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Abstract

The application of machine learning models in chemistry has made remarkable1

strides in recent years. Even though there is considerable interest in automating2

common procedure in analytical chemistry using machine learning, very few3

models have been adopted into everyday use. Among the analytical instruments4

available to chemists, Nuclear Magnetic Resonance (NMR) spectroscopy is one of5

the most important, offering insights into molecular structure unobtainable with6

other methods. However, most processing and analysis of NMR spectra is still7

performed manually, making the task tedious and time consuming especially for8

large quantities of spectra. We present a transformer-based machine learning model9

capable of predicting the molecular structure directly from the NMR spectrum. Our10

model is pretrained on synthetic NMR spectra, achieving a top–1 accuracy of 67.0%11

when predicting the structure from both the 1H and 13C spectrum. Additionally, we12

train a model which, given a spectrum and a set of likely compounds, selects the13

structure corresponding to the spectrum. This model achieves a top–1 accuracy of14

98.28% when trained on both 1H and 13C spectra in selecting the correct structure.15

1 Introduction16

Nuclear magnetic resonance (NMR) spectroscopy is widely considered the most crucial tool in17

determining the structure of molecules [1]. Unlike other techniques such as infrared (IR) spectroscopy18

or mass spectroscopy (MS), NMR provides comprehensive and human-interpretable information19

about the molecule. It reveals details such as the number of NMR-active nuclei, the functional group20

to which a peak belongs, and, for some nuclei, information about its surrounding environment [2].21

Typically the spectra of multiple NMR-active nuclei are used to definitely assign the structure. Most22

commonly, an 1H NMR and a 13C NMR are used for this purpose. In the literature, the combination23

of these two spectra has become the de facto proof that a compound has been synthesised [3].24

Consequently, NMR spectroscopy has risen to prominence as the preferred analytical instrument in25

standard chemical laboratories.26

Nevertheless, analyzing NMR spectra is not straightforward. Although there are various software27

tools available to assist chemists in this process, the majority of spectra are still processed manually.28

As a result, the analysis of NMR spectra, particularly in large quantities, becomes a time-consuming29

and tedious undertaking [4].30

The increasing availability of computational power has ushered in a new era of statistical methods:31

machine learning and deep learning. These approaches have revolutionized fields such as image32

classification and language modeling by addressing previously unsolvable problems [5, 6]. In the33

realm of chemistry, machine learning, and particularly language modeling, has emerged as a highly34
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promising tool. Such models have diverse applications, spanning from predicting retrosynthetic35

routes over designing new drug candidates to assisting in the automation of experiments [7, 8, 9].36

In addition to changes brought about by machine learning, chemistry is experiencing a paradigm37

shift due to the growing prominence of robotics and automation in laboratories [10, 11]. Advances in38

both fields have carried over into chemistry, enabling fully automated high-throughput experimental39

campaigns that generate vast volumes of data previously inaccessible. By operating at nanomolar40

scales, these techniques can conduct hundreds to thousands of reactions per day [12, 13, 14, 15].41

However, one crucial step remains a limitation: the analysis of the reaction products.42

Current high-throughput approaches are predominantly restricted to a limited number of reagents and43

reactants, largely due to their heavy reliance on high-performance liquid chromatography (HPLC)44

systems. Each reactant and product necessitates a separate calibration curve, imposing limitations on45

the chemical space that can be explored [16, 17]. Despite the automation of most physical handling46

steps, the analysis of the resulting data still predominantly relies on manual labor, demanding weeks to47

months of tedious work. Among these tasks, the analysis of NMR data obtained from high-throughput48

experiments can be particularly burdensome.49

Even though the analysis of NMR spectra obtained from high-throughput experiments remains time50

consuming, advances have been made to alleviate the burden to some extent. Commercial NMR51

software offers options to automate peak picking, integration and multiplet assignement of the spectra52

[18, 19]. However, automatically determining a structure from the spectra without strong prior53

knowledge is currently not feasible. Approaches addressing this task using machine learning have so54

far been limited in the sense that they either limit the number of elements, the heavy atom count (all55

atoms other than hydrogen) or solely rely on one type of spectrum (e.g. 13C) [20, 21, 22, 23, 24].56

