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ABSTRACT

Standard gradient descent methods yield point estimates with no measure of confi-
dence. This limitation is acute in overparameterized and low-data regimes, where
models have many parameters relative to available data and can easily overfit.
Bootstrapping is a classical statistical framework for uncertainty estimation based
on resampling, but naively applying it to deep learning is impractical: it requires
training many replicas, produces post-hoc estimates that cannot guide learning,
and implicitly assumes comparable optima across runs—an assumption that fails
in non-convex landscapes. We introduce Twin-Bootstrap Gradient Descent, a
resampling-based training procedure that integrates uncertainty estimation into
optimization. Two identical models are trained in parallel on independent boot-
strap samples, and a periodic mean-reset keeps both trajectories in the same basin
so that their divergence reflects local (within-basin) uncertainty. During training,
we use this estimate to sample weights in an adaptive, data-driven way, providing
regularization that favors flatter solutions. In deep neural networks and complex
high-dimensional inverse problems, the approach improves calibration and gener-
alization and yields interpretable uncertainty maps.

1 INTRODUCTION

Modern machine learning faces a tension between efficient optimization and uncertainty quantifica-
tion. Gradient-based training drives parameters to a single point estimate but provides little infor-
mation about confidence in that estimate—especially for large, overparameterized models trained
with limited data, where overfitting and miscalibration are common. Many approaches handle un-
certainty post hoc, so the training process itself is not guided by uncertainty estimates. The need is
for an online, model- and data-aware signal that can inform learning while it happens, at the scale
of modern deep networks.

Statistical resampling methods such as bootstrapping are typically used after training, separate from
optimization, so information from finite-sample variability does not shape learning. We instead in-
tegrate a resampling-based uncertainty estimate directly into the optimization loop. Classical boot-
strapping provides a robust estimate of parameter uncertainty but is impractical at scale because it
requires retraining many replicas; it also yields only post-training estimates. An online estimate
during training can act as a regularizer, guiding the search toward more generalizable solutions.

The challenge of adapting bootstrapping to modern deep learning is not just computational; it is
also conceptual. The non-convex, multi-modal loss landscapes of neural networks mean that inde-
pendently trained models can converge to entirely different, yet equally valid, solutions. In such a
scenario, the divergence between model parameters is a meaningless measure of uncertainty, reflect-
ing inter-basin distance rather than local landscape geometry.

We present a training procedure that integrates a resampling-based uncertainty estimate directly
into gradient descent. The approach has three components: (1) using independently bootstrapped
datasets during optimization to obtain an online uncertainty signal that guides learning; (2) a two-
model design that limits cost while retaining the benefits of resampling; and (3) a periodic mean-
reset that keeps both models in the same solution basin so their divergence measures local (not
inter-basin) uncertainty.
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The uncertainty estimate is derived from the variability present in finite datasets via a principled
resampling mechanism and requires no modification to the task loss. We recast classical bootstrap-
ping as an online two-sample estimator, turning a post-hoc analysis into a signal that directly informs
optimization.

2 RELATED WORK

This work connects optimization with uncertainty quantification by combining gradient-based train-
ing and a resampling-based uncertainty signal. We contrast it with existing work along three axes:
the purpose of uncertainty, the underlying theoretical framework, and the method of optimization.

2.1 POST-HOC UNCERTAINTY VS. ONLINE REGULARIZATION

Many popular methods treat uncertainty quantification as a post-hoc analysis, which is fundamen-
tally limited as it cannot influence the training process itself. Deep Ensembles are a prime example,
where multiple independent models are trained from scratch and their predictions are averaged to
estimate predictive uncertainty (Lakshminarayanan et al., 2017). While effective at capturing multi-
modal solutions, this approach is computationally expensive and provides no mechanism for per-
step regularization. Similarly, classical bootstrapping, while statistically robust, requires numerous
independent model trainings, making it impractical for modern large-scale networks. In contrast,
an online, parameter-level uncertainty estimate can be used to regularize the model at every step,
directly linking uncertainty to optimization.

