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ABSTRACT

How can we accelerate inference of matrix multiplications while maintaining the
performance of neural networks? Weight-activation quantization reduces infer-
ence costs by quantizing both weights and activations, enabling cheaper matrix
multiplications during inference. Previous researches on weight-activation quanti-
zation have focused on finding better weights to reduce quantization errors, while
simply applying round-to-nearest (RTN) for the activations during inference. How-
ever, RTN has limitations in preserving the directional information of activations,
which is crucial to accurately approximate matrix multiplications. In this paper,
we propose DIAQ, an accurate method for quantizing activations while preserving
directional information. DIAQ chooses the direction to round each value based on
their direction as well as their distance from the quantization levels. DIAQ also
extends each vector to prevent collapse during quantization and corrects the output
scale to compensate for the change in magnitude after quantization. Extensive ex-
periments show that D1AQ reduces the quantization error induced from activation
quantization by up to 13.3% and 26.1% in terms of Euclidean and cosine distances,
respectively, compared to RTN. DIAQ also improves the task performances of
LLMs and ViTs.

1 INTRODUCTION

How can we reduce the quantization error in matrix multiplication with activation quantization?
Recently, with the remarkable advancements in the field of artificial intelligence, the performance and
size of deep models are continuously increasing (Kaplan et al., 2020; Chowdhery et al.,|2023). As a
result, demand for efficient inference is rising due to the growing inference costs. Weight-activation
quantization is the most common approach to address this issue (L1 et al.,2020; Hubara et al., 2021}
Gholami et al.,[2022). This technique represents weights and activations in low-bit integers during
matrix multiplication, significantly reducing memory usage and inference time (Deng et al.| 2020
Park et al., 2024]).

Previous works on weight-activation quantization focus on finding better weights and activations to
reduce the quantization error. For instance, SmoothQuant (Xiao et al., 2023) and OmniQuant (Shao
et al., [2024) adjust the scales of weights and activations so that activations become easier to quantize.
Moreover, recent studies such as QuaRot (Ashkboos et al.,[2024), DuQuant (Lin et al., [2024al), and
SpinQuant (Liu et al.| 2025) further improve the quantizability of activations by applying rotation
before quantization.

However, these works overlook how to effectively quantize activations and simply apply the RTN
(round to nearest) for quantization (Ashkboos et al.| 2024} |Li et al.l [2023)). This leads to limitation in
preserving the directional information of the activations. For instance, consider quantizing a vector
x = (7.3,5.7) to integer values as shown in Figure If we simply apply RTN, we would round 7.3
to 7 and 5.7 to 6, losing the original direction of the vector as shown in Figure(l|(b). On the other
hand, if we round 7.3 to 8 and 5.7 to 6, the quantized vector preserves the direction of the original
vector, as shown in Figure[T](c).

To address this limitation, we propose Direction-aware Activation Quantization (DIAQ), an accurate
activation quantization method that considers the direction of the activations during quantization to
reduce the quantization error. DTAQ searches for the quantization level that preserves the direction
of the original vector using direction-aware rounding. In this process, DIAQ extends the activation
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(a) Activation (b) Round to nearest  (c) Direction-aware rounding  (d) DIAQ (proposed)

Figure 1: Illustration of the different schemes to round the vector & (the proportions are exaggerated).
When applying RTN as in (b), the error magnitude is smaller, but rounding to align the direction as in
(c) reduces the cosine distance.

vector before quantization to prevent quantized vectors from collapsing to the origin. Finally, DIAQ
scales the output of the quantized matrix multiplication to compensate for the change in magnitude
during quantization.

Our main contributions are summarized as follows:

* Theory. We formally define the direction-aware approximation of a vector and prove that it reduces
the approximation error of matrix-vector multiplication compared to RTN.

* Algorithm. We propose DIAQ, a new activation quantization algorithm to implement the direction-
aware approximation in practice. DIAQ preserves the directional information of activations during
quantization with the minimal computational overhead compared to matrix multiplication.

* Experiment. We show that DIAQ reduces the quantization error induced from activation quantiza-
tion by up to 13.3% and 26.1% in terms of Euclidean and cosine distances, respectively, compared
to RTN through extensive experiments. We also show that DIAQ improves the task performances
of LLMs and ViTs. Our codes are available within the supplementary materials.

2 PRELIMINARIES

2.1 PROBLEM DEFINITION

Linear transforms are the core operations and the main computational bottleneck in various neural
network architectures (Popescu et al., 2009;|Gardner & Dorling, 1998}, Vaswani et al.,|2017;|Tolstikhin
et al., [2021). A linear transform is a set of matrix-vector multiplications, where an input vector &
is multiplied by a weight matrix W to produce an output vector y = W . In this paper, we focus
on efficient approximation of matrix-vector multiplications using quantization to accelerate neural
network inference. We formally define the problem as follows.

Problem 1 (Quantized Matrix Vector Multiplication). Given a weight matrix W € R™*" an input
vector ¢ € R™, and a bit-width b, the goal is to approximate the output y ~ W x using b-bit

integer operations with quantized weight W and quantized input vector T, while minimizing the
approximation error ||y — Wz||2.

