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ABSTRACT

Large-scale spatio-temporal prediction is a critical area of research in data-driven
urban computing, with far-reaching implications for transportation, public safety,
and environmental monitoring. However, the challenges of scalability and gen-
eralization continue to pose significant obstacles. While many advanced mod-
els rely on Graph Neural Networks (GNNs) to encode spatial and temporal cor-
relations, they often struggle with the increased time and space complexity of
large-scale datasets. The recursive GNN-based message passing schemes used
in these models can make their training and deployment difficult in real-life ur-
ban sensing scenarios. Additionally, large-scale spatio-temporal data spanning
long time spans introduce distribution shifts, further highlighting the need for
models with improved generalization performance. To address these challenges,
we propose Spatio-Temporal Graph Knowledge Distillation (STGKD) paradigm
to learn lightweight and robust Multi-Layer Perceptrons (MLPs) through effec-
tive knowledge distillation from cumbersome spatio-temporal GNNs. To ensure
robust knowledge distillation, we integrate the spatio-temporal information bot-
tleneck with the teacher-bounded regression loss. This allows us to filter out
task-irrelevant noise and avoid erroneous guidance, resulting in robust knowledge
transfer. Additionally, we enhance the generalization ability of student MLP by
incorporating spatial and temporal prompts to inject downstream task contexts.
We evaluate our framework on three large-scale spatio-temporal datasets for var-
ious urban computing tasks. Experimental results demonstrate that our model
outperforms state-of-the-art approaches in terms of both efficiency and accuracy.

1 INTRODUCTION

Spatio-temporal prediction is the ability to analyze and model the complex relationships between
spatial and temporal data. This involves understanding how different spatial features (e.g., location,
distance, and connectivity) and temporal features (e.g., time of day, seasonality, and trends) interact
with each other to produce dynamic patterns and trends over time. By accurately predicting these
patterns and trends, spatio-temporal prediction enables a wide range of applications in urban com-
puting. For example, in transportation, it can be used to predict traffic flow and congestion patterns,
optimize traffic signal timing, and improve route planning for public transit systems Zheng et al.
(2020b). In public safety, it can be used to predict crime hotspots and allocate police resources more
effectively Xia et al. (2021). In environmental monitoring, it can be used to predict air and water
quality, monitor the spread of pollutants, and predict the impact of climate change Yi et al. (2018).

Traditional spatio-temporal forecasting techniques often overlook the spatial dependencies present
in data Yao et al. (2018; 2019); Pan et al. (2019); Shi et al. (2015). The emergence of Graph Neu-
ral Network (GNN)-based models Yu et al. (2018); Fang et al. (2021); Han et al. (2021); Wu et al.
(2020) are motivated by the need to capture high-order spatial relationships between different loca-
tions, thereby enhancing the forecasting accuracy. By incorporating multiple graph convolutional or
attention layers with recursively message passing frameworks, these models can effectively model
the interactions among spatially connected nodes Geng et al. (2019). However, two key challenges
hinder the performance of existing solutions in GNN-based spatio-temporal forecasting:

Scalability. Spatio-temporal prediction often involves large-scale datasets with complex spatial and
temporal relationships. However, the computational complexity of GNNs can become prohibitive in
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such cases. Specifically, GNN-based models for spatio-temporal prediction can be computationally
demanding and memory-intensive due to the large-scale spatio-temporal graph they need to handle.

Generalization. Spatio-temporal prediction models need to generalize well to unseen data and adapt
to distribution shifts that occur over time due to various factors, such as changes in the environment,
human behavior, or other external factors Zhou et al. (2023). These distribution shifts can lead to
a significant decrease in the performance of spatio-temporal prediction models Zhang et al. (2022).
Therefore, it is important to consider spatio-temporal data distribution shift to ensure that the models
can adapt to changes in the underlying distribution and maintain their accuracy over time.

Contribution. To tackle the aforementioned challenges, we propose our Spatio-Temporal Graph
Knowledge Distillation paradigm (STGKD) that enables the transfer of knowledge from a larger,
more complex teacher spatio-temporal GNN to a smaller, more efficient student model. This com-
pression improves model scalability and efficiency, allowing for faster training and inference on
resource-constrained systems in dealing with large-scale spatio-temporal data. Simultaneously, we
focus on capturing and modeling the accurate and invariant temporal and spatial dependencies to en-
hance generalization capabilities. This enables the lightweight student model i) to be robust against
noisy or irrelevant information after knowledge distillation from the teacher GNN; and ii) to adapt
to distribution shifts when dealing with downstream unseen spatio-temporal data.