2.2 BAYESIAN VS. DATA-DRIVEN UNCERTAINTY

The canonical approach to uncertainty is Bayesian, where the goal is to learn a posterior distribution
over model weights. Bayesian Neural Networks (BNNs) (Blundell et al., 2015; Wilson & Izmailov,
2020) and their approximations, like Monte Carlo Dropout (Gal & Ghahramani, 2016), are powerful
but rely on strong assumptions about prior distributions and the form of the approximate poste-
rior. Furthermore, methods that view Stochastic Gradient Descent and its variants as approximate
samplers are elegant in their theoretical framing (Welling & Teh, 2011; Chen et al., 2014; Mandt
et al., 2017). They argue that SGD’s mini-batch noise acts as a form of thermal noise, helping
the optimizer explore the parameter space and sample from the posterior. However, for this to be
a principled approach, the learning rate must be precisely tuned to the local curvature of the loss
landscape, as defined by the Hessian matrix, to ensure correct sampling. Computing the Hessian is
computationally prohibitive for large-scale models, making this approach difficult to apply in prac-
tice. In contrast, the present work uses a resampling-based uncertainty signal derived from finite
datasets during training, requires no modification to the task loss, and introduces explicit, controlled
stochasticity. As a result, it does not rely on Hessian information or incidental optimizer noise and
can be paired with standard gradient-based optimizers, including full-batch training.

2.3 GRADIENT-BASED VS. DERIVATIVE-FREE OPTIMIZATION

Uncertainty can be used to guide optimization. There is a conceptual link to algorithms like Co-
variance Matrix Adaptation Evolution Strategy (CMA-ES) (Hansen & Ostermeier, 2001; Hansen,
2016), which adapt exploration using covariance information. However, such derivative-free meth-
ods are significantly slower on high-dimensional problems. Here, uncertainty is estimated during
gradient-based training, providing a landscape-aware signal without sacrificing efficiency.

3 THE TWIN-BOOT METHOD

3.1 PROBLEM SETUP AND NOTATION

Let the dataset be D = {(z;,;)}X, drawn i.i.d. from an unknown distribution Py,,. We consider
models f(z;w) with parameters w € R”, trained to minimize an empirical loss

L(w; D) = > U(f(xw),y), D' CD.

(z,y)€D’

1
|D|
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Parameters may be partitioned into groups indexed by ¢ (e.g., layers) with sizes Dy; we maintain
group-wise uncertainty estimates o> during training. Two bootstrap datasets D} and Dj are formed
by sampling with replacement from D.

3.2 A PRIMER ON CLASSIC BOOTSTRAPPING FOR UNCERTAINTY

We briefly recall the principles of classical bootstrapping that motivate our approach. Given a true,
but unknown, underlying data distribution Py, the true parameter uncertainty is defined as the
variance of the optimal parameters obtained across all possible finite datasets drawn from this distri-
bution (Efron, 1979; Efron & Tibshirani, 1994). Mathematically, it is the variance of the empirical

risk minimizer:
1
ﬁ Z L(w;z,y)
(z,y)eD

Since this quantity is impossible to compute, classical bootstrapping provides a robust, non-
parametric method for estimating it (Efron & Tibshirani, 1994). The process involves creating a
large number of resampled datasets, known as bootstrap samples, by drawing N data points with
replacement from the original dataset D. For each bootstrap sample D;;, a new model is trained from
scratch, yielding a parameter vector wy . The collection {w], ..., w}} forms a sampling distribution
whose variance, Var(w*), is a statistically robust estimate of the true parameter uncertainty.

Varp~p,, | arg min
w

Practical considerations and design choices. This presents three obstacles for modern deep
learning, and we address each with a targeted design choice:

* Computational cost. Classical bootstrapping requires training many replicas. Solution: a
two-sample estimator with only two twins, yielding about a 2x overhead.

* Non-convexity and multi-modality. Independent replicas drift to different minima, so
variance reflects inter-basin distance rather than local uncertainty. Solution: a periodic
mean-reset that confines twins to the same basin so their divergence measures local uncer-
tainty.

* Post-hoc nature. Classical bootstrap yields uncertainty only after training, so it cannot
regularize learning. Solution: online estimation via the twins’ parameter divergence, pro-
viding a per-step signal used during optimization.