2.2  WEIGHT-ACTIVATION QUANTIZATION

Weight-activation quantization is a promising approach to efficiently approximate matrix-vector
multiplications (Li et al.,|2020j 2023; |/Ashkboos et al.,[2024; Lin et al., |2024a; [Liu et al., [2025)). This
method replaces full-precision matrix multiplications with lower-bit integer operations by quantizing
both the weight matrix and the input vector to low-bit integer representations. The weight matrix
W is expressed as W = s,,W,, where W, € I"™*" is the quantized integer matrix, and s,, is the
scaling factor. The input vector « is similarly quantized as = s, x4, where x, € I" is the quantized
integer vector, and s, is the scaling factor. Then, the matrix-vector multiplication is approximated

as Wa = WZ = s,,5,(W,x,). This allows the matrix-vector multiplication to be performed
using low-bit integer operations, which are significantly faster and more memory-efficient than
full-precision operations (Tseng et al.l[2024;|Zhao et al.,2024; Lin et al.|, 2024c). Note that we ignore
the zero-point and fuse it into the quantized integer matrices for simplicity in this paper, since it does
not change the mathematical properties of the quantization error.
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The weight matrix is quantized offline before inference, allowing users to search for the optimal
quantization parameters (Xiao et al.,[2023;Shao et al.,[2024) and quantized weights (Frantar et al.,
2023} Lin et al.,|2024b; [Nagel et al., 2020) without time constraints. On the other hand, the input
vector is quantized online during inference since the input changes with each query. Thus, the input
vector must be quantized quickly with minimal overhead to maintain fast inference speed.

The most common method for online activation quantization is the round-to-nearest (RTN)
scheme (Gupta et al.,2015). This method first determines the quantization levels by finding the scaling
factor s,. This is obtained either 1) online by computing them per input token during inference, or
2) offline by pre-computing them using the activation statistics (e.g., min/max or percentile range)
collected from a small calibration set. Then, each element of the input vector is rounded to the nearest
quantization level, ensuring that the Euclidean distance between the original input vector = and the
approximated vector Z is minimized. Specifically, given an input vector x and the scaling factor s,
the input vector is approximated as follows:

izswv+1J' (1

3 THEORETICAL ANALYSIS ON ACTIVATION QUANTIZATION

How can we accurately approximate the product of a matrix W and a vector & by approximating the
vector  as Z£? A vector contains directional and magnitude information, both of which are crucial for
accurate approximation. Previous works use the RTN (round to nearest) method, which approximates
a given vector to the nearest quantization level. However, this method has limitations to preserve
the directional information. This is because the direction of the error is formed independently of the
original vector, as shown in Figure[I] (b).

To address this issue, we propose a direction-aware approximation method that considers the direction
of the vector. First, we find the quantization level that has the highest cosine similarity with the given
vector to preserve the directional information of x, as shown in Figure E] (c). However, this distorts
the magnitude information of the vector, as it prioritizes preserving the directional information over
minimizing the absolute error. To compensate for this, we apply scaling to the quantized vector so
that its magnitude matches that of the original vector, as shown in Figure [I] (d). In the remaining
section, we theoretically prove that this approximation method is superior to the existing quantization
method.

First, we establish Theoremﬂ] to set a criterion for better quantization methods. Theoremﬂ] states that
reducing the approximation error of the vector leads to a reduction in the error of the matrix-vector
multiplication itself. Hence, we need to find a quantization method that minimizes the approximation
error of the vector.

Theorem 1. For two approximations T, and T of a given vector ¢ € R™, let ||lx—Z H2 < |lx—Z2||2.
Then, for a matrix W € R™*" following Gaussian distribution N'(0, 1)™ %", E(|Wx —WZ1|2) <
E(|[Wz — Wz, ).

Proof. Lete; = x — Ty and e =  — To. Then, W — W = We; and Wz — WZIy, =
W es. Since each row of W is independent and follows a Gaussian distribution, we have We; ~
N0, [le1[[3)™ and Wes ~ N (0, [le2]|3)™ le1l[2xm and [|Wes|l2 ~ [[ea]|2xm.
where Y, is the Chi distribution with m degrees of freedom. Therefore, E(|Wz — WZ4||2) =
E([Weil2) = [ler]2E(xm) < lle2[2E(xm) = E(|[Wx — Wxs||2). O

Next, we formally define RTN and direction-aware approximation as Definitions[T|and[2] respectively.

Definition 1 (RTN approximation). For a given vector x, scale factor s, and quantization levels
Q =TI ,{s|zi/s], s[xi/s]|} near x, the RTN approximation &, of x is T, = argmin ¢ ||x —1|2.
Definition 2 (Direction-aware approximation). For a given vector x, scale factor s, and quantization
levels Q = 111 {s|xi/s], s[xi/s]} near x, the direction-aware approximation T4 of T is Tq =

|2
llzall2

.
_ x 1
x4, where g = argmax;c o el

‘We now prove that the direction-aware approximation method reduces the approximation error of
the vector more effectively than the RTN method. First, we present Theorem [2|to show that the
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direction-aware approximation method has a smaller approximation error when the angle between x
and Z4 is sufficiently small.

Theorem 2. Let T, and Ty be the vectors approximated by the RTN and the direction-aware
approximation, respectively, for a given vector x and scale factor s. Then, if the angle 04 between x

Proof. Let X, X ., and Xd be pomts such that x =
-

O_Xk x, = OXT, and 4 = OXd, as shown in Fig-

urel 2| Also, let 6, = /XOX, and 6, = /XOX,. Then,

OX = O)?d by the definition of Z4. Let H, and H, be

the feet of the perpendiculars from X onto Z, and g4,

respectively. Then, | — Z4[l2 = XX, = 2rsin 5 for
7 = ||@|2. Since fy < 1,2rsin % ~ rsin 6. Meanwhlle,
|le—Z, |2 = XX, > XH, = rsin6, since /XH, X, =
90°. Note that 6, < 6, by the definition of Z4: hence, we
have |z — @[]z > rsinf, > rsinfy ~ |lx — Zal2. O  Figure 2: Mlustration for Theorem 2]

We then prove Theorem [3] which shows that Z, reduces the approximation error of the vector more
effectively than Z, using Theorem 2]

Theorem 3. For a given vector x and scale factor s, let T, and X 4 be the vectors approximated by
the RTN and the direction-aware approximation, respectively. Then, E(||x — Z4]]2) < E(]|x — Z,||2).

