No-Regret Contextual Bandits for Cost-Sensitive Decision-Making

Public agencies like city governments face sequential, cost-sensitive choices under partial feedback, for example,
deciding whether to inspect or not inspect a construction permit given categorical descriptors, spatial coordinates,
and stage metadata. There are operational costs of doing inspections and thus doing all possible inspections is
excessively costly. We frame this as a contextual bandit problem and ask: Can regret-minimizing online policies
reduce cumulative cost without much hyperparameter tuning when conditions drift or become strategic?
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history-dependent and inducing endogenous non-stationarity. Evaluation
combines a large administrative dataset with synthetic data generated
from a calibrated Bayesian statistical model.
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For our experiments, we simulate both stochastic and adversarial models. Across backlog regimes and cost settings,
EXP4 and ILTCB / Online-Cover achieve lower cumulative cost than supervised baselines. Bandit learners track
regime changes and retain performance when a latent agent (adversarial builder) cuts corners as inspections wane.
Per-context cumulative-loss trajectories show switching optimal arms and non-constant slopes, visualizing drift and
strategic feedback.

EXP4 dominates across cost models and under adversaries. Adversarial robustness is achieved because multiplicative-
weights concentrates mass on low-estimated-loss experts while preserving minimum action probabilities, so guarantees
hold without stationarity or realizability. EXP4 depends only on normalized per-round losses; shifting the cost
composition changes the scale, not the update. It is also caple of rapid regime tracking - persistent loss gaps tilt
weights exponentially, moving probability mass quickly when the optimal arm switches. By mixing diverse experts,
EXP4 adapts locally without brittle window/epsilon schedules.

Thus the contributions of this work is as follows: (a) A backlog-aware cost model that induces realistic, endogenous
non-stationarity for civic workflows. (b) A multi-agent adversarial extension that stresses robustness. (¢) A head-
to-head evaluation of adversarial and oracle-efficient contextual bandits against supervised baselines under partial
feedback. (d) Interpretable diagnostics using per-context loss curves that help stakeholders understand when and why
bandit policies excel. For resource-constrained operations (inspections, service dispatch, audits), regret-minimizing
bandits deliver robust, low-maintenance decision rules that natively handle exploration, drift, partial observability,
and multi-agent feedback.
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