To close the loop between automated high throughput experiments and NMR spectroscopy, an57

automated NMR structure elucidation workflow is required. Here we propose to utilise language58

models trained on NMR spectra to directly predict the structure. We achieve a top–1 accuracy in59

predicting the correct molecular structure from simulated 1H and 13C NMR spectra of 67.0%. If the60

language model is provided with additional information such as the reagents and expected products of61

a reaction, the model is able to identify the correct structure in 98.28% of cases from the combination62

of both the 1H and 13C NMR spectrum.63

2 Results and Discussion64

We focus on two primary tasks. The first one involves predicting the molecular structure directly65

from the 1H spectrum, 13C spectrum, or the combination of both spectra. The second one focuses on66

exploring the effect of adding additional context to the NMR spectrum. This second task corresponds67

to a typical high-throughput scenario, where chemists are aware of the reaction that was conducted68

and, consequently, the potential molecules present in the spectrum. We task the model to match the69

correct molecule to a given spectrum.70

2.1 Data71

As the number of publicly available experimental NMR spectra is limited, we simulate a large72

training set using MestreNova [18]. We sample reactions from the Pistachio dataset [25] and simulate73

NMR spectra for both the reactants and products. In contrast to previous work, we do not exclude74

stereoisomers or restrict the heavy atom count drastically, opting for a range of 5 to 35, with an75

average heavy atom count of 22.7. We limit the elements to the ones most commonly found in organic76

chemistry, excluding molecules with elements other than carbon, hydrogen, oxygen, nitrogen, sulfur,77

phosphorous and the halogens. In total we generate 1.94 million 1H and 19F decoupled 13C NMR78

spectra as well as 1.10 million 1H NMR spectra. Further details on the molecules can be found in79

Appendix A.1.80

Instead of utilizing the raw 1H NMR spectrum, as demonstrated previously by Huang et al. [20], we81

opt for a processed version of the spectrum. There are two main reasons behind this choice. Firstly,82

if starting from the raw vector, the model would need to learn concepts such as peak picking, peak83

integration, and multiplet assignment. Our approach reduces the learning demand on the model84

by preprocessing the spectra using MestreNova. Secondly, the wide availability of such processed85

experimental NMR spectra in papers and patents presents a potential avenue for validating our models86
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on experimental data. Further information on the exact simulation details can be found in Appendix87

A.1.88

2.2 Model89

In this study, we adopt a sequence-to-sequence encoder-decoder transformer architecture, build-90

ing upon the formulation utilized in our previous investigation of IR spectra [26]. More detailed91

information can be found in Appendix A.2.92

As discussed above, we employ the processed NMR representation of a spectrum instead of a vector.93

For the 1H NMR this takes the form of a string containing the position of the peak in ppm, the94

multiplet type (‘s’, ‘d’, ‘t’, etc.), and the integration of the peak (i.e. the number of hydrogen atoms).95

All 1H values are rounded to the nearest second decimal. On the other hand, 13C NMR spectra are96

presented to the model as a simple list of peaks. All values in ppm are rounded to the nearest first97

decimal. Examples are illustrated in Figure 1. A detailed account of how NMR spectra are processed98

can be found in Appendix A.3.99

All molecules are presented to the model as presented to the model as Simplified molecular-input100

line-entry system (SMILES) [27, 28].101

1H-NMR Spectrum

Tokenization 1HNMR 1.15 1.36 t 3H | 2.38 
2.56 t 1H | 3.54 3.91 m 2H

Range of the peak in ppm 
rounded to two decimal points

Multiplet Type e.g.
 ‘t’, ‘d’, etc.

Number of Hydrogens

Peak separating Token

13CNMR 17.6 57.6

Position of the peak in ppm 
rounded to one decimal points

Tokenization

13C-NMR Spectrum

Figure 1: Summary of the tokenization process for NMR spectra. Top: Tokenization of an 1H NMR
spectrum following the Range representation. Bottom: Tokenization of a 13C NMR spectrum.

2.3 Structure Prediction from NMR spectra102

In the following we focus on predicting the molecular structure directly from the NMR spectrum. We103

assess three different scenarios: Predicting the structure solely from the 1H NMR spectrum, solely104

from the 13C NMR spectrum, and from the combined 1H and 13C NMR spectra.105

2.3.1 Model optimisation106

To explore the consequences of various data preparation methods, we examine the effects of supple-107

menting the model with the chemical formula alongside the spectra, altering the formatting of 1H108

NMR peaks, and investigate the effect of a shared or separate token space between the 1H and 13C109

NMR peaks. We train 13 models to assess the impact of these changes and evaluate the performance110

of the trained models based on the top–1, top–5, and top–10 accuracy metrics. These metrics indicate111

the percentage of cases in which the predicted structure matches the target structure within the first,112

first five, and first ten predictions, respectively. Molecules are defined as matching if their canonical113

SMILES are identical. The results of these experiments can be found in Table 1. In the following, we114

delve deeper into the different data preparation methods and their respective effects.115

We trained a model for all the three scenarios (solely 1H or 13C and combined 1H and 13C) with and116

without the chemical formula. We observe an increase in performance of ∼8–14% in performance for117
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Table 1: Summary of experiments on simulated data and associated metrics.
Formula Format∗ Tokens† Top–1% Top–5% Top–10%