Proof. By Theorem[2] as the angle 6, between @ and Z4 decreases, the approximation error of Z4
becomes smaller than that of Z,.. Meanwhile, as the length of x increases, 64 decreases (details in
Appendix [A-T)). Thus, if we divide cases based on the quantization level where « lies, the worst case
is when the quantization level touches the origin (details in Appendlx [A.2). Therefore, it suffices to
prove only when Q = []""_,{|x;/s]s, [x;/s]s} includes the origin.

Without loss of generality, consider the case where Q = {0, s}". We assume that x is uniformly
distributed in the space inside @ (Lin et al [2024b)). Hence, the quantization error of RTN fol-
lows a uniform distribution ¢/ (—0.5s,0.5s). Thus, Z, — © ~ U(—0.55,0.55)™, and the expected

approximation error ||z, — x| is E(||Z, — z|2) = 2\/}5 ~ 0.289/ns.

Now we calculate the expected value of the approximation error ||Z4 — || using the direction-aware

approximation. Cosine similarity between & and I = (I1,--- ,1,) € Qis (D_,c s WACVAIIEES!

where S = {i | [; = s}. Thus, the maximum cosine similarity is (ZZ L )/(\f||m|| ) for

k= ZieS' Here, 2V, ... 2™ are x1,- - - , x,, sorted in descending order. Then, for the angle 6,

between x and &4, cos Qd = max1<k<n(zk L2 /(Vk||x||2). Therefore, the expected value of

cos s 2‘[ when k = 2n (details in Appendix | Thus, the expected error is E(||Z4 — x|]2) =
E(2||x||2 sin & ) (24/n8)/(V/3)E(sin 6;) R 0.195f8.

Therefore, even in the worst-case scenario for the direction-aware approximation, the expected
approximation error is smaller than that of the RTN, i.e., E(||lx — Z4|2) < E(||x — Z,||2)- O

4 PROPOSED METHOD

In this section, we propose DIAQ (Direction-aware Activation Quantization), an accurate activation
quantization algorithm to implement direction-aware approximation in Section 3]

4.1 OVERVIEW

We address the following challenges to implement direction-aware activation quantization:

C1. (Collapsing to origin) Most activation vectors are located near the origin, leading them to
collapse toward zero during rounding. How can we prevent activations from collapsing?



Under review as a conference paper at ICLR 2026

Rounding while

, preserving direction
x Matrix-vector

Original vector o
/ multiplication Compensgte for
y E> y Extend S —W the magnitude
xten =Wx -
y d 5 ‘C——\’ 5
I1. Activation extension  12. Direction-aware rounding I3. Scale correction

Figure 3: Overall process of DIAQ. Blue vectors denote the output of each step.

C2. (Intractable search space) Searching all quantization levels near the vector is computationally
expensive. How can we efficiently find the quantization level with a similar direction?

C3. (Distorted vector magnitudes) Activations should be on quantization levels during matrix
multiplication for efficient computation. How can we correct distortions in vector magnitudes
while keeping them on quantization levels during multiplication?

To tackle these challenges, D1AQ exploits the following main ideas:

I1. (Activation extension) D1AQ extends the magnitude of each activation vector to prevent collapse
while preserving its direction.

I2. (Direction-aware rounding) DIAQ rounds a vector considering not only its position but also its
direction to find a quantization level aligned with the vector.

I3. (Scale correction) D1AQ assesses changes in vector magnitude during quantization, and corrects
their scale after matrix multiplication.

Figure 3] shows the overall matrix multiplication process using DIAQ. DIAQ is composed of two pre-
processing steps before matrix multiplication and one post-processing step after matrix multiplication.
Before matrix multiplication, DIAQ first extends the activation vector to prevent collapse during
quantization (Section .2). Then, DIAQ quantizes the extended activation using direction-aware
rounding to preserve its directional information (Section[4.3). After matrix multiplication, DIAQ
corrects the scale of the output to compensate for the change in magnitude during quantization

(Section [F4).

4.2 ACTIVATION EXTENSION

How can we prevent activations from collapsing toward the origin during quantization? Activations of
neural networks such as LLMs and ViTs are concentrated around zero since they follow a Gaussian-
like distribution or a power-law distribution (Yuan et al., 2022} |L1 et al.| 2023} |Ashkboos et al., 2024]).
Hence, directly quantizing the activation causes them to collapse toward the origin, resulting in the
complete loss of directional information.

Our idea to prevent collapse is to move each vector away from the origin while preserving its direction.
To achieve this, DIAQ extends the length of each activation by a fixed amount before quantization.
For an activation vector x, quantization scale s, and an extension hyperparameter v, DIAQ extends
the length of & by « relative to the quantization scale s as shown in Figure[d{a) as follows:

o =@+ as—— 2
(]2

Note that sﬁ is  normalized to have the magnitude of s, a single step of quantization levels. Then,
D1AQ quantizes the extended activation ’ instead of z in the following step (Section [4.3).

4.3 DIRECTION-AWARE ROUNDING

How can we find a quantization level that aligns with the direction of a given activation vector
2’ € R™ and quantization scale s? There are 2" quantization levels surrounding ' since we have
two choices for each axis: rounding up or rounding down. Hence, naively computing the cosine
similarity for all quantization levels around &’ is computationally infeasible as it requires evaluating
2™ candidates. Therefore, we need an efficient method to find a quantization level with high cosine
similarity to &’ without explicitly calculating the cosine similarity.
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Figure 4: Illustrations of pre-processing steps of DIAQ. (a) DIAQ first extends the length of x by as
to obtain «’. Then, to determine the rounding direction for the horizontal axis, (b) DIAQ computes
the angular score with the horizontal component a’ of the normalized «’, and (c) the positional score
with the signed distance p’ to " from the midpoint between quantization levels.