3.3 METHOD OVERVIEW

We train two identical models, M7 and Mo, initialized with the same parameters w1 = ws. At the
start, we form two independent bootstrap datasets by sampling with replacement from the training
set: D} and D3. Training proceeds on paired mini-batches (or on paired full datasets for full-
batch gradient descent): (b; € D7i, by € D3). Parameters are partitioned into groups (e.g., layers)
indexed by ¢ with sizes D,. After each update, we compute a group-wise uncertainty from the twins’
divergence,

2

1 2
o, = TDgHwM_wz’Z‘Q’

which acts as an online two-sample estimator of local parameter variance due to dataset resampling.
During training, we use this estimate to sample weights per group,

wéi) ~ /\/’(wéi), 105)7 ie€{1,2},

so that the noise scale adapts from the resampling-induced uncertainty and provides a training-time
estimator of bootstrap uncertainty that regularizes learning.

In complex optimization landscapes, independent models may drift to different minima. To confine
exploration to a single solution basin, we periodically perform a mean-reset at scheduled intervals
K for each group,

iid. w1, ¢ twa ¢ 2
Wi,e, Wap ~ (71 > Log).

Independent sampling around the mean maintains i.i.d. trajectories while preventing inter-basin
drift, so o7 reflects within-basin uncertainty rather than distances between distinct minima.
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For inference, a simple deterministic option uses the mean of the twins’ weights, w When

predictive uncertainty is required, one can perform Monte Carlo inference by sampling weights

around the mean per group using o7 and averaging predictions.

Algorithm 1 Twin-Bootstrap Gradient Descent

Require: Dataset D, epochs E, mini-batch size B, reset interval K; parameter groups {¢} with
sizes {Dy} (e.g., layers)

1: Initialize twin models M7, My with identical weights w1, wo

2: Create bootstrapped datasets D} <— BOOTSTRAP(D), D} < BOOTSTRAP(D)

3: Initialize group uncertainties o7 < 0 for all ¢

4: for epoche = 1to E do

5: for each paired mini-batch (by € D}, by € D3) do

6: Training-time sampling: For each group ¢, sample Egl),sf) ~ N(0,10}) and set

11),51) — wiye + 51(81), ﬁ)f) — wo g + 522)

7: Ly L({wg”}g; bl), Ly L({’Lz)f)}g; bg)
: g1 < lelq; go < Vw2L2

9: wy < OPTIMIZER (w1, g1); we < OPTIMIZER (ws, go)
. .2 2

10: For each group ¢: o < TD(; ku — w2’[H2

11: end for

12: if e mod K = 0 then

13: For each group £: wy ¢, wa i N(W7 Io,?)

14: end if

15: end for

3.4 THEORETICAL JUSTIFICATION & ONLINE UNCERTAINTY

We justify the use of the twins’ squared distance as an online estimate of local parameter uncertainty.
Let w* denote the optimal parameters obtained by training on a bootstrap sample of the dataset
D. Because the twins are trained on independent bootstrap samples and are periodically reset to
remain in the same basin, their parameters w; and w- can be treated as i.i.d. draws from the (local)
bootstrap distribution of w*. Hence E[||w; — ws||3] = 2 Var(w*). For a parameter tensor with
D entries, this yields the per-parameter online estimator o, = % |wy — wo||2, which provides
a low-variance, online measure of local uncertainty and motivates the stochastic forward sampling
used for regularization.

Viewed statistically, 55 [[w1 — w23 is a two-sample estimator of the per-parameter variance
Var(w*). While higher-variance than a many-sample bootstrap, it is unbiased, computable online,
and—when aggregated over parameter groups (e.g., layers)—provides a stable training signal. The
sampling-based mean-resets keep the twins in the same basin, making the i.i.d. assumption locally
valid.

For grouped parameters (e.g., layers), we analogously obtain o = 27}7@ lwy ¢ — wa,¢||3, which is
used for layer-wise forward sampling and resets in our neural network experiments. In addition
to layer-wise grouping, we also evaluated a per-unit grouping (one group per neuron/channel) and
observed virtually identical results.

The mean-reset mechanism ensures that this two-sample estimate remains valid. By periodically
collapsing the twins, the procedure keeps them within the same solution basin, exploring its local
geometry rather than diverging across different minima. Under this constraint, the measured param-
eter divergence reflects the uncertainty of the parameters within that specific basin, not the distance
between distinct solutions.

