 43.7 50.0 48.2 (+19.1)
7B PROX-D+C 5B 10B 35.6 17.6 55.8 67.9 82.7 41.3 38.9 42.6 62.5 49.4 (+20.3)

MISTRAL (Base) 7B - - - 40.6 11.4 65.4 68.5 87.0 52.9 32.3 50.0 56.2 51.6

MISTRAL (CPT)
7B - 15B 10B 44.4 19.2 65.2 69.6 88.4 46.6 43.1 50.8 65.6 54.8 (+3.2)
7B PROX-D 5.5B 10B 47.8 24.8 63.5 72.4 88.9 48.3 48.2 54.1 62.5 56.4 (+4.8)
7B PROX-D+C 4.7B 10B 51.0 22.4 64.9 72.9 89.2 49.8 53.0 54.2 75.0 59.2 (+7.6)

Besides, we report the detailed dynamic evaluation results of our continual pre-training experiments on OpenWebMath:

5RHO-1 only counts the selected tokens that are used for training (loss calculation).

35

Programmming Every Example: Lifting Pre-training Data Quality like Experts at Scale

• Tables 22, 23, 24, and 25 present the evaluation results for TINYLLAMA-1.1B.

• Tables 26, 27, and 28 present the evaluation results for LLAMA-2.

• Tables 29, 30, 31 present the evaluation results for CODELLAMA.

• Tables 32, 33, and 34 show the evaluation results for MISTRAL-7B.

Table 22: Full evaluation results of TINYLLAMA-1.1B continual pre-training on OpenWebMath with raw data. Note that
about 1B tokens are trained per 500 steps.

Train
Steps GSM8K MATH SVAMP ASDiv MAWPS TAB MQA MMLU

STEM
SAT

MATH AVG

0 2.8 3.2 10.9 18 20.2 12.5 14.6 16.4 21.9 14.7

500 1.9 3.4 16.3 23.9 30.3 13.9 10.3 14.8 18.8 14.8
1000 3.1 2.2 16.6 25.6 32.4 12.5 12.0 16.6 25.0 16.2
1500 2.7 3.0 17.6 28.5 34.5 13.9 8.7 14.1 15.6 15.4
2000 4.5 3.2 16.4 28.5 39.0 15.1 10.2 16.6 34.4 18.7
2500 4.9 3.4 19.3 31.0 39.2 16.0 12.1 18.6 9.4 17.1
3000 4.1 5.2 19.1 32.0 43.0 15.3 9.6 16.1 18.8 18.1
3500 4.9 3.6 19.7 31.4 40.4 18.1 11.3 19.6 15.6 18.3
4000 4.8 4.8 19.5 33.8 44.5 16.4 10.7 19.9 12.5 18.5
4500 5.4 4.8 20.2 35.0 45.2 17.9 12.7 21.0 18.8 20.1
5000 5.5 4.6 22.3 34.6 42.9 16.0 10.6 21.7 28.1 20.7
5500 4.9 5.8 23.6 35.2 44.0 20.4 11.0 21.1 21.9 20.9
6000 6.1 4.4 22.8 36.2 45.4 17.8 12.7 21.4 15.6 20.3
6500 6.3 3.6 23.2 37.3 48.0 19.7 10.3 21.0 18.8 20.9
7000 6.1 4.6 22.2 36.6 46.9 19.4 12.0 21.5 21.9 21.2
7500 6.2 4.8 22.3 36.2 47.6 19.3 11.6 20.7 25.0 21.5

36

Programmming Every Example: Lifting Pre-training Data Quality like Experts at Scale

Table 23: Full evaluation results of TINYLLAMA-1.1B continual pre-training on OpenWebMath with data after rule-based
filtering. Note that about 1B tokens are trained per 500 steps.