In the realm of spatio-temporal predictions, two types of noise can hinder the effectiveness of knowl-
edge distillation: errors or inconsistencies in the teacher model’s predictions and shifts in data distri-
bution between training and testing data. Mitigating these biases in the teacher model’s predictions
and effectively handling data distribution shifts are crucial for achieving successful spatio-temporal
knowledge distillation. This process holds the potential to improve the scalability and efficiency of
spatio-temporal prediction models while enhancing their generalization capabilities. To accomplish
this, we incorporate the principle of the spatio-temporal information bottleneck into the knowledge
distillation framework, aiming to enhance model generalization and robustness. To prevent the stu-
dent model from being misled by erroneous regression results from the teacher model, we employ a
teacher-bounded regression loss for robust knowledge alignment.

Additionally, to further enhance the student model’s performance on downstream tasks by incor-
porating spatio-temporal contextual information, we utilize spatio-temporal prompt learning. This
approach allows us to provide explicit cues that guide the model in capturing spatial and tempo-
ral patterns in unseen data, effectively imparting task-specific knowledge to the compressed model.
The evaluation results demonstrate the effectiveness of our proposed method, which has the poten-
tial to significantly improve efficiency and accuracy in various spatio-temporal prediction tasks in
urban computing domains. For reproducibility purposes, we have made our model implementation
available at the following anonymous link: https://anonymous.4open.science/r/STGKD.

2 PRELIMINARIES

Spatio-Temporal Units. Different urban downstream tasks may employ varying strategies for gen-
erating spatio-temporal units. For instance, in the domain of crime forecasting, the urban geographi-
cal space is often partitioned into N = I ×J grids, where each grid represents a distinct region ri,j .
Spatio-temporal signals, such as crime counts, are then collected from each grid at previous T time
intervals. On the other hand, when modeling traffic data, spatio-temporal traffic volume signals are
gathered using a network of sensors (e.g., ri), with data recorded at specific time intervals (t ∈ T ).

Spatio-Temporal Graph Forecasting. The utilization of a Spatio-Temporal Graph (STG)
G(V, E ,A,X) provides an effective means of capturing the relationships among different spatio-
temporal units. In this context, V is the collection of nodes (e.g., regions or sensors) and E denotes
the set of edges that connect these nodes. The adjacency matrix, A ∈ RN×N (where N = |V|), cap-
tures the relationships between the nodes in the spatio-temporal graph. X ∈ RT×N×F represents
the STG features, which encompass spatio-temporal signals such as traffic flow or crime counts.
Here, T signifies the number of time steps, while F denotes the number of features associated with
each node. This graph-based structure allows for an efficient characterization of spatial and tempo-
ral relationships, enabling a comprehensive analysis of the underlying urban dynamics. Our goal in
STG prediction is to learn a function, denoted as f , that can forecast the future STG signals (i.e.,
Ŷ ∈ RT ′×N×F ) for the next T ′ steps based on the available information from T historical frames.

Ŷt:t+T ′−1 = f(G(V, E ,A,Xt−T :t−1)) (1)
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Figure 1: Overall framework of the proposed STGKD.

3 METHODOLOGY

In this section, we present our STGKD along with its technical details, as illustrated in Figure 1.
Throughout this section, subscripts are used to represent matrix indices, while superscripts are em-
ployed to indicate specific distinguishing labels, unless stated otherwise.

3.1 KNOWLEDGE DISTILLATION WITH SPATIO-TEMPORAL GNNS

The effectiveness of spatio-temporal GNNs heavily relies on complex network models with recursive
message passing schemes. In our STGKD, we aim to overcome this complexity by transferring the
soft-label supervision from a large teacher model to a lightweight student model, while still preserv-
ing strong performance in spatio-temporal prediction. The teacher spatio-temporal GNN provides
supervision through spatio-temporal signals (i.e., Y ∈ RT ′×N×F ), and it generates predictive labels
(i.e., YT ∈ RT ′×N×F ). Our goal is to distill the valuable knowledge embedded in the GNN teacher
and effectively transfer it to a simpler MLP, enabling more efficient and streamlined learning.

L = Lpre(Ŷ,Y) + λLkd(Ŷ,YT ) (2)

The prediction of the student MLP is denoted as Ŷ ∈ RT ′×N×F . We introduce the trade-off co-
efficient λ to balance the two terms in our objective. The first term, Lpre, represents the predictive
MAE-based or MSE-based loss function used in the original STG forecasting tasks. However, when
it comes to knowledge distillation, the second term, Lkd, which aims to bring the student’s predic-
tions closer to the teacher’s results, requires careful reconsideration, especially for regression tasks.
In the following subsection, we will present our well-designed objective that addresses this issue.

