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Abstract

With the recent advances of deep reinforcement learning techniques, nowadays in
control systems, neural networks are widely adopted as control policies. However,
new concerns about whether the temporal behaviors of neural network-controlled
systems (NNCSs) are consistent with user-defined specifications are caused when
NNCSs are deployed in the real world. In this work, we consider formal verifica-
tion of temporal properties including linear temporal logic (LTL) and more gener-
ally, ω-regular properties in NNCSs, which leverages proof certificates whose ex-
istence can certify that NNCSs satisfy the properties. Concretely, given an NNCS
and an ω-regular property, (i) we formally verify the satisfaction of the property;
(ii) when the NNCS operates in a noisy environment and becomes stochastic, we
verify whether the NNCS satisfies the property almost surely (i.e., with proba-
bility 1), both of which are achieved via closure certificates that are real-valued
functions over pairs of states of NNCSs. We build our approaches into a pro-
totype and showcase its efficacy on several popular benchmarks. Further results
about quantitative verification in stochastic NNCSs are also outlined in this work.

1 Introduction

The recent advances in deep reinforcement learning (DRL) and neural networks (NNs) have revolu-
tionized the capability in handling complex tasks where human-level intelligence is required. As a
consequence, NNs are widely adopted as control policies in control systems, including autonomous
vehicles (Lin et al., 2018), robotics (Xu et al., 2018), racing drones (Kaufmann et al., 2023), etc.
While this facilitates the application of control systems, new concerns are caused when such neural
network-controlled systems (NNCSs) are deployed in the real world, especially in safety-critical do-
mains, e.g., aircraft collision avoidance systems (Julian et al., 2016). The reasons are that: (i) DRL
techniques like reward-objective optimization lack formal guarantees for infinite-horizon behaviors
of systems (König et al., 2024); (ii) NNs can be perturbed by environmental noises, adversarial at-
tacks, etc, and thus make incorrect decisions (Wu et al., 2024), both of which can result in damages
and loss. Therefore, it is non-trivial to formally ensure that the temporal behaviors of NNCSs are
(highly) consistent with the user-defined specifications.

Previous work considers formal verification of temporal properties like reachability, safety, and
reach-avoidance in dynamical systems (Xue et al., 2021; Zikelic et al., 2023; Ansaripour et al.,
2023; Zikelic et al., 2024; Neustroev et al., 2024). However, specifications of correctness for com-
plex systems contain complex temporal behaviors, which can be described using linear temporal
logic (LTL) (Pnueli, 1977) and more generally, ω-regular languages (Thomas, 1990). As shown
below, formal verification of LTL and ω-regular properties for NNCSs is highly challenging. First,
these properties specify temporal behaviors over infinite system trajectories (Baier & Katoen, 2008),
and verifying such infinite-horizon properties becomes especially difficult once the NNCS is subject
to environmental noise, which introduces stochastic behaviors. Second, control policies in NNCSs
are typically implemented by neural networks, which are complex and opaque decision-making
models (Samek et al., 2021). Finally, the problem is further compounded by the continuous, po-
tentially infinite state space and the non-linear dynamics characteristic of NNCSs, which together
create significant barriers to conventional verification methods.

∗An extended version of this work has been submitted to CAV 2025.
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In this work, we consider formal verification of LTL and ω-regular properties in NNCSs via proof
certificates which, as abstraction-free approaches, have been popular in verification and static anal-
ysis (Chakarov & Sankaranarayanan, 2013; Chatterjee et al., 2016; 2024b;a). (Murali et al., 2024)
present a kind of proof certificates named closure certificates (CCs) for persistence, which are real-
valued functions over pairs of states of dynamical systems and can be used to prove a system against
ω-regualr properties. Inspired by it, we propose CCs for recurrence, which can directly prove a sys-
tem satisfying (part of) ω-regular properties and thus complements CCs for persistence. Combined
with the two CCs, we further propose CCs for persistence and recurrence, which can prove general
ω-regular properties represented by deterministic Rabin automata (DRAs). Based on our new CCs,
we formally verify the satisfaction of an ω-regular property in both deterministic and stochastic
NNCSs. Note that at least two (deterministic) ω-automata are needed to generate before using CCs
for persistence (see Section 4.1), hence our CCs for recurrence relieve this by requiring only one
deterministic ω-automaton. Moreover, CCs for persistence are restricted to the Büchi acceptance
condition which is not suitable to represent ω-regular properties in stochastic processes due to the
non-determinism (Vardi, 1991; Cook et al., 2007), so our CCs for persistence and recurrence fill this
gap when considering stochastic NNCSs. We use NNs to represent our proof certificates due to the
powerful expressivity of NNs, and synthesize them by a counter-example guided inductive synthesis
(CEGIS) approach whose correctness is also formally proved. We implement our approaches into a
prototype named Veri-ω and showcase its efficacy on several popular benchmarks. Further results
about quantitative verification in stochastic NNCSs (i.e., computing lower and upper bounds on the
satisfaction probabilities of ω-regular properties) are outlined due to the page limit.

2 RelatedWork
Temporal Logic Verification via Proof Certificates. To prove a discrete-time system against ω-
regular properties, (Wongpiromsarn et al., 2015) propose a conservative state-triplet approach to
find barrier certificates (Prajna et al., 2007) between edges of the automaton to disallow the system
from visiting an accepting state, while (Murali et al., 2024) present CCs for persistence that establish
disjunctively well-founded transition invariants of systems (Podelski & Rybalchenko, 2004). (Abate
et al., 2024) propose Streett supermartingales to qualitatively verify ω-regular properties of discrete-
time dynamical systems. There is also a variety of work w.r.t. verification of specific temporal
properties like reachability, safety and avoidance (Xue et al., 2021; Zikelic et al., 2023; Ansaripour
et al., 2023; Zikelic et al., 2024; Neustroev et al., 2024).

Formal Verification of Neural Network-Controlled Systems. (Schilling et al., 2022) study the
verification problem for closed-loop NNCSs and propose a reachability algorithm based on set rep-
resentations. (Mandal et al., 2024) present methods for verifying safety and liveness properties for
DRL systems using k-induction, and neural Lyapunov barrier certificates. (Zhi et al., 2024b) give a
unified framework for both qualitative and quantitative safety verification of DNN-controlled sys-
tems via barrier certificates. (Gracia et al., 2024) consider LTL f verification in stochastic systems,
which reduces the problem into learning an uncertain Markov decision process (UMDP).

Safe Deep Reinforcement Learning. DRL techniques combined with LTL goals are proposed to
shape reward functions to synthesize safe policies satisfying the LTL specifications with maximal
probabilities (Yuan et al., 2019; Hasanbeig et al., 2020; 2023). There is recent work (Zhu et al., 2019;
Wang & Zhu, 2023) about the combination of verification-based RL methods and programming
reasoning techniques, which produces formally verified controllers. Shield learning in RL (Alshiekh
et al., 2018; Carr et al., 2023) and LTL modulo theories (Rodriguez et al., 2024) allows generating
shields conforming to complex safety specifications in expressive logic.

3 Preliminaries

We denote by N, Z and R the sets of all natural numbers, integers, and real numbers, respectively.

