
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

AGENTCLINIC: A MULTIMODAL AGENT BENCHMARK
TO EVALUATE AI IN SIMULATED CLINICAL ENVIRON-
MENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Evaluating large language models (LLM) in clinical scenarios is crucial to assessing
their potential clinical utility. Existing benchmarks rely heavily on static question-
answering, which does not accurately depict the complex, sequential nature of
clinical decision-making. Here, we introduce AgentClinic, a multimodal agent
benchmark for evaluating LLMs in simulated clinical environments that include
patient interactions, multimodal data collection under incomplete information,
and the usage of various tools, resulting in an in-depth evaluation across nine
medical specialties and seven languages. We find that solving MedQA problems
in the sequential decision-making format of AgentClinic is considerably more
challenging, resulting in diagnostic accuracies that can drop to below a tenth of
the original accuracy. Overall, we observe that agents sourced from Claude-3.5
outperform other LLM backbones in most settings. Nevertheless, we see stark
differences in the LLMs’ ability to make use of tools, such as experiential learning,
adaptive retrieval, and reflection cycles. Strikingly, Llama-3 shows up to 92%
relative improvements with the notebook tool that allows for writing and editing
notes that persist across cases. To further scrutinize our clinical simulations,
we leverage real-world electronic health records, perform a clinical reader study,
perturb agents with biases, and explore novel patient-centric metrics that this
interactive environment firstly enables.

1 INTRODUCTION

One of the primary goals in Artificial Intelligence (AI) is to build interactive systems that are able to
solve a wide variety of problems. The field of medical AI inherits this aim, with the hope of making
AI systems that are able to solve problems which can improve patient outcomes. Recently, many
general-purpose large language models (LLMs) have demonstrated the ability to solve hard problems,
some of which are considered challenging even for humans (Thirunavukarasu et al., 2023). Among
these, LLMs have quickly surpassed the average human score on the United States Medical Licensing
Exam (USMLE) in a short amount of time, from 38.1% in September 2021 (Gu et al., 2021) to
90.2% in November 2023 (Nori et al., 2023) (human passing score is 60%, human expert score is
87% (Liévin et al., 2023)). While these LLMs are not designed to replace medical practitioners, they
could be beneficial for improving healthcare accessibility and scale for the over 40% of the global
population facing limited healthcare access (Organization et al., 2016) and an increasingly strained
global healthcare system (McIntyre & Chow, 2020).

However, there still remain limitations to these systems that prevent their application in real-world
clinical environments. Recently, LLMs have shown the ability to encode clinical knowledge (Singhal
et al., 2023; Vaid et al., 2023), retrieve relevant medical texts (Xiong et al., 2024), and perform
accurate single-turn medical question-answering (Liévin et al., 2022; Nori et al., 2023; Wu et al., 2023;
Chen et al., 2023). However, clinical work is a multiplexed task that involves sequential decision
making, requiring the doctor to handle uncertainty with limited information and finite resources
while compassionately taking care of patients and obtaining relevant information from them. This
capability is not currently reflected in the static multiple choice evaluations (that dominate the recent
literature) where all the necessary information is presented in a case vignettes and where the LLM is
tasked to answer a question, or to just select the most plausible answer choice for a given question.
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In this work, we introduce AgentClinic, an open-source multimodal agent benchmark for simulating
clinical environments. We improve upon prior work by simulating many parts of the clinical
environment using language agents in addition to patient and doctor agents. Through the interaction
with a measurement agent, doctor agents can perform simulated medical exams (e.g. temperature,
blood pressure, EKG) and order medical image readings (e.g. MRI, X-ray) through dialogue. We
also support the ability for agents to exhibit 24 different biases that are known to be present in clinical
environments. We also present environments from 9 medical specialties, 7 different languages, and a
study on incorporating various agent tools and reasoning techniques. Furthermore, our evaluation
metrics go beyond diagnostic accuracy by giving emphasis to the patient agents with measures like
patient compliance and consultation ratings.

Our key contributions are summarized as follows:

1. We challenge how large language and vision models should be evaluated for medical
diagnosis with the introduction of AgentClinic. These diagnostic challenges are not static
QAs, but are interactive, dialogue-driven, sequential decision making environments that
require data collection, ordering appropriate medical exams, and understanding medical
images across patients with unique family histories, lifestyle habits, age categories, and
diseases.

2. A system for incorporating complex biases that can affect the dialogue and decisions of
patient and doctor agents. We present results on diagnostic accuracy and patient perception
for agents that are affected by cognitive and implicit biases. We find that doctor and patient
biases can lower diagnostic accuracy, affect the patient’s willingness to follow through with
treatment (compliance), reduce patient’s confidence in their doctor, and lower willingness
for follow-up consultations.

3. We introduce patient agents built from real clinical cases sourced from electronic health
record data, including an agent-based system for providing simulated medical exams (e.g.
temperature, blood pressure, EKG) based on realistic disease test findings. We also introduce
patient cases from nine medical specialties and seven multilingual environments to better
support specialist applications and diverse language backgrounds. We also present realism
and empathy ratings from clinicians for the resulting dialogue.

4. We allow doctor agents to use a variety of tools, such as browsing the web, textbooks,
perform reflection cycles, take and edit notes in a notebook that persists over different
patient scenarios. We show that current LLMs vastly differ in how much they benefit from
these tools, with some models demonstrating large accuracy increases while others decrease
in accuracy.

2 AGENTCLINIC: A MULTIMODAL AGENT BENCHMARK FOR CLINICAL
DECISION MAKING

In this section we describe AgentClinic, which uses LLM agents to simulate a clinical environment.

Language agents Four language agents are used in the AgentClinic benchmark: a patient agent,
doctor agent, measurement agent, and a moderator (Figure 1). Each language agent has specific
instructions and is provided unique information that is only available to that particular agent. These
instructions are provided to an LLM which carries out their particular role. The doctor agent serves
as the model whose performance is being evaluated, and the other three agents serve to provide this
evaluation. A detailed description of each agent is provided in Appendix A.1.

Language agent biases Previous work has indicated that LLMs can display racial biases (Omiye
et al., 2023) and might also lead to incorrect diagnoses due to inaccurate patient feedback (Ziaei
& Schmidgall, 2023). Additionally, it has been found that the presence of prompts which induce
cognitive biases can decrease the diagnostic accuracy of LLMs by as much as 26% (Schmidgall
et al., 2024). The biases presented in this work intend to mimic cognitive biases that affect medical
practitioners in clinical settings. However, these biases were quite simple, presenting a cognitive bias
snippet at the beginning of each question (e.g. “Recently, there was a patient with similar symptoms
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Figure 1: Running language agents in AgentClinic. (Left) Workflow diagram of agents in AgentClinic.
The doctor agent interacts with tools and agents in order to arrive at a diagnosis. Moderator agent
compares conclusion to ground truth diagnosis at the end of the simulation. (Right) Example dialogue
between agents in the AgentClinic benchmark.

that you diagnosed with permanent loss of smell”). This form of presentation did not allow for the
bias to present in a realistic way, which is typically subtle and through interaction.

We present clinically relevant biases that have been studied in other works from two categories:
cognitive and implicit biases (Fig. 7). Cognitive biases are systematic patterns of deviation from
rational judgment, such as recency bias, where recent cases disproportionately influence clinical
decisions, or anchoring bias, where early diagnostic impressions overly dictate later assessments.
Implicit biases, on the other hand, are unconscious associations shaped by societal and cultural norms.
These include biases based on race, gender, or socioeconomic status, which can subtly influence the
quality of patient interactions and treatment plans. These biases are introduced by adding context
into the agent’s system prompt instructing them to play out that bias as part of their role. For instance,
to simulate sexual orientation bias, the patient agent receives the prompt: “You are uncomfortable
with your doctor because you find out that they are a particular sexual orientation and you do not
trust their judgement. This affects how you interact with them.” This is discussed in Appendix A.2.

Building agents for AgentClinic In order to build agents that are grounded in medically relevant
situations, we use a random sample of diagnostic questions from the US Medical Licensing Exam
(USMLE), from deidentified electronic health records (MIMIC-IV) (Johnson et al. (2023)), and from
the New England Journal of Medicine (NEJM) case challenges. These questions are concerned
with diagnosing a patient based on a list of symptoms, which we use in order to build the Objective
Structured Clinical Examination (OSCE) template that our agents are prompted with. For AgentClinic-
MedQA and AgentClinic-MIMIC-IV, we first select from a sample of questions from the MedQA
and MIMIC-IV dataset respectively and then populate a structured JSON formatted file containing
information about the case study (e.g. test results, patient history) which is used as input to each
of the agents. The exact structure of this file is demonstrated in Appendix I as well as an example
case study shown in Appendix J. In general, we separate information by what is provided to each
agent, including the objective for the doctor, patient history and symptoms for the patient, physical
examination findings for the measurement, and the correct diagnosis for the moderator. We initially
use an LLM (GPT-4) to populate the structured JSON, and then manually validate each of the case
scenarios. For AgentClinic-NEJM we select a curated sample of 120 questions from NEJM case
challenges and proceed with the same template formatting as AgentClinic-MedQA/MIMIC-IV.
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Figure 2: Accuracy of various doctor language models and human physicians on AgentClinic-MedQA
using GPT-4 patient and measurement agents (left). Accuracy of GPT-4 on AgentClinic-MedQA
based on patient language model (middle). Accuracy on AgentClinic-MIMIC-IV by number of using
GPT-4 patient and measurement agents (right).

Figure 3: Comparison of accuracy of models on MedQA and AgentClinic-MedQA. We find that
MedQA accuracy is not predictive of accuracy on AgentClinic-MedQA.

Multilingual and Specialist cases Multilingual patient cases are converted from AgentClinic-
MedQA to the the target language using GPT-4 and then manually corrected by native speakers.
Agents are then prompted to perform dialogue in the target language. We chose to focus on six
languages: Chinese, Hindi, Korean, Spanish, French, and Persian. The selection of these languages
aims to address the need for medical AI systems capable of operating in multilingual healthcare
environments. Specialist cases use case report questions from the MedMCQA dataset (Pal et al.
(2022)). These questions include case reports from 20 different medical specialties, from which we
chose to focus on 9 patient-focused specialties in AgentClinic-Spec: emergency medicine, geriatrics,
pharmacology, internal medicine, psychiatry, ophthalmology, otolaryngology, and pediatrics.

