
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DIAQ: DIRECTION-AWARE ACTIVATION QUANTIZA-
TION FOR FAST AND ACCURATE MODEL INFERENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

How can we accelerate inference of matrix multiplications while maintaining the
performance of neural networks? Weight-activation quantization reduces infer-
ence costs by quantizing both weights and activations, enabling cheaper matrix
multiplications during inference. Previous researches on weight-activation quanti-
zation have focused on finding better weights to reduce quantization errors, while
simply applying round-to-nearest (RTN) for the activations during inference. How-
ever, RTN has limitations in preserving the directional information of activations,
which is crucial to accurately approximate matrix multiplications. In this paper,
we propose DIAQ, an accurate method for quantizing activations while preserving
directional information. DIAQ chooses the direction to round each value based on
their direction as well as their distance from the quantization levels. DIAQ also
extends each vector to prevent collapse during quantization and corrects the output
scale to compensate for the change in magnitude after quantization. Extensive ex-
periments show that DIAQ reduces the quantization error induced from activation
quantization by up to 13.3% and 26.1% in terms of Euclidean and cosine distances,
respectively, compared to RTN. DIAQ also improves the task performances of
LLMs and ViTs.

1 INTRODUCTION

How can we reduce the quantization error in matrix multiplication with activation quantization?
Recently, with the remarkable advancements in the field of artificial intelligence, the performance and
size of deep models are continuously increasing (Kaplan et al., 2020; Chowdhery et al., 2023). As a
result, demand for efficient inference is rising due to the growing inference costs. Weight-activation
quantization is the most common approach to address this issue (Li et al., 2020; Hubara et al., 2021;
Gholami et al., 2022). This technique represents weights and activations in low-bit integers during
matrix multiplication, significantly reducing memory usage and inference time (Deng et al., 2020;
Park et al., 2024).

Previous works on weight-activation quantization focus on finding better weights and activations to
reduce the quantization error. For instance, SmoothQuant (Xiao et al., 2023) and OmniQuant (Shao
et al., 2024) adjust the scales of weights and activations so that activations become easier to quantize.
Moreover, recent studies such as QuaRot (Ashkboos et al., 2024), DuQuant (Lin et al., 2024a), and
SpinQuant (Liu et al., 2025) further improve the quantizability of activations by applying rotation
before quantization.

However, these works overlook how to effectively quantize activations and simply apply the RTN
(round to nearest) for quantization (Ashkboos et al., 2024; Li et al., 2023). This leads to limitation in
preserving the directional information of the activations. For instance, consider quantizing a vector
x = (7.3, 5.7) to integer values as shown in Figure 1. If we simply apply RTN, we would round 7.3
to 7 and 5.7 to 6, losing the original direction of the vector as shown in Figure 1 (b). On the other
hand, if we round 7.3 to 8 and 5.7 to 6, the quantized vector preserves the direction of the original
vector, as shown in Figure 1 (c).

To address this limitation, we propose Direction-aware Activation Quantization (DIAQ), an accurate
activation quantization method that considers the direction of the activations during quantization to
reduce the quantization error. DIAQ searches for the quantization level that preserves the direction
of the original vector using direction-aware rounding. In this process, DIAQ extends the activation

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

𝒙(7.3, 5.7)
𝒆𝒓 𝒆𝒅

𝒙𝒅(8, 6)

(b) Round to nearest (c) Direction-aware rounding(a) Activation

7 8

5

6

ෝ𝒙𝒅 (7.4, 5.6)

(d) DIAQ (proposed)

𝒙

7 8

5

6

𝒙

7 8

5

6

𝒙

7 8

5

6ෝ𝒙𝒓(7, 6)

Most accurate

Figure 1: Illustration of the different schemes to round the vector x (the proportions are exaggerated).
When applying RTN as in (b), the error magnitude is smaller, but rounding to align the direction as in
(c) reduces the cosine distance.

vector before quantization to prevent quantized vectors from collapsing to the origin. Finally, DIAQ
scales the output of the quantized matrix multiplication to compensate for the change in magnitude
during quantization.

Our main contributions are summarized as follows:

• Theory. We formally define the direction-aware approximation of a vector and prove that it reduces
the approximation error of matrix-vector multiplication compared to RTN.

• Algorithm. We propose DIAQ, a new activation quantization algorithm to implement the direction-
aware approximation in practice. DIAQ preserves the directional information of activations during
quantization with the minimal computational overhead compared to matrix multiplication.

• Experiment. We show that DIAQ reduces the quantization error induced from activation quantiza-
tion by up to 13.3% and 26.1% in terms of Euclidean and cosine distances, respectively, compared
to RTN through extensive experiments. We also show that DIAQ improves the task performances
of LLMs and ViTs. Our codes are available within the supplementary materials.

2 PRELIMINARIES

2.1 PROBLEM DEFINITION

Linear transforms are the core operations and the main computational bottleneck in various neural
network architectures (Popescu et al., 2009; Gardner & Dorling, 1998; Vaswani et al., 2017; Tolstikhin
et al., 2021). A linear transform is a set of matrix-vector multiplications, where an input vector x
is multiplied by a weight matrix W to produce an output vector y = Wx. In this paper, we focus
on efficient approximation of matrix-vector multiplications using quantization to accelerate neural
network inference. We formally define the problem as follows.
Problem 1 (Quantized Matrix Vector Multiplication). Given a weight matrix W ∈ Rm×n, an input
vector x ∈ Rn, and a bit-width b, the goal is to approximate the output ŷ ≈ Wx using b-bit
integer operations with quantized weight Ŵ and quantized input vector x̂, while minimizing the
approximation error ∥ŷ −Wx∥2.

2.2 WEIGHT-ACTIVATION QUANTIZATION

Weight-activation quantization is a promising approach to efficiently approximate matrix-vector
multiplications (Li et al., 2020; 2023; Ashkboos et al., 2024; Lin et al., 2024a; Liu et al., 2025). This
method replaces full-precision matrix multiplications with lower-bit integer operations by quantizing
both the weight matrix and the input vector to low-bit integer representations. The weight matrix
W is expressed as Ŵ = swW q, where W q ∈ Im×n is the quantized integer matrix, and sw is the
scaling factor. The input vector x is similarly quantized as x̂ = sxxq , where xq ∈ In is the quantized
integer vector, and sx is the scaling factor. Then, the matrix-vector multiplication is approximated
as Wx ≈ Ŵ x̂ = swsx(W qxq). This allows the matrix-vector multiplication to be performed
using low-bit integer operations, which are significantly faster and more memory-efficient than
full-precision operations (Tseng et al., 2024; Zhao et al., 2024; Lin et al., 2024c). Note that we ignore
the zero-point and fuse it into the quantized integer matrices for simplicity in this paper, since it does
not change the mathematical properties of the quantization error.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

The weight matrix is quantized offline before inference, allowing users to search for the optimal
quantization parameters (Xiao et al., 2023; Shao et al., 2024) and quantized weights (Frantar et al.,
2023; Lin et al., 2024b; Nagel et al., 2020) without time constraints. On the other hand, the input
vector is quantized online during inference since the input changes with each query. Thus, the input
vector must be quantized quickly with minimal overhead to maintain fast inference speed.