Estimator variance: two-sample vs. classical B-sample. Assuming an approximately normal
local bootstrap distribution and independence within a group, let the true per-parameter variance be
72 = Var(w*). For a single parameter, the two-sample estimator 6% = £ (w; —ws)? is unbiased with
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Var(6?) = 27%; whereas the classical B-sample (sample-variance) estimator satisfies Var(6%) =
274
B—1 ;
the two-sample estimator’s variance by 1/Dy: Var(67) = ZD%. This grouped two-sample estimator
is the quantity we use in practice. Grouping (e.g., per layer) yields a stable, low-variance online
signal that scales to large models with about a 2x cost.

For a parameter group of size D, with isotropic variance 77, averaging across entries reduces

We treat w; and wq as approximate i.i.d. draws from the local bootstrap distribution within a single
solution basin. While this is a simplifying assumption about the training dynamics, our empirical
results in complex landscapes suggest it is a practically effective model.

3.5 THE MEAN-RESET & STOCHASTIC REGULARIZATION

The implementation of the mean-reset mechanism itself required solving two practical issues. First,
a simple average of the twins’ weights could cause the models to overfit to the combined data
from their separate bootstrap samples. To prevent this and preserve the statistical independence
of their trajectories, we introduce model sampling at reset. Instead of setting both models to the
same mean, the twin weights are reset independently to new values sampled from a distribution
centered on their mean, with a standard deviation given by the current uncertainty estimate: resetting

as wy g, wap N (W,I 0?) for each group ¢. This sampling-based reset maintains the

expected distance distribution of the twins and prevents the unintended transfer of information.
Second, in practice resets should be frequent early to keep both twins in the same basin, and can be
spaced out later once trajectories stabilize.

The online uncertainty also serves as a training-time regularizer. At each training step, the weights
of each twin model are stochastically sampled from a distribution centered on its current weight
vector, with a standard deviation given by the online uncertainty estimate: At each step we sample

UNJE,Z) ~N (wéi), Io?) fori € {1,2}. This stochasticity forces the model to be robust to variations
in its parameters, naturally encouraging it to learn flatter, more generalizable minima (Hochreiter &
Schmidhuber, 1997; Keskar et al., 2017; Foret et al., 2021; Izmailov et al., 2018). Conceptually, this
resembles training with weight noise (Bishop, 1995) and techniques used for predictive uncertainty
(e.g., Bayesian neural networks (Blundell et al., 2015)), but here the noise scale is estimated online
from two resampled trajectories.

3.6 INFERENCE (TEST-TIME) PROCEDURE

After training, a simple option is a deterministic inference procedure: use the mean of the twins’
weights and do not sample. Given an input x, the deterministic prediction is §j = f(x; %)

For applications that require predictive uncertainty, one can perform Monte Carlo (MC) inference
by sampling weights around the mean and averaging predictions (Kendall & Gal, 2017; Guo et al.,

2017): we draw w(®) ~ V(522 [ 52 ) and average predictions jyc = & S5 flasw®), with
an optional uncertainty estimate from the sample variance of {f(z;w(®))}5_,. For classification,

average class probabilities across samples.

4 EMPIRICAL VALIDATION

The empirical validation is structured to first demonstrate that our computationally efficient ’twin”
model approach yields a valid online uncertainty estimate. We then show how our method over-
comes the primary theoretical barrier to its application in complex landscapes, and finally, we show-
case its advantages and utility on high-dimensional problems. Our goal here is a method-and-theory
contribution that links classical resampling to modern deep networks; results are therefore represen-
tative rather than the outcome of extensive performance tuning.

4.1 VALIDATING MECHANISMS ON TOY LANDSCAPES

The proposal of this work is to transform bootstrapping from a post-hoc analysis into an integral
component of the optimization process. Classical bootstrapping is often dismissed for large-scale
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problems due to the prohibitive cost of training hundreds of independent models to form a sampling
distribution. We posit that a meaningful, low-variance estimate of uncertainty can be derived online
from just two “twin” models.

To validate this assumption of computational efficiency, we first demonstrate the mechanism in a
simple convex landscape with a clear ground truth, where two models estimate the mean of a 2D
Gaussian data cloud. Figure 1 shows that the twin trajectories converge toward the true parameter
center, while the online uncertainty estimate (circles) provides a live, per-step measure of local pa-
rameter variability that accurately tracks the true uncertainty of the estimator. This provides a visual
proof that even with only two samples, we achieve online bootstrapping without the prohibitive cost
of traditional methods.