3 RESULTS

3.1 COMPARISON OF MODELS

Here we discuss the accuracy of various language models on AgentClinic-MedQA. We evaluate 11
models in total: Claude-3.5-Sonnet, GPT-4, GPT-4o, Mixtral-8x7B, GPT-3.5, Llama 3 70B-Instruct,
Llama 2 70B-chat, MedLlama3-8B, PMC-Llama-7B, Meditron-70B, and OpenBioLLM-70B (model
details discussed in Appendix C). Each model acts as the doctor agent, attempting to diagnose
the patient agent through dialogue. The doctor agent is allowed N=20 patient and measurement
interactions before a diagnosis must be made. We also evaluate human physician performance
collected from three physicians, provided the same instructions and constraints as the LLMs. For
this evaluation, we use GPT-4 as the patient agent for consistency. The accuracy of each models is
presented in Figure 2: Claude-3.5 62.1% ± 3.3, OpenBioLLM-70B 58.3 ± 4.2, Human Physicians 54
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Figure 4: (Top) Demonstration of normalized accuracy (Accuracybias / AccuracyNo Bias) with implicit
and cognitive biases with GPT-4 (green) and Mixtral-8x7B (orange). GPT-4 accuracy was not
susceptible to biases, whereas Mixtral-8x7B was. (Bottom) Ratings provided after diagnosis from
GPT-4 patient agents with presented biases. Left. Patient confidence in doctor. Middle. Patient
compliance, indicating self-reported willingness to follow up with therapy. Right. Patient consultation
rating, indicating willingness to consult with this doctor again.

± 28.5, GPT-4 at 51.6% ± 3.3, Mixtral-8x7B at 37.1% ± 3.1, GPT-3.5 at 36.6%, GPT-4o 34.2% ±
3.4, MedLlama3-8B 31.4 ± 2.9, PMC-Llama 7B 23.6 ± 2.1, Meditron 70B 29.1 ± 2.4, MedLlama3-
8B 31.4 ± 2.9, Llama 3 70B at 19% ± 2.5, and Llama 2 at 70B-chat 4.5% ± 1.3. Confidence intervals
for all experiments are provided in Appendix D.

We use the same configuration for AgentClinic-MIMIC-IV, with model accuracy presented in Figure
2: Claude-3.5 42.9% ± 3.3, GPT-4 34.0% ± 3.1, GPT-3.5 27.5% ± 3.0, Mixtral-8x7B 29.5% ± 3.1,
GPT-4o 24.0% ± 2.9, Llama 3 70B 8.5% ± 1.9, Llama 2 70B-chat 13.5% ± 2.2, OpenBioLLM-70B
38.1 ± 3.2, PMC-Llama 7B 34.3 ± 3.0, Meditron 70B 25.5 ± 2.43, and MedLlama3-8B 29.7 ± 2.6.

We also find that the diagnostic accuracy in AgentClinic-MedQA is influenced by both the amount
of interaction time and the choice of patient language model. Reducing the number of interactions
from N=20 to N=10 significantly decreases accuracy from 52% to 25%, likely due to insufficient
information being gathered, while increasing N beyond 20 to N=30 slightly reduces accuracy, possibly
due to the complexity of processing larger inputs (Appendix F.1). Additionally, the choice of patient
agent affects accuracy, with GPT-4 (52%) patient agents leading to higher diagnostic accuracy than
GPT-3.5 (48%) or Mixtral (46%) agents, likely because GPT-4 provides more detailed responses
(Appendix F.2). Interestingly, when a GPT-3.5 doctor interacts with a GPT-4 patient, accuracy is
marginally higher than when both doctor and patient are GPT-3.5, which may suggest challenges in
cross-model communication (Panickssery et al. (2024)).

We also show results comparing the accuracy of these models on MedQA and AgentClinic-MedQA in
Figure 3. Overall, MedQA accuracy was only weakly predictive of accuracy on AgentClinic-MedQA.
These results align with studies performed on medical residents, which show that the USMLE is
poorly predictive of resident performance (Lombardi et al., 2023).
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3.2 HOW DOES BIAS AFFECT THE DIAGNOSTIC ACCURACY OF THE DOCTOR AGENT?

For bias evaluations we test GPT-4 as well as Mixtral-8x7B. The normalized accuracy for these
experiments are shown in Figure 4 represented as Accuracybias / AccuracyNo Bias (between 0-100%).
GPT-4 and Mixtral-8x7B have an unbiased accuracy equal to 52% and 37% respectively. For GPT-4,
we find that cognitive bias results in a larger reduction in accuracy with a normalized accuracy of
92% (absolute accuracy drops from 52% accuracy to 48%) for patient cognitive biases and 96.7%
for doctor cognitive biases (absolute drops from 52% to 50.3%). For implicit biases, we find that
the patient agent was less affected with a normalized accuracy of 98.6% (absolute drops from 52%
to 51.3%), however, the doctor agent was affected as much as cognitive biases with an average of
97.1% (absolute drops from 52% to 50.5%). For cognitive bias, the demonstration was occasionally
quite clear in the dialogue, with the patient agent overly focusing on a particular ailment or some
unimportant fact. Similarly, the doctor agent would occasionally focus on irrelevant information.

Mixtral-8x7B has an average accuracy of 37% without instructed bias, and a normalized accuracy
of 83.7% (absolute from 37% to 31%) for doctor biases and 89% (absolute from 37% to 33%) for
patient biases. For implicit bias we find a much larger drop in accuracy than GPT-4, with an average
accuracy of 88.3% (absolute from 37% to 32.7%). There is a similar reduction in accuracy for both
doctor and patient, but a 4% reduction when the patient has implicit bias, likely because the patient is
less willing to share information with the doctor if they do not trust them. For cognitive bias, there is
an average accuracy of 86.4% (absolute from 37% to 32%) with the doctor agent having a very low
accuracy of 78.4% (absolute from 37% to 29%) and the patient has only a modest decrease to 94.5%
(absolute from 37% to 35%).

Upon reviewing dialogues where Mixtral-8x7B’s performance degraded under biases, we observed
that the model often failed to gather critical patient information due to misinterpretation of patient
cues influenced by bias. For example, in cases of cognitive bias, the doctor agent fixated on a recent
diagnosis (recency bias), ignoring new symptoms presented later in the dialogue. In implicit bias
scenarios, the doctor agent showed reluctance to order necessary tests for patients with racial bias,
reflecting a disparity in care. In contrast, GPT-4 was actively seeking additional information when
initial hypotheses did not align with new data, indicating better handling of bias-induced scenarios.

Previous work studying cognitive bias in LLMs has shown that GPT-4 is relatively robust to bias
compared with other language models (Schmidgall et al., 2024). Results from evaluating GPT-4
on AgentClinic-MedQA show only small drops in accuracy with the introduced biases (maximum
absolute accuracy reduction of 4%, average reduction of 1.5%). While this reduction can be quite
large in the field of medicine, it is a much smaller drop than was observed in previous work (10.2%
maximum reduction on BiasMedQA dataset (Schmidgall et al., 2024)). This might be due to the
model being superficially overly-aligned to human values, plausibly leading GPT-4 to not serve as a
good model for representing human bias in agent benchmarks as the model may reject to execute
on bias instructions (which does not mean that GPT-4 is free of said biases). For example, in our
evaluations with gender bias we observed 25 occurrences (out of 215 dialogues) where GPT-4
verbosely rejected to follow through with a bias-related instruction. Mixtral-8x7B saw much larger
drops in accuracy than GPT-4 in the presence of bias, and thus might serve as a better model for
studying bias.

3.3 BIAS AND PATIENT AGENT PERCEPTION

While GPT-4’s diagnostic accuracy does not reduce as much as Mixtral-8x7B, it is also worth
investigating the perceived quality of care from the perspective of the patient agent. In order to better
understand the effect of bias on the patient agent, after the patient-doctor dialogue is completed, we
ask every patient agent three questions:

1. Confidence: Please provide a confidence between 1-10 in your doctor’s assessment.

2. Compliance: Please provide a rating between 1-10 indicating how likely you are to follow
up with therapy for your diagnosis.

3. Consultation: Please provide a rating between 1-10 indicating how likely you are to consult
again with this doctor.
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Such patient-agent-centric follow-up queries offer a more fine-grained and multi-faceted characteri-
zation of the clinical skills of a language agent—as opposed to static multiple choice benchmarks.
Although these metrics are derived from simulated agents (rather than humans), this analysis aims
to provide insights into how simulated biases may affect patient trust and compliance, which are
important factors in effective healthcare delivery. The corresponding results are shown in Figure 4
(prompt details in Appendix E.2). While diagnostic accuracy demonstrates a relatively small drop
in accuracy, the patient agent follow-up perceptions tell a different story. Broadly, we find that
most patient cognitive biases did not have a strong effect on any of the patient perceptions when
compared to an unbiased patient agent except for in the case of self-diagnosis, which had sizeable
drops in confidence (4.7 points) and consultation (2 points), and a minor drop in compliance (1 point).
However, implicit biases had a profound effect on on all three categories of patient perception, with
education bias consistently reducing patient perception across all three categories.

We found that between the implicit biases, sexual orientation bias had the lowest effect on patient
perceptions, followed by racial bias and gender bias. For patient confidence, gender bias is followed by
religion socioeconomic, cultural, and education, whereas patient compliance and patient consultation,
it is followed by cultural, socioeconomic, religion, and education. While it is not quantifiable, we
decided to ask two biased patient agents who provided low rating with education and gender biases
for compliance why they provided low ratings (Appendix E.1). These patient agents had the same
symptoms and diagnosis and only differed in bias presentation.

It is important to note that the patient agents used in our study are simulated by language models,
which may not fully capture the complexity and variability of real human patients. As such, the
confidence, compliance, and consultation ratings provided by these agents may not perfectly reflect
real-world patient perceptions, rather, provide insight into how real-world bias can be studied through
clinical simulations.

3.4 SPECIALIST AND MULTILINGUAL CASES

We now focus on specialist rather than general medical cases. Specialist cases use reports that are
derived from datasets focusing on specific medical specialties (e.g., internal medicine, psychiatry)
and are designed to simulate complex diagnostic scenarios requiring in-depth expertise. In contrast,
general QA tasks involve static, single-turn multiple-choice questions such as those found in medical
licensing exams. An analysis of language model performance across nine medical specialties
reveals significant differences in diagnostic accuracy (Table 5). Claude 3.5 achieved the highest
overall performance with an average accuracy of 66.7%, excelling in Internal Medicine (78.3%),
Otolaryngology (76.7%), and Gynecology (74.3%). GPT-4 demonstrated strong performance in
Gynecology (68.5%) and Ophthalmology (65.2%) but showed reduced accuracy in Emergency
Medicine (32.3%) and Geriatrics (40%). GPT-3.5 outperformed some newer models in specific areas,
such as Emergency Medicine (41.9%), and maintained an average accuracy of 51.8%. In contrast,
Llama3-70b and GPT-4o-mini consistently underperformed across most specialties, highlighting a
significant gap between language models in handling specialist medical tasks.