The most common method for online activation quantization is the round-to-nearest (RTN)
scheme (Gupta et al., 2015). This method first determines the quantization levels by finding the scaling
factor sx. This is obtained either 1) online by computing them per input token during inference, or
2) offline by pre-computing them using the activation statistics (e.g., min/max or percentile range)
collected from a small calibration set. Then, each element of the input vector is rounded to the nearest
quantization level, ensuring that the Euclidean distance between the original input vector x and the
approximated vector x̂ is minimized. Specifically, given an input vector x and the scaling factor sx,
the input vector is approximated as follows:

x̂ = sx

⌊
x

sx
+

1

2

⌋
. (1)

3 THEORETICAL ANALYSIS ON ACTIVATION QUANTIZATION

How can we accurately approximate the product of a matrix W and a vector x by approximating the
vector x as x̂? A vector contains directional and magnitude information, both of which are crucial for
accurate approximation. Previous works use the RTN (round to nearest) method, which approximates
a given vector to the nearest quantization level. However, this method has limitations to preserve
the directional information. This is because the direction of the error is formed independently of the
original vector, as shown in Figure 1 (b).

To address this issue, we propose a direction-aware approximation method that considers the direction
of the vector. First, we find the quantization level that has the highest cosine similarity with the given
vector to preserve the directional information of x, as shown in Figure 1 (c). However, this distorts
the magnitude information of the vector, as it prioritizes preserving the directional information over
minimizing the absolute error. To compensate for this, we apply scaling to the quantized vector so
that its magnitude matches that of the original vector, as shown in Figure 1 (d). In the remaining
section, we theoretically prove that this approximation method is superior to the existing quantization
method.

First, we establish Theorem 1 to set a criterion for better quantization methods. Theorem 1 states that
reducing the approximation error of the vector leads to a reduction in the error of the matrix-vector
multiplication itself. Hence, we need to find a quantization method that minimizes the approximation
error of the vector.
Theorem 1. For two approximations x̂1 and x̂2 of a given vector x ∈ Rn, let ∥x−x̂1∥2 < ∥x−x̂2∥2.
Then, for a matrix W ∈ Rm×n following Gaussian distributionN (0, 1)m×n, E(∥Wx−Wx̂1∥2) <
E(∥Wx−Wx̂2∥2).

Proof. Let e1 = x − x̂1 and e2 = x − x̂2. Then, Wx −Wx̂1 = We1 and Wx −Wx̂2 =
We2. Since each row of W is independent and follows a Gaussian distribution, we have We1 ∼
N (0, ∥e1∥22)m and We2 ∼ N (0, ∥e2∥22)m. Thus, ∥We1∥2 ∼ ∥e1∥2χm and ∥We2∥2 ∼ ∥e2∥2χm,
where χm is the Chi distribution with m degrees of freedom. Therefore, E(∥Wx −Wx̂1∥2) =
E(∥We1∥2) = ∥e1∥2E(χm) < ∥e2∥2E(χm) = E(∥Wx−Wx̂2∥2).

Next, we formally define RTN and direction-aware approximation as Definitions 1 and 2, respectively.
Definition 1 (RTN approximation). For a given vector x, scale factor s, and quantization levels
Q =

∏n
i=1{s⌊xi/s⌋, s⌈xi/s⌉} near x, the RTN approximation x̂r of x is x̂r = argminl∈Q ∥x−l∥2.

Definition 2 (Direction-aware approximation). For a given vector x, scale factor s, and quantization
levels Q =

∏n
i=1{s⌊xi/s⌋, s⌈xi/s⌉} near x, the direction-aware approximation x̂d of x is x̂d =

∥x∥2

∥xd∥2
xd, where xd = argmaxl∈Q

x⊤l
∥x∥2∥l∥2

.

We now prove that the direction-aware approximation method reduces the approximation error of
the vector more effectively than the RTN method. First, we present Theorem 2 to show that the

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

direction-aware approximation method has a smaller approximation error when the angle between x
and x̂d is sufficiently small.
Theorem 2. Let x̂r and x̂d be the vectors approximated by the RTN and the direction-aware
approximation, respectively, for a given vector x and scale factor s. Then, if the angle θd between x
and x̂d is sufficiently small, ∥x− x̂d∥2 < ∥x− x̂r∥2.

Proof. Let X, X̂r, and X̂d be points such that x =
−−→
OX, x̂r =

−−→
OX̂r, and x̂d =

−−→
OX̂d, as shown in Fig-

ure 2. Also, let θr = ∠XOX̂r and θd = ∠XOX̂d. Then,
OX = OX̂d by the definition of x̂d. Let Hr and Hd be
the feet of the perpendiculars from X onto x̂r and x̂d,
respectively. Then, ∥x − x̂d∥2 = XX̂d = 2r sin θd

2 for
r = ∥x∥2. Since θd ≪ 1, 2r sin θd

2 ≈ r sin θd. Meanwhile,

∥x−x̂r∥2 = XX̂r ≥ XĤr = r sin θr since ∠XHrX̂r =
90◦. Note that θd < θr by the definition of x̂d: hence, we
have ∥x− x̂r∥2 ≥ r sin θr > r sin θd ≈ ∥x− x̂d∥2.

𝑂

𝜃𝑑
𝜃𝑟

𝑋
෠𝑋𝑟 𝑋𝑑

෠𝑋𝑑𝐻𝑑

𝐻𝑟

Figure 2: Illustration for Theorem 2.

We then prove Theorem 3, which shows that x̂d reduces the approximation error of the vector more
effectively than x̂r using Theorem 2.
Theorem 3. For a given vector x and scale factor s, let x̂r and x̂d be the vectors approximated by
the RTN and the direction-aware approximation, respectively. Then, E(∥x− x̂d∥2) < E(∥x− x̂r∥2).

Proof. By Theorem 2, as the angle θd between x and x̂d decreases, the approximation error of x̂d

becomes smaller than that of x̂r. Meanwhile, as the length of x increases, θd decreases (details in
Appendix A.1). Thus, if we divide cases based on the quantization level where x lies, the worst case
is when the quantization level touches the origin (details in Appendix A.2). Therefore, it suffices to
prove only when Q =

∏n
i=1{⌊xi/s⌋s, ⌈xi/s⌉s} includes the origin.

Without loss of generality, consider the case where Q = {0, s}n. We assume that x is uniformly
distributed in the space inside Q (Lin et al., 2024b). Hence, the quantization error of RTN fol-
lows a uniform distribution U(−0.5s, 0.5s). Thus, x̂r − x ∼ U(−0.5s, 0.5s)n, and the expected
approximation error ∥x̂r − x∥ is E(∥x̂r − x∥2) =

√
n

2
√
3
s ≈ 0.289

√
ns.