1H NMR

✗ Center N/A 38.29% 54.67% 58.43%

✓ Center N/A 53.34% 71.71% 75.09%

✓ Adaptive N/A 53.39% 71.84% 75.23%

✓ Range N/A 55.32% 73.59% 76.74%
1H NMR (Augmented) ✓ Range N/A 51.58% 70.52% 73.94%
1H NMR (Ensemble) ✓ Range N/A 57.99% 76.65% 80.04%

13C NMR
✗ N/A N/A 37.21% 53.98% 57.45%

✓ N/A N/A 51.37% 70.74% 74.32%
13C NMR (Augmented) ✓ N/A N/A 49.02% 69.05% 72.90%
13C NMR (Ensemble) ✓ N/A N/A 53.91% 73.45% 77.72%

1H+13C NMR

✗ Range Separate 56.88% 73.91% 76.89%

✓ Range Separate 64.78% 81.74% 84.43%

✓ Range Shared 65.05% 82.07% 84.70%
1H+13C NMR (Augmented) ✓ Range Shared 62.35% 80.15% 82.93%
1H+13C NMR (Ensemble) ✓ Range Shared 66.99% 84.09% 86.59%
* The format used to represent the position of the 1H NMR peaks

Center: Center of the peak
Range: Minimum and maximum ppm of the peak
Adaptive: If the range is larger than 0.15 ppm use the range format otherwise center format

†
Whether the token space of the 1H and 13C NMR spectrum is shared or separate

all three models when including the formula. Adding the chemical formula constrains the chemical118

space that the model explores. This transforms the task from predicting the structure based solely on119

the spectrum to generating a set of isomers from the chemical formula and matching the best one to120

the spectrum. Consequently, we include the formula in all subsequent experiments. Experimentally121

the chemical formula is easily obtained via Liquid Chromatography – Mass Spectrometry (LC–MS).122

The integration of LC–MS into high-throughput workflows is common and as such this data would123

typically be obtained alongside the NMR spectra.124

Another point of interest is the format in which 1H NMR peaks are presented to the model. In the125

literature, two formats are commonly used to describe 1H NMR peaks. For smaller, narrower peaks,126

the center of the peak is typically used. Conversely, for larger, broader peaks, the peak is described as127

a range by indicating the minimum and maximum values at which the peak begins and ends. Here,128

we investigate three cases: (1) providing the model only with the center of the peak, (2) using a range129

by specifying the start and end values of each peak, and (3) employing an adaptive approach inspired130

by the format found in the literature with thinner peaks using the center and broader peaks the range131

representation. We define broad peaks as those with a width greater than 0.15 ppm. The results are132

presented in Table 1 within the 1H NMR section. We find that the range representation yields the133

best performance, likely due to the additional information on the width of the peak. Therefore, for all134

subsequent experiments involving 1H NMR spectra, we utilize the range representation.135

Next, we shift our focus to the combination of 1H and 13C spectra. To assign a structure from NMR136

spectra, it is common practice to rely on both the 1H and 13C spectra, as opposed to analysing a single137

spectrum on its own. In these experiments, we investigate the impact of providing the model with both138

the 1H and 13C NMR spectra. Following our earlier experiments we reuse the best representations for139
1H spectra and concatenate it with the 13C spectrum. More detailed information regarding the data140

format utilized to feed the model can be found in Appendix A.3. Additionally, we examine whether141

the model performs better when the tokens representing the position of the peaks fall into a shared142

space or a separate one. This is achieved by dividing the position of the 13C NMR peaks by 10 causing143

a significant overlap in tokens describing the position of peaks between the two modalities. The144
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advantage of sharing tokens is a decreased vocabulary size. However, when the tokens are shared the145

model has to learn to differentiate between 1H and 13C NMR tokens. The results, presented in Table146

1 under the 1H+13C NMR section, demonstrate that the shared tokenization scheme outperforms the147

separate one by ∼0.25%.148

To enhance the models’ performance and promote generalization, we augment the training data.149

Specifically, we utilize jitter augmentation with a range of 0.5 ppm, as outlined in Appendix A.4.150