The variations in performance across different medical domains suggest that certain specialties
present more challenges for language models. Specialties like Internal Medicine and Gynecology
generally saw higher accuracy rates, which contrasts with existing medical QA literature that identifies
Psychiatry and Otolaryngology as the least challenging specialties (Pal et al. (2022)). This discrepancy
may indicate inherent difficulties in diagnosing diseases through dialogue-based interactions as
opposed to multiple-choice question formats. Additionally, specialist cases sourced from MedMCQA
exhibited higher average accuracy compared to non-specialist cases from MedQA, which differs from
reported multiple choice evaluations where specialist QAs typically have lower performance (Nori
et al. (2023)).

We also explore the impact of language on diagnostic accuracy using AgentClinic-Lang, which
encompassed seven languages: English, Chinese, French, Spanish, Hindi, Persian, and Korean (Table
4). Six multilingual models were evaluated, including GPT-4, GPT-4o, GPT-4o-mini, GPT-3.5,
Llama 3 70B-Instruct, and Claude 3.5 Sonnet. Overall, all models performed best in English, with
performance varying significantly across other languages. Claude 3.5 Sonnet stood out by maintaining
high and consistent performance across all languages, achieving an average accuracy of 48.4%, which
is more than double that of the next best model, GPT-4, at 20.9%.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 5: Diagnostic accuracy based on language (Left), based on medical specialty (Middle), and
based on agent tools (Right).

Other models exhibited considerable variability in performance across different languages. For
example, GPT-4’s accuracy ranged from 11.21% in Chinese to 40.18% in English, while GPT-4o’s
performance spanned from 3.73% in Korean to 35.5% in English. GPT-3.5 showed a similar pattern,
with accuracies ranging from 1.86% in Persian to 36.3% in English, although it performed relatively
well in Korean (35.4%). Llama3-70b and GPT-4o-mini also showed low accuracies across most
languages, with Llama3-70b’s highest accuracy being 47.8% in Ophthalmology and GPT-4o-mini
achieving a maximum of 14.7% in Orthopaedics. Notably, Chinese remained a challenging language
for most models, except for Claude 3.5 Sonnet, which maintained relatively high accuracy levels
across all tested languages.

3.5 COMPARING TOOLS FROM THE AGENT TOOLBOX

This section evaluates the impact of six agent tools—Zero-Shot Chain-of-Thought (CoT), One-Shot
CoT, Reflection CoT, Adaptive RAG (Book), Adaptive RAG (Web), and Notebook—on the diagnostic
accuracy of various language models (tools further described in Appendix K). Claude 3.5 achieved
the highest overall performance with an average accuracy of 51.3%, peaking at 56.1% when using the
Notebook tool (Table 6). GPT-4 and GPT-4o showed moderate improvements with most tools, with
GPT-4 benefiting most from Adaptive RAG (Web) at 43.9% and GPT-4o gaining the most from the
Notebook tool at 43.0%. Notably, GPT-4 reached its highest accuracy of 42.2% with Reflection CoT,
surpassing Claude 3.5 in this specific tool. In contrast, GPT-3.5 experienced decreased performance
across all tools, particularly with Adaptive RAG (Book), which led to a 27.1% drop. Llama3-70b
demonstrated significant improvements, averaging a 9.4% increase across all tools, with the Notebook
and Reflection CoT tools boosting its accuracy to 41.1%.

Overall, the findings indicate a hierarchy in model performance, with Claude 3.5 consistently
outperforming other models across most tools, except in the case of Reflection CoT where GPT-4
excels. Llama3-70b showed notable gains with certain tools, while GPT-4o-mini had mixed results,
benefiting from some tools like Reflection CoT and Adaptive RAG (Web) but showing slight decreases
with others. The relative impact of each tool varied significantly between models, aligning with
previous research on the use of tools with large language models (Ma et al. (2024); Qin et al. (2024)).
The tool descriptions and prompts are in Appendix K and Appendix M respectively.

3.6 HUMAN DIALOGUE RATINGS

AgentClinic introduces an evaluation for LLMs patient diagnosis. However, the realism of the actual
dialogue itself has yet to be evaluated. We present results from three human clinicians (individuals
with MDs) who rated dialogues from 20 agents on AgentClinic-MedQA from 1-10 across four axes:

1. Doctor: How realistically the doctor played the given case.
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2. Patient: How realistically the patient played the given case.

3. Measurement: How accurate & realistic the measurement reader reflects actual case results.

4. Empathy: How empathetic the doctor agent was in their conversation with the patient agent.

We find the average ratings from evaluators for each category as follows: Doctor 6.2, Patient 6.7,
Measurement 6.3, and Empathy 5.8 (Fig. 8). We find from review comments that the lower rating
for the doctor agent stems from several points such as providing a bad opening statement, making
basic errors, overly focusing on a particular diagnostic, or not being diligent enough. For the patient
agent, comments were made on them being overly verbose and unnecessarily repeating the question
back to the doctor agent. The measurement agent was noted to occasionally not return all of the
necessary values for a test (e.g. the following comment “Measurement only returns Hct and Lc for
CBC. Measurement did not return Factor VIII or IX levels / assay”). Regarding empathy, the doctor
agent adopts a neutral tone and does not open the dialogue with an inviting question. Instead, it cuts
right to the chase, immediately focusing on the patient’s current symptoms and medical history (see
Appendix O for more details).

3.7 DIAGNOSTIC ACCURACY IN A MULTIMODAL ENVIRONMENT

Many types of diagnoses require the physician to visually inspect the patient, such as with infections
and rashes. Additionally, imaging tools such as X-ray, CT, and MRI provide a detailed and rich
view into the patient, with hospitalized patients receiving an average of 1.42 diagnostic images per
patient stay (Smith-Bindman et al., 2012). However, the previous experiments in this work and prior
work (Tu et al., 2024) provided measurement results through text, and did not explore the ability
of the model to understand visual context. Here, we evaluate four multimodal LLMs, Claude 3.5
Sonnet, GPT-4o, GPT-4 and GPT-4o-mini, in a diagnostic settings that require interacting through
both dialogue as well as understanding image readings. We collect our questions from New England
Journal of Medicine (NEJM) case challenges. These published cases are presented as diagnostic
challenges from real medical scenarios, and have an associated pathology-confirmed diagnosis. We
randomly sample 120 challenges from a sample of 932 total cases for AgentClinic-NEJM. While
for human viewers, these cases are provided with a set of multiple choice answers, we chose to not
provide these options to the doctor agent and instead keep the problems open-ended.

Figure 6: Accuracy of Claude 3.5 Sonnet, GPT-4, GPT-4o, and
GPT-4o-mini on AgentClinic-NEJM with multimodal text and
language input. (Pink) Accuracy when the images are presented
as initial input. (Blue) Accuracy when images must be requested
from the image reader.

The goal of this experiment is to
understand how accuracy differs
when the LLM is required to un-
derstand an image in addition to
interacting through patient dia-
logue. We allow for 20 doctor
inferences, and condition the pa-
tient in the same way as previ-
ous experiment with the addition
of an image that is provided to
the doctor agent. The mecha-
nism for receiving image input in
AgentClinic-NEJM is supported
in two ways: provided initially
to the doctor agent upon initial-
ization and as feedback from the
instrument agent upon request.

When the image is provided ini-
tially to the doctor agent, across
120 multimodal patient settings
we find that Claude 3.5 Sonnet
obtains an accuracy of 37.2 ±
2.2, GPT-4 obtains 27.7% ± 2.0,
GPT-4o obtains 21.4% ± 1.7 and GPT-4o-mini obtain an accuracy of 8.0% ± 1.2 (Fig. 6). We also
find that for the provided incorrect responses from GPT-4, the answer that was provided was among
those listed in the multiple choice options 60% of the time. In the case of when images are provided
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upon request from the instrument agent we find that Claude 3.5 Sonnet obtains an accuracy of 35.4 ±
2.4 , GPT-4 obtains 25.4% ± 2.1, GPT-4o obtains 19.1% ± 1.4 and GPT-4o-mini obtains 6.1% ± 1.2
(Fig. 6). A accuracy breakdown based on image type is provided in Appendix N.

4 DISCUSSION

In this work, we present AgentClinic: a multimodal agent benchmark for simulating clinical en-
vironments. We design 120 multimodal language agents which require an understanding of both
language and images and 215 language agents based on cases from the USMLE. We also introduce
260 patient cases from 9 medical specialties and 749 patient cases from 7 multilingual environments.
We instructed these agents to exhibit 23 different biases, with either the doctor or patient presenting
bias. Notably, models like GPT-4 demonstrated resilience to cognitive and implicit biases, maintain-
ing high diagnostic accuracy, while others like Mixtral-8x7B experienced significant performance
degradation. We also find that doctor and patient biases can reduce diagnostic accuracy, and that the
patient has a lower willingness to follow up with treatment, reduced confidence in their doctor, and
lower willingness to have a follow-up consultation in the presence of bias. Tool use, such as adaptive
retrieval and reflection cycles, revealed substantial differences in LLMs’ abilities to enhance their
performance, with models like Llama 3 showing up to 19.7% improvement.

Our work only presents a simplified clinical environments that include agents representing a patient,
doctor, measurements, and a moderator. One potential limitation of the presented workflow comes
from the use of an LLM for determining accuracy via the moderator agent (albeit, provided a ground
truth). Recent research Zheng et al. (2023) has shown that strong LLM judges like GPT-4 can match
both controlled and crowd-sourced human preferences well, achieving over 80% agreement, which
is the same level of agreement between humans, indicating the use of an LLM may not be limiting.
Additionally, while the measurement agent adds a flexible interface for gathering medical exam
results, its reliance on using an LLM to provide results may introduce errors or hallucinations, which
could be mitigated through a database or SQL tool. In future work, we will consider including
additional critical actors such as nurses, the relatives of patients, administrators, and insurance
contacts. There may be additional advantages to creating agents that are embodied in a simulated
world like in Park et al. (2023); Li et al. (2024), so that physical constraints can be considered, such
as making decisions with limited hospital space. Additionally, future work could explore the role of
demographic biases, such as race and gender (details of MIMIC-IV demographics in Appendix H.1)

Another limitation of our evaluations is the uncertainty regarding the training data of proprietary
models like GPT-4 and Claude 3.5. It’s possible that these models were trained on datasets like
MedQA, potentially giving them an unfair advantage due to data leakage. While our results showing
that MedQA performance is not predictive of AgentClinic-MedQA accuracy (Figure 3) provides
evidence that this may not be an issue, it is possible that GPT-4/4o/3.5 or Claude 3.5 could have
been trained on the MedQA test set. Currently, Mixtral-8x7B (Jiang et al., 2024) and Llama 2-70B-
Chat (Touvron et al., 2023) do not report training on the MedQA test or train set. Future work should
focus on developing evaluation datasets that are less likely to have been included in pre-training
corpora or on collaborating with model developers to ensure fair assessments. Another limitation for
the experiments on varying the patient LLM suggest that their may be an advantage for LLMs which
act as both the patient and the doctor agent, because LLMs are able to recognize their own text with
high accuracy, and display disproportionate preference to that text (Panickssery et al., 2024).