Now we calculate the expected value of the approximation error ∥x̂d − x∥ using the direction-aware
approximation. Cosine similarity between x and l = (l1, · · · , ln) ∈ Q is (

∑
i∈S xi)/(

√
|S|∥x∥2),

where S = {i | li = s}. Thus, the maximum cosine similarity is (
∑k

i=1 x
(i))/(

√
k∥x∥2) for

k =
∑

i∈S . Here, x(1), · · · , x(n) are x1, · · · , xn sorted in descending order. Then, for the angle θd

between x and x̂d, cos θd = max1≤k≤n(
∑k

i=1 x
(i))/(

√
k∥x∥2). Therefore, the expected value of

cos θd is 2
√
2

3 when k = 2
3n (details in Appendix A.3). Thus, the expected error is E(∥x̂d − x∥2) =

E(2∥x∥2 sin θd
2) = (2

√
ns)/(

√
3)E(sin θd

2) ≈ 0.195
√
ns.

Therefore, even in the worst-case scenario for the direction-aware approximation, the expected
approximation error is smaller than that of the RTN, i.e., E(∥x− x̂d∥2) < E(∥x− x̂r∥2).

4 PROPOSED METHOD

In this section, we propose DIAQ (Direction-aware Activation Quantization), an accurate activation
quantization algorithm to implement direction-aware approximation in Section 3.

4.1 OVERVIEW

We address the following challenges to implement direction-aware activation quantization:

C1. (Collapsing to origin) Most activation vectors are located near the origin, leading them to
collapse toward zero during rounding. How can we prevent activations from collapsing?

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

𝒙

I1. Activation extension I2. Direction-aware rounding I3. Scale correction

𝒙′

ෝ𝒚′ = ෢𝑾𝒙𝒅
ෝ𝒚

Extend

Rounding while

preserving direction

Compensate for

the magnitude𝒙

𝒙′
𝒙𝒅

Original vector Matrix-vector

multiplication

ෝ𝒚′

Figure 3: Overall process of DIAQ. Blue vectors denote the output of each step.

C2. (Intractable search space) Searching all quantization levels near the vector is computationally
expensive. How can we efficiently find the quantization level with a similar direction?

C3. (Distorted vector magnitudes) Activations should be on quantization levels during matrix
multiplication for efficient computation. How can we correct distortions in vector magnitudes
while keeping them on quantization levels during multiplication?

To tackle these challenges, DIAQ exploits the following main ideas:

I1. (Activation extension) DIAQ extends the magnitude of each activation vector to prevent collapse
while preserving its direction.

I2. (Direction-aware rounding) DIAQ rounds a vector considering not only its position but also its
direction to find a quantization level aligned with the vector.

I3. (Scale correction) DIAQ assesses changes in vector magnitude during quantization, and corrects
their scale after matrix multiplication.

Figure 3 shows the overall matrix multiplication process using DIAQ. DIAQ is composed of two pre-
processing steps before matrix multiplication and one post-processing step after matrix multiplication.
Before matrix multiplication, DIAQ first extends the activation vector to prevent collapse during
quantization (Section 4.2). Then, DIAQ quantizes the extended activation using direction-aware
rounding to preserve its directional information (Section 4.3). After matrix multiplication, DIAQ
corrects the scale of the output to compensate for the change in magnitude during quantization
(Section 4.4).

4.2 ACTIVATION EXTENSION

How can we prevent activations from collapsing toward the origin during quantization? Activations of
neural networks such as LLMs and ViTs are concentrated around zero since they follow a Gaussian-
like distribution or a power-law distribution (Yuan et al., 2022; Li et al., 2023; Ashkboos et al., 2024).
Hence, directly quantizing the activation causes them to collapse toward the origin, resulting in the
complete loss of directional information.

Our idea to prevent collapse is to move each vector away from the origin while preserving its direction.
To achieve this, DIAQ extends the length of each activation by a fixed amount before quantization.
For an activation vector x, quantization scale s, and an extension hyperparameter α, DIAQ extends
the length of x by α relative to the quantization scale s as shown in Figure 4(a) as follows:

x′ = x+ αs
x

∥x∥2
(2)

Note that s x
∥x∥2

is x normalized to have the magnitude of s, a single step of quantization levels. Then,
DIAQ quantizes the extended activation x′ instead of x in the following step (Section 4.3).

4.3 DIRECTION-AWARE ROUNDING

How can we find a quantization level that aligns with the direction of a given activation vector
x′ ∈ Rn and quantization scale s? There are 2n quantization levels surrounding x′ since we have
two choices for each axis: rounding up or rounding down. Hence, naively computing the cosine
similarity for all quantization levels around x′ is computationally infeasible as it requires evaluating
2n candidates. Therefore, we need an efficient method to find a quantization level with high cosine
similarity to x′ without explicitly calculating the cosine similarity.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

(a) Activation Extension
𝑠

𝒙

𝒙′

𝛼𝑠

(b) Angular Score (c) Positional Score

𝑠
2

𝑝′

1

𝑎′

𝑠

𝒙′

𝑠
2

𝒙′

Figure 4: Illustrations of pre-processing steps of DIAQ. (a) DIAQ first extends the length of x by αs
to obtain x′. Then, to determine the rounding direction for the horizontal axis, (b) DIAQ computes
the angular score with the horizontal component a′ of the normalized x′, and (c) the positional score
with the signed distance p′ to x′ from the midpoint between quantization levels.

Then, how can we determine which of rounding up or rounding down for each axis yields the higher
cosine similarity without directly computing the cosine similarity? Consider an error e = l − x′

between a given vector x′ and a quantization level l. The cosine similarity between x′ and l increases
as 1) the angle between x′ and e decreases, and 2) the magnitude of e decreases. Thus, we need to
search for a quantization level l that is 1) in the direction of x′ and 2) close to x′.

To jointly optimize these two criteria, we quantitatively evaluate angular score and positional score
based on each criterion and combine them to determine the rounding direction for each axis. We score
positive for rounding up and negative for rounding down, where the magnitude of the score indicates
the strength of preference. We balance the expected magnitudes of the two scores for random input
x′ to make them comparable. Let ai be the angular score and pi be the positional score for the i-th
element x′

i of a given vector x′. The total score ti to determine the rounding direction for the axis is
defined as follows:

ti = βai + pi, (3)
where β is a balancing hyperparameter to adjust the importance between the angular score and the
positional score. Then, we round up for the i-th axis if ti is positive, and round down if ti is negative.