This augmentation approach generates two augmented spectra for each original spectrum. When151

training the models on the combined augmented and original spectra, we observe a noticeable decline152

in performance across all scenarios (1H, 13C, and the combined 1H and 13C). We hypothesize that153

this is caused by the reliance of the models on the high homogeneity of the data, its consistency in154

peak position and width, and the lack of noise. Introducing noise through augmentation disrupts the155

learning process and results in decreased performance on the simulated test set. However, should156

the models be evaluated on experimental spectra, which naturally contain noise, we expect that the157

augmented models would likely perform better.158

Ensembling was used to further increase the performance of the models. We used an ensemble of the159

five best performing checkpoints for each model trained on non-augmented data. Across the three160

scenarios this increases performance on average by ∼2.4%. Results of the best performing models161

can be seen in Table 1. Ultimately, our final top–1 accuracy reaches 58.0% for 1H NMR, 53.9% for162
13C NMR, and 67.0% for the combined 1H and 13C NMR spectra.163

2.3.2 Model Analysis164

In the following we analyse the performance of the model across the three tasks. We use the best165

ensembled model from above and evaluate how the performance of the model changes with respect166

to the heavy atom count and in relation to the presence of specific functional groups. In addition,167

we also demonstrate that even if the model makes mistakes, most predicted molecules are relatively168

similar to the ground truth by evaluating the Tanimoto similarity of all predicted molecules[29].169
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Figure 2: Heavy atom count vs accuracy. Results for 1H spectra are shown in blue, for 13C in orange
and in green for the combination of both.
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Figure 3: The models ability to correctly predict the molecular structure plotted against the presence
of certain functional groups: a) 1H NMR, b) 13C NMR, c) 1H+13C NMR.

Heavy Atom count170

In order to assess the model’s performance, we evaluate its accuracy in relation to the heavy atom171

count. Figure 2 shows a negative correlation between the heavy atom count and the model’s accuracy.172

The model trained on both 1H and 13C spectra outperforms the models trained on a sole spectrum,173

highlighting the complementary information that can be extracted from both types of spectra. As174

expected, the 1H model demonstrates better performance compared to the 13C model, albeit by a175

relatively small margin of ∼5%. The relatively high variability in performance for molecules with a176

heavy atom count ranging from 5 to 10 can be attributed to the limited training data available in this177

particular range, comprising only around 2.5% of the total training dataset.178

The negative correlation of the model’s performance with the heavy atom count can be attributed to179

two factors. Firstly, as the heavy atom count increases, molecules tend to become more complex,180

resulting in longer SMILES strings. Since the model generates predictions autoregressively, even181

a single incorrect token prediction can lead to a significantly different structure. This sensitivity to182

errors becomes more pronounced with an increase in the complexity of the molecules. Secondly, as183

the heavy atom count rises, the chemical space expands exponentially, giving rise to a greater number184

of potential isomers that the model must differentiate, making the prediction more challenging.185

Functional Group to Structure186

We analyse the model’s ability to generate the correct structure depending on the presence of certain187

functional groups by calculating the top–n metrics for subsets containing a specific functional group188

in the test set. The scores are shown for each of the selected functional groups in Figure 3. The189

functional group definitions used and full performance across all evaluated functional groups can be190

found in Appendix B and C respectively. As with the heavy atom count, the model trained on the191

combined spectra outperforms both models trained on a sole spectrum, demonstrating the synergy192

that can be obtained by using both.193

When comparing between the model trained on 1H and 13C specta, the 1H NMR model’s performance194

is notably higher when predicting molecules containing halogens. This divergence can be attributed195

to the fundamental differences between the two modalities. While 13C NMR offers some insight196

into the presence of halogens, 1H NMR spectra provide substantially more information, enabling197

conclusions to be drawn regarding the presence and even quantity of halogens on adjacent atoms.198
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Conversely, we find that the 1H NMR model performs worse compared to the 13C NMR model when199

predicting molecules containing alkynes. This can be attributed to two factors. Firstly, carbon NMR200

alkyne peaks are relatively distinctive and easily identifiable. Secondly, in many cases, there are201

simply no hydrogen atoms directly attached to the alkynes. As a result, alkynes become a potential202

blind spot for 1H NMR.203

When both 1H and 13C NMR spectra are provided to the model, we observe an improvement for204

all functional groups. This is especially apparent for both halogens and alkynes compared to the205

individual models. In fact, these functional groups now perform above average in the combined model.206

This highlights the the model’s capacity to effectively utilize and integrate information from both207

modalities, thereby harnessing the complementary strengths of the two types of spectra enhancing its208

predictive capabilities.209

Similarity210

We compute the Tanimoto similarity [29] to the ground truth for all predicted molecules using Morgan211

fingerprints with a radius of 2 and a bit vector size of 1024 [30]. The average Tanimoto similarity is212

0.534, 0.537, and 0.553 when the prediction relies on 1H NMR, 13C NMR, and combined spectra,213

respectively. Examples of molecules predicted by the combined model are shown in Figure 4. Even214

when the model makes incorrect predictions, most of them still exhibit a high degree of similarity to215

the ground truth. The similarity distribution for all three models can be found in Appendix D.216

Target Molecule Prediction No. 1

Similarity: 1.0

Prediction No. 3

Similarity: 0.724

Prediction No. 7 

Similarity: 0.152

Prediction No. 4

Similarity: 0.289

Figure 4: Four predictions of the model trained on the combined data. Illustrated are the target
molecule on the left and four predictions on the right, including their rank and similarity to the target
molecule.