3.2 ROBUST KNOWLEDGE TRANSFER WITH INFORMATION BOTTLENECK

In the context of spatio-temporal predictions, the presence of two types of noise can indeed have
a detrimental impact on the effectiveness of the knowledge distillation process. The predictions
produced by the teacher model can be prone to errors or inconsistencies, which can misguide the
knowledge transfer paradigm during the distillation process. Additionally, the presence of data
distribution shift between the training and test data can pose a challenge for knowledge distillation.
This can result in the student model struggling to identify relevant information for the downstream
prediction task. As a result, addressing bias in the teacher model’s predictions and handling data
distribution shift are important considerations for successful spatio-temporal knowledge distillation.

To address the above challenges, we enhance our spatio-temporal knowledge distillation paradigm
with Information Bottleneck principle (IB), to improve the model generalization and robustness.
In particular, our objective of our framework in information compression is to generate compressed
representations of input data that retains the invariant and most relevant information while discarding
unnecessary or redundant information. Formally, we aim to minimize the objective by considering
the student’s predictions, denoted as Ŷ, the teacher’s predictions, denoted as YT , the ground-truth
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result, denoted as Y, and the input spatio-temporal features, denoted as X.

min
P(Z|X)

(−I(Y,Z) + β1I(X,Z)) + (−I(YT ,Z) + β2I(X,Z))

= min
P(Z|X)

−(I(Y,Z) + I(YT ,Z)) + (β1 + β2)I(X,Z) (3)

The hidden representation, denoted as Z, represents the encoded information of the input X in the
student model. To incorporate certain constraints in the objective function, we introduce Lagrange
multipliers β1 and β2. In our IB-enhanced knowledge distillation paradigm, we conduct two chan-
nels of distillation. The first channel aligns the predictions of the teacher model with those of the
student model, while the second channel aligns the predictions of the student model with the down-
stream labels. By striking a balance between compression and relevance, our framework enables the
discovery of compressed representations that capture the most salient and informative aspects of the
data, while discarding irrelevant or redundant information.

3.2.1 VARIATIONAL BOUNDS OUR IB MECHANISM

Since directly computing the mutual information terms I(Y,Z), I(YT ,Z), and I(X,Z) is in-
tractable, we resort to using variational bounds to estimate each term in the objective, as motivated
by the work Alemi et al. (2017). Concerning the lower bound of I(Y,Z) + I(YT ,Z), its formal-
ization can be expressed as follows:

I(Y,Z) + I(YT ,Z) = EY,Z[log
P(Y|Z)
P(Y)

] + EYT ,Z[log
P(YT |Z)
P(YT )

]

≥ EY,Z[logQ1(Y|Z)] + EYT ,Z[logQ2(Y
T |Z)] (4)

The variational approximations Q1(Y|Z) and Q2(Y
T |Z) are used to approximate the true distribu-

tions P(Y|Z) and P(YT |Z), respectively. These approximations aim to closely match the ground-
truth result Y and mimic the behavior of the teacher model YT based on the hidden embeddings Z.
As for the upper bound of I(X,Z), we can express it as follows:

I(X,Z) = EX,Z[log
P(Z|X)

P(Z)
] ≤ EX[KL(P(Z|X)∥Q3(Z))] (5)

The variational approximation Q3(Z) is used to approximate the marginal distribution P(Z). Fur-
ther derivation and details can be found in the supplementary material. In our spatio-temporal IB
paradigm, the objective to be minimized is given by Equation 3.

min
P(Z|X)

−(EY,Z[logQ1(Y|Z)] + EYT ,Z[logQ2(Y
T |Z)])

+(β1 + β2)EX[KL(P(Z|X)∥Q3(Z))] (6)

3.2.2 SPATIO-TEMPORAL IB INSTANTIATING

To instantiate the objective in Eq 6, we characterize the following distributions: P(Z|X), Q1(Y|Z),
Q2(Y

T |Z), and Q3(Z). These distributions play a crucial role in defining and instantiating the
objective in Eq 6, allowing us to optimize the model based on the information bottleneck principle.

Encoder with P(Z|X). To obtain the mean and variance matrices of the distribution of Z from the
input feature X, we employ a Multilayer Perceptron (MLP) encoder Fe. The formulation is:

(µz, σz) = Fe(X) (7)

Decoder with Q1(Y|Z) and Q2(Y
T |Z). After obtaining the distribution of Z with mean (µz) and

variance (σz) matrices, we utilize the reparameterization trick to sample from this learned distribu-
tion and obtain the hidden representation Z. The reparameterization is given by Z = ϵσz + µz ,
where ϵ is a stochastic noise sampled from a standard normal distribution (N (0, 1)). Subsequently,
we decode the obtained Z using an MLP decoder Fd to generate the final prediction Ŷ:

Ŷ = Fd(Z) (8)
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For tasks involving discrete predictions, such as classification, the cross-entropy loss is commonly
used to maximize the likelihood in the first term of Equation 3. On the other hand, for regression
tasks with continuous predictions, Equation 2 is employed, utilizing mean squared error (MSE) or
mean absolute error (MAE) to maximize the likelihood. This choice of loss function depends on the
nature of the prediction task and the type of output being considered.