Angular score ai represents the direction of x′ in the i-th axis. Hence, we use the i-th element
a′i = x′

i/∥x′∥2 of the normalized vector x′/∥x′∥2 to define the angular score as shown in Figure 4(b).
This element is positive (negative) when x′ points in the positive (negative) direction of the i-th axis,
so rounding up (down) is preferred. Note that rounding solely based on the angular score is equivalent
to rounding up for positive elements and rounding down for negative elements, which maximizes the
cosine similarity if positional effect is ignored (see Appendix A.4). Since the scale of each element of
the normalized vector for random input x′ ∈ Rn is on the order of 1/

√
n (see Appendix A.5), we

define the angular score ai for the i-th axis by scaling a′i by
√
n to ensure that the expected score

becomes 1 as follows:

ai =
√
na′i =

√
n

x′
i

∥x′∥2
. (4)

Positional score pi represents how close x′
i is to either its rounded-up or rounded-down value. Hence,

we use the signed distance p′i from the midpoint between rounded-up and rounded-down values to
x′
i to define the positional score as shown in Figure 4(c). When the distance is positive (negative),

x′
i positions right (left) of the midpoint, so rounding up (down) is preferred. Since the midpoint is

(⌊x
′
i

s ⌋+
1
2)s, the signed distance p′i is x′

i − s(⌊x
′
i

s ⌋+
1
2). This is distributed in the range of [− s

2 ,
s
2]

so its expected magnitude for the random input x′ is s
4 . Thus, we define the positional score pi for the

i-th axis by scaling p′i by 4
s , so that its scale matches with the angular score, as follows:

pi =
4

s
p′i =

4

s

(
x′
i − s

(
⌊x

′
i

s
⌋+ 1

2

))
(5)

4.4 SCALE CORRECTION

How can we correctly obtain the direction-aware approximation ŷ = Ŵ x̂d of the product of a
quantized weight Ŵ and an activation x as in Definition 2? For a given activation vector x, DIAQ
obtains a quantized activation xd by activation extension and direction-aware rounding. However, the

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

magnitude ∥xd∥2 of xd is distorted from ∥x∥2, while we need to multiply the quantized weight Ŵ
with x̂d = ∥x∥2

∥xd∥2
xd whose magnitude is identical to x to accurately approximate the output. Directly

scaling xd would move it off the quantization levels, preventing efficient computation using integer
operations.

Our idea to address this issue is to scale the output after quantized matrix-vector multiplication. In
this way, we obtain the correctly approximated output while efficiently processing the multiplication
using integer operations. DIAQ first obtains the output ŷ′ = Ŵxd with lower-bit integer operations.
Then, DIAQ scales ŷ′ to obtain the correct approximation ŷ as follows:

ŷ = Ŵ x̂d = Ŵ

(
∥x∥2
∥xd∥2

xd

)
=
∥x∥2
∥xd∥2

(
Ŵxd

)
=
∥x∥2
∥xd∥2

ŷ′. (6)

4.5 COMPLEXITY ANALYSIS

We analyze the computational complexity of DIAQ as Theorem 4.
Theorem 4. The computational complexity of matrix-vector multiplication using DIAQ is O(mn),
given a weight matrix W ∈ Rm×n and an activation vector x ∈ Rn.

Proof. The cost of the matrix multiplication is O(mn), which remains unchanged. To analyze the
additional cost incurred by DIAQ, we need to compute the costs of activation extension, direction-
aware rounding, and scale correction.

To extend an activation, DIAQ first computes the length of the activation vector and then performs
element-wise scaling. Computing the length of an activation vector requires summing the squares
of each element, which takes O(n) operations. The element-wise scaling operation also takes O(n)
operations. Direction-aware rounding involves computing the angular and positional scores for each
element of the activation vector. Angular score is obtained by normalizing the activation vector, which
requires O(n) costs. Positional score is computed using element-wise rounding and subtraction,
which also takes O(n) costs. Finally, for scale correction, DIAQ compares the length of the quantized
activation with that obtained during activation extension and performs element-wise scaling to correct
the output. Similar to the activation extension process, this costs O(n) as well. Since O(n) costs are
negligible compared to the cost of matrix multiplication, the total cost of matrix-vector multiplication
remains O(mn) even when using DIAQ.

5 EXPERIMENTS

We perform experiments to address the following questions.

Q1. Error analysis (Section 5.2). Does DIAQ reduce the quantization error compared to RTN?
Q2. Hyperparameter analysis (Section 5.3). How do the hyperparameters of DIAQ affect the

quantization error?
Q3. Task performance on LLMs (Section 5.4). Does DIAQ improve the performance of the LLM?
Q4. Task performance on ViTs (Section 5.5). Does DIAQ improve the performance of the ViT?

5.1 EXPERIMENTAL SETUP

• LLMs. We use LLaMA-2 7B (Touvron et al., 2023) and LLaMA-3 8B (Dubey et al., 2024) models
for LLMs. We quantize them with QuaRot (Ashkboos et al., 2024), and follow its implementation
details. We use WikiText2 (Merity et al., 2017) dataset and ARC-Challenge, Arc-Easy (Clark et al.,
2018), PIQA (Bisk et al., 2020), WinoGrande (Sakaguchi et al., 2021), and BoolQ (Clark et al., 2019)
benchmarks to evaluate LLMs.

• ViTs. We use ViT (Wu et al., 2020), DeiT (Touvron et al., 2021) and Swin (Liu et al., 2021) model
families for ViTs. We quantize them with RepQ-ViT (Li et al., 2023), and follow its implementation
details. We use ImageNet (Deng et al., 2009) dataset to evaluate ViTs.

• Linear layers. We construct synthetic models with a single linear layer sampled from the Gaussian
distribution. We apply the symmetric min-max quantization for the synthetic dataset. We use the
synthetic inputs sampled from the Gaussian distribution to evaluate linear layers.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Error analysis of activation quantization on various settings. x denotes the activation, and
Wx represents the result of matrix multiplication. Euc. and Cos. refer to Euclidean distance and
cosine distance, respectively. Refer to Appendix D for the complete results.

Type Model Dataset Method x Wx
Euc. (↓) Cos. (↓) Euc. (↓) Cos. (↓)

LLM Llama-3 8B WikiText2 RTN 0.1508 0.0109 0.1238 0.0095
DIAQ 0.1341 0.0086 0.1098 0.0075

ViT ViT-B ImageNet RTN 0.1718 0.0163 0.1016 0.0092
DIAQ 0.1511 0.0125 0.0881 0.0068

Linear N 4096×4096 N 4096 RTN 0.1464 0.0106 0.1465 0.0106
Layer DIAQ 0.1302 0.0085 0.1302 0.0085

Best near 𝛽 = 1

(b) Quantization error over 𝛽

𝛽

Error

Best in the range 0.5~1.2

(a) Quantization error over 𝛼

𝛼

Error

Figure 5: Quantization error on the synthetic linear layers by varying the hyperparameters of DIAQ.
(a) DIAQ achieves the lowest error when the extension hyperparameter α is in the range of 0.5 to 1.2.
(b) DIAQ achieves the lowest error when the balancing hyperparameter β is around 1.

5.2 ERROR ANALYSIS

We investigate the quantization errors during inference of quantized models. We observe the relative
Euclidean distance and cosine distance from the original output for each matrix-vector multiplication
in LLMs, ViTs, and linear layers when applying 4-bit quantization.

Table 1 shows the results of the experiments. DIAQ consistently reduces the quantization error of
matrix-vector multiplication compared to RTN in terms of both Euclidean and cosine distances in all
settings. DIAQ achieves up to 13.3% and 26.1% reduction in terms of Euclidean and cosine distances,
respectively, on the output of matrix multiplication compared to RTN. This proves the effectiveness
of preserving the directional information during activation quantization.

5.3 HYPERPARAMETER ANALYSIS

To analyze the effect of hyperparameters in DIAQ on quantization error, we observe the change
of relative Euclidean error on the synthetic linear layers with 1024 dimensions by varying the
hyperparameters. We also vary the extension hyperparameter α from 0 to 2 with an interval of 0.1
while fixing the balancing hyperparameter β to 1. We vary the balancing hyperparameter β from
0.001 to 100 in a logarithmic scale while fixing the extension hyperparameter α to 0.5.