3.1 Neural Network-controlled Systems

We consider neural network-controlled systems (NNCSs) (Saerens & Soquet, 1991) where the con-
trol policies are implemented by neural networks that are trained for specific tasks. Formally, an
NNCS can be modeled as a tuple M = (S , S 0, A, π, f ,R), where S ⊆ Rm is the set of (possibly
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continuous and infinite) system states, S 0 ⊆ S is the set of initial states, A is the set of actions,
π : S → A is the trained policy implemented by a neural network, f : S × A → S is the system
dynamics, and R : S × A × S → R is the reward function. A trained NNCS M = (S , S 0, A, π, f ,R)
is a decision-making system that continuously interacts with the environment. At each time step
t ∈ N0, it observes a state st and feeds st into the associated neural network to compute the optimal
action at = π(st) that shall be taken. Action at is then performed, transitioning st to the successor
state st+1 = f (st, at) via the system dynamics f and earning a reward rt+1 = R(st, at, st+1).

Stochastic NNCSs & Trajectories. Since NNCSs typically operate in an open and noisy environ-
ment (Cheng et al., 2019; Zhang et al., 2020), there is some randomness in their system dynamics.
The uncertainty is captured by a global update function g : S × A ×W → S such that the successor
state is st+1 = g(st, at,wt) where wt ∈ W is a stochastic disturbance that follows a predefined prob-
ability distribution, i.e., wt ∼ µ and the support of µ is W = supp (µ). We denote such a stochastic
NNCS by Mµ = (S , S 0, A, π, f ,R,W, g).1 A sequence ζ = {st}t∈N0 of states is called a trajectory of
an NNCS, if for every t ∈ N0 we have at = π(st), wt ∈ W, and st+1 = g(st, at,wt).

Probability Space. Given an initial state s0 ∈ S 0, the stochastic NNCS Mµ induces a Markov
process which gives rise to the probability space (Ωs0 ,Fs0 ,Ps0 ) over the set of all trajectories that start
from s0. That is, Ωs0 is the set of all trajectories starting from s0 by the environmental interaction,
Fs0 is a σ-algebra over Ωs0 and Ps0 : Fs0 → [0, 1] is a probability measure on Fs0 .

Assumptions. We assume that the state space S is compact in the Euclidean topology of Rm, its
system dynamics f (and thus global update function g) and trained policy π are Lipschitz continuous.
We further assume that the system has forward invariance (Xue et al., 2021), i.e., all the states fall
into the state space. These assumptions are common in control theory (Ames et al., 2019; Zikelic
et al., 2023). Moreover, we require that the noise distribution µ either has bounded support or be a
product of independent univariate distributions (Ansaripour et al., 2023; Zhi et al., 2024a).

3.2 Temporal Properties

ω-regular Properties. ω-regular properties (Thomas, 1990) provide a mathematically rich frame-
work that encompasses LTL (see details of LTL in Appendix B) and can specify more complex be-
haviors that LTL cannot express. Typically, ω-regular properties are represented using ω-automata
which are defined as sets of infinite words (languages) satisfying particular acceptance conditions.
Below we introduce several ω-automata that can recognize ω-regular languages.

NBAs. A nondeterministic Büchi automaton (NBA) is a tupleA = (Q, q0,Σ, δ,Acc), consisting of a
finite set Q of states, the initial state q0 ∈ Q,2 a finite alphabet Σ, the transition relation δ : Q × Σ→
2Q, and the finite set Acc ⊆ Q of accepting states.

Given an NBA A = (Q, q0,Σ, δ,Acc), a word of A, σ = (σ0, σ1, . . . ) ∈ Σω, is an infinite sequence
of letters. A run on a word σ, ρ = (q0, q1, . . . ) ∈ Qω, is an infinite sequence of states such that
qi+1 ∈ δ(qi, σi) for all i ∈ N0. Let Inf(ρ) be the set of states in ρ that are visited infinitely often. A
run ρ is accepting if Inf(ρ) ∩ Acc , ∅. A word σ is accepted byA if there exists an accepting run ρ
on the word σ. The language ofA, denoted by L(A), is the set of all words accepted byA.

DRAs. A deterministic Rabin Automaton (DRA) is a tupleA = (Q, q0,Σ, δ,Acc) where Q, q0,Σ are
the same as those in NBAs, δ : Q × Σ → Q is the transition relation, and Acc = {(Ei, Fi) | Ei, Fi ⊆

Q, Ei ∩ Fi = ∅, 1 ≤ i ≤ n} is the acceptance condition such that a run ρ = (q0, q1, . . . ) on a word
σ = (σ1, σ1, . . . ) is accepting iff for some i ∈ [1, n], Inf(ρ) ∩ Ei = ∅ and Inf(ρ) ∩ Fi , ∅.

Note that sets Ei’s shall be finitely often visited (FOV), which refers to persistence, while sets Fi’s
shall be infinitely often visited (IOV), which is related to recurrence. We assume that Ei ∩Fi = ∅, as
it is straightforward to see (from first principles) that given a Rabin automaton with the acceptance
condition {(Ei, Fi) | i ∈ [1, n]}, there is an equivalent Rabin automaton with the acceptance condition
{(E−i , F

−
i ) | i ∈ [1, n]} where E−i and F−i are disjoint for each i ∈ [1, n] (Casares et al., 2022).

1When there is no noise, i.e., W = ∅, Mµ is reduced to M and functions g = f .
2One can always convert an NBA with a set of initial states to an NBA with a single initial state.
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3.3 Problem Statement

Given an NNCS M = (S , S 0, A, π, f ,R) and a finite set Π = {p0, p1, . . . , pN} of atomic propositions
where for each pi ∈ Π, ⟦pi⟧ ⊆ S denotes a subset of states of M that satisfy pi. Define a labeling
function L : S → 2Π such that for any trajectory ζ = {st}t∈N0 of M, there is a corresponding word σ =
(L(s0), L(s1), . . . ) where each L(st) ∈ 2Π. Let Words(M) be the set of all words induced by M. Any
LTL or ω-regular property φ over Π can be translated into an ω-automaton Aφ = (Q, q0, 2Π, δ,Acc)
that accepts the same language of φ, i.e., L(φ) = L(Aφ) (Duret-Lutz et al., 2022). Note that M |= φ
iff Words(M) ⊆ L(φ). Our problem has two parts as follows.

Problem Statement. Part I: Does M satisfy φ, i.e., M |= φ? Part II: In case the environment is
noisy, does the stochastic NNCS Mµ = (S , S 0, A, π, f ,R,W, g) satisfy φ almost surely?

4 Proof Certificates & Automata-basedMethods

In this section, we present proof certificates and automata-based methods for the verification of LTL
and ω-regular properties in NNCSs. We first introduce two types of subsets that are used throughout
the work, which match sets Ei, Fi’s in the Rabin acceptance condition (Section 3.2). Below we fix
an NNCS M = (S , S 0, A, π, f ,R).

Definition 1 (FOV and IOV Sets). A subset S FOV ⊆ S is an FOV-set (or simply FOV) just if elements
of S FOV must occur only finitely often in any M-trajectory, i.e., ∀ζ . Inf(ζ) ∩ S FOV = ∅. A subset
S IOV ⊆ S is an IOV-set (or simply IOV) just if for every M-trajectory ζ, some element of S IOV must
occur infinitely often in ζ, i.e., ∀ζ . Inf(ζ) ∩ S IOV , ∅.

4.1 Theoretical Results of Closure Certificates

Definition 2 (Closure Certificates for Persistence). A bounded function T : S × S → R is a persis-
tence closure certificate for a set S FOV ⊆ S if there exists a constant ϵ > 0 such that for all states
x, y ∈ S with x′ = f (x, π(x)), and all states x0 ∈ S 0, y′, y′′ ∈ S FOV, the following conditions hold:

T (x, x′) ≥ 0 (1)
T (x′, y) ≥ 0⇒ T (x, y) ≥ 0 (2)
(T (x0, y′) ≥ 0 ∧ T (y′, y′′) ≥ 0)⇒ T (x0, y′′) ≤ T (x0, y′) − ϵ (3)

Theorem 1 ((Murali et al., 2024)). The existence of a persistence closure certificate in Definition 2
implies that the system M visits the set S FOV finitely often.