Marginal Distribution Control with Q3(Z). In our approach, we assume the prior marginal dis-
tribution of Z to be a standard Gaussian distribution N (0, 1). This choice is inspired by the spirit of
variational auto-encoders (VAE) as discussed in the work Kingma & Welling (2014). Consequently,
for the KL-divergence term in Equation 3, we can express it as follows:

KL(P(Z|X)∥Q3(Z)) =
1

2
(− log σ2

z + σ2
z + µ2

z − 1) (9)

The derivation of the above equation can be found in the supplementary materials.

3.2.3 TEACHER-BOUNDED REGRESSION LOSS

To effectively control the knowledge distillation process for regression tasks, a teacher-bounded
regression loss Lb is employed as the knowledge distillation loss Lkd. The purpose of this approach
is to prevent the student model from being misled by deterministic yet erroneous regression results
generated by the teacher model. The formulation of the teacher-bounded regression loss Lb is:

Lkd(Ŷ,YT ) = Lb(Ŷ,YT ,Y) =

{
ℓ(Ŷ,Y), if ℓ(Ŷ,Y) + δ ≥ ℓ(YT ,Y)

0, otherwise
(10)

The symbol ℓ represents any standard regression loss, such as mean absolute error (MAE) or mean
squared error (MSE). The threshold δ is used to control the knowledge transfer process. The vectors
Ŷ, YT , and Y correspond to the predictions of the student, the teacher, and the ground truth,
respectively. In detail, the student model does not directly take the teacher’s predictions as its target
but instead treats them as an upper bound. The objective of the student model is to approach the
ground truth results and closely mimic the behavior of the teacher model. However, once the student
model’s performance surpasses that of the teacher model by a certain degree (exceeding the threshold
δ), it no longer incurs additional penalties for knowledge distillation. To conclude, we extend the
original KD loss, which is constrained by the proposed spatio-temporal IB principle, resulting in a
robust and generalizable KD framework. Our objective is to minimize the following function L:

L = Lpre(Ŷ,Y) + λLkd(Ŷ,YT ) +
β1 + β2

2
(− log σ2

z + σ2
z + µ2

z − 1) (11)

3.3 SPATIO-TEMPORAL CONTEXT LEARNING WITH PROMPTS

To infuse the spatio-temporal contextual information into the student model from downstream tasks,
we leverage spatio-temporal prompt learning as a mechanism to impart task-specific knowledge to
the compressed model. These prompts serve as explicit cues that guide the model in capturing
data-specific spatial and temporal patterns. We incorporate the following spatio-temporal prompts:
Spatial Prompt. The diverse nodes present in the spatio-temporal graph showcase distinct global
spatial characteristics, which are closely linked to the functional regions (e.g., commercial and resi-
dential areas) they represent in urban geographical space. To effectively model this essential feature,
we introduce a learnable spatial prompt denoted as E(α) ∈ RN×D, where N denotes the number
of nodes (e.g., regions, sensors) within the spatio-temporal graph. This spatial prompt enables us to
incorporate and encode the unique spatial characteristics associated with each spatial units.
Temporal Prompt. To further enhance the student’s temporal awareness, we incorporate two tem-
poral prompts into the model, taking inspiration from previous works Shao et al. (2022); Wu et al.
(2019). These prompts include the ”time of day” prompt, represented by E(ToD) ∈ RT1×d, and the
”day of week” prompt, represented by E(DoW ) ∈ RT2×d. The dimensionality of the ”time of day”
prompt is set to T1 = 288, corresponding to 5-minute intervals, while the ”day of week” prompt has
a dimensionality of T2 = 7 to represent the seven days of the week.

Spatio-Temporal Transitional Prompt. The spatial and temporal dependencies among nodes in
the spatio-temporal graph can vary across different time periods, often reflecting daily mobility
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patterns, such as peak traffic during morning and evening rush hours in residential areas due to
commuting. Consequently, it becomes crucial to learn spatio-temporal context with transitional
prompts for different timestamps. However, this task can be time-consuming and resource-intensive,
particularly when dealing with large-scale datasets. Taking inspiration from the workHan et al.
(2021), we tackle this challenge by scaling all timestamps to represent a single day. We then employ
Tucker decomposition Tucker (1966) to learn the dynamic spatio-temporal transitional prompt for
each node at all timestamps within a day, denoted as Nt.