Figure 5 shows the results of the experiments. As shown in Figure 5(a), DIAQ achieves the lowest
quantization error when α is in the range of 0.5 to 1.2. This is because a small α does not sufficiently
prevent the collapse of the vector, while a large α excessively extends the vector so that it exceeds
the quantization range after clipping. Meanwhile, as shown in Figure 5(b),DIAQ achieves the lowest
quantization error when β is around 1. This is because a small β makes DIAQ similar to RTN, which
does not consider the directional information, while a large β makes DIAQ to always round based on
the sign, ignoring the distance from the quantization levels.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: Task accuracies of Llama models with DIAQ and RTN. PPL denotes perplexity, and AE,
AC, PQ, WG, and BQ represent the zero-shot accuracy on ARC-Easy, ARC-Challenge, PIQA,
WinoGrande, and BoolQ, respectively. Avg. refers to the average zero-shot accuracy.

Model Method PPL (↓) Zero-shot accuracy (↑)
AE AC PQ WG BQ Avg.

Llama-2 7B RTN 6.13 68.6 42.3 77.2 64.5 73.0 65.1
DIAQ 6.11 69.9 41.7 76.7 66.1 73.9 65.7

Llama-3 8B RTN 8.17 69.5 45.6 75.3 67.1 74.6 66.4
DIAQ 8.03 70.8 44.4 76.5 68.1 77.1 67.4

Table 3: Image classification accuracies of ViT models with DIAQ and RTN. We report the top-1
accuracy on ImageNet. Higher value indicates better performance.

Bits Method ViT-S ViT-B DeiT-T DeiT-S DeiT-B Swin-T Swin-S

W6A6 RTN 80.43 83.62 70.76 78.90 81.27 80.69 82.79
DIAQ 80.72 84.04 71.26 79.12 81.49 80.81 82.88

W4A4 RTN 65.05 68.48 57.43 69.03 75.61 72.31 79.45
DIAQ 65.65 69.78 59.32 69.53 76.24 72.70 79.81

5.4 TASK PERFORMANCE ON LLMS

To evaluate whether DIAQ improves the task accuracy of LLMs, we compress each model using
QuaRot (Ashkboos et al., 2024), and measure perplexity and zero-shot reasoning accuracy. We use
WikiText2 (Merity et al., 2017) to report the perplexity. We use ARC-Challenge, ARC-Easy (Clark
et al., 2018), BoolQ (Clark et al., 2019), WinoGrande (Sakaguchi et al., 2021), and PIQA (Bisk
et al., 2020) benchmarks to report the zero-shot reasoning accuracy using the language model
evaluation harness (Gao et al., 2023). Table 2 shows the results of the experiments. DIAQ improves
both perplexity and zero-shot reasoning accuracy compared to RTN in most cases, proving the
effectiveness of preserving the directions during activation quantization for LLMs.

5.5 TASK PERFORMANCE ON VITS

To evaluate whether DIAQ improves the task accuracy of ViTs, we compress each model using
RepQ-ViT (Li et al., 2023) and measure the top-1 accuracy on ImageNet (Deng et al., 2009). Table 3
summarizes the results of the experiments. DIAQ achieves higher accuracy than RTN in all cases,
demonstrating the importance of directional information for ViTs.

6 CONCLUSION

We propose a direction-aware approximation scheme for matrix-vector multiplication and theoretically
prove that it reduces the approximation error compared to the conventional RTN scheme. Our proposed
DIAQ efficiently implements the direction-aware approximation. DIAQ performs direction-aware
rounding to preserve the directional information during quantization. DIAQ also extends the activation
vectors to prevent the quantized vectors from collapsing to the origin, and restores the magnitude
change during quantization by scaling the output of the quantized matrix multiplication. Extensive
experiments show that DIAQ effectively reduces the quantization error by up to 13.3% and 26.1%
in terms of Euclidean and cosine distances, respectively, compared to RTN and improves task
performance of LLMs and ViTs. These results indicate that unlike previous works that focus on
modifying weights to absorb the difficulty of activation quantization, finding weights that enhance
model performance would improve the performance combined with DIAQ. Future works include
applying DIAQ during training quantized models to further improve the performance of weight-
activation quantization.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian Croci, Bo Li, Pashmina Cameron, Martin Jaggi, Dan
Alistarh, Torsten Hoefler, and James Hensman. Quarot: Outlier-free 4-bit inference in rotated llms. Advances
in Neural Information Processing Systems, 37:100213–100240, 2024.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical commonsense in
natural language. In Proceedings of the AAAI conference on artificial intelligence, volume 34, 2020.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm: Scaling language modeling
with pathways. Journal of Machine Learning Research, 24(240):1–113, 2023.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina Toutanova.
Boolq: Exploring the surprising difficulty of natural yes/no questions. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language Technologies,
NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 2924–2936.
Association for Computational Linguistics, 2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge. arXiv preprint
arXiv:1803.05457, 2018.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition, 2009.

Lei Deng, Guoqi Li, Song Han, Luping Shi, and Yuan Xie. Model compression and hardware acceleration for
neural networks: A comprehensive survey. Proceedings of the IEEE, 108(4):485–532, 2020.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training quantization for
generative pre-trained transformers. In ICLR, 2023.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff, Chris Ociepa, Jason
Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika, Eric Tang, Anish Thite, Ben
Wang, Kevin Wang, and Andy Zou. A framework for few-shot language model evaluation, 12 2023. URL
https://zenodo.org/records/10256836.

Matt W Gardner and Stephen R Dorling. Artificial neural networks (the multilayer perceptron)—a review of
applications in the atmospheric sciences. Atmospheric environment, 32(14-15):2627–2636, 1998.

Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W Mahoney, and Kurt Keutzer. A survey of
quantization methods for efficient neural network inference. In Low-Power Computer Vision, pp. 291–326.
Chapman and Hall/CRC, 2022.

Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan. Deep learning with limited
numerical precision. In ICML, 2015.

Itay Hubara, Yury Nahshan, Yair Hanani, Ron Banner, and Daniel Soudry. Accurate post training quantization
with small calibration sets. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International
Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event, volume 139 of Proceedings of
Machine Learning Research, pp. 4466–4475. PMLR, 2021.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models. arXiv preprint
arXiv:2001.08361, 2020.

Yuhang Li, Ruihao Gong, Xu Tan, Yang Yang, Peng Hu, Qi Zhang, Fengwei Yu, Wei Wang, and Shi Gu. Brecq:
Pushing the limit of post-training quantization by block reconstruction. In ICLR, 2020.

Zhikai Li, Junrui Xiao, Lianwei Yang, and Qingyi Gu. Repq-vit: Scale reparameterization for post-training
quantization of vision transformers. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 17227–17236, 2023.

10

https://zenodo.org/records/10256836

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Haokun Lin, Haobo Xu, Yichen Wu, Jingzhi Cui, Yingtao Zhang, Linzhan Mou, Linqi Song, Zhenan Sun, and
Ying Wei. Duquant: Distributing outliers via dual transformation makes stronger quantized llms. Advances in
Neural Information Processing Systems, 37:87766–87800, 2024a.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan Xiao, Xingyu
Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for llm compression and
acceleration. In MLSys, 2024b.