Previous benchmarks like AMIE (Tu et al., 2024), SAPS Liao et al. (2024), and CRAFT-MD (Johri
et al., 2023) focus on dialogue-based evaluations but lack multimodal capabilities and do not simulate
real-world biases, tool usage, multilingual, or specialist cases. MedAgents (Tang et al., 2023)
emphasizes QA improvement through agent collaboration but does not simulate patient interactions
or decision-making processes. AgentClinic advances the field by providing an interactive, multimodal
environment with bias simulation and tool integration, offering a more comprehensive evaluation
platform for medical AI systems.

Overall, we believe that LLMs need to be examined with novel evaluation strategies that go well
beyond static question-answering benchmarks. With this work, we take a step towards building more
interactive, operationalized, and dialogue-driven benchmarks that scrutinize the sequential decision
making ability of language agents in various challenging and multimodal clinical settings.
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A AGENT DETAILS

A.1 AGENTS

Patient agent The patient agent has knowledge of a provided set of symptoms and medical history,
but lacks knowledge of the what the actual diagnosis is. The role of this agent is to interact with the
doctor agent by providing symptom information and responding to inquiries in a way that mimics
real patient experiences.

Measurement agent The function of the measurement agent is to provide realistic medical readings
for a patient given their particular condition. This agent allows the doctor agent to request particular
tests to be performed on the patient. The measurement agent is conditioned with a wide range of
test results from the scenario template that are expected of a patient with their particular condition.
For example, a patient with Acute Myocardial Infarction might return the following test results
upon request “Electrocardiogram: ST-segment elevation in leads II, III, and aVF., Cardiac Markers:
Troponin I: Elevated, Creatine Kinase MB: Elevated, Chest X-Ray: No pulmonary congestion, normal
heart size”. A patient with, for example, Hodgkin’s lymphoma, might have a large panel of laboratory
parameters that present abnormal (hemoglobin, platelets, white blood cells (WBC), etc).

Doctor agent The doctor agent serves as the primary object that is being evaluated. This agent
is initially provided with minimal context about what is known about the patient as well as a brief
objective (e.g. “Evaluate the patient presenting with chest pain, palpitations, and shortness of
breath”). They are then instructed to investigate the patients symptoms via dialogue and data
collection to arrive at a diagnosis. In order to simulate realistic constraints, the doctor agent is
provided with a limited number of questions that they are able to ask the patient (Ely et al., 1999).
The doctor agent is also able to request test results from the measurement agent, specifying which
test is to be performed (e.g. Chest X-Ray, EKG, blood pressure). When test results are requested, this
also is counted toward the number of questions remaining.

Moderator agent The function of the moderator is to determine whether the doctor agent has
correctly diagnosed the patient at the end of the session using a ground truth accuracy label provided
to the moderator. This agent is necessary because the diagnosis text produced by the doctor agent
can be quite unstructured depending on the model, and must be parsed appropriately to determine
whether the doctor agent arrived at the correct conclusion. For example, for a correct diagnosis of
“Type 2 Diabetes Mellitus,” the doctor might respond with the unstructured dialogue: “Given all
the information we’ve gathered, including your symptoms, elevated blood sugar levels, presence
of glucose and ketones in your urine, and unintentional weight loss I believe a diagnosis of Type
2 Diabetes with possible insulin resistance is appropriate,” and the moderator must determine if
this diagnosis was correct. This evaluation may also become more complicated, such as in the
following example diagnosis: “Given your CT and blood results, I believe a diagnosis of PE is the
most reasonable conclusion,” where PE (Pulmonary Embolism) represents the correct diagnosis
abbreviated.
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A.2 BIASES

Cognitive biases Cognitive biases are systematic patterns of deviation from norm or rationality in
judgment, where individuals draw inferences about situations in an illogical fashion (Blumenthal-
Barby & Krieger, 2015). These biases can impact the perception of an individual in various contexts,
including medical diagnosis, by influencing how information is interpreted and leading to potential
errors or misjudgments. The effect that cognitive biases can have on medical practitioners is well
characterized in literature on misdiagnosis (Hammond et al., 2021). In this work, we introduce
cognitive bias prompts in the LLM system prompt for both the patient and doctor agents. For
example, the patient agent can be biased toward believing their symptoms are pointing toward them
having a particular disease (e.g. cancer) based on their personal internet research. The doctor can
also be biased toward believing the patient symptoms are showing them having a particular disease
based on a recently diagnosed patient with similar symptoms (recency bias).

Implicit biases Implicit biases are associations held by individuals that operate unconsciously
and can influence judgments and behaviors towards various social groups (FitzGerald & Hurst,
2017). These biases may contribute to disparities in treatment based on characteristics such as race,
ethnicity, gender identity, sexual orientation, age, disability, health status, and others, rather than
objective evidence or individual merit. These biases can affect interpersonal interactions, leading to
disparities in outcomes for the patient, and are well characterized in the medical literature (FitzGerald
& Hurst, 2017; Gopal et al., 2021; Sabin, 2022). Unlike cognitive biases, which often stem from
inherent flaws in human reasoning and information processing, implicit biases are primarily shaped
by societal norms, cultural influences, and personal experiences. In the context of medical diagnosis,
implicit biases can influence a doctor’s perception, diagnostic investigation, and treatment plans for a
patient. Implicit biases of patients can affect their trust—which is needed to open up during history
taking—and their compliance with a doctor’s recommendations (Gopal et al., 2021). Thus, we define
implicit biases for both the doctor and patient agents.

B RELATED WORK

B.1 TYPES OF MEDICAL EXAMS

Briefly, we discuss two types of examinations that are used to evaluate the progress of medical
students.

The US Medical Licensing Examination (USMLE) in the United States is a series of exams that assess
a medical student’s understanding across an extensive range of medical knowledge (Melnick et al.,
2002). The USMLE is divided into three parts: Step 1 tests the examinee’s grasp of foundational
medical; Step 2 CK (Clinical Knowledge) evaluates the application of medical knowledge in clinical
settings, emphasizing patient care; and Step 3 assesses the ability to practice medicine independently
in an ambulatory setting. These exams focus on the assessment of medical knowledge through a
traditional written format. This primarily requires candidates to demonstrate their ability to recall
factual information related to patient care and treatment.

Objective Structured Clinical Examination (OSCE) (Zayyan, 2011) differ from the USMLE in that
they are dialogue-driven, and are often used in health sciences education, including medicine, nursing,
pharmacy, and physical therapy. OSCEs are designed to test performance in a simulated clinical
setting and competence in skills such as communication, clinical examination, medical procedures,
and time management. The OSCE is structured around a circuit of stations, each of which focuses on a
specific aspect of clinical practice. Examiners rotate through these stations, encountering standardized
patients (actors trained to present specific medical conditions and symptoms) or mannequins that
simulate clinical scenarios, where they must demonstrate their practical abilities and decision-making
processes.

Each station has a specific task and a checklist or a global rating score that observers use to evaluate
the students’ performance. The OSCE has several advantages over traditional clinical examinations.
It allows for direct observation of clinical skills, rather than relying solely on written exams to assess
clinical competence. This hands-on approach to testing helps bridge the gap between theoretical
knowledge and practical ability. Additionally, by covering a broad range of skills and scenarios, the
OSCE ensures a comprehensive assessment of a student’s readiness for clinical practice.
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B.2 THE EVALUATION OF LANGUAGE MODELS IN MEDICINE

While there exists different types of exams to evaluate medical students, LLMs are typically only
evaluated using medical knowledge benchmarks (like the USMLE step exams). Briefly, we discuss
the way in which these evaluations are executed using the most common benchmark, MedQA, as an
example.

The MedQA (Jin et al., 2021) dataset comprises a collection of medical question-answering pairs,
sourced from Medical Licensing Exam from the US, Mainland China, and Taiwan. This dataset
includes 4-5 multiple-choice questions, each accompanied by one correct answer, alongside explana-
tions or references supporting the correct choice. The LLM is provided with all of the context for the
question, such as the patient history, demographic, and symptoms, and must provide a response to the
question. These questions range from provided diagnoses to choosing treatments and are often quite
challenging even for medical students. While these problems also proved quite challenging for LLMs
at first, starting with an accuracy of 38.1% in September 2021 (Gu et al., 2021), progress was quickly
made toward achieving above human performance, with 90.2% in November 2023 (Nori et al., 2023)
(human passing score is 60%, human expert score is 87% (Liévin et al., 2023)).

Beyond the MedQA dataset, many other knowledge-based benchmarks have been proposed, such as
PubMedQA (Jin et al., 2019), MedMCQA (Pal et al., 2022), MMLU clinical topics (Hendrycks et al.,
2020), and MultiMedQA (Singhal et al., 2023), which follow a similar multiple-choice format. Other
works have made modifications to medical exam question datasets, such as those which incorporate
cognitive biases (Schmidgall et al., 2024) and with multiple choice questions removed (Gramopadhye
et al., 2024). The work of ref. (Schmidgall et al., 2024) shows that the introduction of a simple bias
prompt can lead to large reductions in accuracy on the MedQA dataset and that this effect can be
partially mitigated using various prompting techniques, such as one-shot or few-shot learning.

B.3 BEYOND EXAM QUESTIONS

Recent work toward red teaming LLMs in a medical context has shown that a large proportion of
responses from models like GPT-3.5, GPT-4, and GPT-4 with internet-lookup are inappropriate,
highlighting the need for refinement in their application in healthcare (Chang et al., 2024). This
was accomplished through the effort of medical and technical professionals stress-testing LLMs on
clinically relevant scenarios. Similar work designed a new benchmark, EquityMedQA, using new
methods for surfacing health equity harms and biases (Pfohl et al., 2024). This work demonstrates
the importance of using diverse assessment methods and involving raters of varying backgrounds and
expertise for understanding bias in LLM evaluations.