Intuition. Condition (1) and Condition (2) tell us that the non-negative-valued part of T restricts to a
transitive closure over the reachable states. Condition (3) requires that for every initial state x0 ∈ S 0
and states y′, y′′ in S FOV, if the system can reach from y′ to y′′, then T (x0, y′′) is less than T (x0, y′)
by a certain amount. Therefore, if a trajectory of M visits S FOV infinitely often, the boundedness of
T will be broken, which contradicts the fact.

Note that Theorem 1 only verifies the persistence of a system, i.e., a system visits a given set of states
finitely often. To use it to verify that a system M satisfies an ω-regular property φ represented by an
NBA Aφ, one needs to (i) first construct an intermediate DRA Dφ via Safra’s construction (Kozen,
2006) from Aφ, flip Dφ to get another DRA D¬φ and translate D¬φ to A¬φ, and (ii) then prove
M ̸|= ¬φ by showing that no trajectory is accepted by A¬φ via a persistence CC (see (Murali et al.,
2024)). As the above automata construction is costly (i.e., the worst-case complexity is 2O(aloga)

where a is the number of states ofAφ) and unavoidable (i.e., Büchi automata are not determinizable
(Thomas, 1990), so in general, given an NBA, there is not an equivalent deterministic Büchi au-
tomaton (DBA)3), a natural question arises: can we directly verify the acceptance of Dφ holds in a
system M? Recall the Rabin acceptance condition (Section 3.2), one of the pairs conditions refers to
recurrence, which cannot be proved by persistence CCs. To complement this, we propose the notion
of closure certificates for recurrence, which can be leveraged to verify the recurrence of a system.

3One can construct the complement NBA directly by the negation LTL ¬φ. However, without the loss of
generality, this does not hold for complex properties that can only be represented by ω-automata.
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Table 1: The recurrence closure certificate for Cartpole (Definition 3).

Formula Input Output
Condition (4) - T (x, x′) (3.75, -0.65, -0.42, -1.73, 3.74, -0.84, -0.45, -1.59) 0.2398
Condition (4) - T (x, x′) (0.96, -1.55, 0.32, 0.70, 0.93, -1.36, 0.33, 0.52) 0.0648
Condition (5) - T (x, y) (0.76, -0.63, 0.01, 1.39, 0.69, 0.16, 0.24, 1.69) 0.0433
Condition (5) - T (x′, y) (0.78, -0.83, -0.02, 1.69, 0.69, 0.16, 0.24, 1.69) 0.058
Condition (6) - T (x0, z) (-0.05, 0.04, 0.01, 0.04, 2.94, 0.43, 0.33, 0.70) -0.0094
Condition (6) - T (x0, z′) (-0.05, -0.05, -0.01, 0.04, -2.73, 1.78, 0.25, -0.38) -0.0041

Definition 3 (Closure Certificates for Recurrence). A bounded function T : S × S → R is a recur-
rence closure certificate for a set S IOV ⊆ S if there is a constant ϵ > 0 such that for all states x, y ∈ S
with x′ = f (x, π(x)), x0 ∈ S 0, z ∈ S \ S IOV with z′ = f (z, π(z)), the following conditions hold:

T (x, x′) ≥ 0 (4)
T (x′, y) ≥ 0⇒ T (x, y) ≥ 0 (5)
T (x0, z) ≥ 0⇒ T (x0, z′) ≥ T (x0, z) + ϵ (6)

Theorem 2. The existence of a recurrence closure certificate in Definition 3 implies that the system
M visits the set S IOV infinitely often.

Intuition. The first two conditions in Definition 3 establish a transitive closure over the reachable
states. Condition (6) requires that for every initial state x0 ∈ S 0 and state z outside the set S IOV, if z
is reachable from x0 and z′ is the successor state from z, then T (x0, z′) is greater than T (x0, z) by a
certain amount. We can prove Theorem 2 by contradiction: if a trajectory of M stays outside S IOV
forever, then the boundedness of T will be violated.
Example 1. Consider a classic RL task named Cartpole (Brockman et al., 2016). A pole is attached
by an un-actuated joint to a cart. The goal of training is to learn a controller that prevents the pole
from falling over by applying a force of +1 or -1 to the cart. The state space S = (S 1, S 2, S 3, S 4)
consists of four continuous dimensions where S 1 = [−4.8, 4.8] represents the cart position, S 2 =
[−3, 3] means the cart velocity, S 3 = [−0.42, 0.42] denotes the pole angle, and S 4 = [−3, 3] means
the pole velocity at tip. The initial set S 0 = (S 1

0, S
2
0, S

3
0, S

4
0) where all S i

0 = [−0.05, 0.05]. To keep
the pole upright, S IOV is restricted to S 1

IOV = [−2.4, 2.4], S 3
IOV = [−0.21, 0.21]. We find a neural

recurrence CC (see Section 5) and part of it is shown in Table 1. As we can see, each row in Table 1
corresponds to the CC condition in Definition 3, e.g., T (x, x′) is non-negative, and T (x0, z) < 0 so
that the pole does not fall over.

Next, we propose a new CC to prove the existence of both persistence and recurrence, which will
show its non-triviality in proving ω-regular properties represented by DRAs.
Definition 4 (Closure Certificates for Persistence and Recurrence). A bounded function T : S ×
S → R is a closure certificate for a set S FOV ⊆ S and a set S IOV ⊆ S if there exist two constants
ϵ, ϵ′ > 0 such that for all states x, y ∈ S with x′ = f (x, π(x)), and all states x0 ∈ S 0, y′, y′′ ∈ S FOV,
z ∈ S \ (S FOV ∪ S IOV) with z′ = f (z, π(z)), the following conditions hold:

T (x, x′) ≥ 0 (7)
T (x′, y) ≥ 0⇒ T (x, y) ≥ 0 (8)
(T (x0, y′) ≥ 0 ∧ T (y′, y′′) ≥ 0)⇒ T (x0, y′′) ≤ T (x0, y′) − ϵ (9)
T (x0, z) ≥ 0⇒ T (x0, z′) ≥ T (x0, z) + ϵ′ (10)

Theorem 3. The existence of a closure certificate in Definition 4 implies that the system M visits
the set S FOV finitely often and the set S IOV infinitely often.

Intuition. It is straightforward to see that the first two conditions make the transitive closure, and the
last two conditions refer to persistence and recurrence. Theorem 3 holds via Theorems 1 and 2.

4.2 Automata-based Verification

Given an NNCS M = (S , S 0, A, π, f ,R), a stochastic NNCS Mµ = (S , S 0, A, π, f ,R,W, g) and an
DRA Aφ = (Q, q0,Σ, δ,Acc) whose acceptance condition Acc = {(Ei, Fi) | Ei, Fi ⊆ Q, Ei ∩ Fi =
∅, 1 ≤ i ≤ n}. To address our problem (see Section 3.3), we build two product systems as follows.
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Product Systems. A product system M ⊗Aφ = {Xt}t∈N0 satisfies that: (1) X0 = (s0, q0) and s0 ∈ S 0;
and (2) Xt = (st, qt) for all t ≥ 0, where Xt+1 = ( f (st, π(st)), δ(qt, L(st))). A new product system
Mµ ⊗Aφ is constructed by replacing f (st, π(st)) with g(st, π(st),wt) in M ⊗Aφ.