Train
Steps GSM8K MATH SVAMP ASDiv MAWPS TAB MQA MMLU

STEM
SAT

MATH AVG

0 2.8 3.2 10.9 18 20.2 12.5 14.6 16.4 21.9 14.7

500 3.4 3.6 13.6 22.5 25.9 13.1 14.2 13.5 28.1 15.3
1000 3.0 2.8 14.1 22.5 27.8 11.4 11.0 16.4 12.5 13.5
1500 3.6 3.2 13.6 24.0 31.2 13.9 9.2 18.0 18.8 15.1
2000 3.5 2.4 15.0 25.1 33.0 12.5 10.6 13.9 15.6 14.6
2500 3.3 1.6 15.0 25.3 33.5 13.7 11.1 18.1 25.0 16.3
3000 3.5 3.0 16.4 25.5 33.4 14.1 10.2 18.4 18.8 15.9
3500 3.2 3.4 17.2 27.0 37.7 14.6 11.2 13.3 25.0 17.0
4000 3.5 3.6 15.6 26.2 36.5 13.4 12.1 15.9 18.8 16.2
4500 4.1 3.8 15.6 27.9 38.2 14.9 11.6 17.1 18.8 16.9
5000 4.2 3.6 18.6 28.7 37.7 14.3 12.7 17.5 21.9 17.7
5500 4.1 3.8 16.3 29.3 38.4 14.7 10.8 17.5 18.8 17.1
6000 4.3 3.6 16.0 28.7 39.1 13.5 12.8 19.5 21.9 17.7
6500 4.2 3.2 16.4 29.5 39.0 15.1 11.7 17.9 21.9 17.7
7000 4.0 4.0 16.2 29.6 37.9 16.0 13.8 17.8 21.9 17.9
7500 4.5 2.8 17.5 29.4 39.3 15.1 12.4 19.4 25.0 18.4

Table 24: Full evaluation results of TINYLLAMA-1.1B continual pre-training on OpenWebMath with data after PROX-D.
Note that about 1B tokens are trained per 500 steps.

Train
Steps GSM8K MATH SVAMP ASDiv MAWPS TAB MQA MMLU

STEM
SAT

MATH AVG

0 2.8 3.2 10.9 18 20.2 12.5 14.6 16.4 21.9 14.7

500 3.3 2.8 17.7 29.0 38.7 12.4 9.5 15.7 15.6 16.1
1000 4.6 4.0 18.1 31.6 41.9 15.9 11.9 18.2 25.0 19.0
1500 5.2 5.4 21.1 32.9 43.1 15.3 11.1 20.4 12.5 18.6
2000 6.8 5.8 20.2 33.5 46.6 18.2 10.7 20.3 12.5 19.4
2500 7.1 3.8 20.7 37.0 48.6 18.3 12.0 21.4 18.8 20.9
3000 7.4 4.4 22.9 37.1 50.5 18.3 12.3 21.2 25.0 22.1
3500 8.8 4.8 22.8 39.4 53.3 19.2 12.0 22.8 34.4 24.2
4000 8.6 4.6 24.0 38.7 51.4 18.8 14.8 24.4 18.8 22.7
4500 8.6 4.2 24.2 39.2 53.6 20.4 13.5 23.9 18.8 22.9
5000 8.9 5.2 24.0 40.0 52.6 20.0 13.6 23.9 18.8 23.0
5500 8.0 6.2 23.2 41.4 55.0 22.3 14.3 24.9 25.0 24.5
6000 8.3 5.2 22.2 39.8 54.0 24.3 12.6 25.1 31.2 24.7
6500 9.4 5.6 24.4 40.2 54.5 20.3 13.0 24.9 31.2 24.8
7000 9.2 5.8 25.8 40.6 55.3 22.5 12.5 24.5 21.9 24.2
7500 9.3 7.4 23.4 41.9 55.6 22.1 14.6 24.1 25.0 24.8

37

Programmming Every Example: Lifting Pre-training Data Quality like Experts at Scale

Table 25: Full evaluation results of TINYLLAMA-1.1B continual pre-training on OpenWebMath with data after PROX-D+C.
Note that about 1B tokens are trained per 500 steps.