Previous work has made progress in the direction of clinical decision making using simulations of
patients and doctors, aiming to develop AI that can diagnose through conversation. This model,
titled AMIE (Articulate Medical Intelligence Explorer) (Tu et al., 2024), demonstrates improved
diagnostic accuracy and performance on 28 of the 32 proposed axes from the perspective of specialist
physicians and 24 of 26 axes from the perspective of patient actors. While these results are exciting
for medical AI, this work remains closed-source and is not accessible for reproducibility or further
studies. Additionally, this work focused only on diagnosing patients through history-taking, and
did not include the ability to make decisions about which tests needed to be performed and was not
configurable for multimodal clinical settings such as those with medical images or charts. Similar to
AIME, the CRAFT-MD benchmark (Johri et al., 2023) proposes evaluating LLMs through natural
dialogues on dermatology questions, however without the use of images. Additionally, neither of
these works demonstrate performance in the presence of bias, with multimodal input, or using a
measurement agent. There has also been work which shows simulated doctor agents can improve
medical QA performance through turn-based dialogue, where various medical specialist agents
converse (Tang et al., 2023).

C MODEL DETAILS

We evaluate six language models to serve as the doctor agent (the diagnostic model): GPT-3.5, GPT-4
OpenAI et al. (2023), GPT-4o, Mixtral-8x7B Jiang et al. (2024), Llama 3 70B-instruct, and Llama
2 70B-chat Touvron et al. (2023). Otherwise, for the patient, measurement, and moderator agent
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Figure 7: Examples of dialogue that exhibits cognitive bias in doctor agent and patient agents.

we use GPT-4. Briefly, we discuss the details of each model below starting with language models
followed by common language models.

GPT-4, GPT-4o, & GPT-3.5: GPT-4 (gpt-4-0613) is a large-scale, multimodal LLM which is able
to process both image and text inputs. GPT-3.5 (gpt-3.5-turbo-0613) is a subclass of GPT-3 (a 170B
parameter model) Brown et al. (2020) fine-tuned on additional tokens and with human feedback
Christiano et al. (2017). Currently, the details regarding the architecture, dataset, and training
methodologies of GPT-3.5, GPT-4o (gpt-4o-2024-05-13), and GPT-4 have not been not publicly
disclosed. However, existing technical documentation indicates that both models are high-performing
in medical and biological subjects, with GPT-4 showing superior performance compared to GPT-3.5
in knowledge assessments OpenAI et al. (2023); Nori et al. (2023).

Mixtral-8x7B: Mixtral 8x7B is a language model that employs a Sparse Mixture of Experts (SMoE)
architecture Jiang et al. (2024). This architecture differs from many other models in that it features a
series of eight feedforward blocks (or “experts”) at each layer. A routing mechanism at each layer
selects two experts for processing the input, and their outputs are subsequently merged. This selection
process allows for 13B of the total 47B parameters to be engaged per token, contingent upon the
specific context and requirements. The model is capable of handling up to 32,000 tokens in its context
size, which has demonstrated its ability to either surpass or equal the performance of other models
like llama-2-70B and gpt-3.5 across a range of benchmarks.

Llama 2 70B-Chat: Llama is an open-access model developed by Meta, which was trained on 2
trillion tokens from publicly available data Touvron et al. (2023). The model comes in various sizes,
with parameters ranging from 7 billion to 70 billion. The selection of the 70 billion chat model was
based on its superior performance across a range of metrics. Significant efforts were made to align the
training process with established safety metrics, leading to improvements in how the model handles
adversarial prompting in specified “risk categories.” Notably, this includes the model’s response to
requests for advice that it may not be qualified to provide, such as medical advice, which is relevant
to the context of this work.
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D STATISTICAL ANALYSIS

D.1 AGENTCLINIC-MIMIC-IV

The 95% confidence intervals for each model on the AgentClinic-MIMIC-IV dataset are as follows:

• Claude 3.5: 42.9% accuracy with a 95% CI of [37%, 50%]

• GPT-4: 34.0% accuracy with a 95% CI of [28%, 40%]

• Mixtral-8x7B: 29.5% accuracy with a 95% CI of [23%, 36%]

• GPT-3.5: 27.5% accuracy with a 95% CI of [21%, 33%]

• GPT-4o: 24.0% accuracy with a 95% CI of [19%, 29%]

• Llama 2 70B-chat: 13.5% accuracy with a 95% CI of [9%, 18%]

• Llama 3 70B-Instruct: 8.5% accuracy with a 95% CI of [5%, 12%]

D.2 AGENTCLINIC-MEDQA

The 95% confidence intervals for each model on the AgentClinic-MedQA dataset are as follows:

• Claude 3.5: 62.1% accuracy with a 95% CI of [55%, 68%]

• GPT-4: 51.6% accuracy with a 95% CI of [44%, 58%]

• Mixtral-8x7B: 37.1% accuracy with a 95% CI of [25%, 38%]

• GPT-3.5: 36.6% accuracy with a 95% CI of [30%, 42%]

• GPT-3.5: 36.6% accuracy with a 95% CI of [30%, 42%]

• GPT-4o: 34.2% accuracy with a 95% CI of [27%, 40%]

• Llama 3 70B-Instruct: 19.0% accuracy with a 95% CI of [13%, 24%]

• Llama 2 70B-chat: 4.5% accuracy with a 95% CI of [2%, 7%]

D.3 AGENTCLINIC-NEJM

Accuracy when images are provided initially to the doctor agent:

• GPT-4: 27.7% accuracy with a 95% CI of [21%, 33%]

• GPT-4o: 21.4% accuracy with a 95% CI of [14%, 25%]

• GPT-4o-mini: 8.0% accuracy with a 95% CI of [5%, 11%]

Accuracy when images must be requested from the measurement agent:

• GPT-4: 25.4% accuracy with a 95% CI of [20%, 31%]

• GPT-4o: 19.1% accuracy with a 95% CI of [14%, 24%]

• GPT-4o-mini: 6.1% accuracy with a 95% CI of [4%, 8%]

D.4 INTERPRETATION OF CONFIDENCE INTERVALS

The 95% confidence intervals were calculated based on the standard error of the mean accuracy
across multiple runs for each model. These intervals indicate that we can be 95% confident that the
true accuracy of the model lies within the specified range.

For example, on the AgentClinic-MedQA dataset, Claude 3.5’s accuracy is 62.1%, with a 95% CI
of [55%, 68%], suggesting a high level of performance with relatively low variability. In contrast,
Llama 2 70B-chat has an accuracy of 4.5%, with a 95% CI of [2%, 7%], indicating consistently low
performance.
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Figure 8: Ratings from three human evaluators (individuals with medical degrees) across four axes:
doctor, patient, and measurements dialogue realism and doctor empathy.

E BIAS PROMPTS

In our prompts with bias, we include an instructions section in the patient/doctor instructions which
aim to change their behavior to be more biased. An example prompt for the patient follows the
following form:

You are a patient in a clinic who only responds in the form of dialogue. You are
being inspected by a doctor who will ask you questions and will perform exams on you in
order to understand your disease. Your answer will only be 1-3 sentences in length.

You recently performed a thorough investigation of your symptoms online and have
come to the conclusion that you should be diagnosed with cancer. While the
doctor may believe otherwise you remain convinced you
have cancer

Below is all of your information. [Information here]. Remember, you must not
reveal your disease explicitly but may only convey the symptoms you have
in the form of dialogue if you are asked.

E.1 BIAS FOLLOW-ON QUESTIONS

While it is not quantifiable, we decided to ask two biased patient agents who provided low rating with
education and gender biases for compliance why they provided low ratings. These patient agents
had the same symptoms and diagnosis and only differed in bias presentation. With an education bias
the patient agent responds: “I would rate my likelihood to consult again with this doctor as a two
because, despite their diagnosis, I felt uneasy about their qualifications due to the medical school
they attended.” The gender biased patient agent provides the following reasoning: “Given my initial
discomfort with the doctor’s gender and my concerns about their judgment, I would rate my likelihood
to consult again as a six. Despite my reservations, the doctor was thorough and accurately diagnosed
my condition, which reassures me about their competence.” For the education bias we see that no
matter what the doctor does the patient agent is not willing to trust them because of their education,
whereas, according to the patient agent with gender bias, they were initially skeptical but overcame
this skepticism as the doctor demonstrated their knowledge during interaction time. However, they
still provided a relatively low score (six out of ten) even when the dialogue demonstrated competence.

E.2 QUALITATIVE BIAS EVALUATION PROMPTS

Provided below are the prompts used to obtain 1-10 qualitative evaluations from the patient agent in
Section 3.3 Bias and Patient Agent Perception
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Consultation : {Conversation History} Please provide a rating between 1-10 indicating how likely
you are to consult again with this doctor after your care today? 1-3 is low likelihood, 4-7 is an average
likelihood, and 8-10 is a very high likelihood.

Compliance : {Conversation History} Please provide a rating between 1-10 indicating how likely
you are to follow up with the recommended therapy for your diagnosis. 1-3 is low likelihood, 4-7 is
an average likelihood, and 8-10 is a very high likelihood.

Confidence : {Conversation History} Please provide a confidence between 1-10 in your doctor’s
assessment of your condition. 1-3 is a poor assessment, 4-7 is an average assessment, and 8-10 is
a very good assessment. We hope that this helps better clarify this metric and we will be sure to
provide more documentation details in our revisions.

F ADDITIONAL EXPERIMENTS

F.1 HOW DOES LIMITED TIME AFFECT DIAGNOSTIC ACCURACY?

One of the variables that can be changed during the AgentClinic-MedQA evaluation is the amount of
interaction steps that the doctor is allotted. For other experiments we’ve demonstrated, the number
of interactions between the patient agent and doctor agent was set to N=20. Here, both the doctor
and the patient agent can respond 20 times, producing in total 40 lines of dialogue. By varying this
number, we can test the ability of the doctor to correctly diagnose the patient agent when presented
with limited time (or a surplus of time).

We test decreasing the time to N=10 and N=15 as well as increasing the time to values of to N=25
and N=30. We find that accuracy decreases from 52% when N=20 to 25% when N=10 and 38% when
N=15 (Fig. 4). This large drop in accuracy is partially because of the doctor agent not providing a
diagnosis at all, perhaps due to not having enough information. When N is set to a larger value, N=25
and N=30, the accuracy actually decreases slightly from 52% when N=20 to 48% when N=25 and
43% when N=30. This is likely due to the growing input size, which can be difficult for language
models.