Then, how can we determine which of rounding up or rounding down for each axis yields the higher
cosine similarity without directly computing the cosine similarity? Consider an error e = I — &’
between a given vector ' and a quantization level I. The cosine similarity between ' and I increases
as 1) the angle between x’ and e decreases, and 2) the magnitude of e decreases. Thus, we need to
search for a quantization level I that is 1) in the direction of =’ and 2) close to «’.

To jointly optimize these two criteria, we quantitatively evaluate angular score and positional score
based on each criterion and combine them to determine the rounding direction for each axis. We score
positive for rounding up and negative for rounding down, where the magnitude of the score indicates
the strength of preference. We balance the expected magnitudes of the two scores for random input
x’ to make them comparable. Let a; be the angular score and p; be the positional score for the i-th
element z; of a given vector ’. The total score ¢; to determine the rounding direction for the axis is
defined as follows:

ti = Ba; + pi, (3)
where [ is a balancing hyperparameter to adjust the importance between the angular score and the
positional score. Then, we round up for the ¢-th axis if ¢; is positive, and round down if ¢; is negative.

Angular score a; represents the direction of &’ in the i-th axis. Hence, we use the i-th element
a; = a}/||@'||2 of the normalized vector ' /||@’||> to define the angular score as shown in Figure 4{b).
This element is positive (negative) when ' points in the positive (negative) direction of the i-th axis,
so rounding up (down) is preferred. Note that rounding solely based on the angular score is equivalent
to rounding up for positive elements and rounding down for negative elements, which maximizes the
cosine similarity if positional effect is ignored (see Appendix[A.4). Since the scale of each element of
the normalized vector for random input &’ € R™ is on the order of 1/y/n (see Appendix , we
define the angular score a; for the i-th axis by scaling a} by 1/n to ensure that the expected score

becomes 1 as follows: ,
x'

a; = \/’E(L{L = \/EH:L‘/HQ
Positional score p; represents how close 2, is to either its rounded-up or rounded-down value. Hence,
we use the signed distance p} from the midpoint between rounded-up and rounded-down values to
x; to define the positional score as shown in Figure Ekc). When the distance is positive (negative),

x}, positions right (left) of the midpoint, so rounding up (down) is preferred. Since the midpoint is

(LT/J + 1)s, the signed distance p), is z; — s( LI—;J + 1). This is distributed in the range of [— %, 5]
so its expected magnitude for the random input z” is . Thus, we define the positional score p; for the

i-th axis by scaling p} by %, so that its scale matches with the angular score, as follows:

A, Al (]
pi—spi—s(l‘i 8<LSJ+2)> (5)

4.4 SCALE CORRECTION

How can we correctly obtain the direction-aware approximation y = W a, of the product of a

quantized weight W and an activation x as in Deﬁnition For a given activation vector , DIAQ
obtains a quantized activation x4 by activation extension and direction-aware rounding. However, the
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magnitude ||x4||2 of &4 is distorted from ||x||2, while we need to multiply the quantized weight 112

= HHmdeHQz x4 whose magnitude is identical to & to accurately approximate the output. Directly

scaling &4 would move it off the quantization levels, preventing efficient computation using integer
operations.

with id

Our idea to address this issue is to scale the output after quantized matrix-vector multiplication. In
this way, we obtain the correctly approximated output while efficiently processing the multiplication

using integer operations. DIAQ first obtains the output 3’ = Wz, with lower-bit integer operations.
Then, DIAQ scales 3 to obtain the correct approximation 7 as follows:

G W, = V/l7< |2 :cd) _ =l (ﬁ/xd) _ =l 7 ©)
llZall2 |2all2 [Zall2

4.5 COMPLEXITY ANALYSIS

We analyze the computational complexity of DIAQ as Theorem [

Theorem 4. The computational complexity of matrix-vector multiplication using DIAQ is O(mn),
given a weight matrix W € R™*™ and an activation vector x € R".

Proof. The cost of the matrix multiplication is O(mn), which remains unchanged. To analyze the
additional cost incurred by D1AQ, we need to compute the costs of activation extension, direction-
aware rounding, and scale correction.

To extend an activation, DIAQ first computes the length of the activation vector and then performs
element-wise scaling. Computing the length of an activation vector requires summing the squares
of each element, which takes O(n) operations. The element-wise scaling operation also takes O(n)
operations. Direction-aware rounding involves computing the angular and positional scores for each
element of the activation vector. Angular score is obtained by normalizing the activation vector, which
requires O(n) costs. Positional score is computed using element-wise rounding and subtraction,
which also takes O(n) costs. Finally, for scale correction, DIAQ compares the length of the quantized
activation with that obtained during activation extension and performs element-wise scaling to correct
the output. Similar to the activation extension process, this costs O(n) as well. Since O(n) costs are
negligible compared to the cost of matrix multiplication, the total cost of matrix-vector multiplication
remains O(mn) even when using DIAQ. O

5 EXPERIMENTS

We perform experiments to address the following questions.

Q1. Error analysis (Section[5.2). Does DIAQ reduce the quantization error compared to RTN?

Q2. Hyperparameter analysis (Section [5.3). How do the hyperparameters of DIAQ affect the
quantization error?