Train
Steps GSM8K MATH SVAMP ASDiv MAWPS TAB MQA MMLU

STEM
SAT

MATH AVG

0 2.8 3.2 10.9 18 20.2 12.5 14.6 16.4 21.9 14.7

500 4.3 5.0 16.4 28.8 36.4 15.3 11.4 18.5 15.6 16.9
1000 5.5 3.8 20.5 34.6 44.6 15.3 12.1 19.6 28.1 20.5
1500 5.2 4.4 21.4 34.5 44.7 16.1 11.2 21.4 34.4 21.5
2000 6.3 5.4 20.1 33.7 46.2 19.4 10.5 21.2 12.5 19.5
2500 7.8 5.4 22.1 37.0 49.5 17.9 13.3 22.9 21.9 22.0
3000 6.4 3.4 23.0 38.6 51.1 18.5 12.6 24.3 18.8 21.9
3500 8.5 4.6 24.1 40.2 53.8 22.1 12.5 23.1 25.0 23.8
4000 8.2 6.0 24.1 41.0 52.4 19.8 10.2 26.1 31.2 24.3
4500 8.3 5.4 24.1 41.3 54.4 20.6 15.2 24.2 28.1 24.6
5000 8.5 7.0 26.0 40.5 54.9 21.7 13.9 25.5 34.4 25.8
5500 8.7 4.0 23.2 41.1 54.8 20.5 14.4 26.5 21.9 23.9
6000 8.3 5.0 24.8 41.3 54.3 23.2 14.0 25.3 25.0 24.6
6500 8.6 6.4 24.5 41.6 55.1 22.2 14.4 26.5 25.0 24.9
7000 8.9 6.0 23.4 40.5 53.4 22.0 15.8 27.3 28.1 25.0
7500 9.0 4.4 23.8 41.9 56.4 22.2 15.6 26.8 31.2 25.7

Table 26: Full evaluation results of LLAMA-2 continual pre-training on OpenWebMath with raw data. Note that about 1B
tokens are trained per 1000 steps.

Train
Steps GSM8K MATH SVAMP ASDiv MAWPS TAB MQA MMLU

STEM
SAT

MATH AVG

0 14.1 3.8 39.5 51.6 63.6 30.9 12.5 32.9 34.4 31.5

1k 17.2 3.6 39.1 50.4 63.0 30.2 18.9 31.8 31.2 31.7
2k 19.7 6.0 43.9 55.5 68.3 32.9 19.0 33.0 37.5 35.1
3k 19.6 8.6 42.9 56.3 68.4 32.2 17.4 34.6 40.6 35.6
4k 21.8 8.8 44.6 57.3 72.0 28.9 23.6 35.8 40.6 37.0
5k 22.6 10.4 45.9 57.0 73.5 31.5 23.9 39.0 43.8 38.6
6k 24.5 10.0 44.9 57.6 73.7 35.5 25.8 36.1 43.8 39.1
7k 23.3 10.4 46.5 59.0 75.3 32.9 27.7 39.0 50.0 40.5
8k 29.0 12.4 46.4 59.7 77.0 33.1 30.2 38.8 50.0 41.8
9k 26.1 12.8 48.8 59.9 74.3 35.0 28.3 39.2 50.0 41.6

10k 29.6 13.6 49.2 61.9 78.4 36.3 31.9 40.5 43.8 42.8

38

Programmming Every Example: Lifting Pre-training Data Quality like Experts at Scale

Table 27: Full evaluation results of LLAMA-2 continual pre-training on OpenWebMath with PROX-D. Note that about 1B
tokens are trained per 1000 steps.

Train
Steps GSM8K MATH SVAMP ASDiv MAWPS TAB MQA MMLU

STEM
SAT

MATH AVG

0 14.1 3.8 39.5 51.6 63.6 30.9 12.5 32.9 34.4 31.5

1k 17.1 7.2 39.8 51.6 68.4 31.4 21.4 35.2 40.6 34.7
2k 21.9 9.2 43.2 57.0 72.8 33.1 24.0 37.6 56.2 39.4
3k 20.5 10.8 45.7 58.6 76.2 35.3 25.8 38.3 53.1 40.5
4k 27.2 11.8 45.7 58.7 76.6 35.9 29.2 41.0 31.2 39.7
5k 28.9 14.2 49.3 60.2 77.9 38.8 32.8 41.7 53.1 44.1
6k 31.9 15.0 51.5 62.0 79.0 39.2 33.3 41.4 68.8 46.9
7k 31.5 16.8 51.9 63.2 77.9 36.5 35.9 43.8 43.8 44.6
8k 30.3 13.8 51.9 63.7 80.6 38.3 36.1 41.3 59.4 46.2
9k 30.6 14.0 52.7 62.6 78.7 37.5 36.1 43.2 43.8 44.4

10k 30.3 16.0 54.2 63.8 79.5 37.3 37.2 44.2 46.9 45.5

Table 28: Full evaluation results of LLAMA-2 continual pre-training on OpenWebMath with PROX-D+C. Note that about
1B tokens are trained per 1000 steps.