2.4 NMR Matching217

In this task, our objective is to evaluate the model’s ability to accurately match the correct structure218

to an NMR spectrum based on a set of potential molecules and a spectrum. In practical terms, this219

task resembles a situation in which, after a reaction has been completed and NMR spectra have been220

obtained for each fraction, these fractions must be assigned to a potential molecule. For this task,221

we train models on 1H, 13C, and their combination. We compare these models to a baseline which222

randomly picks a molecule from the set.223

We provide the model with a set of molecules along with an NMR spectrum. The input of the model224

consists of the SMILES of the potential molecules separated by “.” and the spectrum in the optimal225

data format as developed above. With this input, the model is tasked to either generate the SMILES226

of the correctly matching molecule or, if no molecule in the set matches the spectrum, a non matching227

token.228

We develop two methods to generate the input sets. Firstly, a reaction dataset in which we provide the229

model with both the reagents and products of a reaction and either a matching or not matching NMR230

spectrum. Secondly, a dataset consisting of molecules randomly picked from all molecules present in231

Pistachio. We vary the number of molecules from two to seven to evaluate the models performance232

as the size of the set increases.233

The performance of the models is evaluated on the two test sets sampled using the methods above234

(reaction set (rxn), molecule set (mol)). We measure the overall performance of the model using the235

top–1 accuracy metrics. Top-1 Accuracy is an appropriate metric in this case as the matching and236

non-matching set are balanced. Results of the experiments can be found in Table 2. Table 2 shows237

that the random baseline achieves an average top–1 accuracy of 27.05%, which is consistent with an238

average set size of 3.44.239
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Table 2: Top–1 Accuracy of the model in predicting either the correct matching SMILES or a
non-matching token. We show the performance of both the best and an ensemble of the five best
checkpoints.

Model
Rxn (Top–1 Acc. %) Mol (Top–1 Acc. %)

Matching Non-Matching Matching Non-Matching

Random Baseline 25.05 30.54 24.75 27.68
1H–Model 95.66 98.99 95.86 97.73

1H–Model Ensemble of 5 96.08 99.12 95.55 97.97
13C–Model 97.08 99.18 96.10 97.81

13C–Model Ensemble of 5 96.34 99.23 96.30 98.03
1H +13C–Model 97.56 99.45 96.13 98.55

1H +13C–Model Ensemble of 5 98.28 99.58 95.16 99.49

All models demonstrate a high performance in both matching a spectrum to a molecule and detecting240

if a spectrum does not match any of the molecules in the set. The accuracy is notably higher241

when evaluated on non-matching test sets. This can potentially be attributed to the relative ease of242

identifying a mismatch between a spectrum and the molecules contained in the set, compared to243

accurately pinpointing the correct match especially if the similarity between some molecule is high.244

The models also show high proficiency in correctly predicting the SMILES of the matching molecule.245

We investigate the model mistakes in this task by assigning the wrong predictions into three categories:246

1) “Non-Matching”: the model predicts a non-matching token instead of the expected SMILES, 2)247

“Other Molecule in the set”: the model predicts a SMILES found in the input set which does not248

correspond to the target SMILES and 3) “Incorrect SMILES”: the model predicts a SMILES sequence249

that is either not not found in the input set or incorrect. Results for the three ensemble model are250

shown in Table 3.251

Table 3: Analysis of the incorrect predictions on the matching testsets.

Model Testset
Incorrect Predictions (%)

Non-Matching Other Molecule in Set Incorrect SMILES

1H–Model
Mol 96.81 2.56 0.64
Rxn 10.85 88.22 0.93

13C–Model
Mol 95.46 3.67 0.86
Rxn 37.72 60.92 1.37

1H +13C–Model
Mol 99.14 0.51 0.34
Rxn 6.69 92.20 1.11

Across all three models we observe a distinctly different distribution between the molecule and252

reaction set. For the former, most mistakes occur via the model incorrectly predicting a non-matching253

token. On the other hand for the reaction-testset the most common mistake consists of the model254

predicting a different molecule that can also be found in the set of molecules provided to the model.255