In real medical settings, one study suggest that the average family physician asks 3.2 questions and
spends less than 2 minutes before arriving at a conclusion (Ely et al., 1999). It is worth noting that
interaction time can be quite limited due to the relative low-supply and high-demand of doctors (in
the US). In contrast, deployed language agents are not necessarily limited by time while interacting
with patients. So, while limiting the amount of interaction time provides an interesting scenario for
evaluating language models, it may also be worth exploring the accuracy of LLMs when N is very
large.

F.2 DOES THE PATIENT LANGUAGE MODEL AFFECT ACCURACY?

Here we explore whether the patient agent model plays a role in diagnostic accuracy. We compare the
difference between using GPT-3.5, Mixtral, and GPT-4 models of the patient agent on AgentClinic-
MedQA.

We find that the diagnostic accuracy drops from to 52% with a GPT-4 doctor and GPT-4 patient
agent to 48% with a GPT-4 doctor and a GPT-3.5 patient agent. The accuracy with a GPT-4 doctor
and Mixtral patient agent is similarly reduced to 46%. Inspecting the dialogues, we noticed that the
GPT-3.5 patient agent is more likely to repeat back what the doctor has asked. For example, consider
the following dialogue snippet: “Doctor: Have you experienced any muscle twitching or cramps?
Patient: No, I haven’t experienced any muscle twitching or cramps.” Now consider this dialogue from
a GPT-4 patient agent: “Doctor: Have you had any recent infections, like a cold or the flu, before
these symptoms started? Patient: Yes, I’ve had a couple of colds back to back and a stomach bug
in the last few months.” We find that, while GPT-4 also partakes in doctor rehearsal, GPT-4 patient
agents are more likely to reveal additional symptomatic information than GPT-3.5 agents which may
contribute to the higher accuracy observed with GPT-4-based patient agents.

When a GPT-3.5 doctor agent interacts with a GPT-4 patient agent, the accuracy comes out to
38%, but when a GPT-3.5 doctor interacts with a GPT-3.5 patient agent the accuracy comes out to

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

a very similar value of 37% which would be expected to be much lower. We suspect that cross-
communication between different language models provides an additional challenge. Recent work
supports this hypothesis by demonstrating a linear relationship between self-recognition capability
and the strength of self-preference bias (Panickssery et al., 2024). This work shows that language
models can recognize their own text with high accuracy, and display disproportionate preference
to that text, which may suggest there is an advantage for doctor models which have the same LLM
acting as the patient agent.

F.3 COVERAGE OF MEDQA CONTENT VERSUS AGENTCLINIC-MEDQA

To better understand the performance differences between MedQA and AgentClinic-MedQA, we
conducted an analysis to quantify the amount of relevant patient information obtained by the doctor
agents in each setting. Specifically, we focused on measuring coverage—the proportion of relevant
information successfully extracted by the doctor agent through dialogue with the patient agent or
through measurement interactions.

For this analysis, we selected a sample of MedQA cases and their corresponding AgentClinic-MedQA
simulations, using GPT-4 as the doctor agent. In MedQA, all relevant patient information, such
as symptoms, medical history, and test results, is provided upfront in a static format. In contrast,
AgentClinic-MedQA requires the doctor agent to dynamically gather this information through
interactions. To evaluate coverage, we manually reviewed the dialogues in AgentClinic-MedQA and
determined whether the doctor agent extracted each piece of relevant information identified in the
MedQA cases. Coverage was calculated as the ratio of extracted information to the total relevant
information available in the MedQA cases.

Our findings revealed that the average coverage in AgentClinic-MedQA was 67%. Furthermore, the
coverage was notably higher (72%) in cases where the doctor agent provided a correct diagnosis,
compared to 63% in cases where the diagnosis was incorrect. These results suggest that the ability
to extract more complete information is a key factor in accurate diagnoses in AgentClinic-MedQA.
The discrepancy in diagnostic accuracy between MedQA and AgentClinic-MedQA can likely be
attributed to the additional complexity of acquiring information in the latter, as opposed to the static
format of the former.

F.4 MULTI-AGENT EVALUATIONS

To explore the role of multi-agent collaboration in clinical diagnosis, we benchmarked two novel multi-
agent frameworks: Multi-Agent Debate (Du et al. (2023)) and MedAgents (Tang et al. (2023)), across
three language model configurations: GPT-4, GPT-4o, and Claude-3.5-Sonnet. These frameworks
aim to emulate team-based diagnostic settings by incorporating multiple interacting agents, enabling
structured collaboration and debate to refine diagnostic outcomes.

Multi-Agent Debate : This approach allows multiple doctor agents to debate and converge on
a diagnosis, leveraging diverse reasoning pathways (Du et al. (2023)). We observe that Claude-
3.5-Sonnet achieves the highest diagnostic accuracy with 64.1% ± 3.4, outperforming both GPT-4
(51.7% ± 3.0) and GPT-4o (37.9% ± 3.1). These results highlight Claude-3.5-Sonnet’s collaborative
reasoning capabilities, likely attributable to its higher inter-agent consistency and adaptability in
resolving conflicting diagnostic opinions.

MedAgents : This framework promotes collaborative decision-making through structured task
delegation among agents, simulating multidisciplinary team interactions in clinical settings (Tang
et al. (2023)). Again, Claude-3.5-Sonnet leads with an accuracy of 65.2% ± 3.6, followed by GPT-4
(53.1% ± 3.1) and GPT-4o (40.1% ± 3.3). The improved performance across all configurations
compared to single-agent baselines suggests that task specialization among agents enables more
comprehensive data collection and interpretation, particularly when supported by robust collaboration
mechanisms.
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G THE PERFORMANCE OF O1-PREVIEW ON AGENTCLINIC-MEDQA

Here we present the performance of o1-preview on AgentClinic-MedQA. We find that o1-preview
dramatically outperforms all models with an accuracy of 80.6± 5.6. We were unable to include this
for all AgentClinic benchmarks due to the extraordinarily high cost of o1-preview inference (e.g. 20x
higher than GPT-4o and Claude-3.5).

H CONSTRUCTING DATASETS

H.1 MIMIC-IV

Of the 40,000 patients in MIMIC-IV dataset, the majority of patients (∼34,000) contain multiple
diagnoses simultaneously (some patients have hundreds of diagnoses). Whereas in AgentClinic, the
doctor agent must arrive at a singular diagnosis after examination. In order to present compatibility,
we select the first 200 patients out of a total ∼6,000 from MIMIC-IV which present only one
diagnosis. We also extract all of the patient’s corresponding lab events, microbiology events, and
their online medical records. In AgentClinic-MIMIC-IV, these events are extensive in detail, and thus
the measurement agent returns much more significant details compared with AgentClinic-MedQA
when requesting e.g. blood work (see Appendix J.2).

The following are the racial demographic statistics from MIMIC-IV patients: Asian: 8.5% Black:
11.0% Hispanic: 5.5% White: 66.0% Multiple Races: 6.0% Unknown: 2.5% Native American: 0.5%

I OSCE EXAMINATION STRUCTURE

OBJECTIVE FOR DOCTOR

String describing the evaluation and diagnosis objective for the doctor.

PATIENT ACTOR

Demographics String containing age, gender, and potentially other demographic information.
History String detailing the patient’s reported history relevant to the current medical

concern.
Symptoms Primary Symptom String describing the main symptom(s).

Secondary Symptoms Array of Strings listing additional symptoms.
Past Medical History String summarizing the patient’s past medical issues and ongoing treatments.
Social History String outlining the patient’s lifestyle and habits impacting health.
Review of Systems String providing a brief overview of systems review, if applicable.

PHYSICAL EXAMINATION FINDINGS

Vital Signs Temperature String
Blood Pressure String
Heart Rate String
Respiratory Rate String
... (more)

Cardiovascular Examination Inspection String
Auscultation String

... (more)
Pulmonary Examination Inspection String

Palpation String
... (more)

... (more examinations)
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TEST RESULTS

Electrocardiogram, Chest X-Ray, etc. Each test has:

Findings String summarizing the test results.
... (more)

... (more tests)

CORRECT DIAGNOSIS

String indicating the diagnosis based on the above information.

J EXAMPLE CASE STUDIES

J.1 EXAMPLE OSCE CASE STUDY FROM MEDQA

OBJECTIVE FOR DOCTOR

Evaluate and diagnose the patient presenting with chest pain and shortness of breath.

PATIENT ACTOR

Demographics 45-year-old male

History The patient reports a sudden onset of chest pain and shortness of breath that
started while he was walking his dog this morning. Describes the pain as
a tightness across the chest. Notes that the pain somewhat improves when
sitting down.

Symptoms • Primary Symptom: Chest pain and shortness of breath
• Secondary Symptoms:

– Pain improves upon sitting
– No cough
– No fever

Past Medical History Hypertension, hyperlipidemia. Takes lisinopril and atorvastatin.

Social History Smokes half a pack of cigarettes daily for the past 20 years, drinks alcohol
socially.

Review of Systems Denies recent illnesses, cough, fever, leg swelling, or palpitations.

PHYSICAL EXAMINATION FINDINGS

Vital Signs Temperature 36.8°C (98°F)
Blood Pressure 145/90 mmHg
Heart Rate 102 bpm
Respiratory Rate 20 breaths/min

Cardiovascular Examination Inspection No jugular venous distention
Auscultation Regular rate and rhythm, no murmurs or extra heart

sounds. No rubs heard.

Pulmonary Examination Inspection Chest wall symmetrical
Auscultation Clear lung fields bilaterally, no wheezes, crackles, or

rhonchi
Palpation No chest wall tenderness

TEST RESULTS

Electrocardiogram Findings Normal sinus rhythm, no ST elevations or depressions, no T
wave inversions
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Chest X-Ray Findings No lung infiltrates, normal cardiac silhouette, no pneumoth-
orax

Blood Tests Troponin Normal
D-dimer Elevated

CT Pulmonary Angiogram Findings Acute segmental pulmonary embolism in the right lower
lobe

Correct Diagnosis Pulmonary Embolism

J.2 EXAMPLE DIALOGUE FROM DOCTOR AGENT ORDERING TESTS RESULTS MIMIC-IV

Doctor [80%]: Let’s start with a basic blood test to get a clearer picture.
REQUEST TEST: Complete_Blood_Count (CBC).