E
(β)′
t,n =

d∑
p=1

d∑
q=1

Ek
p,qE

t
t,pE

s
n,q, E

(β)
t,n =

exp(E
(β)′
t,n )∑N

m=1 exp(E
(β)′
t,m )

(12)

Let Ek ∈ Rd×d×d represent the Tucker core tensor with a Tucker dimension of d. We define
Et ∈ RNt×d to represent the temporal prompts, and Es ∈ RN×d to represent prompts for spatial
locations. Additionally, E(β)′ ∈ RNt×N×d and E(β) ∈ RNt×N×d indicate the intermediate and
final prompts for spatio-temporal transitional patterns, respectively.

Information Fusion with Spatio-Temporal Prompts and Representations. To summarize, we ag-
gregate spatio-temporal information from both prompts and latent representations to create the input
X for the information bottleneck-regularize student model. The formal expression is as follows:

X = FC1(X)∥FC2(E
(α))∥FC3(E

(β)
t−T,t−1)∥FC4(E

(ToD)
t−T,t−1)∥FC5(E

(DoW )
t−T,t−1) (13)

Here, FCi, where i = 1 · · · 5, refers to fully-connected layers that map all embeddings to the same
dimensional space. The terms E

(β)
t−T,t−1 ∈ RT×N×d, E(ToD)

t−T,t−1 ∈ RT×d, and E
(DoW )
t−T,t−1 ∈ RT×d

represent the learnable spatio-temporal prompts queried by the input ”time of day” and ”day of
week” indices of the STG. After passing the student model according to Equations 7 and 8, we
optimize our STGKD using Equation 11. For a more detailed explanation of the learning process of
our STGKD framework, please refer to the Supplementary Materials.

4 EVALUATION

Datasets. To evaluate the effectiveness of our model in large-scale spatio-temporal prediction, we
employ urban sensing datasets for three distinct tasks: traffic flow prediction, crime forecasting
and weather prediction. i) Traffic Data. PEMS is a traffic dataset collected from the California
Performance of Transportation (PeMS) project. It consists of data from 1481 sensors, with a time
interval of 5 minutes. The dataset spans from Sep 1, 2022, to Feb 28, 2023. ii) Crime Data. CHI-
Crime is a crime dataset obtained from crime reporting platforms in Chicago. For this dataset, we
divide the city of Chicago into spatial units of size 1 km × 1 km, resulting in a total of 1470 grids.
The time interval for this dataset is 1 day, covering the period from Jan 1, 2002, to Dec 31, 2022. ii)
Weather Data. This is a weather dataset released by Zhu et al. (2023). It comprises data from 1866
sensors, with a temporal resolution of 1 hour. The dataset spans from Jan 1, 2017, to Aug 31, 2021.
To show the superiority of our STGKD more intuitively, we also evaluate it on the public dataset
PEMS-4. For more detailed statistics of those datasets, please refer to the Supplementary Section.

Evaluation Protocols. To ensure a fair comparison, we divided the three datasets into a ratio of 6:2:2
for training, validation, and testing, respectively. For traffic prediction, we specifically focused on
the flow variable to perform our predictions. For crime forecasting, we select four specific crime
types for our analysis. In the task of weather prediction, our attention was directed towards the
vertical visibility variable. To evaluate the performance of our model on these datasets, we utilized
three commonly adopted evaluation metrics: Mean Absolute Error (MAE), Root Mean Squared
Error (RMSE), and Mean Absolute Percentage Error (MAPE).

Baseline Models. We conducted a comparative analysis of our model against 12 state-of-the-art
baselines. The baseline models include: (1) Statistical Approach: HI Cui et al. (2021); (2) Conven-
tional Deep Learning Models: MLP, FC-LSTM Sutskever et al. (2014); (3) GNN-based Methods:
STGCN Yu et al. (2018), GWN Wu et al. (2019), StemGNN Cao et al. (2021), MTGNN Wu
et al. (2020); (4) Dynamic Graph-based Model: DMSTGCN Han et al. (2021); (5) Attention-based
Method: ASTGCN Guo et al. (2019); (6) Hybrid Learning Model: ST-Norm Deng et al. (2021),
STID Shao et al. (2022); (7) Self-Supervised Learning Approach: ST-SSL Ji et al. (2023).
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Table 1: Performance comparison in diverse spatio-temporal forecasting tasks.
Dataset Traffic PEMS-04 Crime Weather

Model Venue MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE
HI - 34.62 55.51 26.38% 42.35 61.66 29.92% 1.0001 1.2221 82.84% 6683.05 9532.07 114.35%