Train
Steps GSM8K MATH SVAMP ASDiv MAWPS TAB MQA MMLU

STEM
SAT

MATH AVG

0 14.1 3.8 39.5 51.6 63.6 30.9 12.5 32.9 34.4 31.5

1k 18.8 6.8 40.1 54.4 66.1 29.7 22.9 35.6 53.1 36.4
2k 23.1 8.6 45.7 56.5 72.7 30.7 25.1 35.6 46.9 38.3
3k 23.4 11.8 47.9 59.1 74.6 30.4 28.2 38.3 59.4 41.5
4k 25.2 14.2 49.0 57.8 72.7 32.8 33.1 40.7 40.6 40.7
5k 24.4 13.6 48.0 58.7 72.1 28.9 33.0 40.6 50.0 41.0
6k 29.6 12.8 46.1 63.4 75.6 33.7 31.6 42.8 53.1 43.2
7k 29.9 13.6 50.5 61.5 75.2 36.4 34.5 41.7 53.1 44.0
8k 30.2 15.8 50.8 63.7 77.1 37.7 36.3 43.4 43.8 44.3
9k 34.0 15.4 52.1 62.4 79.3 35.9 40.2 44.0 56.2 46.6

10k 30.6 16.8 50.2 63.7 79.3 37.3 40.1 43.8 53.1 46.1

39

Programmming Every Example: Lifting Pre-training Data Quality like Experts at Scale

Table 29: Full evaluation results of CODELLAMA-7B continual pre-training on OpenWebMath with raw data. Note that
about 1B tokens are trained per 250 steps.

Train
Steps GSM8K MATH SVAMP ASDiv MAWPS TAB MQA MMLU

STEM
SAT

MATH AVG

0 11.8 5.0 44.2 50.7 62.6 30.6 14.3 20.4 21.9 29.1

250 16.7 8.2 45.2 52.2 65.3 33.9 16.0 28.8 43.8 34.5
500 18.3 7.8 43.1 53.9 69.0 29.3 15.3 22.5 37.5 33.0
750 20.2 8.0 45.2 54.2 71.9 29.9 17.1 31.2 37.5 35.0

1000 24.7 9.8 40.6 58.6 72.7 29.3 20.7 31.9 34.4 35.9
1250 24.3 10.4 44.0 57.5 74.8 29.2 21.4 36.1 50.0 38.6
1500 26.2 13.2 48.4 58.8 75.4 29.4 28.1 34.9 50.0 40.5
1750 25.5 11.8 49.1 58.7 76.6 32.4 26.7 37.3 43.8 40.2
2000 28.0 13.6 46.3 61.7 80.0 33.8 29.4 37.2 50.0 42.2
2250 27.7 13.6 48.9 62.2 80.3 32.5 28.9 39.1 59.4 43.6
2500 31.1 14.8 51.4 62.1 81.2 33.6 30.4 40.5 43.8 43.2

Table 30: Full evaluation results of CODELLAMA continual pre-training on OpenWebMath with PROX-D. Note that about
1B tokens are trained per 250 steps.

Train
Steps GSM8K MATH SVAMP ASDiv MAWPS TAB MQA MMLU

STEM
SAT

MATH AVG

0 11.8 5.0 44.2 50.7 62.6 30.6 14.3 20.4 21.9 29.1

250 21.1 9.2 48.7 56.1 71.3 33.4 22.2 34.1 50.0 38.5
500 23.7 11.6 49.8 57.4 74.7 32.9 28.5 35.8 59.4 41.5
750 25.1 15.4 48.1 58.9 78.8 36.8 29.4 37.6 53.1 42.6

1000 28.4 14.2 50.9 61.2 79.8 36.7 27.7 37.6 50.0 42.9
1250 33.0 15.2 49.3 62.9 81.1 33.4 32.8 41.0 46.9 44.0
1500 36.0 15.0 54.2 65.0 81.0 39.3 34.1 42.0 62.5 47.7
1750 34.7 14.6 53.1 63.6 83.3 40.6 35.9 43.4 62.5 48.0
2000 35.7 17.6 53.3 65.4 83.5 42.4 37.1 42.4 56.2 48.2
2250 37.2 18.8 54.5 65.4 83.2 41.9 41.0 44.9 71.9 51.0
2500 38.1 17.0 54.2 67.0 83.1 40.9 39.8 43.7 50.0 48.2

40

Programmming Every Example: Lifting Pre-training Data Quality like Experts at Scale

Table 31: Full evaluation results of CODELLAMA continual pre-training on OpenWebMath with PROX-D+C. Note that
about 1B tokens are trained per 250 steps.