— Twin1
Twin 2

Start

Empirical Opt (1)
Empirical Opt (2)

Parameter w,

Parameter w;

Figure 1: Two-dimensional Gaussian example with bootstrapped twin trajectories. Per-stride uncer-
tainty circles capture local variability around the mean path; markers indicate empirical optima, true
center, and true o.

4.1.1 THE TwWO-BASIN LANDSCAPE: OVERCOMING MULTI-MODALITY

The immediate difficulty for the online bootstrapping approach is its application to non-convex
landscapes. In such settings, independent models are expected to diverge to different local minima,
rendering their parameter variance a meaningless measure of inter-basin distance. We construct
a landscape with two distinct minima to demonstrate how Twin-Boot’s mean-reset mechanism is
designed specifically to solve this fundamental problem. Without a reset, twin models diverge to
separate minima; with the periodic, sampling-based mean-reset, the twins are constrained to a single
basin and their divergence becomes a stable, informative measure of local uncertainty.

As illustrated in Figure 2, the reset acts as a constraint that co-locates the twins within a single
basin while preserving i.i.d. trajectories via sampling around the mean. This confinement makes
online bootstrapping viable in complex landscapes, ensuring that the measured divergence reflects
the geometry of a single solution rather than the distance between distinct minima.

Two Minima (no reset) Mean Reset Sample Reset

Figure 2: Two-basin triptych. Left: without mean-reset, twins trained on independent bootstraps
diverge to separate minima, making o invalid as a local measure. Middle: periodic mean-reset to
the mean keeps twins in a single basin. Right: sampling-based mean-reset maintains i.i.d. twin
trajectories while confining exploration to one basin; the resulting divergence yields a stable, local
uncertainty estimate.
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4.1.2 TwO-BASIN PARAMETER SWEEPS

We conduct sweeps on the two-basin landscape to probe robustness. Varying dataset size, data
noise, learning rate, and mini-batch size, we summarize the final o over seeds (mean-reset only) and
overlay a curvature-corrected theory (dashed). The estimate scales correctly with data variability
(X Ogara/ /M) while remaining largely invariant to optimizer settings, consistent with a geometry-
aware uncertainty; see Appendix Fig. 5 for the complete visualization.

Resampling-based uncertainty. Because the uncertainty is driven by data resampling, not opti-
mizer dynamics, the estimate is largely invariant to optimizer settings like learning rate and batch
size. The estimate matches a curvature-corrected single-well reference derived from the local Hes-
sian of one basin via the factor S(bw), which rescales the baseline gy, / VM by the principal
curvatures (A1, A|). This explains both the invariance to optimizer settings and the correct scaling
with data size and noise, without computing Hessians explicitly.

4.2 APPLICATION TO DEEP NETWORKS

While classical bootstrapping is computationally infeasible for deep neural networks, the multi-
modal nature of their loss landscapes presents a greater theoretical barrier. The mean-reset mech-
anism overcomes this, enabling the use of online bootstrapping to regularize and improve the cali-
bration of deep networks on CIFAR-10 using the full 50k training images. The online uncertainty
estimate is used to inject noise during training, acting as an adaptive regularizer.

We employ a grouped two-sample estimator of parameter variance (e.g., per layer), whose variance
scales as O(1/Dy). This provides a stable online uncertainty signal with about a 2 training cost,
making the method tractable for large networks.

Training protocol for neural networks. We follow the Twin-Boot procedure end-to-end as in-
stantiated for neural networks:
1. Initialize two identical models with the same weights, w; = ws.

2. At the start of training, form two independent bootstrap datasets by sampling with replace-
ment from the 50k-image CIFAR-10 training set: D7, D3.

3. Iterate through paired mini-batches (by € D3, bo € D3). For each forward pass of each
twin, sample weights per layer from an isotropic Gaussian centered at the current weights
with a layer-specific scale oy:

&) ~ N(wé“, Ia,?) , ie{1,2).

4. Compute losses on the paired batches and update each twin with a standard optimizer.

5. Update the online, layer-wise uncertainty from the twins’ parameter divergence:

0? — le,z—wz,euza

1
2D,
where Dy is the number of parameters in layer £.