These differences can be attributed to the higher similarity found between molecules in the reaction256

sets causing the model to incorrectly assign the NMR to another molecule in the set. Reassuringly,257

all three models can reliably generate accurate SMILES strings from the input set. Errors arising258

from incorrect SMILES or SMILES that are not contained in the input set account for less than 2%259

of all mistakes.260

We do not observe a significant different in between the different modalities. Models trained on261
1H, 13C, and the combination perform within ∼1-2% of top–1 accuracy. This is points to all three262

modalities containing enough information to correctly match an NMR spectrum to a molecule.263
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Overall, our findings demonstrate that a transformer model can accurately assign a molecule to an264

NMR spectrum when provided with a set of reactants and products from a reaction, achieving a high265

level of accuracy.266

2.5 Limitations267

One of the key limitations of our methodological approach lies in the availability of large NMR268

datasets. While these datasets exist, licenses for their use are often expensive and restrict machine269

learning applications, limiting their use. Consequently, we opt to simulate NMR spectra using270

MestreNova. While this approach is not inherently limiting, it is important to note that the resulting271

spectra are highly coherent and consistent. Experimental spectra likely exhibit greater variability and272

inconsistencies.273

3 Conclusions274

NMR spectroscopy is a very powerful tool routinely used by chemists. The analysis of spectra, or275

rather their use for structure elucidation, remains a primarily manual task. Taking in consideration the276

number of spectra analyzed every day in the world, it is surprising that few data-driven approaches to277

aid in this process have been adopted so far. In this work, we explored ways to change that.278

To this end, we presented a transformer model capable of predicting the molecular structure directly279

from NMR spectra. We trained and optimised the transformer model to predict the molecular structure280

from the 1H, 13C, and combined 1H/13C NMR spectra. We report a top–1 accuracy of 58.0%, 53.9%281

and 67.0% for the tasks on simulated spectra, respectively. In different experiments, we observe that282

weaknesses present in models trained on a single modality can be eliminated by combining the two283

modalities. Erroneous model predictions are very similar to the target molecules, with an average284

Tanimoto similarity of 0.55 for the model trained 1H and 13C spectra. This demonstrates that the285

model predictions, even when incorrect, provide chemists with structure guesses that are close to the286

correct compound.287

In another task, we train models to select, among potential candidates, the molecule corresponding to288

an NMR spectrum. We find that for all three modalities the model is able to accomplish this task with289

a top–1 accuracy above 95%.290

The models trained on simulated data in this work will provide a basis for fine-tuning on experimental291

datasets, allowing the models to leverage the fundamentals learned from the simulated spectra while292

adapting to the variability and noise found in experimental ones.293

These advancements hold the potential to transform the analysis of NMR spectra, enabling faster294

and more accurate identification and characterization of compounds. As a result, the integration of295

automated NMR analysis into the workflow of high-throughput experiments promises to enhance296

efficiency and accelerate discoveries in the field of chemistry.297
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Appendix387

A Methods388

A.1 Synthetic Data389

Before generating spectra, 1,029,381 reactions were sampled from the Pistachio patent dataset [25]. A390

set of molecules was assembled from the precursors and products of these reactions. Molecules were391

filtered out if they contain atoms other than carbon, hydrogen, oxygen, nitrogen, sulfur, phosphorous392

and the halogens. In addition, all molecules with a heavy atom count outside the range of 5–35,393

charged molecules or containing isotope information were filtered out.394

From this set, 1,120,390 1H and 1,943,950 13C NMR spectra were generated using MestreNova.395

Standard simulation settings were used for 1H NMRs. For 13C NMRs, 1H and 19F decoupled spectra396

were generated. For 13C NMR, the position of all peaks was recorded. On the other hand 1H397

NMR were further processed. First peak-picking was applied, followed by the autointegration and398

automultiplet assignment. All three processing steps were carried out using built-in MestreNova399

functions with standard settings. For each peak in an 1H NMR, the range of the peak, its centroid, the400

number of hydrogen atoms and the multiplet was recorded.401

A.2 Model402

We base our model architecture on the Molecular Transformer [7]. The model takes the formatted403

NMR spectrum with the chemical formula as input, and outputs a molecular structure encoded as404

SMILES. This can be formulated as a translation task from the spectrum to the molecular structure.405

The model is a vanilla transformer as implemented in the OpenNMT-py library [31, 32] with the406

following hyperparameters deviating:407

word_vec_size: 512408

hidden_size: 512409

layers: 4410

batch_size: 4096411

All models are trained for 350k steps amounting to approximately 35h on a A100 GPU.412

A.3 Tokenization413

To tokenize 1H NMR peaks, we proceed as follows. The position of the peak is rounded to the second414

decimal point, the type of multiplet (singlet, doublet, triplet, etc.) and the number of hydrogens are415

appended as second and third token respectively. All peaks are separated with a separating token416