Yujun Lin, Haotian Tang, Shang Yang, Zhekai Zhang, Guangxuan Xiao, Chuang Gan, and Song Han. Qserve:
W4A8KV4 quantization and system co-design for efficient LLM serving. CoRR, abs/2405.04532, 2024c.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo. Swin
transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF
international conference on computer vision, pp. 10012–10022, 2021.

Zechun Liu, Changsheng Zhao, Igor Fedorov, Bilge Soran, Dhruv Choudhary, Raghuraman Krishnamoorthi,
Vikas Chandra, Yuandong Tian, and Tijmen Blankevoort. Spinquant: LLM quantization with learned rotations.
In The Thirteenth International Conference on Learning Representations, 2025.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture models. In
5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017,
Conference Track Proceedings. OpenReview.net, 2017.

Markus Nagel, Rana Ali Amjad, Mart van Baalen, Christos Louizos, and Tijmen Blankevoort. Up or down?
adaptive rounding for post-training quantization. In ICML, 2020.

Seungcheol Park, Jaehyeon Choi, Sojin Lee, and U Kang. A comprehensive survey of compression algorithms
for language models. arXiv preprint arXiv:2401.15347, 2024.

Marius-Constantin Popescu, Valentina E Balas, Liliana Perescu-Popescu, and Nikos Mastorakis. Multilayer
perceptron and neural networks. WSEAS Transactions on Circuits and Systems, 8(7):579–588, 2009.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adversarial winograd
schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng Xu, Lirui Zhao, Zhiqian Li, Kaipeng Zhang, Peng Gao,
Yu Qiao, and Ping Luo. Omniquant: Omnidirectionally calibrated quantization for large language models. In
The Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11,
2024, 2024.

Ilya O Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas Unterthiner, Jessica
Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, et al. Mlp-mixer: An all-mlp architecture for vision.
Advances in neural information processing systems, 34:24261–24272, 2021.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé Jégou.
Training data-efficient image transformers & distillation through attention. In International conference on
machine learning, pp. 10347–10357. PMLR, 2021.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov,
Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation and fine-tuned chat
models. arXiv preprint arXiv:2307.09288, 2023.

Albert Tseng, Jerry Chee, Qingyao Sun, Volodymyr Kuleshov, and Christopher De Sa. Quip#: Even better LLM
quantization with hadamard incoherence and lattice codebooks. In Forty-first International Conference on
Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems, 30, 2017.

Bichen Wu, Chenfeng Xu, Xiaoliang Dai, Alvin Wan, Peizhao Zhang, Zhicheng Yan, Masayoshi Tomizuka,
Joseph Gonzalez, Kurt Keutzer, and Peter Vajda. Visual transformers: Token-based image representation and
processing for computer vision. arXiv preprint arXiv:2006.03677, 2020.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant: Accurate
and efficient post-training quantization for large language models. In International Conference on Machine
Learning, pp. 38087–38099. PMLR, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Zhihang Yuan, Chenhao Xue, Yiqi Chen, Qiang Wu, and Guangyu Sun. Ptq4vit: Post-training quantization for
vision transformers with twin uniform quantization. In Shai Avidan, Gabriel J. Brostow, Moustapha Cissé,
Giovanni Maria Farinella, and Tal Hassner (eds.), Computer Vision - ECCV 2022 - 17th European Conference,
Tel Aviv, Israel, October 23-27, 2022, Proceedings, Part XII, volume 13672 of Lecture Notes in Computer
Science, pp. 191–207. Springer, 2022.

Yilong Zhao, Chien-Yu Lin, Kan Zhu, Zihao Ye, Lequn Chen, Size Zheng, Luis Ceze, Arvind Krishnamurthy,
Tianqi Chen, and Baris Kasikci. Atom: Low-bit quantization for efficient and accurate LLM serving. In
Phillip B. Gibbons, Gennady Pekhimenko, and Christopher De Sa (eds.), Proceedings of the Seventh Annual
Conference on Machine Learning and Systems, MLSys 2024, Santa Clara, CA, USA, May 13-16, 2024.
mlsys.org, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

SUPPLEMENTARY MATERIALS

A DETAILS OF THEORETICAL ANALYSIS

A.1 COSINE SIMILARITY FOR LONG ACTIVATIONS

Lemma A.1. For given vectors x1, x2, and a scale factor s, let x̂1 and x̂2 be the vectors approx-
imated by the direction-aware approximation for x1 and x2, respectively. Then, if ∥x1∥ > ∥x2∥,
E(sim(x1, x̂1)) ≥ E(sim(x2, x̂2)) where sim(·) denotes the cosine similarity.

Let r1 = ∥x1∥ and r2 = ∥x2∥ be the lengths of x1 and
x2, respectively. Let P1 and P2 be the sets of quantiza-
tion levels that can be rounded to from random vectors
with lengths r1 and r2, respectively. Those are the quan-
tization levels near the spherical shells with radii r1 and
r2, respectively, as shown in Figure A.1. Then, x̂1 and
x̂2 are the closest points to x1 and x2 in P1 and P2, re-
spectively. Since r1 > r2, there are more points in P1

than in P2 because the spherical shell with radius r1 is
larger than that with radius r2 so that the spherical shell
with radius r1 covers more area than that with radius r2.
Thus, the points of P1 are more densely distributed than
those of P2 in angle as seen from the origin. Hence, we
have E(maxl∈P1 sim(x1, l)) ≥ E(maxl∈P2 sim(x2, l)).
Therefore, we obtain E(sim(x1, x̂1)) ≥ E(sim(x2, x̂2)).

𝑟

𝑠

Figure A.1: Illustration of P for the
given length r. Blue points denote the
quantization levels in P .

A.2 CASES IN THE PROOF OF THEOREM 3

We present Figure A.2 to elaborate on the case partitioning in the proof of Theorem 3. As shown
in Figure A.2(a), we divide cases based on where the vector x lies with respect to the quantization
levels. Note that the angle θd between x and xd becomes smaller as x moves away from the origin
by Lemma A.1. Meanwhile, DIAQ outperforms RTN as θd becomes smaller by Theorem 2. Thus,
the worst case of DIAQ compared to RTN occurs when x is located at one of the quantization levels
closest to the origin, as shown in Figure A.2(b). Therefore, we prove Theorem 3 only for the case
where the quantization level Q =

∏n
i=1{⌊xi/s⌋s, ⌈xi/s⌉s} includes the origin.

𝑠

𝒙

𝑠

(a) Case partitioning (b) Worst case of DiaQ

Wide 𝜃𝑑

𝒙𝒅

Figure A.2: Illustrations of the case partitioning in the proof of Theorem 3. Dotted lines represent the
quantization levels.

A.3 EXPECTED COSINE SIMILARITY

Lemma A.2. For a given vector x ∼ U(0, s)n, where U(·) denotes the uniform distribution, and
quantization levels Q = {0, s}n for a scale factor s, let xd = argmaxl∈Q

x⊤l
∥x∥2∥l∥2

be the quantiza-

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

tion level with the highest cosine similarity with x. Then, the expected cosine similarity between x

and xd is 2
√
2

3 .