6. At scheduled intervals K, perform a sampling-based mean-reset: for each layer
iid. +ws,
W10, Wo g ~ N(thzsz,z, IJE) )
The bootstrap datasets D7, D3 are not modified by resets.

Figure 3 summarizes performance and calibration on CIFAR-10. The left panel shows train-
ing/validation accuracy for the baseline (blue) and Twin-Boot (green); Twin-Boot narrows the gener-
alization gap and attains higher validation accuracy. The right panel is a reliability diagram compar-
ing baseline, a 2-member ensemble, and Twin-Boot; Twin-Boot substantially reduces miscalibration
relative to the baseline and approaches the ensemble.
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Figure 3: CIFAR-10 results. Left: training and validation accuracy for the baseline (blue) and Twin-
Boot (green). Right: calibration (reliability diagram) comparing baseline, a 2-member ensemble,
and Twin-Boot.

CIFAR-10 results summary. We used an early-heavy reset schedule: resets at epochs 1 and 2,
then every 10 epochs thereafter. This keeps the twins in the same local solution neighborhood
during the volatile early phase, and requires less frequent synchronization once trajectories stabilize.
Table 1 reports accuracy, calibration (ECE), and relative cost. Twin-Boot attains higher accuracy
than the single-model baseline and markedly better calibration. At comparable cost it also achieves
higher validation accuracy than a 2-member ensemble, while acting during training rather than post
hoc—the online uncertainty signal regularizes learning step by step; its calibration approaches the
ensemble. Our focus is the method and its statistical link to classic bootstrapping; we did not tune
aggressively for peak performance.

Table 1: CIFAR-10 Performance Comparison.

Method Test Acc. (%) ECE (%) Relative Cost
Baseline (1 model) 76.11 18.73 1.0x
2-Member Deep Ensemble 78.84 8.08 2.0x
Twin-Boot (ours) 79.46 11.34 ~ 2.0x
Ablation: No Sampling 77.51 14.81 ~ 2.0x

The online uncertainty exhibits a characteristic pattern: a brief high-variance phase early in train-
ing, followed by convergence to a consistent layer-wise structure (highest in later layers). A full
visualization is provided in Appendix Fig. 6.

4.3  APPLICATION TO A SCIENTIFIC INVERSE PROBLEM

To evaluate generality beyond standard benchmarks, we consider a nonlinear seismic inversion task:
infer a 2D subsurface velocity map v € RY from sparse measurements y € R produced by a
known forward operator (Appendix A.6). In our setup, P = 900 (a 30 x 30 grid) and M = 4096.
Each measurement corresponds to a normalized 2D Gaussian kernel centered at a random location
applied to the field, followed by an element-wise nonlinearity f(v) = tanh(/3v) and additive noise.
The problem is ill-posed and multi-modal; overfitting is common with standard optimizers. Using
the proposed training procedure, we obtain lower test loss and reconstruction error with modest
overhead ( 1.4x).

The online uncertainty estimate yields a spatial map. The learned o highlights areas where the re-
construction is least reliable due to limited information, aligning with absolute error maps (Figure 4).
In these simulations, parameters were grouped into 3 x 3 patches (one o per patch) to obtain more
precise local uncertainty estimates.
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Table 2: Twin-Boot vs. Standard Optimizer on Nonlinear Seismic Inversion (mean + 95% CI over
25 seeds).

Mode Train Loss Test Loss Recon MSE Time/run (s)

Twin-Boot  0.0007 £ 0.0004 0.0032 £ 0.0011 0.0098 £0.0014  8.47+£0.11
Standard 0.0002 £ 0.0000  0.0315+£0.0150 0.0338 £0.0058  6.01 £ 0.08

Ground Truth Inferred

w——

Figure 4: Seismic inversion: ground truth, inferred, absolute error, and ¢ maps. Uncertainty con-
centrates on poorly constrained regions and correlates with reconstruction error.
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5 CONCLUSION

We introduced Twin-Bootstrap Gradient Descent, which integrates resampling-based uncertainty
into gradient descent. The approach combines three components—independently bootstrapped
training trajectories, a two-model design, and periodic mean-resets that maintain within-basin ex-
ploration. Together these elements allow the twins’ divergence to serve as an online estimate of local
parameter uncertainty and use it to guide training.