Train
Steps GSM8K MATH SVAMP ASDiv MAWPS TAB MQA MMLU

STEM
SAT

MATH AVG

0 11.8 5.0 44.2 50.7 62.6 30.6 14.3 20.4 21.9 29.1

250 18.1 10.2 46.0 54.5 71.9 33.0 21.3 34.4 50.0 37.7
500 22.4 10.0 50.3 59.7 76.4 31.3 26.1 36.0 59.4 41.3
750 26.8 11.4 51.2 61.0 78.5 34.9 26.4 38.0 53.1 42.4

1000 29.0 14.4 54.1 62.8 80.1 36.9 34.2 40.4 62.5 46.0
1250 31.4 15.0 51.7 63.8 81.1 37.2 32.5 41.4 75.0 47.7
1500 31.5 17.4 53.4 64.4 80.7 39.6 35.4 41.6 71.9 48.4
1750 33.7 15.2 50.6 64.3 81.5 39.2 36.1 40.5 53.1 46.0
2000 36.2 16.0 54.7 65.1 83.1 39.9 39.1 43.4 71.9 49.9
2250 37.1 16.6 55.3 65.6 82.4 41.3 36.5 42.7 75.0 50.3
2500 35.6 17.6 55.8 67.9 82.7 41.3 38.9 42.6 62.5 49.4

Table 32: Full evaluation results of MISTRAL-7B continual pre-training on OpenWebMath with raw data. Note that about
1B tokens are trained per 1000 steps.

Train
Steps GSM8K MATH SVAMP ASDiv MAWPS TAB MQA MMLU

STEM
SAT

MATH AVG

0 40.6 11.4 65.4 68.5 87.0 52.9 32.3 50.0 56.2 51.6

1k 31.6 12.0 56.5 66.0 80.1 43.9 27.1 45.1 56.2 46.5
2k 32.4 10.8 54.7 63.5 82.6 40.8 31.6 45.7 59.4 46.8
3k 33.6 14.8 60.4 64.7 84.5 43.5 33.1 47.2 68.8 50.1
4k 35.1 14.8 58.7 65.2 84.4 41.2 38.5 47.3 62.5 49.7
5k 33.4 16.0 59.3 65.0 83.8 46.7 34.6 49.1 62.5 50.0
6k 38.7 16.6 61.5 68.1 86.1 47.4 35.3 48.5 37.5 48.9
7k 39.6 17.2 60.5 68.2 86.2 44.4 38.5 49.3 53.1 50.8
8k 44.0 16.4 64.5 69.8 88.7 45.5 41.3 50.6 59.4 53.4
9k 43.9 19.4 63.7 69.7 87.6 44.9 42.9 51.0 62.5 54.0

10k 44.4 19.2 65.2 69.6 88.4 46.6 43.1 50.8 65.6 54.8

41

Programmming Every Example: Lifting Pre-training Data Quality like Experts at Scale

Table 33: Full evaluation results of MISTRAL-7B continual pre-training on OpenWebMath with PROX-D. Note that about
1B tokens are trained per 1000 steps.

Train
Steps GSM8K MATH SVAMP ASDiv MAWPS TAB MQA MMLU

STEM
SAT

MATH AVG

0 40.6 11.4 65.4 68.5 87.0 52.9 32.3 50.0 56.2 51.6

1k 36.8 14.6 57.2 66.1 83.1 45.7 32.6 47.7 59.4 49.2
2k 38.5 17.0 57.9 69.0 86.3 44.7 33.6 49.2 56.2 50.3
3k 40.0 19.0 59.3 68.7 87.0 46.8 41.0 48.0 68.8 53.2
4k 38.5 20.4 59.3 66.2 85.1 42.6 42.8 49.5 68.8 52.6
5k 42.5 20.2 63.0 70.5 86.6 47.2 43.4 49.8 62.5 54.0
6k 46.8 17.8 62.5 72.7 88.2 51.2 47.7 51.3 56.2 54.9
7k 47.5 22.4 64.1 71.8 89.1 51.4 47.9 52.4 65.6 56.9
8k 44.6 23.8 63.2 70.8 87.7 47.6 49.1 54.1 65.6 56.3
9k 46.6 24.6 61.6 72.3 86.4 46.9 49.8 53.2 65.6 56.3

10k 46.7 22.6 63.5 72.4 88.9 48.3 48.2 54.1 62.5 56.4

Table 34: Full evaluation results of Mistral-7B continual pre-training on OpenWebMath with PROX-D+C. Note that about
1B tokens are trained per 1000 steps.