Q3. Task performance on LLMs (Section[5.4). Does DIAQ improve the performance of the LLM?

Q4. Task performance on ViTs (Section[5.5). Does D1AQ improve the performance of the ViT?

5.1 EXPERIMENTAL SETUP

LLMs. We use LLaMA-2 7B (Touvron et al., 2023) and LLaMA-3 8B (Dubey et al.,|2024) models
for LLMs. We quantize them with QuaRot (Ashkboos et al.,|2024)), and follow its implementation
details. We use WikiText2 (Merity et al.,2017) dataset and ARC-Challenge, Arc-Easy (Clark et al.,
2018)), PIQA (Bisk et al.,2020), WinoGrande (Sakaguchi et al.,|2021)), and BoolQ (Clark et al.,[2019)
benchmarks to evaluate LLMs.

ViTs. We use ViT (Wu et al.| 2020), DeiT (Touvron et al.,[2021)) and Swin (Liu et al., 2021) model
families for ViTs. We quantize them with RepQ-ViT (Li et al., 2023)), and follow its implementation
details. We use ImageNet (Deng et al., [2009) dataset to evaluate ViTs.

Linear layers. We construct synthetic models with a single linear layer sampled from the Gaussian
distribution. We apply the symmetric min-max quantization for the synthetic dataset. We use the
synthetic inputs sampled from the Gaussian distribution to evaluate linear layers.
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Table 1: Error analysis of activation quantization on various settings. & denotes the activation, and
W x represents the result of matrix multiplication. Euc. and Cos. refer to Euclidean distance and
cosine distance, respectively. Refer to Appendix E] for the complete results.

x Wa
Euc. () Cos.({) Euc.() Cos.({)

RTN 0.1508  0.0109  0.1238  0.0095
DiaQ  0.1341  0.0086 0.1098  0.0075

RTN 0.1718  0.0163  0.1016  0.0092

Type Model Dataset Method

LLM Llama-3 8B WikiText2

ViT VIT-B  ImageNet 6 01511  0.0125 0.0881  0.0068
Linear N4096X4096 N4096 RTN 0 1464 00106 0 1465 00106
Layer Di1AQ 0.1302 0.0085 0.1302 0.0085
Error Error
0.18 1
Best in the range 0.5~1.2
0.130 - 0.16 4 Bestnear f =1
0.129 - 0.14 - \
00 05 10 15 20« 10° 102 10" 10° 100 1028

(a) Quantization error over a (b) Quantization error over f3

Figure 5: Quantization error on the synthetic linear layers by varying the hyperparameters of DIAQ.
(a) D1AQ achieves the lowest error when the extension hyperparameter « is in the range of 0.5 to 1.2.
(b) D1AQ achieves the lowest error when the balancing hyperparameter (3 is around 1.

5.2 ERROR ANALYSIS

We investigate the quantization errors during inference of quantized models. We observe the relative
Euclidean distance and cosine distance from the original output for each matrix-vector multiplication
in LLMs, ViTs, and linear layers when applying 4-bit quantization.

Table [T] shows the results of the experiments. DIAQ consistently reduces the quantization error of
matrix-vector multiplication compared to RTN in terms of both Euclidean and cosine distances in all
settings. DTAQ achieves up to 13.3% and 26.1% reduction in terms of Euclidean and cosine distances,
respectively, on the output of matrix multiplication compared to RTN. This proves the effectiveness
of preserving the directional information during activation quantization.

5.3 HYPERPARAMETER ANALYSIS

To analyze the effect of hyperparameters in DIAQ on quantization error, we observe the change
of relative Euclidean error on the synthetic linear layers with 1024 dimensions by varying the
hyperparameters. We also vary the extension hyperparameter « from 0 to 2 with an interval of 0.1
while fixing the balancing hyperparameter J to 1. We vary the balancing hyperparameter S from
0.001 to 100 in a logarithmic scale while fixing the extension hyperparameter « to 0.5.

Figure [5]shows the results of the experiments. As shown in Figure [5a), DIAQ achieves the lowest
quantization error when « is in the range of 0.5 to 1.2. This is because a small o does not sufficiently
prevent the collapse of the vector, while a large a excessively extends the vector so that it exceeds
the quantization range after clipping. Meanwhile, as shown in Figure [5[b),DIAQ achieves the lowest
quantization error when 3 is around 1. This is because a small 8 makes DIAQ similar to RTN, which
does not consider the directional information, while a large 5 makes DIAQ to always round based on
the sign, ignoring the distance from the quantization levels.
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Table 2: Task accuracies of Llama models with DTIAQ and RTN. PPL denotes perplexity, and AE,
AC, PQ, WG, and BQ represent the zero-shot accuracy on ARC-Easy, ARC-Challenge, PIQA,
WinoGrande, and BoolQ, respectively. Avg. refers to the average zero-shot accuracy.

Zero-shot accuracy (1)
AE AC PQ WG BQ Avg

RTN 6.13 68.6 423 772 645 73.0 651
D1AQ 6.11 699 417 7677 66.1 739 65.7

RTN 8.17 69.5 456 753 671 746 664
D1AQ 8.03 70.8 444 765 68.1 771 674

Model ~ Method PPL (})

Llama-2 7B

Llama-3 8B

Table 3: Image classification accuracies of ViT models with DIAQ and RTN. We report the top-1
accuracy on ImageNet. Higher value indicates better performance.