Our empirical validation spans low-dimensional landscapes, a standard deep-learning benchmark,
and a seismic inverse problem. The experiments confirm basin confinement under mean-resets, show
that the uncertainty signal reflects local geometry, and demonstrate that uncertainty-driven stochas-
ticity acts as an effective regularizer. In settings that benefit from interpretable or mechanistic mod-
els, the learned uncertainty map provides a meaningful companion to the primary reconstruction.

This work shows that principles from statistical resampling can be effectively integrated into modern
optimization frameworks. By reformulating bootstrapping as an online two-sample estimator, finite-
sample variability becomes a direct signal for regularizing complex models. This links the statistical
properties of the data and the geometric properties of the solutions found by the optimizer, providing
a general framework for uncertainty-aware optimization.

Limitations. The two-sample estimator has higher variance for very small parameter groups; ag-
gregating at the layer level reduces variance, but this limitation remains for fine-grained groupings.
Basin confinement can fail if resets are too infrequent or too weak, which may bias the uncertainty
estimate. The method is sensitive to the reset schedule and the cadence of weight sampling. Finally,
training incurs roughly a 2x compute and memory overhead due to maintaining two models and
performing training-time sampling.

Future Work. Twin-Boot opens several promising avenues for future research. A deeper theo-
retical analysis of the mean-reset mechanism could provide a more formal guarantee of its basin-
confining properties. Exploring its application to domains where calibration and interpretability are
central—such as structured prediction, medical imaging, and scientific machine learning—could
uncover new benefits. Finally, investigating the relationship between the two-sample uncertainty
estimate used here and Bayesian posterior uncertainty could clarify when the measures agree, when
they differ, and how they might be combined.
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REPRODUCIBILITY STATEMENT

We provide the full training procedure in Algorithm 1 and detail assumptions and mechanisms in
Sections 3.4-3.5. Experimental setups and hyperparameters for CIFAR-10 and the seismic task
are described in Section 4.2, with additional implementation details and ablations in the Appendix
("Implementation Details” and ”Additional CIFAR-10 Ablations™). A code repository with training
scripts, configuration files, and figure-generation utilities will be published upon acceptance.
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A IMPLEMENTATION DETAILS

This appendix provides details to reproduce our empirical results.
Hardware: All experiments were performed on a single NVIDIA T4 GPU.
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A.1 Toy LANDSCAPES

Loss functions: Analytically defined 2D landscapes (Gaussian and two-basins) to enable precise visualization
of trajectories and local geometry.

Setup: Two identical models (twins) are trained on independent bootstrap samples drawn once at the start of
training. We visualize trajectories, per-stride uncertainty circles derived from the online estimate, and reference
markers (true center and variance for Gaussian; basin minima and ridge structure for two-basins).

Mean-reset mechanism: We compare three modes on the two-basin landscape: (i) no reset, where twins drift
to different minima and o ceases to reflect local uncertainty; (ii) deterministic mean reset that co-locates twins;
and (iii) sampling-based mean reset that preserves i.i.d. trajectories while confining exploration to a single
basin, yielding a stable local uncertainty estimate.

Parameter sweeps: On the two-basin landscape, we vary dataset size, data noise, learning rate, and mini-
batch size (mean-reset only) and summarize the final uncertainty as mean + standard deviation across seeds.
A curvature-corrected single-well theory is used as a reference (details below). The estimate scales with data
variability and remains robust across optimizer settings.

o vs Dataset size 0 vs Noise level

1000 2000 3000 2000 3 08 0 2 12 3 g
Dataset size (M) Noise level

9 vs Leaming rate o vs Batch size

Figure 5: Two-basin sweeps (older 2x2 layout). Final o versus key parameters (dataset size, noise
level, learning rate, batch size), reported as mean + standard deviation across seeds. Dashed:

curvature-corrected single-well theory oieory = S(bW) 0gara/V M.

A.2 GAUSSIAN LANDSCAPE

Model: A simple linear model with two parameters to find the mean of a 2D Gaussian data cloud.

Optimizer: SGD.

Figure 1 settings (single run): N = 400, variance per dimension = 120, epochs = 5, batch size = 200,
learning rate = 0.07, uncertainty stride = 4, seed = 7, bootstrap ON with twin-specific bootstrap datasets.
Theory reference: For estimating a Gaussian mean, the per-parameter variance of the optimal estimator is
Var(w*) = 02.,/M, so the reference line is oyue(M) = 0uua/v/ M. The twin-based online estimate targets
this via o = 55 ||w1 — wal[3.