Train
Steps GSM8K MATH SVAMP ASDiv MAWPS TAB MQA MMLU

STEM
SAT

MATH AVG

0 40.6 11.4 65.4 68.5 87.0 52.9 32.3 50.0 56.2 51.6

1k 30.9 16.0 60.1 64.5 85.3 40.8 33.9 48.0 59.4 48.8
2k 40.3 17.6 63.0 66.3 86.2 48.0 33.9 48.7 53.1 50.8
3k 42.4 17.8 59.6 69.1 85.7 50.1 38.5 49.9 59.4 52.5
4k 43.8 20.4 63.7 69.3 88.2 46.2 46.3 50.9 65.6 54.9
5k 42.5 18.4 59.3 69.6 87.9 44.3 46.1 51.9 65.6 54.0
6k 47.7 21.8 62.7 71.7 89.2 47.9 48.4 54.0 68.8 56.9
7k 46.8 21.6 62.9 72.1 88.4 50.1 46.4 52.5 68.8 56.6
8k 48.4 21.6 65.0 72.7 89.2 51.1 49.4 52.9 65.6 57.3
9k 48.5 24.8 64.4 72.6 88.3 50.7 48.1 53.4 62.5 57.0

10k 51.0 22.4 64.9 72.9 89.2 49.8 53.0 54.2 75.0 59.2

42

Programmming Every Example: Lifting Pre-training Data Quality like Experts at Scale

F. Analysis

F.1. Token Length Distribution

Table 35: Average length of token per document for different refining methods.

Methods General Domain Math Domain

N/A 1217.5 1815.8
Rule 1329.4 1955.6
PROX (ours) 2004.8 1734.9

As previously discussed in §4, our analysis reveals a notable document length distribution shift in the data refined by PROX,
specifically a significant increase in the average token length (from 1217.5 to 2004.8 tokens per document). When further
compared to the rule-based method (we compare to FineWeb rules), we only observe a marginal increase in token length
within the general domain (from 1217.5 to 1329.4 tokens).

Interestingly, in the math domain, we observe an opposite trend. The raw data shows an average token length of 1815.8,
which our method reduces to 1734.9, while the rule-based method increases it to 1955.6. And the training performance
in Table 5 follows the order: PROX > original > rule-based method for TINYLLAMA-1.1B. This again implies that
mathematical documents used for pre-training exhibit significant differences in distribution and characteristics compared to
those in the general domain.

F.2. Case Studies

We provide several cases to qualitatively illustrate the refinement effect of PROX, as shown in Tables 36-37. For the
general domain, using RedPajama-V2 as an example, we observe that PROX can drop low-information documents, remove
meaningless content such as navigation bars, and replace URL links (see Table 36). In the mathematics domain, PROX
demonstrates the ability to eliminate documents with minimal relevance to mathematical reasoning and remove less important
elements like functional buttons (see Table 37). These refinements enhance the quality and relevance of the processed data
across different domains.

F.3. Error Analysis

As shown in Table 38, the failure ratio across both refining stages (document-level and chunk-level) and domains (General
and Math) is remarkably low (< 0.5%). This demonstrates that ProX’s refining tasks are well-suited for small models.
Specifically, for the General domain, failure ratios are 0.04% for document-level and 0.36% for chunk-level refining, with
an average of 3.7 function calls per program in the chunk-level stage. For the Math domain, these ratios are 0.06% and
0.11%, respectively, with an average complexity of 2.7 function calls at the chunk-level stage.

Despite the low failure rates, we observed two prevalent failure cases in ProX’s programs:

1. Repeated output or empty output: This occurs when a program inadvertently generates duplicate outputs or fails to
produce any meaningful results. Such failures are typically linked to improper loop conditions or insufficient constraints
in processing logic.