Recall that a Rabin acceptance condition consists of a finite set {(Ei, Fi) | i ∈ [i, n]} of Rabin pairs,
and a trajectory satisfies the acceptance condition if it satisfies one of the pairs. To establish that an
NNCS satisfies a Rabin acceptance condition, it suffices to find a CC for one of the Rabin pairs.
Theorem 4. If there is a bounded closure certificate T : S × Q × S × Q → R over M ⊗ Aφ
satisfying that for some Rabin pair (Ei, Fi), there exist two constants ϵ, ϵ′ > 0 such that for all states
x, y, y′, y′′, z ∈ S with x′ = f (x, π(x)) and z′ = f (z, π(z)), x0 ∈ S 0, qi, q j ∈ Q with q′i = δ(x, L(x)),
qk, ql ∈ Ei, and qm ∈ Q \ (Ei ∪ Fi) with q′m = δ(qm, L(z)), the following conditions hold:

T ((x, qi), (x′, q′i)) ≥ 0 (11)
T ((x′, q′i), (y, q j)) ≥ 0⇒ T ((x, qi), (y, q j)) ≥ 0 (12)
(T ((x0, q0), (y′, qk)) ≥ 0 ∧ T ((y′, qk), (y′′, ql)) ≥ 0)
⇒ T ((x0, q0), (y′′, ql)) ≤ T ((x0, q0), (y′, qk)) − ϵ (13)

T ((x0, q0), (z, qm)) ≥ 0⇒ T ((x0, q0), (z′, q′m)) ≥ T ((x0, q0), (z, qm)) + ϵ′, (14)

then we can conclude that M satisfies the ω-regular property φ.

For a stochastic NNCS Mµ, we extend Theorem 4 by considering the effect of stochastic disturbance.
Theorem 5. If there is a bounded closure certificate T : S × Q × S × Q → R over Mµ ⊗ Aφ
satisfying that for some Rabin pair (Ei, Fi), there exist two constants ϵ, ϵ′ > 0 such that for all states
x, y, y′, y′′, z ∈ S and noises w ∈ W with x′ = g(x, π(x),w) and z′ ∈ g(z, π(z),w), states x0 ∈ S 0,
qi, q j ∈ Q with q′i = δ(x, L(x)), qk, ql ∈ Ei, and qm ∈ Q \ (Ei ∪ Fi) with q′m = δ(qm, L(z)), the
following conditions hold:

T ((x, qi), (x′, q′i)) ≥ 0 (15)
T ((x′, q′i), (y, q j)) ≥ 0⇒ T ((x, qi), (y, q j)) ≥ 0 (16)
(T ((x0, q0), (y′, qk)) ≥ 0 ∧ T ((y′, qk), (y′′, ql)) ≥ 0)
⇒ T ((x0, q0), (y′′, ql)) ≤ T ((x0, q0), (y′, qk)) − ϵ (17)

T ((x0, q0), (z, qm)) ≥ 0⇒ T ((x0, q0), (z′, q′m)) ≥ T ((x0, q0), (z, qm)) + ϵ′, (18)

then we can conclude that the system Mµ satisfies the ω-regular property φ almost surely.

Omitted proofs and other automata-based verification via NBAs or DBAs are put in Appendix C.

5 Synthesis of Neural Proof Certificates

In this section, we use NNs to represent our CCs and synthesize neural closure certificates (NCCs)
by the CEGIS approach (Abate et al., 2018). We encode the validation conditions to the training
loss functions. If the loss value is zero, then the training stops and it produces a valid certificate.
Otherwise, it collects counter-examples and refines the partition of state space to construct larger
sample sets for re-training, until a valid certificate is found or timeout. For brevity, here we show
the synthesis of NCCs in Theorem 4. Other certificates can be handled in the same manner.

Training Data Construction. Since the state space S of an NNCS M can be continuous and infinite,
we partition S into finitely many cells S 1, . . . , S K via a granularity τ > 0, and for each cell S i pick
sample points si ∈ S i such that ||si − s||1 ≤ τ for any s ∈ S i. Denote the finite set of all these
sample points by S̃ . As S is compact, this can be achieved by partitioning S into hyperrectangles,
and collecting points in these hyperrectangles. Without the loss of generality, we assume that each
point in the same cell has the same label, i.e., for any S i, L(si) = L(s) for all s ∈ S i.

Loss Function Generation. A candidate NCC is initialized as a neural network Tθ w.r.t. the network
parameters θ. Then Tθ is trained over the finite sample set S̃ by minimizing the loss functions:

LCC(θ) :=
4∑

i=1

ki · ReLU(−gi + βi) (19)

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

where ki > 0 are the algorithmic parameters and the constants βi ≥ 0 are used to ensure the correct-
ness of the training (see Theorem 6). Recall Theorem 4, there are implications in the CC conditions.
To ease the synthesis of NCCs, we encode these implications to their sufficient conditions via S-
procedure (Gusev & Likhtarnikov, 2006) (see details in Appendix D). Here we abuse the subscripts
to represent automata states, e.g., use i to stand for qi. The functions gi’s in Eq. (19) are as follows:

g1(x, i, i′) =T ((x, i), ( f (x, π(x)), i′)) ≥ 0
g2(x, i, i′, y, j) =T ((x, i), (y, j)) − λ1 · T (( f (x, π(x)), i′), (y, j)) ≥ 0

g3(x0, 0, y′, k, y′′, l) =(1 − λ2) · T ((x0, 0), (y′, k)) − ϵ − T ((x0, 0), (y′′, l))
− λ3 · T ((y′, k), (y′′, l)) ≥ 0

g4(x0, 0, z,m,m′) =T ((x0, 0), ( f (z, π(z)),m′)) − (1 + λ4) · T ((x0, 0), (z,m)) − ϵ′ ≥ 0

where λi > 0 for any i ∈ [1, 4]. Intuitively, a loss will incur if any gi − βi ≥ 0 is violated.

As NCCs are trained over finite sample points, even though the loss function is zero, we cannot
formally guarantee that the certificate is valid over the whole state space. To address this issue, we
propose the correctness theorem by leveraging the Lipschitz continuities of system dynamics, policy
networks and neural certificates to provide formal guarantees (see proofs in Appendix D).
Theorem 6 (Correctness of Neural Closure Certificates). If the loss function in Eq. (19) is zero,
and for any i ∈ [1, 4], Liτ − βi ≤ 0 where Li is the Lipschitz constant of the function gi, then the
synthesized NCC is valid, i.e., all the CC conditions hold over the whole state space.

6 Evaluation
We implement our approaches into a prototype named Veri-ω, and our experimental goals include
evaluating the effectiveness of our closure certificates in both deterministic and stochastic NNCSs.

Benchmarks and Experimental Setup. We evaluate the effectiveness of our approaches on five
classic NNCSs. Concretely, CartPole and MountainCar are drawn from OpenAI’s Gym (Brockman
et al., 2016), while B1 and B2 are widely used in state-of-the-art verification tools (Ivanov et al.,
2021). Additionally, the Mars Rover task originates from (Yuan et al., 2019). Among these, Cart-
Pole is used to verify the safety property (SF), whereas the remaining tasks focus on reach-avoid
verification (RV). All experiments are executed on a workstation running Ubuntu 22.04, with a 32-
core AMD Ryzen Threadripper CPU, 128GB RAM, and a single 24564MiB GPU.

Table 2: Verification results in deterministic
NNCSs.