MLP - 19.16 33.80 13.69% 26.34 40.53 17.53% 0.8070 1.0098 64.92% 4628.18 6854.31 78.34%
FC-LSTM NeurIPS-14 18.22 32.75 13.43% 23.81 36.62 18.12% 0.8588 1.0541 69.72% 4549.03 6895.66 77.99%
ASTGCN AAAI-19 19.69 34.47 15.65% 22.93 35.22 16.56% 0.6584 0.9143 50.84% 5891.46 8037.68 110.61%
STGCN IJCAI-18 15.36 28.77 12.37% 19.63 31.32 13.32% 0.5749 0.8601 44.24% 3997.19 6199.53 65.25%
GWN IJCAI-19 14.10 27.14 9.80% 19.22 30.74 12.52% 0.6860 0.9165 55.88% 3991.24 6207.5 65.63%

StemGNN NeurIPS-20 13.97 27.26 9.73% 21.61 33.80 16.10% 0.7906 1.0095 63.69% 4094.09 6370.02 68.43%
MTGNN KDD-20 13.53 25.73 9.90% 19.50 32.00 14.04% 0.6551 0.9030 51.85% 3991.14 6199.61 65.42%
ST-Norm KDD-21 13.14 25.80 9.52% 18.96 30.98 12.69% 0.7727 1.0264 61.79% 3996.73 6282.06 66.43%

DMSTGCN KDD-21 14.50 27.86 9.97% 22.87 36.05 14.86% 0.7609 0.9778 60.92% 4257.63 6554.1 71.15%
STID CIKM-22 12.87 25.64 9.86% 18.91 30.57 12.67% 0.2337 0.6969 11.79% 3997.92 6199.77 65.34%

ST-SSL AAAI-23 14.49 26.48 12.38% 20.88 32.69 13.95% 0.3038 0.7045 18.59% 3991.26 6250.69 67.90%
STGKD - 12.70 25.32 9.46% 18.69 30.46 12.34% 0.2281 0.6933 10.78% 3990.07 6195.83 65.08%

Implementation Details. The batch size for handling spatio-temporal data is set to 32. For model
training, we initialize the learning rate at 0.002 and apply a decay factor of 0.5 with decay steps oc-
curring at epochs 1, 50, and 100. Regarding the model’s hyperparameters, β1, β2, λ are chosen from
(0.0, 1.0) to appropriately balance the various loss components. We designate the hidden dimension
d as 64, while the threshold δ for the bounded loss is determined as 0.1. In terms of the input-output
sequence lengths for spatio-temporal prediction, we utilize the following configurations: i) Traffic
forecasting: 12 historical time steps (1 hour) and 12 prediction time steps (1 hour). ii) Crime predic-
tion: 30 historical time steps (1 month) and 1 prediction time step (1 day). ii) Weather prediction:
12 historical time steps (12 hours) and 12 prediction time steps (12 hours). We evaluate most of the
baselines using their publicly available code with the default hyperparameter settings to ensure fair
comparisons. The default teacher model employed in our experiments is STGCN.

4.1 PERFORMANCE COMPARISON

Table 1 presents the comparison results of our STGKD with state-of-the-art baselines on traffic,
crime and weather information, evaluating its effectiveness. The best-performing model’s results
are highlighted in bold for each dataset. Overall, our STGKD has consistently demonstrated su-
perior performance compared to various baselines, validating the effectiveness of our approach in
modeling spatio-temporal correlations. The design of our IB-based spatio-temporal knowledge dis-
tillation paradigm enables the student MLP to inherit rich spatio-temporal knowledge from the
teacher STGNN while avoiding erroneous guidance and potential noise from the teacher. This
greatly enhances the model’s ability to identify useful spatio-temporal correlations and outperforms
GNN-based methods. Moreover, our framework achieves better generalization and robustness per-
formance compared to self-supervised approaches (e.g., ST-SSL), particularly on sparse crime data.

4.2 MODEL ABLATION STUDY

To verify the effectiveness of the designed modules, we perform comprehensive ablation experi-
ments on key components of our model. The experimental results on three datasets are presented in
Table 2. Accordingly, we have the following variants and observations:

• Spatio-Temporal Prompt Learning. We conduct experiments to remove the spatial, temporal
and transitional prompts and generate three variants: ”w/o-S-Pro”, ”w/o-T-Pro”, ”w/o-Tran-Pro”,
respectively. The results of these experiments show that all three types of prompts improve the
model performance by injecting informative spatio-temporal contexts from the downstream tasks.