2. Non-existent target removal: In some cases, ProX’s programs attempt to remove a string or line that does not exist in
the input data. This leads to incomplete execution or errors in the program output, particularly in datasets with irregular
formats or unexpected variations.

As shown in Table 39, we present two failure cases to illustrate instances of repeated output and non-existent target strings.

43

Programmming Every Example: Lifting Pre-training Data Quality like Experts at Scale

Table 36: Cases from RedPajama-V2 after applying PROX. Text in red indicates content to be removed or replaced. “...”
denotes omitted content due to limited space.

Case 1

TagCollegeEducationJournalismWar

: Michael Lewis

ContributorMichael Lewis

Michael Lewis is possibly the most entertaining nonfiction writer alive. If that’s not true it’s at least close to true.
Liar’s Poker, Moneyball, The Blind Side, his NYT article about Jonathan Lebed (Google it): what’s not to love?

504: How I Got Into College

Act Two: My Ames is True

Writer Michael Lewis tells the story of a man named Emir Kamenica, whose path to college started with fleeing the
war in Bosnia and becoming a refugee in the United States. Then he had a stroke of luck: a student teacher read an
essay he’d plagiarized from a book he’d stolen from a library back in Bosnia, and was so impressed that she got him
out of a bad high school and into a much better one.

Act Three

Michael Lewis’ story continues, and he figures out why Emir Kamenica insists on remembering, and telling, the story
of his life the way he does — even when he finds out that some of the facts may be wrong.

Output by PROX:
drop doc()

Case 2

Home ¿ Staff ¿ Staff search ¿ Dr Tim Overton
Dr Tim Overton BSc PhD
School of Chemical EngineeringSenior Lecturer
Telephone (+44) (0) 121 414 5306Emailt.w.overton@bham.ac.uk
AddressSchool of Chemical EngineeringUniversity of Birmingham
B15 2TT
Dr Tim Overton is a biochemist and molecular microbiologist who is interested in applying molecular biology and single-
cell techniques to understand and develop bioprocesses. He is active in microbial flow cytometry research and collaborates
widely with bioprocess engineers, molecular microbiologists, cell biologists and environmental microbiologists to develop
new methods of answering fundamental questions on a single-cell level.
His research also focuses on using bacteria to make useful products such as protein drugs and small molecules, and the
bacterial responses to stress encountered in such processes. Current and recent research funding has come from the
BBSRC, TSB and EU FP7. He is the director of the MSc in Biochemical Engineering. Pages: 1 3 4

...

Google scholar: http://scholar.google.co.uk/citations?user=tF eBKEAAAAJ
...

Output by PROX:
keep doc()
remove lines(line start=0, line end=5)
normalize(source str="http://scholar.google.co.uk/citations?user",
target str="")
normalize(source str="Pages: 1 3 4", target str="")
...

44

Programmming Every Example: Lifting Pre-training Data Quality like Experts at Scale

Table 37: Cases from OpenWebMath after applying PROX. Text in red indicates content to be removed or replaced. “...”
denotes omitted content due to limited space.

Case 1

unhybridized pi bonds

sp, sp2, sp3, dsp3, d2sp3

Tatiana 4B

Posts: 30

Joined: Fri Sep 28, 2018 12:28 am

unhybridized pi bonds

...

Re: unhybridized pi bonds

I am not too sure in my knowledge about this, but I think that both have hybridized orbitals. Since hybridization is
defined as the phenomenon of intermixing of the orbitals such as sp, sigma and pi bonds are just different types of
covalent bonds formed depending on the way the atomic orbitals hybridize with each other. Sigma bonds are a result
of when the overlap of orbitals of two atoms takes place along the line joining the two orbitals, while pi bonds are
when two atoms overlap due to the sideways overlap of their ’p’ orbitals.

Hannah Yates 1K

Posts: 59

Joined: Fri Sep 28, 2018 12:27 am

Re: unhybridized pi bonds

I am also not too sure on my answer, but I am pretty sure that a sigma bond has just hybridized orbitals, but the reason
a pi bond can form is because of an extra (not hybridized) p orbital. This allows for a double and triple bond to form.