A.3 Two-BASIN LANDSCAPE (FIG. 2 AND APPENDIX FIG. 5)

Landscape: We use a symmetric two-well potential with minima at pq and us separated by distance d = 2
and well width (standard deviation) o:

2 2
Liw) = _exp(_ o= ) _ exp(_ =l )

Curvature-corrected single-well scaling: Modeling each basin locally by its Hessian yields the reference

O data

Jtheory(M, Odata; bW) = S(bW) m,
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with e = exp( — d*/(20”)), principal curvatures

2
Mo=bE =t oeh Sow= 55

o

This is the dashed reference in Appendix Fig. 5.

Sweeps protocol (Appendix Fig. 5): Mean-reset mode; summarize final o as mean = standard deviation across
seeds. Reset schedule: epochs {1,2,6,12}. We varied dataset size, data noise, learning rate, and mini-batch
size, trained for 40 epochs with a step learning-rate schedule.

A.4 CIFAR-10

Model: VGG-16 backbone with weight-normalized convolutional and linear layers; uncertainty buffers (one o
per output unit or per layer) drive training-time weight sampling; final classifier is a standard linear layer.
Dataset: Full CIFAR-10 training set with 50,000 images.

Optimizer: Adam.

Hyperparameters: Learning rate 0.001. Mini-batch size: 64. Reset schedule: epochs {1, 2} and then every 10
epochs. We used layer-wise grouping for o, and also tested unit-wise grouping with virtually identical results.

Sigma  Layer 1 Sigma — Layer 5 Sigma - Classifier
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0035 - Fina S orLyer
014 §
0020 0030
012 oo
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o010 0015
g 2 002 3
008 Eh H
d 0015 o
008
004 o010
0005 L
0005 FELE LSS LS
600 00 1000

0%y 20 w0 eo w0 1w % o 2 a0 000y 20 w0 &0 w0 o

Epoch Epoch Epoch

(b) Final o per layer at training
(a) Online uncertainty (per-layer o) over epochs end

Figure 6: Neural network uncertainty stability and structure. Left: time series of layerwise o show-
ing rapid early decay and a stable layer structure. Right: final o per layer for the same run.

A.5 NONLINEAR SEISMIC INVERSION

Model: Parameter vector v € R” on a 30 x 30 grid (P = 900). The forward model is y = K f(v) + ¢,
with K € R*096%9090 ywhose rows are L2-normalized 2D Gaussian kernels at random centers, and f either
tanh(Bv) (default) or a cubic proxy. Training uses full-batch gradient descent. Uncertainty o is estimated on
3 x 3 patches (one o per patch) and broadcast per block.

Optimizer: Adam.

Hyperparameters: Learning rate: started at 0.001 and decayed exponentially. Mini-batch size: 32. Reset
interval (K): adaptive, with initial Ky = 50.

Benchmark details. The seismic inversion task is a synthetic inverse problem designed to capture essential
challenges of real-world geophysical imaging, such as Full-Waveform Inversion (FWI) (Tarantola, 1984), in a
computationally tractable 2D setting. The goal is to reconstruct a 2D subsurface velocity map represented by a
grid of parameters of size P = 900.

Forward model. The observations are generated according to

y=Kf()+e,
where v € RF is the unknown velocity field, y € RM are the measurements, K € RM*F is a linear
measurement operator, and f(-) is an element-wise nonlinear function. The operator K consists of M = 4096
rows, each a normalized 2D Gaussian kernel centered at a random location, simulating sparse measurements
of the field. The nonlinearity f(v) = tanh(/v) models complex wave responses, and ¢ denotes measurement
noise.

Problem characteristics. The problem is nonlinear due to f(-); ill-posed and multi-modal because multiple
distinct v can explain y; and effectively over-parameterized—despite M/ > P—because of the nonlinearity
and ill-posedness, which make overfitting a central concern for standard optimizers.
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B LLM USAGE

We used large language model (LLM) tools to (i) assist writing and revision (drafting, restructuring, and clarity
edits), (ii) support coding (implementation guidance, refactoring, and debugging with standard coding assis-
tants), and (iii) provide feedback and discussion on design choices and presentation.
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