• Spatio-Temporal IB. We exclude the spatio-temporal IB module to create a model variant: ”w/o-
IB”. Upon comparing the results across the three datasets, we note that the presence of our IB
module enables the student model to extract and filter significant information in assisting the
downstream spatio-temporal predictions, thereby improving generalization during the encoding
and knowledge distillation. This effect is particularly pronounced in the sparse crime data.

• Teacher-Bounded Regression Loss. We substitute the bounded loss with the regular KD loss,
specifically using the MAE loss (Lkd(Ŷ,YT )), to create a model variant called ”w/o-TB”. Upon
evaluation, we have observed a notable decrease in the performance of our STGKD. This outcome
suggests that our designed teacher-bounded loss for alignment can effectively alleviate to transfer
erroneous information from the teacher model to the student model.

• Spatio-Temporal Knowledge Distillation. To assess the effectiveness of our KD paradigm, we
generate a model variant called ”w/o-KD” by removing the knowledge distillation component.
Upon evaluation, we have observed a significant decrease in the model’s performance. This obser-
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Table 2: Ablation study on various spatio-temporal forecasting tasks.
Datasets Traffic Crime Weather
Metrics MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE
STGKD 12.70 25.32 9.46% 0.2281 0.6933 10.78% 3990.07 6195.83 65.08%

w/o-Tran-Pro 12.85 25.41 9.95% 0.2351 0.6977 10.80% 4019.39 6196.10 65.18%
w/o-S-Pro 13.28 25.73 9.56% 0.2298 0.7779 10.80% 4134.47 6330.35 67.35%
w/o-T-Pro 13.81 26.08 10.52% 0.2343 0.6952 11.40% 4056.44 6200.58 65.85%

w/o-IB 12.84 25.35 9.47% 0.2733 0.7189 15.73% 4006.01 6196.78 65.29%
w/o-TB 13.14 25.68 10.25% 0.2400 0.7000 11.42% 4085.29 6198.84 68.11%
MLP 19.16 33.80 13.69% 0.8070 1.0098 64.92% 4628.18 6854.31 78.34%

vation further solidifies the effectiveness of our proposed framework, highlighting the importance
of the spatio-temporal knowledge transfer process in improving the model’s performance.

4.3 MODEL SCALABILITY STUDY
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Figure 2: Model performance and in-
ference time of representative methods on
the test set of traffic and crime datasets.

In order to evaluate the effectiveness and efficiency of
our STGKD in addressing large-scale spatio-temporal
prediction, we conduct a comparative analysis with
state-of-the-art baselines on the forecasting tasks of
citywide traffic flow and crimes. The performance and
inference time on the test sets of these datasets are pre-
sented in Figure 2. From our analysis, we highlight two
key observations: (i) Higher Efficiency: Our STGKD
achieves significantly faster inference speeds compared
to existing SOTA models. This efficiency is attributed
to the absence of complex computational units with
GNN-based message passing in the lightweight student
MLP model, allowing for faster computations without
compromising performance. (ii) Superior Prediction
Accuracy: The student MLP selectively inherits task-
relevant spatio-temporal knowledge from the teacher
GNN framework through knowledge distillation with
our spatio-temporal IB paradigm and the teacher-bounded loss. These observations underscore the
effectiveness and efficiency of our STGKD in large-scale spatio-temporal prediction tasks.

4.4 GENERALIZATION AND ROBUSTNESS STUDY
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Figure 3: Performance evaluation w.r.t
noisy (top) and missing (bottom) data.

To further validate the robustness and generalization
ability of our model, we compare it with baselines un-
der the conditions of noisy and missing data over the
PEMS traffic data. Performance w.r.t Data Noise: We
artificially introduce noise to the input STG features X
by modifying the features as X = (1−γ)X+γϵ, where
γ is the noise coefficient, and ϵ is sampled from a Gaus-
sian distribution. We gradually increase the noise coef-
ficient from 0 (original input) to 0.3 (with an increment
of 0.05) and compare our model with STGCN, DMST-
GCN, and MLP. The results, shown in Figure 3 (top),
demonstrate that as the noise coefficient increases, the
performance gap between DMSTGCN, MLP, and our
model widens. Within the 0-0.2 range, the performance
gap between STGCN and our model also continues to
increase. This reflects the strong noise resilience of
our model, where our spatio-temporal IB paradigm fil-
ters out task-irrelevant information. Performance w.r.t
Data Missing: We manually set a certain proportion of the input STG features X to zero, simulat-
ing the data missing problem in real-world scenarios. The missing ratio is denoted as γ = M

T×N×F ,
where M represents the total number of features in X that are set to zero. By gradually increasing
the missing ratio from 0 (original input) to 0.3, Figure 3 (bottom) illustrates that the performance
gap between the three comparison models and our model continues to widen. This further verifies
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the superior ability of our model to learn robust and generalizable representations of STGs using
limited features. Additionally, since our model does not require inter-feature message passing like
STGNN, the impact of missing features on our model is minimized.