Task T.P. Automata NCC V.R. # Vio.V.R. S.T. (s)

CP SF
NBA ✓ 18974 0
DBA ✓ 14587 0
DRA ✓ 19026 0

MC RV
NBA ✓ 19156 0
DBA ✓ 13255 0
DRA ✓ 19238 0

B1 RV
NBA ✓ 18337 0
DBA ✓ 11763 0
DRA ✓ 18452 0

B2 RV
NBA ✓ 19351 0
DBA ✓ 18100 0
DRA ✓ 19399 0

MR RV
NBA ✓ 22918 0
DBA ✓ 23201 0
DRA ✓ 22508 0

Remarks. T.P.: Temporal Property; S.T.: Synthesis
Time (in seconds); V.R.: Verification Result; # Vio.:
the number of property violations in simulation.

For stochastic NNCSs, we consider two types
of state perturbations: (i) Gaussian noises with
zero means and different deviations υ > 0, and
(ii) Uniform noises with zero means and differ-
ent radii r > 0. Specifically, for each state s =
(s1, . . . , sm), we add noises w = (w1, . . . ,wm)
to each dimension of s and obtain the per-
turbed state ŝ = (s1 + w1, . . . , sm + wm), where
wi ∼ G(0, υ) (1 ≤ i ≤ m) is some Gaussian
distributed noise or wi ∼ U(−r, r) (1 ≤ i ≤ m)
is some uniformly distributed noise. Due to the
data sparsity of only one initial state, we ran-
domly choose multiple initial states (instead of
a single one) from the initial set S 0. We simu-
late 10,000 episodes starting from each of these
initial states under different perturbations and
use the statistical results as the baseline.

6.1 Effectivenss of ω-regular
Verification in Deterministic NNCSs

We first evaluate the effectiveness of closure
certificates in deterministic NNCSs, which cor-
responds to Part I of our problem (Section 3.3).
For each benchmark in Table 2, we represent the same ω-regular property by different ω-automata
(see the column Automata). As we can see, even if we use three ω-automata to represent the same
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property, all three corresponding closure certificates are found (i.e., ✓ in the column V.R.), which
shows the validity of our theoretical results. Moreover, as there is no violation in simulation, i.e.,
#Vio=0, our verification results are consistent with the simulation results. In all, results in Table 2
show the effectiveness of our method for ω-regular verification in deterministic NNCSs.

6.2 Effectivenss of ω-regular Verification in Stochastic NNCSs

Table 3: Verification results in stochastic NNCSs.

Task T.P. Pert. NCC V.R. # Vio.V.R. S.T. (s)

CP SF
r = 0 ✓ 13385 0
r = 0.01 ✓ 13900 0
r = 0.05 N/A T.O. 50

MC RV
r = 0 ✓ 18987 0
r = 0.01 ✓ 19482 0
r = 0.05 N/A T.O. 70

B1 RV
υ = 0 ✓ 19262 0
υ = 0.01 ✓ 19631 0
υ = 0.1 N/A T.O. 469

B2 RV
υ = 0 ✓ 18570 0
υ = 0.1 ✓ 19123 0
υ = 0.3 N/A T.O. 432

MR RV
υ = 0 ✓ 23897 0
υ = 0.01 ✓ 21130 0
υ = 0.15 N/A T.O. 885

Remarks. T.P.: Temporal Property; Pert.: pertur-
bations; V.R.: Verification Result; S.T.: Synthesis
Time (in seconds); # Vio.: the number of violations
in simulation; N/A: Unknown; T.O.: Timeout.

Table 3 shows the qualitative verification re-
sults in stochastic NNCSs, which corresponds
to Part II of our problem (Section 3.3). The
layout is similar to that of Table 2 except that
the third column specifies the magnitude of the
noises. For each benchmark, when there is no
noise applied to the system (e.g., CP with r =
0), we observe that a valid NCC is found, and
there are no violations in the simulation results,
indicating consistency between the verification
and simulation outcomes. This holds true even
when a small noise is introduced to the sys-
tem (e.g., CP with r = 0.01), where the ap-
proach still successfully identifies a valid NCC
with no violations in the simulation. However,
as the perturbation magnitude increases (e.g.,
CP with r = 0.05), our method fails to find a
valid NCC within the specified time threshold,
i.e., 25,000 seconds. In this case, some viola-
tions are detected in the simulation results (e.g.,
#Vio=50), which implies that a valid NCC can-
not exist. This consistency is evident across all
tasks and levels of noise, demonstrating the effectiveness of our qualitative verification in stochastic
NNCSs.

7 Conclusion and Further Results

In this work, we consider temporal logic verification including LTL and ω-regular properties of
NNCSs. We propose variants of closure certificates to qualitatively verify whether an NNCS for-
mally satisfies its specification represented by some LTL or ω-regular property. When the NNCS op-
erates in a noisy environment and the temporal behaviors become stochastic, we also verify whether
the property holds almost surely. Future work could be considering other temporal properties like
branch-time properties.

Further Results about Quantitative Verification. Theorem 5 is too strict to stochastic NNCSs
as it requires a system Mµ satisfies an ω-regular property φ almost surely (i.e., with probability 1).
When it fails to find a CC in Theorem 5, we turn to consider quantitative verification of ω-regular
properties, i.e., computing the lower and upper bounds l, u ∈ [0, 1] on the satisfaction probability of
the property such that P[Mµ |= φ] ∈ [l, u]. Due to the page limit, here we outline the further results
about quantitative verification ofω-regular properties in stochastic NNCSs, which to our knowledge,
is the first time presented via proof certificates.

Given an DRA Aφ = (Q, q0,Σ, δ,Acc) whose acceptance condition Acc = {(Ei, Fi) | Ei, Fi ⊆

Q, Ei ∩ Fi = ∅, 1 ≤ i ≤ n}. Each set Ei is an FOV-set which refers to persistence, and each set
Fi is an IOV-set w.r.t. recurrence (see Definition 1). As Ei and Fi are disjoint, we handle them
separately. To realize quantitative verification, we use two counters to record the number of visiting
times to Ei and consecutive visiting times to Q \ Fi, respectively. By devising stochastic persistence
barrier certificates, we have that P[Ei is FOV] ∈ [lfin

i , u
fin
i ], while by developing stochastic recur-

rence barrier certificates, we have that P[Fi is IOV] ∈ [linf
i , u

inf
i ]. The final probability bounds are

obtained according to the Rabin acceptance condition in use.
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Clément Gillard, et al. From spot 2.0 to spot 2.10: what’s new? In International Conference on
Computer Aided Verification, pp. 174–187. Springer, 2022.

Ibon Gracia, Luca Laurenti, Manuel Mazo Jr, Alessandro Abate, and Morteza Lahijanian. Tem-
poral logic control for nonlinear stochastic systems under unknown disturbances. arXiv preprint
arXiv:2412.11343, 2024.

Sergei V Gusev and Andrey Leonidovich Likhtarnikov. Kalman-popov-yakubovich lemma and the
s-procedure: A historical essay. Automation and Remote Control, 67:1768–1810, 2006.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Hosein Hasanbeig, Daniel Kroening, and Alessandro Abate. Certified reinforcement learning with
logic guidance. Artificial Intelligence, 322:103949, 2023.

Mohammadhosein Hasanbeig, Daniel Kroening, and Alessandro Abate. Deep reinforcement learn-
ing with temporal logics. In FORMATS’20, pp. 1–22. Springer, 2020.

Radoslav Ivanov, Taylor Carpenter, James Weimer, Rajeev Alur, George Pappas, and Insup Lee.
Verisig 2.0: Verification of neural network controllers using taylor model preconditioning. In
CAV, pp. 249–262, 2021.

Kyle D Julian, Jessica Lopez, Jeffrey S Brush, Michael P Owen, and Mykel J Kochenderfer. Policy
compression for aircraft collision avoidance systems. In DASC’16, pp. 1–10. IEEE, 2016.