Proof. Cosine similarity between x and l = (l1, · · · , ln) ∈ Q is∑
i∈S xi√
|S|∥x∥2

, (A.1)

where S = {i | li = s}. Thus, the maximum cosine similarity when |S| = k is∑k
i=1 x

(i)

√
k∥x∥2

. (A.2)

Here, x(1), · · · , x(n) are x1, · · · , xn sorted in descending order. Then, for the angle θd between x
and x̂d, we obtain

cos θd = max
1≤k≤n

∑k
i=1 x

(i)

√
k∥x∥2

. (A.3)

Note that each xi is drawn from U(0, s). Hence, the expected sum of the top k elements is

E(
k∑

i=1

x(i)) =

k∑
i=1

(1− i

n+ 1
)s = (k − k(k + 1)

2(n+ 1)
)s, (A.4)

which is the sum of k largest values among equally spaced n values from 0 to s.

Meanwhile, E(∥x∥22) =
∑n

i=1 E(x2
i) =

n
3 s

2, so we have

E(∥x∥2) =
√

n

3
s. (A.5)

Thus, we obtain the expected maximum cosine similarity as follows:

E

(
max

1≤k≤n

∑k
i=1 x

(i)

√
k∥x∥2

)
=

(k − k(k+1)
2(n+1))√
kn/3

. (A.6)

Let k = ρn for 0 < ρ ≤ 1. Then, Equation (A.6) is approximated as follows:

max
ρ

n(ρ− ρ2

2)√
ρn2/3

= max
ρ

√
3
ρ− ρ2

2√
ρ

. (A.7)

This is maximized when ρ = 2
3 , and the maximum value is 2

√
2

3 . Therefore, the expected cosine
similarity between x and xd is 2

√
2

3 .

A.4 SIGN-BASED ROUNDING

Lemma A.3. For a given vector x = (x1, · · · , xn) ∈ Rn and a scale factor s, let x(f)
i = s⌊xi/s⌋

and x
(c)
i = s⌈xi/s⌉ be the two quantization levels obtained by rounding down and up for ith element

xi, respectively. If we ignore the positional effect, i.e., ∥xi − x
(f)
i ∥ = ∥xi − x

(c)
i ∥, then, the cosine

similarity between x and a quantization level x̂ is maximized when each positive element is rounded
up and each negative element is rounded down.

Proof. Let e = x̂−x be the quantization error vector. Then, e ∈ {− s
2 ,

s
2}

n by the assumption. Thus,

the length of e is fixed to ∥e∥2 = s
2

√
n so that the angle θ = arccos(|x⊤e|

∥x∥2∥e∥2
) between x and e is

narrowest when the numerator ∥x⊤e∥ is maximized. Since all elements in e have the same magnitude
s
2 , ∥x⊤e∥ is maximized when all elements in e have the same sign as those in x or have the opposite
sign as those in x. Hence, the quantization level x̂ with the highest cosine similarity with x is either

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

x̂(+) = (x1 + sign(x1)
s
2 , · · · , xn + sign(xn)

s
2) or x̂(−) = (x1 − sign(x1)

s
2 , · · · , xn − sign(xn)

s
2).

Note that ∥x̂(+)∥2 > ∥x̂(−)∥2 since each element in x̂(+) has larger magnitude than that in x̂(−).
Thus, x̂(+) is closer to x than the angle bisector between x̂(+) and x̂(−), as shown in Figure A.3.
Hence, sim(x, x̂(+)) > sim(x, x̂(−)), where sim(·) denotes the cosine similarity. Therefore, the
cosine similarity is maximized when each positive element is rounded up and each negative element
is rounded down.

𝒙

ෝ𝒙(+)

ෝ𝒙(−)

𝑃

𝑂

𝑋

𝑋−

𝑋+

Figure A.3: Let X , X+, and X− be points such that x =
−−→
OX, x̂(+) =

−−−→
OX+, and x̂(−) =

−−−→
OX−,

respectively. Then, X is the midpoint of the X+X−. Let P be the foot of the angle bisector
between

−−−→
OX+ and

−−−→
OX− onto X+X−. Then, PX+ > PX− since ∥x̂(+)∥2 > ∥x̂(−)∥2 and

PX+ : PX− = ∥x̂(+)∥2 : ∥x̂(−)∥2. Thus, X is closer to X+ than P so that ∠XOX+ < ∠POX+.

A.5 EXPECTED MAGNITUDE OF ELEMENTS IN NORMALIZED VECTOR

For a random vector x ∈ Rn drawn from a Gaussian distribution, let the normalized vector u =
x

∥x∥2
= (u1, · · · , un). Then, we have

∑n
i=1 u

2
i = 1 since ∥u∥2 = 1. Thus, we have E(

∑n
i=1 u

2
i) = 1.

Since each element ui is identically distributed, we have nE(u2
i) = 1 for any i. Hence, we obtain

E(u2
i) =

1
n so the scale of ui is on the order of 1√

n
.

B ALGORITHM

Algorithm 1 summarizes the process of quantized matrix-vector multiplication with DIAQ. Note that
the quantized matrix multiplication is equivalent to performing quantized matrix-vector multiplication
for each column of the activation. From lines 1 to 2, DIAQ first obtains the quantization parameters of
the activation x and preprocesses the activation x to be quantized. From lines 3 to 4, DIAQ extends
the length of the activation x by αs and obtains x′ to prevent the collapse during rounding. From
lines 5 to 15, DIAQ performs direction-aware rounding on the extended activation x′ and obtains the
quantized activation xd. Note that the for loop is executed in parallel for each element. From lines 16
to 17, DIAQ multiplies the quantized activation xd with the quantized weight Ŵ and corrects the
magnitude of the result. Finally, DIAQ returns the output in line 18.

C DETAILS ON THE EXPERIMENTAL SETUP

We present the detailed experimental settings in this section.

C.1 IMPLEMENTATION DETAILS

We modify the activation quantizers of the official implementation of QuaRot (https://github.
com/spcl/QuaRot) and RepQ (https://github.com/zkkli/RepQ-ViT) for experi-
ments. Specifically, we insert a pre-processing module to extend the activation and control the
rounding direction before each quantizer, and add a post-processing step to scale the output after the
matrix multiplication.

15

https://github.com/spcl/QuaRot
https://github.com/spcl/QuaRot
https://github.com/zkkli/RepQ-ViT

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Algorithm 1 Quantized matrix-vector multiplication using DIAQ

Input: quantized weight Ŵ ∈ Rm×n, activation vector x ∈ Rn, extension hyperparameter α, and
balancing hyperparameter β.

Output: Approximated product ŷ of the weight and activation.

/** Step 0: setting up quantization parameters **/
1: Compute the quantization scale s for the activation x based on the quantization scheme.
2: Clip the activation x according to the quantization scheme.