(“|”). As an example a singlet at 1.239 ppm with an integral of 3 would become “1.24 s 3H |”,417

with tokens separated by whitespaces. A string of the 1H NMR spectrum is built accordingly by418

concatenating the peaks starting with the lowest ppm and ending at the highest one. In addition, a419

prefix token is used to differentiate 1H from 13C NMR spectra. As an example an 1H NMR with two420

peaks would be formatted as follows: “1HNMR 1.24 t 3H | 1.89 q 3H |”.421

13C NMR are formatted according to a simpler scheme. As the multiplet type and integration is not422

relevant for this type of spectrum the position of the peaks are rounded to one decimal point and423

tokenized accordingly. To illustrate this, a typical NMR spectrum is tokenized as follows: “13CNMR424

12.1 27.8 63.5”.425

In addition to the spectra, the model is provided the chemical formula in addition to the NMR426

spectrum. The formula is calculated using RDKit [33] and prepended to the spectrum.427

When both 1H and 13C NMR are used, the tokenized string consists first of the chemical formula,428

followed by the 1H NMR spectrum and finally the 13C NMR. To have the 1H and 13C NMR share429

the same token space, the ppm values of the 13C NMR peaks are divided by 10.430

A.4 Data augmentation431

The spectra are augmented using jitter augmentation as used previously by Jonas et. al. [21]. This432

involves adding a random distortion sampled from a range of 0.5 ppm for 1H NMR and 5 ppm for433
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13C NMR. The random noise is added to each of the peaks in the spectra. In total, two augmented434

spectra are produced for each original one.435

B Functional group definitions436

Functional groups are defined in SMARTS as shown in Table 4. Using these SMARTS437

and RDKit the presence of a certain function group is determined by invoking <RDKit438

molecule>.GetSubstrucMatches(<RDKit molecule from SMARTS pattern>)439

Table 4: Functional group definitions used.
Definition

Alcohol [OX2H][CX4;!$(C([OX2H])[O,S,#7,#15])]
Carboxylic Acid [CX3](=O)[OX2H1]
Ester [#6][CX3](=O)[OX2H0][#6]
Ether [OD2]([#6])[#6]
Aldehyde [CX3H1](=O)[#6]
Ketone [#6][CX3](=O)[#6]
Alkene [CX3]=[CX3]
Alkyne [$([CX2]#C)]
Benzene c1ccccc1
Primary Amine [NX3;H2;!$(NC=[!#6]);!$(NC#[!#6])][#6]
Secondary Amine [NH1,nH1])
Tertiary Amine [NH0,nH0])
Amide [NX3][CX3](=[OX1])[#6]
Cyano [NX1]#[CX2]
Fluorine [#6][F]
Chlorine [#6][Cl]
Iodine [#6][I]
Bromine [#6][Br]
Sulfonamide [#16X4]([NX3])(=[OX1])(=[OX1])[#6]
Sulfone [#16X4](=[OX1])(=[OX1])([#6])[#6]
Sulfide [#16X2H0]

Phosphoric Acid†
[$(P(=[OX1])([$([OX2H]),$([OX1-]),$([OX2]P)])([$([OX2H]),
$([OX1-]),$([OX2]P)])[$([OX2H]),$([OX1-]),$([OX2]P)]),
$([P+]([OX1-])([$([OX2H]),$([OX1-]),$([OX2]P)])([$([OX2H]),
$([OX1-]),$([OX2]P)])[$([OX2H]),$([OX1-]),$([OX2]P)])]

†
Adapted from [34]
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C Performance on molecules containing specific functional groups440

In Tables 5, 6, and 7, the accuracy of the model solely trained on 1H, 13C, and combined 1H /13C441

NMR data, respectively, is shown depending on the presence of specific functional groups in the442

target molecule. “Count” represents the number of molecules with this functional group in the test set.443

Additionally, the average heavy atom count (“Avg. HAC” in the table) is calculated to rule out bias.444

Table 5: The model trained on 1H NMR spectra’s ability to predict the correct molecular structure
based on if a specific functional group is present in the target molecule.