Elia Kaufmann, Leonard Bauersfeld, Antonio Loquercio, Matthias Müller, Vladlen Koltun, and
Davide Scaramuzza. Champion-level drone racing using deep reinforcement learning. Nature,
620(7976):982–987, 2023.

Lukas König, Christian Heinzemann, Alberto Griggio, Michaela Klauck, Alessandro Cimatti,
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Appendix

A Probability Theory

We start by reviewing some notions from probability theory.

Random Variables and Stochastic Processes. A probability space is a triple (Ω,F ,P), where Ω is
a non-empty sample space, F is a σ-algebra over Ω, and P(·) is a probability measure over F , i.e. a
function P: F → [0, 1] that satisfies the following properties: (1) P(∅) = 0, (2)P(Ω − A) = 1 − P[A],
and (3) P(∪∞i=0Ai) =

∑∞
i=0 P(Ai) for any sequence {Ai}

∞
i=0 of pairwise disjoint sets in F .
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Given a probability space (Ω,F ,P), a random variable is a function X : Ω → R ∪ {∞} that is F -
measurable, i.e., for each a ∈ R we have that {ω ∈ Ω|X(ω) ≤ a} ∈ F . Moreover, a discrete-time
stochastic process is a sequence {Xn}

∞
n=0 of random variables in (Ω,F ,P).

Conditional Expectation. Let (Ω,F ,P) be a probability space and X be a random variable in
(Ω,F ,P). The expected value of the random variable X, denoted by E[X], is the Lebesgue integral
of X wrt P. If the range of X is a countable set A, then E[X] =

∑
ω∈A ω · P(X = ω). Given a sub-

sigma-algebra F ′ ⊆ F , a conditional expectation of X for the given F ′ is a F ′-measurable random
variable Y such that, for any A ∈ F ′, we have:

E[X · IA] = E[Y · IA] (20)

Here, IA : Ω → {0, 1} is an indicator function of A, defined as IA(ω) = 1 if ω ∈ A and IA(ω) = 0 if
ω < A. Moreover, whenever the conditional expectation exists, it is also almost-surely unique, i.e.,
for any two F ′-measurable random variables Y and Y ′ which are conditional expectations of X for
given F ′, we have that P(Y = Y ′) = 1.

Filtrations and Stopping Times. A filtration of the probability space (Ω,F ,P) is an infinite se-
quence {Fn}

∞
n=0 such that for every n, the triple (Ω,Fn,P) is a probability space and Fn ⊆ Fn+1 ⊆ F .

A stopping time with respect to a filtration {Fn}
∞
n=0 is a random variable T : Ω→ N0∪{∞} such that,

for every i ∈ N0, it holds that {ω ∈ Ω|T (ω) ≤ i} ∈ Fi. Intuitively, T returns the time step at which
some stochastic process shows a desired behavior and should be “stopped”.

A discrete-time stochastic process {Xn}
∞
n=0 in (Ω,F ,P) is adapted to a filtration {Fn}

∞
n=0, if for all

n ≥ 0, Xn is a random variable in (Ω,Fn,P).

B SupplementaryMaterials for Section 3

Linear Temporal Logic. Linear temporal logic (LTL) is a specification language that allows users
to define linear-time properties over infinite system traces Pnueli (1977) including safety (i.e., bad
things never happen) and liveness (i.e., something good eventually happens). The syntax of LTL can
be given via the following grammar:

φ := true | p | φ ∧ φ | ¬φ | ⃝φ | φU φ,
where p ∈ Π denotes an atomic proposition in a finite set Π of atomic propositions, and symbols
∧,¬ represent the logical AND and NOT operators, respectively. The temporal operators next and
until are denoted by ⃝ and U, respectively. Note that the above operators are sufficient to derive
the logical OR (∨) and implication (⇒), and the temporal operators eventually (^) and always (□),
respectively. For example, we have that ^φ = trueUφ and □φ = ¬^¬φ.

Let σ = (P0, P1, . . . ) ∈ (2Π)ω be an infinite sequence over the propositions Π, and σ[i+] =
(Pi, Pi+1, . . . ) be the suffix of σ from index i on. Then given an LTL formula φ, σ |= φ means
σ satisfies φ, and the satisfaction relation |= is given by:

• σ |= true;
• σ |= p iff p ∈ P0;
• σ |= φ1 ∧ φ2 iff σ |= φ1 and σ |= φ2;
• σ |= ¬φ iff σ ̸|= φ;
• σ |= ⃝φ iff σ[1+] |= φ;
• σ |= φ1Uφ2 iff ∃ j. σ[ j+] |= φ2 and σ[i+] |= φ1 for all 0 ≤ i < j.

Furthermore, we express the semantics of several complicated LTL formulas that are widely used in
the literature Baier & Katoen (2008).

• (Eventually) σ |= ^φ iff ∃i ≥ 0. σ[i+] |= φ;
• (Always) σ |= □φ iff ∀i ≥ 0. σ[i+] |= φ;
• (Persistence) σ |= ^□φ iff ∃i ≥ 0 ∀ j ≥ i. σ[ j+] |= φ;
• (Recurrence) σ |= □^φ iff ∀i ≥ 0 ∃ j ≥ i. σ[ j+] |= φ.
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C SupplementaryMaterials for Section 4

C.1 Proofs of Closure Certificates

Theorem 2. Consider an NNCS M = (S , S 0, A, π, f ,R). The existence of a recurrence closure
certificate in Definition 3 implies that the system M visits the set S IOV infinitely often (i.e. every
M-trajectory contains at least one infinitely occurring element from S IOV).

Proof. We prove Theorem 2 by contradiction. Assume we find a recurrence closure certificate T as
in Definition 3 but there is an M-trajectory ζ = (x0, x1, . . . ) that starts from x0 ∈ S 0 and visits the set
S IOV only finitely often, i.e., for some j > 0, for all k > j, we have xk < S IOV.

According to condition (4) and condition (5), we have T (x0, xi) ≥ 0 for any index i > 0. As the
function T is bounded, there exists a constant T ∗ such that T (x, y) < T ∗ for any pairs of states
x, y ∈ S . By condition (6) and induction, we have that for all index k > j,

T (x0, xk) ≥ T (x0, xk−1) + ϵ
≥ T (x0, x j) + (k − j) · ϵ
≥ (k − j) · ϵ

Therefore, there must exist an index k′ > j > 0 such that T (x0, xk′ ) > T ∗, which contradicts the
assumption. □

Definition 4 (Closure Certificates for Persistence and Recurrence). Consider an NNCS M =
(S , S 0, A, π, f ,R) with two subsets S FOV, S IOV ⊆ S such that S FOV , S IOV. A bounded function
T : S × S → R is a closure certificate for the set S FOV that must be visited finitely often and the
set S IOV that must be visited infinitely often if there exist two constants ϵ, ϵ′ > 0 such that for all
states x, y ∈ S with x′ = f (x, π(x)), and all states x0 ∈ S 0, y′, y′′ ∈ S FOV, z ∈ S \ (S FOV ∪ S IOV) with
z′ = f (z, π(z)), the following conditions hold:

T (x, x′) ≥ 0 (7)
T (x′, y) ≥ 0⇒ T (x, y) ≥ 0 (8)
(T (x0, y′) ≥ 0 ∧ T (y′, y′′) ≥ 0)⇒ T (x0, y′′) ≤ T (x0, y′) − ϵ (9)
T (x0, z) ≥ 0⇒ T (x0, z′) ≥ T (x0, z) + ϵ′ (10)

Possible Issue from Definition 4. Recall Definition 4, one may argue that the last two conditions
seem to have a restriction to the allowed system trajectories, i.e., for any yi, y j ∈ S FOV where y j is
visited later than yi, it implicitly requires that the length of consecutive visited xk’s in S \(S FOV∪S IOV)
before y j is smaller than that before yi. Actually, by setting T ∗, ϵ, ϵ′ properly, this restriction does
not hold. An alternative way to avoid the two issues is to compute T1 for persistence and T2 for
recurrence separately, but it can cost more time. Anyway, Theorem 3 is sound.