Bits Method VIT-S VIT-B DeiT-T DeiT-S DeiT-B  Swin-T  Swin-S

RTN 80.43 83.62  70.76 78.90 81.27 80.69 82.79
D1aQ 80.72 84.04 71.26 79.12 81.49 80.81 82.88

RTN 65.05 6848 5743 69.03 75.61 72.31 79.45
D1aQ 65.65 69.78 59.32 69.53 76.24 72.70 79.81

W6A6

W4A4

5.4 TASK PERFORMANCE ON LLMSs

To evaluate whether DIAQ improves the task accuracy of LLMs, we compress each model using
QuaRot (Ashkboos et al.,|2024)), and measure perplexity and zero-shot reasoning accuracy. We use
WikiText2 (Merity et al.L[2017) to report the perplexity. We use ARC-Challenge, ARC-Easy (Clark
et al.l [2018)), BoolQ (Clark et al., |2019), WinoGrande (Sakaguchi et al., [2021)), and PIQA (Bisk
et al., 2020) benchmarks to report the zero-shot reasoning accuracy using the language model
evaluation harness (Gao et al.,|2023)). Table|2| shows the results of the experiments. DTIAQ improves
both perplexity and zero-shot reasoning accuracy compared to RTN in most cases, proving the
effectiveness of preserving the directions during activation quantization for LLMs.

5.5 TASK PERFORMANCE ON VITS

To evaluate whether DIAQ improves the task accuracy of ViTs, we compress each model using
RepQ-ViT (Li et al.} 2023) and measure the top-1 accuracy on ImageNet (Deng et al., 2009). TableE]
summarizes the results of the experiments. DIAQ achieves higher accuracy than RTN in all cases,
demonstrating the importance of directional information for ViTs.

6 CONCLUSION

We propose a direction-aware approximation scheme for matrix-vector multiplication and theoretically
prove that it reduces the approximation error compared to the conventional RTN scheme. Our proposed
D1AQ efficiently implements the direction-aware approximation. DIAQ performs direction-aware
rounding to preserve the directional information during quantization. DIAQ also extends the activation
vectors to prevent the quantized vectors from collapsing to the origin, and restores the magnitude
change during quantization by scaling the output of the quantized matrix multiplication. Extensive
experiments show that DIAQ effectively reduces the quantization error by up to 13.3% and 26.1%
in terms of Euclidean and cosine distances, respectively, compared to RTN and improves task
performance of LLMs and ViTs. These results indicate that unlike previous works that focus on
modifying weights to absorb the difficulty of activation quantization, finding weights that enhance
model performance would improve the performance combined with DIAQ. Future works include
applying D1IAQ during training quantized models to further improve the performance of weight-
activation quantization.
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SUPPLEMENTARY MATERIALS

A DETAILS OF THEORETICAL ANALYSIS

A.1 COSINE SIMILARITY FOR LONG ACTIVATIONS

Lemma A.1. For given vectors x1, T3, and a scale factor s, let T1 and Ty be the vectors approx-
imated by the direction-aware approximation for x1 and xs, respectively. Then, if ||x1]] > |2
E(sim(x1,21)) > E(sim(x2, T2)) where sim(-) denotes the cosine similariry.

>

Let r1 = ||z and ro = ||z2]| be the lengths of x; and a
o, respectively. Let P; and P, be the sets of quantiza- i i
tion levels that can be rounded to from random vectors -
with lengths r; and 75, respectively. Those are the quan- |
tization levels near the spherical shells with radii 7y and vy
7o, respectively, as shown in Figure Then, Z; and ; ;
Zo are the closest points to @1 and x5 in Py and Ps, re- i
spectively. Since 1 > r, there are more points in Py |
than in P because the spherical shell with radius r; is
larger than that with radius 72 so that the spherical shell -
with radius 7y covers more area than that with radius 5.
Thus, the points of P; are more densely distributed than =~ --+-----¢----
those of P5 in angle as seen from the origin. Hence, we

have E(maxjep, sim(z1,1)) > E(maxjep, sim(zz,l)). Figure A.1: Illustration of P for the
Therefore, we obtain E(sim(x1, 1)) > E(sim(x2, Z2)). given length 7. Blue points denote the

quantization levels in P.

g
>
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A.2 CASES IN THE PROOF OF THEOREM 3]

We present Figure[A.2]to elaborate on the case partitioning in the proof of Theorem 3] As shown
in Figure[A.2[a), we divide cases based on where the vector x lies with respect to the quantization
levels. Note that the angle 6, between x and x4 becomes smaller as  moves away from the origin
by Lemmal[A.I] Meanwhile, DIAQ outperforms RTN as 6, becomes smaller by Theorem 2} Thus,
the worst case of DIAQ compared to RTN occurs when « is located at one of the quantization levels
closest to the origin, as shown in Figure[A.2|b). Therefore, we prove Theorem [3only for the case
where the quantization level Q = [\, {[z;/s]s, [x;/s]s} includes the origin.

Ll z

™ T L Wide 6,
RN | x4
B R s B : !
e N e [ —

(a) Case partitioning (b) Worst case of DiaQ

Figure A.2: llustrations of the case partitioning in the proof of Theorem |3} Dotted lines represent the
quantization levels.

A.3 EXPECTED COSINE SIMILARITY

Lemma A.2. For a given vector  ~ U(0, s)™, where U(-) denotes the uniform distribution, and
T
quantization levels Q = {0, s}" for a scale factor s, let x4 = argmax; o m be the quantiza-
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tion level with the highest cosine similarity with x. Then, the expected cosine similarity between x

and x4 is 2f

Proof. Cosine similarity between @ andl = (I1,--- ,l,,) € Q is

Dies Ti

_— (A.1)
VISl
where S = {i | [; = s}. Thus, the maximum cosine similarity when |S| = k is
koo
iz ®7 (A2)

V||l

Here, (M), ... 2 are 24, - , z,, sorted in descending order. Then, for the angle 6, between x
and 74, we obtain
O]
i 2ui=1 %"

0 A3
COSTa = I VRl (A-3)

Note that each x; is drawn from ¢/(0, s). Hence, the expected sum of the top & elements is

k k .
E(;x@')) - ;(1 - ni )s = (k — ’;E’;IB)S, (A4)

which is the sum of k largest values among equally spaced n values from O to s.