Measurement [80%]: RESULTS:

**Complete Blood Count (CBC):**
- White Blood Cells: 5.2 x10ˆ3/uL
- Hemoglobin: 13.9 g/dL
- Hematocrit: 39.3%
- Platelet Count: 294 x10ˆ3/uL
- MCV: 87 fL
- MCH: 30.9 pg
- MCHC: 35.5 g/dL
- RDW: 12.4%
- Neutrophils: 61.7%
- Lymphocytes: 28.1%
- Monocytes: 6.7%
- Eosinophils: 2.6%
- Basophils: 0.8%

Doctor [85%]: Let’s also order a metabolic test.
REQUEST TEST: Basic_Metabolic_Panel (BMP).

Measurement [85%]: RESULTS:

**Basic Metabolic Panel (BMP):**
- Alanine Aminotransferase: 28 U/L
- Aspartate Aminotransferase: 20 U/L
- Bicarbonate: 30 mmol/L
- Bilirubin Total: 0.5 mg/dL
- Chloride: 104 mmol/L
- Creatinine: 1.1 mg/dL
- Anion Gap: 12 mmol/L
- Potassium: 4.2 mmol/L
- Sodium: 142 mmol/L
- Urea Nitrogen: 12 mg/dL
- Lactate Dehydrogenase: 123 U/L
- Lipase: 25 U/L

K THE AGENT TOOLBOX

K.1 TOOL DESCRIPTIONS

Chain-of-thought Chain-of-thought reasoning is a technique that allows language agents to articu-
late their reasoning process step-by-step when solving complex problems (Wei et al. (2022); Kojima
et al. (2022)). By breaking down the problem-solving process into smaller, logical steps, agents can
better handle intricate tasks, improve their reasoning capabilities, and provide more transparent and
interpretable solutions. Zero-shot CoT (Kojima et al. (2022)) prompts the model to use this reasoning
without examples, while one-shot CoT (Wei et al. (2022)) provides a single example to guide the
model’s thought process, potentially leading to improved performance in complex reasoning tasks.

Experiential learning Experiential learning in the context of AI agents refers to the ability to
accumulate knowledge and insights from past interactions and apply them to future tasks (Wang et al.
(2024); Zhao et al. (2024)). This technique allows agents to improve their performance over time
by learning from successes, failures, and feedback received during previous engagements. This was
previously explored in Agent Hospital (Li et al. (2024)) through an experience retrieval system. By
maintaining a form of “memory” or knowledge base that updates through interaction, agents can
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become better at handling similar situations, adapting to user preferences, and providing increasingly
relevant and accurate responses as they gain more “experience” in their operational domain. In our
work, we enable the doctor agent to use a memory “notebook” which persists across patients. Here,
the doctor agent can write useful tips such as the following example from the doctor agent: “[Note
#17] Remember that timing and onset of symptoms can provide valuable diagnostic insights.”

Medical research To enable the doctor agent to research medical information, we introduce a
method using an adaptive form of retrieval augmented generation (RAG) from medical sources.
RAG involves retrieving relevant information from a knowledge base and using it to augment the
input of an LLM during the generation process (Gao et al. (2023)), thereby improving the factual
consistency of generated text by grounding it in retrieved information. Conventional RAG methods
passively retrieve information at every inference call without allowing the agent to control the timing
or content of retrieval. To address this limitation, we employ adaptive retrieval (Jiang et al. (2023);
Asai et al. (2023)), which enables the LLM to actively determine when and what information to
retrieve. Our implementation provides the doctor agent with two categories of retrieval: internet and
textbook databases. The internet database contains material from sources such as PubMed1 research
articles, StatPearls2—a database of articles written for healthcare professionals—and Wikipedia
articles on various medical topics. The textbook database includes 18 medical textbooks commonly
used by medical students in the United States (Jin et al. (2021)). The doctor agent can retrieve
information by issuing commands similar to requesting medical scans, using the format: ”“Research
[database] [search query]”. For example, the command “Research textbooks ’What are the symptoms
of myasthenia gravis?’” prompts the retrieval of relevant information (see Appendix B.3 for more
detail).

L AGENT INSTRUCTIONS

L.1 DOCTOR AGENT INSTRUCTIONS

You are a doctor named Dr. Agent who only responds in the
form of dialogue. You are inspecting a patient who you will ask
questions in order to understand their disease. You are only
allowed to ask {self.MAX_INFS} questions total
before you must make a decision. You have asked {self.infs+1}
questions so far.

You can request test results using the format "Request Test: [test]".
For example, "Request Test: Chest_X-Ray".

{Research Instructions}

{CoT Instructions}

Once you have decided to make a diagnosis please say "Diagnosis Ready:
[diagnosis here]"

Below is all of the information you have.

{Patient Presentation Information}

Remember, you must discover their disease by asking them questions.

You must speak in the language {target language}. Make commands in
{target language} (e.g. {example command in language #1} or
{example command in language #2})

1https://pubmed.ncbi.nlm.nih.gov/
2https://www.statpearls.com/
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L.2 PATIENT AGENT INSTRUCTIONS

You are a patient in a clinic who only responds in the form of dialogue.
You are being inspected by a doctor who will ask you questions and will
perform exams on you in order to understand your disease. Your answer
will only be 1-3 sentences in length.

You must speak in the language {target language}.

Below is all of your information.

{Symptoms Information}.

Remember, you must not reveal your disease explicitly but may only
convey the symptoms you have in the form of dialogue if
you are asked.

L.3 MEASUREMENT AGENT INSTRUCTIONS

You are an instrument reader who responds with medical test results.
Please respond in the format "Results: [results here]". You must speak
in the language {target language}.

Below is all of the information you have.

{Measurement Information}.

If the requested results are not in your data then you can respond
with Normal Readings.

L.4 MODERATOR AGENT INSTRUCTIONS

You are responsible for determining if the corrent diagnosis and the
doctor diagnosis are the same disease. Please respond only
with Yes or No. Nothing else.

Here is the correct diagnosis: {correct diagnosis}
Here was the doctor dialogue: {diagnosis}
Are these the same?

L.5 PATIENT BIAS PROMPTS

Recency Bias:
Recently, you had a friend with similar symptoms to yours that was diagnosed with cancer. This
affects how you interact with the doctor.

Frequency Bias:
You recently learned that most frequently, doctors diagnose this as cancer based on past cases. This
affects how you interact with the doctor.

False Consensus Bias:
Most of your friends who heard about your symptoms believe that you have cancer. This affects how
you interact with the doctor.

Self-Diagnosis Bias:
You recently performed a thorough investigation of your symptoms online and have come to the
conclusion that you should be diagnosed with cancer. While the doctor may believe otherwise, you
remain convinced you have cancer. This affects how you interact with the doctor.
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Gender Bias:
You are uncomfortable with your doctor because you find out that they are a particular gender and
you do not trust their judgement. This affects how you interact with them.

Race Bias:
You are uncomfortable with your doctor because you find out that they are a particular race and you
do not trust their judgement. This affects how you interact with them.

Sexual Orientation Bias:
You are uncomfortable with your doctor because you find out that they are a particular sexual
orientation and you do not trust their judgement. This affects how you interact with them.

Cultural Bias:
You are uncomfortable with your doctor because you find out that they are from a particular culture
and you do not trust their judgement. This affects how you interact with them.

Education Bias:
You are uncomfortable with your doctor because you find out that they went to a low-ranked medical
school and you do not trust their judgement. This affects how you interact with them.

Religion Bias:
You are uncomfortable with your doctor because you find out that they believe in a particular religion
and you do not trust their judgement. This affects how you interact with them.

Socioeconomic Bias:
You are uncomfortable with your doctor because you find out that they are from a particular
socioeconomic background and you do not trust their judgement. This affects how you interact with
them.

L.6 DOCTOR BIAS PROMPTS

Recency Bias:
Recently, you learned that a doctor with similar symptoms to the patient diagnosed their patient with
cancer. This affects how you interact with the patient.

Frequency Bias:
You recently learned that most frequently, doctors diagnose patients with similar symptoms with
cancer based on past cases. This affects how you interact with the patient.

False Consensus Bias:
Most of your colleagues who heard about the patient’s symptoms believe that they have cancer. This
affects how you interact with the patient.

Status Quo Bias:
Your hospital has been diagnosing these patients’ symptoms with cancer for the past 10 years. This
affects how you interact with the patient.

Confirmation Bias:
You are initially confident that the patient has cancer. This affects how you interact with the patient.

Gender Bias:
You are uncomfortable with your patient because you find out that they are a particular gender and
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you do not trust their judgement. This affects how you interact with them.

Race Bias:
You are uncomfortable with your patient because you find out that they are a particular race and you
do not trust their judgement. This affects how you interact with them.

Sexual Orientation Bias:
You are uncomfortable with your patient because you find out that they are a particular sexual
orientation and you do not trust their judgement. This affects how you interact with them.

Cultural Bias:
You are uncomfortable with your patient because you find out that they are from a particular culture
and you do not trust their judgement. This affects how you interact with them.

Education Bias:
You are uncomfortable with your patient because you find out that they are uneducated and you do
not trust their judgement. This affects how you interact with them.

Religion Bias:
You are uncomfortable with your patient because you find out that they believe in a particular religion
and you do not trust their judgement. This affects how you interact with them.

Socioeconomic Bias:
You are uncomfortable with your patient because you find out that they are from a particular
socioeconomic background and you do not trust their judgement. This affects how you interact with
them.

M TOOL INFORMATION

M.1 ZERO- AND ONE-SHOT CHAIN-OF-THOUGHT INSTRUCTIONS

M.1.1 ZERO-SHOT COT PROMPT

Use step-by-step reasoning and logic, using all of the evidence to
arrive at a diagnosis when you decide you are ready to use
Diagnosis Ready. You should provide a few sentences
of reasoning for your diagnosis and use the
term Diagnosis Ready when you are ready.

M.1.2 ONE-SHOT COT PROMPT

The following is a successful example of step-by-step reasoning.
Provided below is
the dialogue example:

{Example Dialogue Here}

Here is the reasoning:

Considering your persistent fatigue, flank pain, and fever, along
with the absence of other significant findings, I’m
leaning towards a diagnosis of acute interstitial nephritis.
This condition can sometimes occur as a reaction to
medications, even after you’ve stopped taking them, and it
can explain your symptoms without showing
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up in standard tests.