Theorem 3 Consider an NNCS M = (S , S 0, A, π, f ,R) with two subsets S FOV, S IOV ⊆ S such that
S FOV , S IOV. The existence of a closure certificate in Definition 4 implies that the system M visits
the set S FOV finitely often and the set S IOV infinitely often.

Proof. Assume we can find a closure certificate T as in Definition 4. Then suppose there exists a
trajectory ζ = (x0, x1, . . . ) of M that starts from x0 ∈ S 0, and the trajectory ζ either (i) visits the set
S FOV infinitely often or (ii) visits the set S IOV finitely often; or both.
For Case (i), let the infinite sequence (y0, y1, . . . ) be the states in S FOV that are visited in the order, so
ζ = (x0, . . . , xi, y0, . . . , y1, . . . ). According to condition (7) and condition (8), we have T (yi, yi+1) ≥ 0
and T (x0, yi) ≥ 0 for all indices i ≥ 0. By condition (9) and induction,

T (x0, y j) ≤ T (x0, y j−1) − ϵ
≤ T (x0, y0) − j · ϵ
≤ T ∗ − j · ϵ

Since the function T is bounded, there is a constant T ∗ > 0 such that T (x, y) < T ∗ for any pairs of
states x, y ∈ S . As ϵ > 0, there must exist an index j > 0 such that T (x0, y j) < 0, which contradicts
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the fact that T (x0, yi) ≥ 0 for all indices i ≥ 0. Therefore, M must visit S FOV finitely often.
For Case (ii), let the finite sequence (z0, . . . , zn) be the states in S IOV that are visited in the or-
der. Since we prove that M must visit S FOV finitely often, denote by (y0, . . . , ym) the finite
sequence of states in S FOV that are visited in the order. Then the whole trajectory is ζ =
(x0, . . . , xi, y0, . . . , ym, z0, . . . , zn, x j, . . . , xk, . . . ) where all xi’s belong to S \ (S FOV ∪ S IOV). By con-
dition (10) and induction, we have

T (x0, xk) ≥ T (x0, xk−1) + ϵ′

≥ T (x0, x j) + (k − j) · ϵ′

≥ (k − j) · ϵ′

As ϵ′ > 0, there must exist an index k > j > 0 such that T (x0, xk) > T ∗, which contradicts the
definition of the closure certificate. □

C.2 Other Automata-basedMethods

When using NBAs to represent ω-regualr properties, one can use closure certificates for persistence
to verify NNCSs against ω-regular properties.

Definition 5 (Closure Certificates for FOVs in Deterministic Systems). Consider an NNCS M =
(S , S 0, A, π, f ,R) and an NBA A¬φ = (Q, q0,Σ, δ, Acc) that represents the negation of a property φ.
A bounded function T : S × Q × S × Q → R is a closure certificate for FOV in M ⊗ A¬φ if there
exists a constant ϵ > 0 such that for all states x, y, y′, y′′ ∈ S with x′ = f (x, π(x)), x0 ∈ S 0, qi, q j ∈ Q
with q′i ∈ δ(qi, L(x)), and qk, ql ∈ Acc, the following conditions hold:

T ((x, qi), (x′, q′i) ≥ 0 (21)
T ((x′, q′i), (y, q j)) ≥ 0⇒ T ((x, qi), (y, q j)) ≥ 0 (22)
(T ((x0, q0), (y′, qk)) ≥ 0 ∧ T ((y′, qk), (y′′, ql)) ≥ 0)
⇒ T ((x0, q0), (y′′, ql)) ≤ T ((x0, q0), (y′, qk)) − ϵ (23)

Theorem 7. Consider an NNCS M = (S , S 0, A, π, f ,R) and a(n) (LTL) property φ. Let the NBA
A¬φ represent the negation of φ. Then the existence of a closure certificate in Definition 5 implies
that M satisfies the property φ.

Proof. The proof is straightforward. By Theorem 1, a closure certificate in Definition 5 implies that
the product system M ⊗ A¬φ visits the accepting states finitely often and thus the system does not
satisfy the property ¬φ, which implies that it satisfies φ. The concrete proof is as follows.
Suppose there exists a trace {(st, qt)}t∈N0 induced by Mµ ⊗ A, where its NNCS trajectory is ζ =
(s0, s1, . . . ) and its automaton path ρ = (q0, q1, . . . ) visits the set Ei infinitely often. Let the infinite
sequence (q′0, q

′
1, . . . ) be the states in Ei that are visited infinitely often in the order so that the whole

path ρ = (q0, q1, . . . , q′0, . . . , q
′
1, . . . ). According to condition (21) and condition (22), we have that

T ((s0, q0), (s′i , q
′
i)) ≥ 0 and T ((s′i , q

′
i), (s′j, q

′
j)) ≥ 0 for any j > i. By condition (23) and induction, we

can derive that

T ((x0, q0), (s′i , q
′
i)) ≤ T ((s0, q0), (s′i−1, q

′
i−1) − ϵ

≤ T ((s0, q0), (s′0, q
′
0)) − i · ϵ

≤ T ∗ − i · ϵ

where the last inequality is obtained due to the fact that T is bounded from above by a constant
T ∗ ∈ R. Since ϵ > 0, there should exist an index j ∈ N such that T ((x0, q0), (s′j, q

′
j)) < 0, which

contradicts the assumption. □

By closure certificates for recurrence, we can verify temporal properties represented by DBAs
(though they cannot express all the ω-regualr languages).

Definition 6 (Closure Certificates for IOVs in Deterministic Systems). Consider an NNCS M =
(S , S 0, A, π, f ,R) and an DBA Aφ = (Q, q0,Σ, δ, Acc) that represents the temporal property φ. A
bounded function T : S × Q × S × Q → R is a closure certificate for IOV in M ⊗ Aφ if there exists
a constant ϵ′ > 0 such that for all states x, y, z ∈ S with x′ = f (x, π(x)) and z′ = f (z, π(z)), states

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

x0 ∈ S 0, qi, q j ∈ Q with q′i = δ(qi, L(x)), and qm ∈ Q \ Acc with q′m = δ(qm, L(z)), the following
conditions hold:

T ((x, qi), (x′, q′i) ≥ 0 (24)
T ((x′, q′i), (y, q j)) ≥ 0⇒ T ((x, qi), (y, q j)) ≥ 0 (25)
T ((x0, q0), (z, qm)) ≥ 0⇒ T ((x0, q0), (z′, q′m)) ≥ T ((x0, q0), (z, qm)) + ϵ′ (26)

Theorem 8. Consider an NNCS M = (S , S 0, A, π, f ,R) and a temporal property φ. Let the DBAAφ
represent the property φ. Then the existence of a closure certificate in Definition 6 implies that M
satisfies the property φ.