Meanwhile, E(||z[|3) = Y1 | E(x7) = %52, so we have

(i) = |/ 35 (*5)

Thus, we obtain the expected maximum cosine similarity as follows:

k(k+1)
Y e _ (- sm)
E . (A.6)
1<k<n V| |2 kn/3
Let k = pn for 0 < p < 1. Then, Equation (A.6) is approximated as follows:
2
_ £ 2
max M = max \[p 2 (A7)
NPT N
This is maximized when p = %, and the maximum value is 2\[ . Therefore, the expected cosine
similarity between  and x4 is 2‘[ O
A.4 SIGN-BASED ROUNDING
Lemma A.3. For a given vector x = (z1,--- ,%,) € R" and a scale factor s, let x = s|z;/s]

and xz(-c) = s[x;/s| be the two quantization levels obtained by roundlng down and up for ith element

x;, respectively. If we ignore the positional effect, i.e., - a: || = ||z; — EC) ||, then, the cosine
similarity between x and a quantization level T is maxzmlzed when each positive element is rounded
up and each negative element is rounded down.

Proof. Lete = Z —x be the quantization error vector. Then, e € {—3, %}" by the assumption. Thus,

the length of e is fixed to ||e||2 = £+/n so that the angle § = arccos( ) between « and e is

Hmll HeHz
narrowest when the numerator || " eH is maximized. Since all elements in e have the same magnitude
5, ||z " e]| is maximized when all elements in e have the same sign as those in @ or have the opposite
sign as those in «. Hence, the quantization level Z with the highest cosine similarity with @ is either

14
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) = (21 +sign(a1)5, -,z +sign(z,)3) or 87 = (w1 —sign(w1)3, - 2, —sign(w,)3).

)

x
Note that [|Z7||, > ||&(7||, since each element in Z*) has larger magnitude than that in

Thus, ") is closer to @ than the angle bisector between Z ) and '™, as shown in Figure
Hence, sim(z, ’:i(+)) > sim(z, :E(_)), where sim(-) denotes the cosine similarity. Therefore, the
cosine similarity is maximized when each positive element is rounded up and each negative element

is rounded down. O

X+

()

/xX

P

0 )

-

— N —
Figure A.3: Let X, X, and X~ be points such that z = 5}, z —oxF,andz7) = 0Xx—,
respectively_.)T hen, Xi> the midpoint of the X ;X* Leﬂe the foot of the angle bisector
between OX ¥ and OX~ onto X*X—. Then, PX* > PX- since ||y > ||#7)||> and
PXF:PX— = |2y : |72 Thus, X is closer to X than P so that ZXOX+ < ZPOX.

A.5 EXPECTED MAGNITUDE OF ELEMENTS IN NORMALIZED VECTOR

For a random vector & € R™ drawn from a Gaussian distribution, let the normalized vector u =
Tas = (1, un). Then, we have 3777, u? = 1since ||us = 1. Thus, we have E(>")_, u?) = 1.
Since each element wu; is identically distributed, we have nE(u?) = 1 for any i. Hence, we obtain

E(u?) = L so the scale of u; is on the order of \/15

B ALGORITHM

Algorithm ] summarizes the process of quantized matrix-vector multiplication with DIAQ. Note that
the quantized matrix multiplication is equivalent to performing quantized matrix-vector multiplication
for each column of the activation. From lines 1 to 2, DIAQ first obtains the quantization parameters of
the activation x and preprocesses the activation x to be quantized. From lines 3 to 4, D1AQ extends
the length of the activation x by «s and obtains x’ to prevent the collapse during rounding. From
lines 5 to 15, DIAQ performs direction-aware rounding on the extended activation &’ and obtains the
quantized activation x4. Note that the for loop is executed in parallel for each elerll\ent. From lines 16
to 17, DIAQ multiplies the quantized activation x; with the quantized weight W and corrects the
magnitude of the result. Finally, DIAQ returns the output in line 18.

C DETAILS ON THE EXPERIMENTAL SETUP
We present the detailed experimental settings in this section.

C.1 IMPLEMENTATION DETAILS

We modify the activation quantizers of the official implementation of QuaRot (https://githubl
com/spcl/QuaRot) and RepQ (https://github.com/zkkli/RepQ-ViT) for experi-
ments. Specifically, we insert a pre-processing module to extend the activation and control the
rounding direction before each quantizer, and add a post-processing step to scale the output after the
matrix multiplication.
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Algorithm 1 Quantized matrix-vector multiplication using DIAQ

Input: quantized weight W e R™>™ "activation vector € R", extension hyperparameter «, and
balancing hyperparameter 3.
Output: Approximated product y of the weight and activation.

/** Step 0: setting up quantization parameters **/
1: Compute the quantization scale s for the activation x based on the quantization scheme.
2: Clip the activation x according to the quantization scheme.