4.5 MODEL-AGNOSTIC PROPERTY STUDY

Table 3: Performance with various teacher models.
Dataset Traffic Dataset Traffic
Model MAE RMSE MAPE Model MAE RMSE MAPE

STGCN 15.36 28.77 12.37% MTGNN 13.53 25.73 9.90%
w/ -KD 12.70 25.32 9.46% w/ -KD 12.71 25.27 9.81%

DMSTGCN 14.50 27.86 9.97% StemGNN 13.97 27.26 9.73%
w/ -KD 12.76 25.23 9.57% w/ -KD 12.86 25.51 10.01%

Our STGKD framework is model-
agnostic, allowing it to be applied to
different teachers. To validate its adapt-
ability, we apply it to four STGNN
models: STGCN, MTGNN, DMST-
GCN, and StemGNN. The results on
the traffic dataset are presented in Ta-
ble 3. It can be observed that with the support of our framework, the performance of all teacher
models is significantly improved, reaching the state-of-the-art level. This improvement can be at-
tributed to our spatio-temporal IB and teacher-bounded loss, which effectively transfer task-relevant
spatio-temporal knowledge to the student while filtering out noisy and misleading guidance. As a
result, the positive effects of STGNN are maximized within our graph KD framework.

5 RELATED WORK

Spatio-Temporal Forecasting. In recent years, there have been significant advancements in spatio-
temporal prediction within the domain of urban intelligence. This field enables accurate forecasting
of complex phenomena such as traffic flow, air quality, and urban outliers. Researchers have devel-
oped a range of neural network techniques, including convolutional neural networks (CNNs) Zhang
et al. (2017b;a), as well as graph neural networks (GNNs) Guo et al. (2019); Zheng et al. (2020a);
Han et al. (2021). Moreover, recent self-supervised spatio-temporal learning methods (e.g., ST-
SSL Ji et al. (2023) and AutoST Zhang et al. (2023)) have shown great promise in capturing complex
spatio-temporal patterns, especially in scenarios with sparse data. However, SOTA approaches still
face challenges in terms of scalability and computational complexity when dealing with large-scale
spatio-temporal graphs. Additionally, it is crucial for spatio-temporal prediction models to adapt
well to distribution shifts over time in order to maintain their accuracy. This work aims to address
these challenges by developing efficient and robust spatio-temporal forecasting frameworks.
Knowledge Distillation on General Graphs. Research on knowledge distillation (KD) for graph-
based models has gained significant attention in recent years Zhang et al. (2021). The proposed
paradigms of knowledge distillation can be grouped into two categories: i) Logits Distillation in-
volves using logits as indicators of the inputs for the final softmax function, which represent the
predicted probabilities. In the context of graph-based KD models, the primary objective is to min-
imize the difference between the probability distributions or scores of a teacher model and a stu-
dent model. Noteworthy works that leverage logits in knowledge distillation for graphs include
TinyGNN Yan et al. (2020), CPF Yang et al. (2021), and GFKD Deng & Zhang (2021). ii) Struc-
tures Distillation aims to preserve and distill either local structure information (e.g., LSP Yang et al.
(2020), FreeKD Feng et al. (2022), GNN-SD Chen et al. (2021)) or global structure information
(e.g., CKD Wang et al. (2022), GKD Yang et al. (2022)) from a teacher model to a student model.
Notable examples in this category include T2-GNN Huo et al. (2022), SAIL Yu et al. (2022), and
GraphAKD He et al. (2022). Drawing upon prior research, this study capitalizes on the benefits
of KD to improve spatio-temporal prediction tasks. The objective is to streamline the process by
employing a lightweight yet effective model. A significant contribution of this work lies in the novel
integration of the spatio-temporal information bottleneck into the KD framework. By doing so, the
model effectively mitigates the impact of noise through debiased knowledge transfer.

6 CONCLUSION

In our research, we focus on addressing two crucial challenges in large-scale spatio-temporal pre-
diction: efficiency and generalization. To overcome these challenges, we introduce a novel and
versatile framework called STGKD, which aims to encode robust and generalizable representations
of spatio-temporal graphs. Our framework incorporates the IB principle to enhance the knowledge
distillation process by filtering out task-irrelevant noise in the student’s encoding and alignment dur-
ing knowledge transfer. Moreover, we introduce a spatio-temporal prompt learning component that
injects dynamic context from the downstream prediction task. Through extensive experiments, we
demonstrate that our STGKD surpasses state-of-the-art models in both performance and efficiency.
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