Count Avg. HAC Top–1% Top–5% Top–10%
Phosphoric Acid 76 27.09 31.58 47.37 48.68
Alkene 12727 22.55 46.94 66.87 70.46
Cyano 7691 23.58 53.54 71.92 75.83
Alkyne 2071 23.39 54.23 71.61 74.89
Alcohol 17214 22.86 54.23 74.83 78.49
Sulfide 15214 23.85 55.06 73.41 77.06
Primary Amine 12504 21.30 55.42 75.99 79.57
Amide 31834 26.10 56.13 74.26 77.77
Chlorine 23685 23.59 56.42 75.31 78.95
Tertiary Amine 83118 24.01 56.74 74.85 78.30
Carboxylic Acid 13838 23.26 56.79 77.03 80.60
Ketone 8100 22.35 56.91 73.10 76.35
Secondary Amine 56201 24.50 56.96 75.16 78.65
Fluorine 30166 25.16 57.70 75.59 78.97
Ether 34926 24.98 58.75 76.93 80.16
Sulfone 2428 26.03 58.86 75.41 78.46
Benzene 86972 24.08 58.86 76.92 80.18
Sulfonamide 5758 26.44 59.48 76.55 79.63
Ester 16344 23.20 59.50 79.08 82.13
Aldehyde 2208 19.09 60.19 79.71 83.02
Bromine 9687 20.11 60.48 80.21 83.47
Iodine 1728 19.93 62.21 82.52 85.30
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Table 6: The model trained on 13C NMR spectra’s ability to predict the correct molecular structure
based on if a specific functional group is present in the target molecule.

Count Avg. HAC Top–1% Top–5% Top–10%
Phosphoric Acid 142 26.54 36.62 55.63 59.86
Alkene 21149 23.09 40.65 60.35 64.87
Alcohol 21781 23.11 48.25 69.14 74.11
Sulfide 26917 23.90 50.54 69.80 74.08
Primary Amine 22672 21.39 51.14 72.07 76.61
Amide 51806 26.33 51.29 69.90 74.21
Cyano 13327 23.34 51.30 70.18 74.57
Chlorine 40757 23.39 51.43 71.69 76.30
Secondary Amine 85969 24.94 51.97 71.35 75.62
Tertiary Amine 146144 24.10 52.21 71.32 75.66
Fluorine 49707 25.00 52.33 72.09 76.49
Carboxylic Acid 18879 23.21 54.47 75.34 79.46
Iodine 3193 19.40 54.56 76.20 80.74
Sulfone 4928 25.85 54.61 71.25 75.59
Benzene 149174 24.31 54.79 73.83 77.95
Alkyne 3700 23.31 54.89 73.14 76.89
Bromine 17680 19.99 55.71 76.84 81.46
Sulfonamide 9319 26.70 55.77 73.00 76.97
Ketone 14910 22.41 56.32 73.66 77.94
Ether 65246 25.10 56.60 75.00 78.97
Aldehyde 4452 19.25 57.46 78.23 82.88
Ester 33632 23.47 58.11 78.01 81.80

Table 7: The model trained on both 1H and 13C NMR spectra’s ability to predict the correct molecular
structure based on if a specific functional group is present in the target molecule.

Count Avg. HAC Top–1% Top–5% Top–10%
Phosphoric Acid 71 25.82 38.03 50.70 54.93
Alkene 12799 22.36 54.68 74.48 77.40
Alcohol 16967 22.77 62.32 82.14 85.04
Primary Amine 12378 21.36 63.94 83.16 85.85
Sulfide 15219 24.17 64.02 80.92 83.68
Amide 32013 26.12 64.90 82.31 85.11
Chlorine 23849 23.58 65.57 82.79 85.53
Secondary Amine 56290 24.50 65.67 82.79 85.55
Cyano 7767 23.61 65.91 82.17 84.97
Fluorine 30724 25.09 66.00 82.98 85.66
Sulfone 2537 26.08 66.30 81.75 84.15
Tertiary Amine 83173 24.01 66.31 82.98 85.59
Carboxylic Acid 13719 23.30 66.80 85.41 87.82
Alkyne 2070 23.49 66.86 83.24 85.89
Ketone 8241 22.29 67.10 82.55 85.01
Ester 16499 23.25 67.66 85.24 87.50
Benzene 87374 24.05 67.85 84.40 86.86
Ether 34823 24.86 67.87 84.35 86.75
Sulfonamide 5663 26.58 68.20 83.68 86.39
Iodine 1705 19.88 68.68 85.34 87.21
Bromine 9838 20.19 69.66 86.91 89.04
Aldehyde 2152 19.11 70.77 87.04 89.22
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D Tanimoto Similarity Distribution445

In Figure 5 the Tanimoto similarity distribution for all three models is illustrated. The distribution446

shows a peak around 0.55 for all three models.447

a)

b)

c)

Figure 5: The Tanimoto distribution of three models: a) 1H NMR, b) 13C NMR, c) 1H+13C NMR.
All correct molecules were excluded.

16


	Introduction
	Results and Discussion
	Data
	Model
	Structure Prediction from NMR spectra
	Model optimisation
	Model Analysis

	NMR Matching
	Limitations

	Conclusions
	Methods
	Synthetic Data
	Model
	Tokenization
	Data augmentation

	Functional group definitions
	Performance on molecules containing specific functional groups
	Tanimoto Similarity Distribution


