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Abstract

This essay investigates the critical role of utility both in the process of human
decision-making and artificial intelligence system design. We start by examining
the studies in behavioural psychology, which demonstrate an early understanding
of utility, and list the discussion and applications from philosophy, economy, and
sociology. The essay then explores Preference-based Reinforcement Learning
(PbRL) as a key computational modeling method of utility. Details of PbRL are
carefully discussed, as well as strengths and challenges in existing and future
research.

1 Introduction

We make thousands of decisions every day. Some of them are made without second thoughts, while
others require careful considerations. Some decisions are made on a daily basis and will only have
minor influences, such as the choice for lunch. Others could be life-changing, and only occur for very
few times throughout the entire lifetime. In a word, decisions shape our lives profoundly.

In the realm of cognitive reasoning and artificial intelligence, understanding human decision-making
is paramount. The concept of utility [4], which is an abstract measure of the preferences and values
assigned by individuals to different scenarios or outcomes, is central to this understanding. Derived
from philosophy [6, 2] and intuitive psychology [7], it evolves into a computational modeling for the
weighing of pros and cons in subjective human mind.

In this essay, we delve into the complexities of learning and representing human utility within AI
systems. We first start with cases and analysis from behavioral psychology, and then advance to
computational techniques. Drawing insights from a range of academic literature, including studies on
preference-based reinforcement learning and the inference of goals from actions, we hope to explore
the nature of human utility and its implications for AI development.

2 Understanding human utility

It is amazing that humans perceive the concept of utility since a very young age. Psychologists carry
out experiments with infants and explore how they understand the goals of others and infer their value
based on the actions’ costs [8].

The underlying computational framework for this line of research is called "naive utility calculus" [7],
which rests on three nested assumptions. First, agents act to maximize the utility U under constraints.
Second, U(S,A) = R(S)− C(A), which means that utility separates into rewards and costs. Third,
the cost of an action is jointly determined by the agent and the situation.

Based on these assumptions, the authors conducted three experiments, each using different physical
challenges (height, width, and incline of paths) to represent action costs. A total number of 80
ten-month-old infants participated. In each experiment, infants observed an agent choosing between
two goals, each associated with different costs. Bayesian inferences and utility-theoretic calculations
are used to model infants’ expectations about the agent’s preferences.
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The results showed that infants expected the agent to prefer the goal achieved through costlier actions.
Their expectations held across different types of physical challenges, suggesting they inferred this
through an abstract understanding of concepts like "force", "work", or "effort". This further suggests
that infants use cost and reward as interconnected abstract variables in understanding actions, which
supports the view that a system grounded in cost-reward trade-offs guides action understanding from
an early age.

The above study on infants is only a small piece of the abundant research conducted by psychologists,
economists and sociologists. An utilitarian view can be adopted to capture optimal social choice
functions [3], to establish the mechanism of fairness, competition and cooperation [5], and extend
to animal activities similarly [9]. The proliferation in this field demonstrates the expressiveness of
utility, which may be critical in endowing AI systems with human-like decision-making capabilities.

3 Computational modeling methods

In this section, we go over some of the prominent ways for learning and representing human utility. We
will introduce the methods briefly and discuss their advantages and disadvantages in data collection,
generalization, and efficiency. Hopefully this will provide an view on what stage we are at in
computational modeling of human utility.

3.1 Challenges and obstacles

Although analysis from behavioural studies provides an insight into the intuitive psychology of human
utility, successfully modeling it still faces complicated challenges. The request involves understanding
how humans assign value to different outcomes and actions. Since those utility functions are internal
to humans and vary between individuals, it is difficult to collect extensive and effective data. Moreover,
as the behavioural experiments suggest, the perception of cost and reward is abstract, therefore lacking
a meaningful unit of measure for utility.

Reinforcement learning (RL) is a representative case where the optimization of reward function,
similar to quantitative utility, guides the learning process and behaviour of agents [10]. One obstacle
associated with traditional reinforcement learning is designing a reward function, which often requires
significant task-specific prior knowledge. Moreover, since the learning process and learned policy
could be sensitive to small changes of the reward, the choice of the reward function may have a
crucial impact on the success and must be handled with caution. Tasks such as robotics require a lot
of reward engineering, facing problems such as reward hacking [1], reward shaping [11], infinite
rewards [13], and multi-objective trade-offs.

3.2 Proposed strategies

Figure 1: PbRL: Learning policies from preferences via direct (dashed path) and surrogatebased (dotted path)
approaches [12]
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Preference-based Reinforcement Learning (PbRL), different from standard RL, is proposed to directly
learn from an expert’s preferences rather than a hand-designed numeric reward. This strategy deals
with the reward shaping problem without the dependence on prior expert knowledge.

The workflow of preference-based reinforcement learning and its difference from standard rein-
forcement learning is illustrate in Figure 1. The algorithm involves two actors: an agent which
acts according to a given policy and an expert which evaluate the agent’s behavior. There are three
categories of approaches from the literature, including learning a policy, learning a preference model,
and learning a utility function. These approaches work in different scenarios and complement each
other in subtleties.

The design principles of preference-based reinforcement learning include the following aspects:

• Types of feedback: The type of feedback that assumed includes action preferences, state
preferences, and trajectory preferences. A major issue for this aspect is how to distinguish
between short-term optimality and long-term ones. The former two poses high demands for
the expert actor, while the latter requires the discrimination of states or actions responsible
for the encountered preferences. Both are difficult problems to tackle.