Proof. The proof is straightforward. □

D SupplementaryMaterials for Section 5

Implication Encoding. Note that there are some implications in the definitions of our closure
certificates. To ease the synthesis of these certificates, we first encode these implications to their
sufficient conditions via a classical technique named S-procedure Gusev & Likhtarnikov (2006).
That is, given an implication in the following form

f1(x) ≥ 0 ∧ f2(x) ≥ 0 · · · ∧ fm(x) ≥ 0⇒ g(x) ≥ 0, (27)

where fi, g are predicates over variables x, we can construct its bilinear form,

g′(x) = g(x) − λ1 · f1(x) − λ2 · f2(x) − · · · − λm · fm(x), (28)

where λi > 0 for all i ∈ [1,m]. The satisfaction of Eq. (28) implies the satisfaction of Eq. (27).

Theorem 6 (Correctness of Neural Closure Certificates). Consider an NNCS M. If the loss term
gi − βi ≥ 0 holds over the sample set S̃ and

Liτ − βi ≤ 0, (29)

where Li is the Lipschitz constant of the function gi, then gi ≥ 0 holds over the whole state space S .
Moreover, if the loss function in Eq. (19) is zero over the sample set and Eq. (29) holds for all loss
terms, then the neural closure certificate is valid, i.e., all the CC conditions hold over the whole state
space.

Proof. Let LT ,L f ,Lπ be the Lipschitz constants of the NCC Tθ, the system dynamics f , and the
system policy π, respectively. Given a state x̃ ∈ S̃ , and let x ∈ S \ S̃ be a state not in the finite sample
set S̃ but satisfying ||x − x̃|| ≤ τ, so that L(x) = L(x̃) and δ(q, L(x)) = δ(q, L(x̃)) for all sates q ∈ Q.

• By the Lipschitz continuity of g1 and Eq. (29), we have that for any x ∈ S , x̃ ∈ S̃ , i, i′ ∈ Q
with i′ ∈ δ(i, L(x)),

g1(x̃, i, i′) − g1(x, i, i′) = T ((x̃, i), ( f (x̃, π(x̃)), i′)) − T ((x, i), ( f (x, π(x)), i′))
≤ LT · ||((x̃, i), ( f (x̃, π(x̃)), i′)) − ((x, i), ( f (x, π(x)), i′))||1
= LT · (||x̃ − x||1 + || f (x̃, π(x̃)) − f (x, π(x))||1
≤ LT · (||x̃ − x||1 + L f · ||(x̃, π(x̃)) − (x, π(x))||1)
≤ LT · (||x̃ − x||1 + L f · (1 + Lπ) · ||x̃ − x||1)
= LT · (1 + L f · (1 + Lπ)) · ||x̃ − x||1
≤ LT · (1 + L f · (1 + Lπ)) · τ
= L1 · τ ≤ β1

Therefore, we can derive that

g1(x, i, i′) ≥ g1(x̃, i, i′) − β1

Because g1(x̃, i, i′) − β1 ≥ 0 for any sample points x̃ ∈ S̃ , we have g1(x, i, i′) ≥ 0 for all
states x ∈ S \ S̃ , which implies g1(x, i, i′) ≥ 0 holds over the whole state space.
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• By the Lipschitz continuity of g2 and Eq. (29), we have that for any x, y ∈ S , x̃, ỹ ∈ S̃ ,
i, j ∈ Q with i′ ∈ δ(i, L(x)),

g2(x̃, i, i′, ỹ, j) − g2(x, i, i′y, j)
= T ((x̃, i), (ỹ, j)) − T ((x, i), (y, j))
+λ1 · [T (( f (x, π(x)), i′), (y, j)) − T (( f (x̃, π(x̃)), i′), (ỹ, j))]

≤ LT · (||x̃ − x||1 + ||ỹ − y||1) + λ1 · LT · (1 + L f · (1 + Lπ)) · τ
≤ 2LT · τ + λ1 · LT · (1 + L f · (1 + Lπ)) · τ
= LT · (2 + λ1 · (1 + L f · (1 + Lπ))) · τ
= L2 · τ ≤ β2

Therefore, we can derive that
g2(x, i, i′y, j) ≥ g2(x̃, i, i′, ỹ, j) − β2

Because g2(x̃, i, i′, ỹ, j) − β2 ≥ 0 for any sample points x̃, ỹ ∈ S̃ , we have g2(x, i, i′y, j) ≥ 0
for all states x, y ∈ S \ S̃ , which implies g2(x, i, i′y, j) ≥ 0 holds over the whole state space.

• By the Lipschitz continuity of g3 and Eq. (29), we have that for all states x0 ∈ S 0, y′, y′′ ∈ S ,
x̃0 ∈ S̃ 0, ỹ′, ỹ′′ ∈ S̃ , k, l ∈ Acc,

g3(x̃0, 0, ỹ′, k, ỹ′′, l) − g3(x0, 0, y′, k, y′′, l)
= (1 − λ2) · [T ((x̃, 0), (ỹ′, k)) − T ((x, 0), (y′, k))] + [T ((x0, 0), (y′′, l)) − T ((x̃0, 0), (ỹ′′, l))]
+λ3 · [T ((y′, k), (y′′, l)) − T ((ỹ′, k), (ỹ′′, l))]

≤ (1 − λ2) · LT · ||(x̃ − x, 0), (ỹ′ − y′, 0)||1 + LT · ||(x0 − x̃0, 0), (y′′ − ỹ′′, 0)||1
+λ3 · LT · ||(y′ − ỹ′, 0), (y′′ − ỹ′′, 0)||1

≤ (1 − λ2) · LT · 2τ + LT · 2τ + +λ3 · LT · 2τ
= (2(1 − λ2) + 2 + 2λ3)LT · τ

= L3 · τ ≤ β3

Therefore, we can derive that
g3(x0, 0, y′, k, y′′, l) ≥ g3(x̃0, 0, ỹ′, k, ỹ′′, l) − β3

Because g3(x̃0, 0, ỹ′, k, ỹ′′, l)−β3 ≥ 0 for any sample points, we have g3(x0, 0, y′, k, y′′, l) ≥ 0
for all states outside the sample set, which implies g3(x0, 0, y′, k, y′′, l) ≥ 0 holds over the
whole state space.

• By the Lipschitz continuity of g4 and Eq. (29), we have that for all states x0 ∈ S 0, z ∈ S ,
x̃0 ∈ S̃ 0, z̃ ∈ S̃ , m ∈ Q \ Acc with m′ ∈ δ(m, L(z)),

g4(x̃0, 0, z̃,m,m′) − g4(x0, 0, z,m,m′)
= [T ((x̃0, 0), ( f (z̃, π(z̃)),m′)) − T ((x0, 0), ( f (z, π(z)),m′))]
+(1 + λ4) · [T ((x0, 0), (z,m)) − T ((x̃0, 0), (z̃,m))]

≤ LT · ||(x̃0 − x0, 0), ( f (z̃, π(z̃)) − f (z, π(z)), 0)||1
+(1 + λ4) · LT · ||(x0 − x̃0, 0), (z − z̃, 0)||1

≤ LT · (||(x̃0 − x0||1 + L f · (1 + Lπ) · ||z̃ − z||1)
+(1 + λ4) · LT · 2τ

≤ LT · (1 + L f · (1 + Lπ)) · τ + (1 + λ4) · LT · 2τ
= (LT · (1 + L f · (1 + Lπ)) + 2(1 + λ4) · LT ) · τ
= L4 · τ ≤ β4

Therefore, we can derive that
g4(x0, 0, z,m,m′) ≥ g4(x̃0, 0, z̃,m,m′) − β4

Because g4(x̃0, 0, z̃,m,m′)−β4 ≥ 0 for any sample points, we have g4(x0, 0, z,m,m′) ≥ 0 for
all states outside the sample set, which implies g4(x0, 0, z,m,m′) ≥ 0 holds over the whole
state space.

□
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