/** Step 1: activation extension **/
3w

lll=
4: ' — x4+ asu

/** Step 2: direction-aware rounding **/

5: ') 5|’ /5], ') « s[x/s]

6: @+ nu,p <+ 2 (z' — (@) + £1))
Tt Ba+p

8 xy <+ 0

9: fori =0ton — 1 do
10: if t[i] > 0 then

11: xqli] « z']i]
12: else

13: xq[i] + x'D]i]
14: end if

15: end for

/*¥* Step 3: scale correction **/
16: §' — Wz,
17: Yy + lzll2 7

llzall2

18: return y

C.2 HYPERPARAMETER SEARCH

We report quantization errors when o = 0.5 and 8 = 1.0. For other results, we search for the
extension hyperparameter « in the range of (0, 2]. We search for the balancing hyperparameter 3
in the range of (0, 100]. Each hyperparameter is searched up to one significant digit. We prioritize
zero-shot accuracy over quantization error or perplexity when selecting hyperparameters for LLMs,
as zero-shot benchmarks evaluate the model’s capability of commonsense reasoning, which is more
critical in practical use cases.

C.3 QUANTIZATION ERROR

We measure the error induced by approximating the given vector x to & for each quantized matrix-
vector multiplication with a weight W and an activation x as follows.

e = w (C.8)
|2
TA
o = 1-_——Z_ (C.9)
[E2[PY[EAIP
Wz — Wzl
€2 — (C.10)
W2
(Wz)" (Wz)
g = 1— 22 L) (C.11)
W2 W2
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Z is either &, or 4 depending on whether x is approximated by RTN (Definition[l]) or the proposed
direction-aware approximation (Definition[2). e; and ¢, represent the normalized Euclidean error and
the cosine error of the input vector, respectively. es and ¢y denote the normalized Euclidean error
and the cosine error of the output, respectively. We observe the quantization errors during measuring
perplexity on WikiText2 for LLMs, and validating accuracy on ImageNet for ViTs. We report the
average of all quantization errors obtained from the entire model.

C.4 PERPLEXITY

We use WikiText2 (Merity et al.| 2017)) dataset to evaluate the perplexity of each model. We set the
sequence length during the evaluation to 2048, which is the default settings of QuaRot.

C.5 ZERO-SHOT EVALUATION

We use zero-shot evaluation benchmarks to assess the model’s capability for commonsense reasoning.
We use the following datasets for the evaluation.

¢ ARC-Challenge and ARC-Easy (Clark et al., 2018)) are composed of grade-school level science
problems. They are divided into challenge and easy categories based on whether they can be solved
using naive algorithms.

* PIQA (Bisk et al.,2020) consists of questions to choose a possible solution for the given physical
scenario.

* WinoGrande (Sakaguchi et al.l 2021)) is a task to find a proper entity that a pronoun is representing
in the given sentence.

* BoolQ (Clark et al.,2019) requires the model to answer in either yes or no to a question based on
the given passage.

Table [C. 1] shows the statistics of benchmarks.

Table C.1: Statistics of zero-shot commonsense reasoning benchmarks.

Dataset Instance Choices
ARC-Challenge 1,172 Multiple (4)
ARC-Easy 2,376  Multiple (4)
PIQA 3,000 Binary (2)
WinoGrande 1,267 Binary (2)
BoolQ 3,270 Binary (2)

C.6 IMAGE CLASSIFICATION

We use ImageNet (ILSVRC 2012) (Deng et al.|[2009) dataset to evaluate the classification accuracy
of ViTs. We follow the same evaluation protocol as RepQ (Li et al., 2023)).

D ADDITIONAL EXPERIMENTAL RESULTS

In this section, we present additional results of error analysis. Table [D.2] shows the activation
quantization errors for all models. Note that DIAQ consistently reduces the quantization error
compared to RTN in all settings.

E THE USE OF LARGE LANGUAGE MODELS

LLMs are used to facilitate code implementation, layout formatting, and the polishing of the writing
in this paper.
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Table D.2: Error analysis of activation quantization on various settings. « denotes the activation, and
W x represents the result of matrix multiplication. Euc. and Cos. refer to Euclidean distance and
cosine distance, respectively.

T Wz
Euc. () Cos. () Euc.({) Cos.({)

RTN 0.1392  0.0096  0.1068  0.0064
D1AQ  0.1246  0.0078  0.0958  0.0052

RTN 0.1508  0.0109  0.1238  0.0095
Di1aQ  0.1341  0.0086 0.1098  0.0075

RTN 0.1583  0.0133  0.1048  0.0083
Di1aQ  0.1419  0.0109  0.0953  0.0070

RTN 0.1718  0.0163  0.1016  0.0092
DiaQ  0.1511  0.0125  0.0881  0.0068

RTN 0.1444  0.0111  0.1149  0.0087
DiaQ  0.1314  0.0094 0.1051  0.0074

ViT . RTN  0.1474 00116 00982  0.0074
DeiT-S  ImageNet 5/ o 01333 0.0097  0.0899  0.0062

RTN 0.1533  0.0133  0.1061  0.0119
D1aQ  0.1353  0.0102  0.0952  0.0101

RTN 0.1507  0.0134  0.0959  0.0066
D1aQ  0.1317  0.0101  0.0863  0.0057

RTN 0.1550  0.0139  0.1223  0.0127
DiaQ  0.1341  0.0103  0.1077  0.0099

A1024x1020 pri02 RTN  0.1318 0.0086 0.1319  0.0086
DIAQ  0.191  0.0071 0.1192  0.0072

Linear N2048><2048 N2048 RTN 0.1396 0.0097 0.1398 0.0097
Layer D1AQ 0.1250 0.0079  0.1250 0.0078

AFI096x1096 pr4096 RTN  0.1464 00106 0.1465 0.0106
DIAQ  0.1302  0.0085 0.1302  0.0085

Type Model Dataset ~ Method

Llama-2 7B WikiText2
LLM

Llama-3 8B WikiText2

ViT-S ImageNet

ViT-B ImageNet

DeiT-T ImageNet

DeiT-B ImageNet

Swin-T ImageNet

Swin-S ImageNet
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