• Defining the learning problem: As mentioned before, the learning approaches involve options
like learning a policy, a preference model, or a utility function. Derict learning of policy is to
find a parametrization which maximizes the correspondence with the observed preferences
in the parametric policy space. It requires a deliberate approximation of policy distribution
and comparison / ranking method. The learning of preference model and utility function, on
the other hand, can be used to derive a policy and therefore work in an indirect way.

• Temporal credit assignment problem: This problem is to determine which states or actions
are responsible for the obtained preference. Explicit solutions give birth to different types of
inferred utility functions, such as value-based, return-based, and reward based.

There are also other techniques, such as trajectory preference elicitation, policy optimization, and
modeling of the transition dynamics. Detailed discussions will be omitted due to the limited scope.

3.3 Strengths and weaknesses

The PbRL method has been successfully applied to many practical tasks. Most of the applications rely
in robot teaching and board game domains, since they are subject to some of the most sophisticated
reward shaping problems.

The strengths of PbRL method can be viewed in several aspects. First, just as its original purpose,
PbRL reduces the need for extensive domain knowledge to define rewards. Second, it is particularly
effective in environments with complex or unknown reward structures, and can utilize qualitative,
non-numeric rewards, making it suitable for scenarios where numeric feedback is unavailable or
difficult to quantify. Third, PbRL’s ability to incorporate human preferences allows for more intuitive
and interactive training processes, especially in settings where human expertise is valuable but hard
to encode in standard reward functions. Last, some PbRL methods are reported to be capable of
generalizing effectively from a relatively small set of preference data, making it resource efficient in
data collection.

Despite the promising capabilities, PbRL also suffer from apparent shortcomings. For example, Pareto-
optimal policies cannot be achieved by any of the utility-based approaches in case of incomparabilities.
More catastrophic problems stand such as the struggle with high-dimensional policy spaces, hence the
scalability issue, posing challenges for practical implementation in large-scale problems. In addition,
current PbRL methods are not equipped to perform risk-averse optimization, which is essential in
scenarios where certain outcomes must be avoided (e.g., robot safety). Sample efficiency is also a
concern, considering that it can be impractical to obtain human evaluators under many circumstances.

There are still many future explorations to be done in this field. Finding principled ways for combining
various types of feedback from the human expert and efficient methods for exploring the preference
function space are still needed. A unified evaluation framework is also called for in order to compare
different algorithms effectively.

3



4 Conclusion

In this essay, we have examined the critical role of utility and its link to human / AI decision-making.
We observed how human utility understanding, evident even in infants, is vital for the perception of
goals from actions.

Among the computational methods for modeling human utility, Preference-based Reinforcement
Learning (PbRL) emerged as an important component, offering an innovative way to integrate human
preferences directly into AI agents.

However, challenges persist, notably in the abstract nature of human utility and the variability of
individual preferences. Technical obstacles such as scaling issues and sample efficiency also exist.
Despite these hurdles, the exploration of human utility in AI is crucial for the development of aligned
AI systems. Hopefully one day there will be a significant stride in the evolution.

References
[1] Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané.

Concrete problems in ai safety. arXiv preprint arXiv:1606.06565, 2016. 2

[2] Jeremy Bentham. The collected works of Jeremy Bentham: An introduction to the principles of
morals and legislation. Clarendon Press, 1996. 1

[3] Craig Boutilier, Ioannis Caragiannis, Simi Haber, Tyler Lu, Ariel D Procaccia, and Or Sheffet.
Optimal social choice functions: A utilitarian view. In Proceedings of the 13th ACM Conference
on Electronic Commerce, pages 197–214, 2012. 2

[4] Rachael A Briggs. Normative theories of rational choice: Expected utility. 2014. 1

[5] Ernst Fehr and Klaus M Schmidt. A theory of fairness, competition, and cooperation. The
quarterly journal of economics, 114(3):817–868, 1999. 2

[6] Francis Hutcheson. An inquiry into the original of our ideas of beauty and virtue: in two
treatises. R. Ware, 1753. 1

[7] Julian Jara-Ettinger, Hyowon Gweon, Laura E Schulz, and Joshua B Tenenbaum. The naïve
utility calculus: Computational principles underlying commonsense psychology. Trends in
cognitive sciences, 20(8):589–604, 2016. 1

[8] Shari Liu, Tomer D Ullman, Joshua B Tenenbaum, and Elizabeth S Spelke. Ten-month-old
infants infer the value of goals from the costs of actions. Science, 358(6366):1038–1041, 2017.
1

[9] Alicia P Melis, Brian Hare, and Michael Tomasello. Chimpanzees recruit the best collaborators.
Science, 311(5765):1297–1300, 2006. 2

[10] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. nature, 518(7540):529–533, 2015. 2

[11] Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward transforma-
tions: Theory and application to reward shaping. In Icml, volume 99, pages 278–287. Citeseer,
1999. 2

[12] Christian Wirth, Riad Akrour, Gerhard Neumann, Johannes Fürnkranz, et al. A survey of
preference-based reinforcement learning methods. Journal of Machine Learning Research, 18
(136):1–46, 2017. 2

[13] Yufan Zhao, Michael R Kosorok, and Donglin Zeng. Reinforcement learning design for cancer
clinical trials. Statistics in medicine, 28(26):3294–3315, 2009. 2

4


	Introduction
	Understanding human utility
	Computational modeling methods
	Challenges and obstacles
	Proposed strategies
	Strengths and weaknesses

	Conclusion