Output by PROX:
drop doc()

Case 2

Solution - Trigonometric Identities

Account
Register

Share

Books Shortlist
ConceptTrigonometric Identities

Question

Prove the following trigonometric identities:

(i) sin θ
1−cos θ

= cosecθ + cot θ
Solution

You need to to view the solution
Is there an error in this question or solution?

Reference Material

Solution for concept: Trigonometric Identities. For the course CBSE
S

Output by PROX:
keep doc()
remove lines(line start=0, line end=7)
remove lines(line start=18, line end=24)

45

Programmming Every Example: Lifting Pre-training Data Quality like Experts at Scale

Table 38: Failure ratio and average complexity (function calls) for ProX refining stages across domains.

Domain Failure Ratio (doc-level) Failure Ratio (chunk-level) Complexity (AVG. function calls)

General Domain 0.04% 0.36% 3.7
Math Domain 0.06% 0.11% 2.7

Table 39: Failure cases from RedPajama-V2 during applying PROX. “...” denotes omitted content due to limited space.
The notation like [004] is used to indicate the line number.

Case 1: Repeated output (or Empty output)

...

[004] P: 114 1. The problem statement, all variables and given/known data Mercury is poured into a U-tube as in
Figure P15.18a....Basically I don’t understand why you would know to set the two volumes equal to each other? How
do you know the volumes are the same?

...

[007] Related Discussions Mechanical Engineering 6 Introductory Physics Homework 0 General Engineering 1
Introductory Physics Homework 2 Introductory Physics Homework 2

Output by PROX:
remove lines(start=1, end=1)
remove lines(start=6, end=6)
remove lines(start=7, end=7)
remove lines(start=7, end=7)
remove lines(start=7, end=7)
remove lines(start=7, end

Case 2: Non-existent target string

...

[195] 18. Sathyamoorthi, C. R., Mbekomize, C., Mapharing, M., & Selinkie, P. (2018). The Impact of Corporate
Governance on Working Capital Management Efficiency: Evidence from the Listed Companies in the Consumer Services
Sector in Botswana. International Journal of Economics and Finance, 10, 135. https://doi.org/10.5539/ijef.v10n12p135

[196] 19. Vu, T. M. T., Tran, C. Q., Doan, D. T., & Le, T. N. (2020). Determinants of Capi-
tal Structure: The Case in Vietnam. Journal of Asian Finance, Economics, And Business, 7(9), 159-168.
https://doi.org/10.13106/jafeb.2020.vol7.no9.159

...

Output by PROX:
Analysis: this ‘source str‘ can not be found in the original text
normalize(source str="https://doi.org/10.13106/jafeb.2020.vol6.no2.53",
target str="")

46

Programmming Every Example: Lifting Pre-training Data Quality like Experts at Scale

F.4. Computing Overhead Analysis

According to Kaplan et al. (2020), both training and inference computational FLOPs for Transformer-based Language
Models (denoted as Ctrain and Cinference) can be approximated as the product of model parameters (non-embedding parameter)
N and the number of tokens D. This can be expressed as:

Ctrain ≈ 6 ·NDtrain, (9)

Cinference ≈ 2 ·N (Dprefill +Ddecode) . (10)

In PROX, we go through two data refining stages before final training, which incurs additional inference-time computational
FLOPs. Suppose the refining model parameter for each stage is denoted as Nrefine, and the raw data size in tokens is Draw.

For the first document-level stage, the computational cost can be approximated as:

Cdoc ≈ 2 ·Nrefine (Draw +Doutput) ≈ 2 ·NrefineDraw, (suppose Doutput ≪ Draw) (11)

resulting in a new pool of data sized Ddoc.

Similarly, for the second chunk-level stage, the computational cost is:

Cchunk ≈ 2 ·Nr (Ddoc +Doutput) ≈ 2 ·NrDdoc, (suppose Doutput ≪ Ddoc) (12)

which produces the final refined data size of DProX.

Thus, the total computational overhead for PROX can be calculated as the sum of the two stages:

CPROX = Cdoc + Cchunk ≈ 2 ·Ndoc refineDraw + 2 ·Nchunk refineDdoc. (13)

In general, we use refining models with the same sizes, so the final inference overhead can be estimated as

CPROX ≈ 2 ·Nrefine(Draw +Ddoc). (14)

Additionally, we omit the FLOPs for fine-tuning since they are negligible compared to the large-scale pre-training and
inference FLOPs.

47