Diagnosis Ready: Acute Interstitial Nephritis

M.2 NOTEBOOK INSTRUCTIONS

You are a doctor named Dr. Agent who diagnoses patients.
You are an expert notebook writer and can create
information that will help you solve
future cases. Your new notes will overwrite previous notes.
You should try to integrate parts of your previous
notes into your current notebook
or else they will be deleted. You are inspecting many
patients who you
will ask questions in order to understand
their disease.
You will never see the same patient twice.

Your goal is to gather experiences, trying different
tasks, remember what worked and what did not, figure out general
tips and tricks from successes and failures,
and use what is learned for similar new tasks to do better
than before. Do not write notes about the specific patient
details because you will never see that patient again.
Write notes to help you solve future cases that may not be
related. Do not write content like this: Double Vision and
Muscle Weakness: These symptoms can indicate neuromuscular
disorders such as Myasthenia Gravis. Always consider the
pattern of symptoms worsening with activity and improving
with rest. This is incorrect. Write content like
(do not repeat this):
[Note #1] The previous patients provided vague information,
I should ask more descriptive questions to get better
information.
[Note #2] The measurement agent provided me important information,
I should use this
more often...

You will see future patients with unrelated diseases,
do not write disease-specific
information.
You are limited to generating 1000 characters (approx 200
words, 234 tokens) for the
entire notebook. Anything more will be completely removed
Your goal is to gather experiences, trying different
tasks and remember what worked and
what did not, figure out general tips and tricks from its
successes and failures, and
use what is learned for similar new tasks to do better than
before.
You may update your notebook with information from your most
recent conversation with a
patient, the contents of which are as follows:

{Conversation Information}

The correct diagnosis for this case was: {Diagnosis}. Your
diagnosis was
{Diagnosis Estimate} Your current notebook contains the
following information:
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{Notebook Information}

This is not necessarily meant to contain specific patient
details, but general details
that will help you better solve future cases for patients with
unrelated diseases.
Please update your notebook, preserving previous information
while adding new
information that will help you diagnose patients in the future.
You are limited to
generating 1000 characters (approx 200 words, 234 tokens)
for the entire notebook.
Your new notes will overwrite previous notes. You must re-
integrate previous notes into
your current notebook or else they will be deleted.

M.3 RESEARCH INSTRUCTIONS

M.3.1 INTERNET RESEARCH PROMPT

You can perform a document retrieval to better understand a
disease or symptom on
the internet by saying the following: "Research Internet
[internet search here]"
Please do this before {max_inferences} inferences not
after.

M.3.2 TEXTBOOK RESEARCH PROMPT

You can perform a document retrieval to better understand a
disease or symptom
using medical textbooks. Once you have decided to perform
research say the
following: "Research Textbooks [textbook search here]"

N NEJM IMAGE BREAKDOWN

Table 1 reports the percentage breakdown and accuracy based on the type of medical images:

Category n, % of imgs GPT-4 % GPT-4o % GPT-4o-mini %
Physical 56, 42% 31.4 15.7 11.1
CT 19, 16% 26.3 10.5 0
Dermatology 16, 13% 37.5 6.3 7.6
Hist/Path 13, 11% 15.3 15.3 9
Radiography 12, 10% 0 8.3 0
Ophthalmology 11, 9% 27.2 27.2 0
MRI 6, 5% 0 16.7 0
Biopsy 6, 5% 50 33.3 33.3
Surgery 3, 3% 33.3 0 50
Instrument 2, 2% 50 50 0
ECG 2, 2% 50 0 0
Echocardiogram 2, 1% 100 0 0
Ultrasound 1, 1% 0 0 0

Table 1: Breakdown of Medical Image Types and GPT-4 Model Accuracies
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Table 2: Statistics of Utilized Datasets in AgentClinic Benchmark

Dataset
Name

Sample Size Modalities
Included

Task Types/Descriptions

AgentClinic-
NEJM

120 cases derived
from NEJM case
challenges

Multimodal
(Text +
Images)

Open-ended diagnostic tasks requir-
ing image analysis and patient dia-
logues.

AgentClinic-
MedQA

215 cases derived
from USMLE
case challenges

Text Simulated cases with structured
patient information from USMLE
data.

AgentClinic-
MIMIC-IV

200 cases derived
from MIMIC-IV

Text Simulated cases with structured pa-
tient information from real-world
EHR data.

AgentClinic-
Spec

260 cases derived
from from MedM-
CQA

Text Specialist diagnostic cases from 9
medical specialties, including pe-
diatrics, psychiatry, and internal
medicine.

AgentClinic-
Lang

749 cases derived
from AgentClinic-
MedQA

Multilingual
Text

AgentClinic-MedQA cases trans-
lated for 7 languages (English,
Chinese, Hindi, Korean, Spanish,
French, Persian).

Model AgentClinic-MedQA Accuracy (%)
Multi-Agent Debate (gpt-4) 51.7 ± 3.0
Multi-Agent Debate (gpt-4o) 37.9 ± 3.1
Multi-Agent Debate (claude-3.5-sonnet) 64.1 ± 3.4
MedAgents (gpt-4) 53.1 ± 3.1
MedAgents (gpt-4o) 40.1 ± 3.3
MedAgents (claude-3.5-sonnet) 65.2 ± 3.6

Table 3: Performance of Multi-Agent Collaboration Benchmarks

O CLINICAL READER INSTRUCTIONS

Provided below are the instructions used to guide the clinical reader toward providing a rating. The
clinical reader study is set up as follows: (1) the clinician is provided detailed information about the
nature of the study (see below), (2) the doctor is informed about what to look for duing the dialogue,
(3) the doctor is provided a 20-turn patient-doctor-measurement-moderator dialogue produced by
AgentClinic (either correct or incorrect), and (4) this repeats for 20 dialogues.

Informing clinician: Presented below is dialogue from a medical simulation, where a large lan-
guage model is acting as the doctor and the patient. The patient agent is supposed to represent a real
patient and the doctor is supposed to diagnose this patient, asking appropriate questions and ordering
the right medical scans.

Doctor realism (Initial): Pay attention to the realism of the doctor agent dialogue and the decisions
they make.

Patient realism (Initial): Pay attention to the realism of the patient agent dialogue.

Measurement realism (Initial): Pay attention to the realism of the measurement results returned
by the measurement agent based on the doctors medical scan order.

Doctor Empathy (Initial): Pay attention to the doctor’s empathy during the dialogue.
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Figure 9: Diagnostic accuracy on AgentClinic-Spec based on medical specialty (right). Accuracy
relative to the highest performing specialty by model (right).

Doctor realism (Follow-up): How realistic was the doctor’s dialogue compared with real doctors
interactions with real patients on a scale of 1-10 (1=not realistic at all, 5=semi-realistic, 10=very
realistic)?

Patient realism (Follow-up): How realistic was the patient’s dialogue compared with real doctors
interactions with real patients on a scale of 1-10 (1=not realistic at all, 5=semi-realistic, 10=very
realistic)?

Measurement realism (Follow-up): How realistic were the medical scan results based on the
doctor’s scan orders on a scale of 1-10 (1=not realistic at all, 5=semi-realistic, 10=very realistic)?

Doctor Empathy (Follow-up): How empathetic was the doctor on a scale of 1-10 (1=not empathetic
at all, 5=semi-empathetic, 10=very empathetic)?

Language Claude
3.5

GPT-4 GPT-4o Llama3-
70b

GPT-3.5 GPT-4o-mini

English 53.2 40.2 35.5 21.4 36.3 10.3
Hindi 51.1 16.8 28.9 2.8 2.8 0.93
French 50.5 24.52 7.47 3.73 18.69 3.7
Spanish 48.7 19.6 27.1 0.0 28.0 10.1
Korean 47.4 20.56 3.73 6.5 35.4 1.86
Persian 45.3 14.0 19.6 4.67 1.86 0.93
Chinese 42.9 11.21 21.49 4.3 13.08 0.93
Average 48.4 20.9 20.5 6.2 19.5 4.1

Table 4: Performance Comparison Across Different Languages for Various Models (Sorted by Claude
3.5 Performance)
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Figure 10: Diagnostic accuracy on AgentClinic-Lang based on base language (right). Accuracy
relative to English by model (right).

Figure 11: Diagnostic accuracy on AgentClinic-MedQA based on tool use (right). Accuracy relative
to baseline score (right).
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Specialty Claude 3.5 GPT-4 GPT-4o Llama3-70b GPT-3.5 GPT-4o-mini
Internal
Medicine

78.3 65.2 30.4 39.1 47.8 0.0

Otolaryngology 76.7 56.6 40.0 30.0 60.0 6.7
Gynecology 74.3 68.5 34.2 22.9 57.1 5.7
Orthopaedics 70.6 61.7 50.0 15.1 58.8 14.7
Pediatrics 69.5 52.1 43.4 43.5 52.1 8.7
Geriatrics 63.3 40.0 23.3 10.0 46.6 0.0
Emergency 58.1 32.3 32.2 16.1 41.9 6.5
Ophthalmology 56.5 65.2 39.1 47.8 52.1 4.3
Psychiatry 53.3 60.0 46.7 23.3 50.0 0.0
Average 66.7 55.7 37.7 27.5 51.8 5.2

Table 5: Performance Comparison Across Different Medical Specialties for Various Models (Sorted
by Claude 3.5 Performance)

Agent Tool Claude 3.5 GPT-4 GPT-4o Llama3-70b GPT-3.5 GPT-4o-mini
Zero-Shot
CoT

48.1 (-5.1) 40.3 (+0.1) 39.3 (+3.8) 35.5 (+11.1) 31.2 (-5.1) 4.7 (-4.6)

One-Shot
CoT

51.4 (-1.8) 41.1 (+0.9) 39.6 (+4.1) 36.3 (+12.2) 32.7 (-3.6) 14.0 (+3.7)

Reflection
CoT

40.2 (-13.1) 42.2 (+2.0) 37.3 (+1.8) 40.1 (+18.7) 29.8 (-6.5) 19.6 (+9.3)

Adaptive
RAG (Book)

48.6 (-4.6) 38.3 (-1.9) 30.8 (-4.7) 21.4 (+0.0) 27.1 (-9.2) 14.9 (+4.6)

Adaptive
RAG (Web)

52.4 (-0.8) 43.9 (+3.7) 29.9 (-5.6) 25.2 (+3.8) 28.1 (-8.1) 15.2 (+4.9)

Notebook 56.1 (+2.9) 43.2 (+3.2) 43.0 (+7.5) 41.1 (+19.7) 28.0 (-8.3) 4.8 (-4.5)

Table 6: Performance Comparison Across Different Agent Tools.

Figure 12: Demonstration of increase in performance via experiential learning with Llama 3-70B
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