/** Step 1: activation extension **/
3: u← x

∥x∥2

4: x′ ← x+ αsu

/** Step 2: direction-aware rounding **/
5: x′(f) ← s⌊x′/s⌋, x′(c) ← s⌈x′/s⌉
6: a←

√
nu, p← 4

s

(
x′ − (x′(f) + s

21)
)

7: t← βa+ p
8: xd ← 0
9: for i = 0 to n− 1 do

10: if t[i] > 0 then
11: xd[i]← x′(c)[i]
12: else
13: xd[i]← x′(f)[i]
14: end if
15: end for

/** Step 3: scale correction **/
16: ŷ′ ← Ŵxd

17: ŷ ← ∥x∥2

∥xd∥2
ŷ′

18: return ŷ

C.2 HYPERPARAMETER SEARCH

We report quantization errors when α = 0.5 and β = 1.0. For other results, we search for the
extension hyperparameter α in the range of (0, 2]. We search for the balancing hyperparameter β
in the range of (0, 100]. Each hyperparameter is searched up to one significant digit. We prioritize
zero-shot accuracy over quantization error or perplexity when selecting hyperparameters for LLMs,
as zero-shot benchmarks evaluate the model’s capability of commonsense reasoning, which is more
critical in practical use cases.

C.3 QUANTIZATION ERROR

We measure the error induced by approximating the given vector x to x̂ for each quantized matrix-
vector multiplication with a weight W and an activation x as follows.

e1 =
∥x− x̂∥2
∥x∥2

(C.8)

c1 = 1− x⊤x̂

∥x∥2∥x̂∥2
(C.9)

e2 =
∥Wx−Wx̂∥2
∥Wx∥2

(C.10)

c2 = 1− (Wx)⊤(Wx̂)

∥Wx∥2∥Wx̂∥2
(C.11)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

x̂ is either x̂r or x̂d depending on whether x is approximated by RTN (Definition 1) or the proposed
direction-aware approximation (Definition 2). e1 and c1 represent the normalized Euclidean error and
the cosine error of the input vector, respectively. e2 and c2 denote the normalized Euclidean error
and the cosine error of the output, respectively. We observe the quantization errors during measuring
perplexity on WikiText2 for LLMs, and validating accuracy on ImageNet for ViTs. We report the
average of all quantization errors obtained from the entire model.

C.4 PERPLEXITY

We use WikiText2 (Merity et al., 2017) dataset to evaluate the perplexity of each model. We set the
sequence length during the evaluation to 2048, which is the default settings of QuaRot.

C.5 ZERO-SHOT EVALUATION

We use zero-shot evaluation benchmarks to assess the model’s capability for commonsense reasoning.
We use the following datasets for the evaluation.

• ARC-Challenge and ARC-Easy (Clark et al., 2018) are composed of grade-school level science
problems. They are divided into challenge and easy categories based on whether they can be solved
using naïve algorithms.

• PIQA (Bisk et al., 2020) consists of questions to choose a possible solution for the given physical
scenario.

• WinoGrande (Sakaguchi et al., 2021) is a task to find a proper entity that a pronoun is representing
in the given sentence.

• BoolQ (Clark et al., 2019) requires the model to answer in either yes or no to a question based on
the given passage.

Table C.1 shows the statistics of benchmarks.

Table C.1: Statistics of zero-shot commonsense reasoning benchmarks.

Dataset Instance Choices

ARC-Challenge 1,172 Multiple (4)
ARC-Easy 2,376 Multiple (4)
PIQA 3,000 Binary (2)
WinoGrande 1,267 Binary (2)
BoolQ 3,270 Binary (2)

C.6 IMAGE CLASSIFICATION

We use ImageNet (ILSVRC 2012) (Deng et al., 2009) dataset to evaluate the classification accuracy
of ViTs. We follow the same evaluation protocol as RepQ (Li et al., 2023).

D ADDITIONAL EXPERIMENTAL RESULTS

In this section, we present additional results of error analysis. Table D.2 shows the activation
quantization errors for all models. Note that DIAQ consistently reduces the quantization error
compared to RTN in all settings.

E THE USE OF LARGE LANGUAGE MODELS

LLMs are used to facilitate code implementation, layout formatting, and the polishing of the writing
in this paper.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table D.2: Error analysis of activation quantization on various settings. x denotes the activation, and
Wx represents the result of matrix multiplication. Euc. and Cos. refer to Euclidean distance and
cosine distance, respectively.

Type Model Dataset Method x Wx
Euc. (↓) Cos. (↓) Euc. (↓) Cos. (↓)

LLM
Llama-2 7B WikiText2 RTN 0.1392 0.0096 0.1068 0.0064

DIAQ 0.1246 0.0078 0.0958 0.0052

Llama-3 8B WikiText2 RTN 0.1508 0.0109 0.1238 0.0095
DIAQ 0.1341 0.0086 0.1098 0.0075

ViT

ViT-S ImageNet RTN 0.1583 0.0133 0.1048 0.0083
DIAQ 0.1419 0.0109 0.0953 0.0070

ViT-B ImageNet RTN 0.1718 0.0163 0.1016 0.0092
DIAQ 0.1511 0.0125 0.0881 0.0068

DeiT-T ImageNet RTN 0.1444 0.0111 0.1149 0.0087
DIAQ 0.1314 0.0094 0.1051 0.0074

DeiT-S ImageNet RTN 0.1474 0.0116 0.0982 0.0074
DIAQ 0.1333 0.0097 0.0899 0.0062

DeiT-B ImageNet RTN 0.1533 0.0133 0.1061 0.0119
DIAQ 0.1353 0.0102 0.0952 0.0101

Swin-T ImageNet RTN 0.1507 0.0134 0.0959 0.0066
DIAQ 0.1317 0.0101 0.0863 0.0057

Swin-S ImageNet RTN 0.1550 0.0139 0.1223 0.0127
DIAQ 0.1341 0.0103 0.1077 0.0099

Linear

N 1024×1024 N 1024 RTN 0.1318 0.0086 0.1319 0.0086

Layer

DIAQ 0.1191 0.0071 0.1192 0.0072

N 2048×2048 N 2048 RTN 0.1396 0.0097 0.1398 0.0097
DIAQ 0.1250 0.0079 0.1250 0.0078

N 4096×4096 N 4096 RTN 0.1464 0.0106 0.1465 0.0106
DIAQ 0.1302 0.0085 0.1302 0.0085

18

	Introduction
	Preliminaries
	Problem Definition
	Weight-Activation Quantization

	Theoretical Analysis on Activation Quantization
	Proposed Method
	Overview
	Activation Extension
	Direction-aware Rounding
	Scale Correction
	Complexity Analysis

	Experiments
	Experimental Setup
	Error Analysis
	Hyperparameter Analysis
	Task Performance on LLMs
	Task Performance on ViTs

	Conclusion
	Details of Theoretical Analysis
	Cosine Similarity for Long Activations
	Cases in the proof of Theorem 3
	Expected Cosine Similarity
	Sign-based Rounding
	Expected Magnitude of Elements in Normalized Vector

	Algorithm
	Details on the Experimental Setup
	Implementation Details
	Hyperparameter Search
	Quantization Error
	Perplexity
	Zero-shot Evaluation
	Image Classification

	Additional Experimental Results
	The Use of Large Language Models

